linux/arch/powerpc/platforms/cell/spufs/sched.c
<<
>>
Prefs
   1/* sched.c - SPU scheduler.
   2 *
   3 * Copyright (C) IBM 2005
   4 * Author: Mark Nutter <mnutter@us.ibm.com>
   5 *
   6 * 2006-03-31   NUMA domains added.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#undef DEBUG
  24
  25#include <linux/errno.h>
  26#include <linux/sched.h>
  27#include <linux/sched/rt.h>
  28#include <linux/kernel.h>
  29#include <linux/mm.h>
  30#include <linux/slab.h>
  31#include <linux/completion.h>
  32#include <linux/vmalloc.h>
  33#include <linux/smp.h>
  34#include <linux/stddef.h>
  35#include <linux/unistd.h>
  36#include <linux/numa.h>
  37#include <linux/mutex.h>
  38#include <linux/notifier.h>
  39#include <linux/kthread.h>
  40#include <linux/pid_namespace.h>
  41#include <linux/proc_fs.h>
  42#include <linux/seq_file.h>
  43
  44#include <asm/io.h>
  45#include <asm/mmu_context.h>
  46#include <asm/spu.h>
  47#include <asm/spu_csa.h>
  48#include <asm/spu_priv1.h>
  49#include "spufs.h"
  50#define CREATE_TRACE_POINTS
  51#include "sputrace.h"
  52
  53struct spu_prio_array {
  54        DECLARE_BITMAP(bitmap, MAX_PRIO);
  55        struct list_head runq[MAX_PRIO];
  56        spinlock_t runq_lock;
  57        int nr_waiting;
  58};
  59
  60static unsigned long spu_avenrun[3];
  61static struct spu_prio_array *spu_prio;
  62static struct task_struct *spusched_task;
  63static struct timer_list spusched_timer;
  64static struct timer_list spuloadavg_timer;
  65
  66/*
  67 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  68 */
  69#define NORMAL_PRIO             120
  70
  71/*
  72 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
  73 * tick for every 10 CPU scheduler ticks.
  74 */
  75#define SPUSCHED_TICK           (10)
  76
  77/*
  78 * These are the 'tuning knobs' of the scheduler:
  79 *
  80 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  81 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  82 */
  83#define MIN_SPU_TIMESLICE       max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  84#define DEF_SPU_TIMESLICE       (100 * HZ / (1000 * SPUSCHED_TICK))
  85
  86#define MAX_USER_PRIO           (MAX_PRIO - MAX_RT_PRIO)
  87#define SCALE_PRIO(x, prio) \
  88        max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  89
  90/*
  91 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  92 * [800ms ... 100ms ... 5ms]
  93 *
  94 * The higher a thread's priority, the bigger timeslices
  95 * it gets during one round of execution. But even the lowest
  96 * priority thread gets MIN_TIMESLICE worth of execution time.
  97 */
  98void spu_set_timeslice(struct spu_context *ctx)
  99{
 100        if (ctx->prio < NORMAL_PRIO)
 101                ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
 102        else
 103                ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
 104}
 105
 106/*
 107 * Update scheduling information from the owning thread.
 108 */
 109void __spu_update_sched_info(struct spu_context *ctx)
 110{
 111        /*
 112         * assert that the context is not on the runqueue, so it is safe
 113         * to change its scheduling parameters.
 114         */
 115        BUG_ON(!list_empty(&ctx->rq));
 116
 117        /*
 118         * 32-Bit assignments are atomic on powerpc, and we don't care about
 119         * memory ordering here because retrieving the controlling thread is
 120         * per definition racy.
 121         */
 122        ctx->tid = current->pid;
 123
 124        /*
 125         * We do our own priority calculations, so we normally want
 126         * ->static_prio to start with. Unfortunately this field
 127         * contains junk for threads with a realtime scheduling
 128         * policy so we have to look at ->prio in this case.
 129         */
 130        if (rt_prio(current->prio))
 131                ctx->prio = current->prio;
 132        else
 133                ctx->prio = current->static_prio;
 134        ctx->policy = current->policy;
 135
 136        /*
 137         * TO DO: the context may be loaded, so we may need to activate
 138         * it again on a different node. But it shouldn't hurt anything
 139         * to update its parameters, because we know that the scheduler
 140         * is not actively looking at this field, since it is not on the
 141         * runqueue. The context will be rescheduled on the proper node
 142         * if it is timesliced or preempted.
 143         */
 144        cpumask_copy(&ctx->cpus_allowed, tsk_cpus_allowed(current));
 145
 146        /* Save the current cpu id for spu interrupt routing. */
 147        ctx->last_ran = raw_smp_processor_id();
 148}
 149
 150void spu_update_sched_info(struct spu_context *ctx)
 151{
 152        int node;
 153
 154        if (ctx->state == SPU_STATE_RUNNABLE) {
 155                node = ctx->spu->node;
 156
 157                /*
 158                 * Take list_mutex to sync with find_victim().
 159                 */
 160                mutex_lock(&cbe_spu_info[node].list_mutex);
 161                __spu_update_sched_info(ctx);
 162                mutex_unlock(&cbe_spu_info[node].list_mutex);
 163        } else {
 164                __spu_update_sched_info(ctx);
 165        }
 166}
 167
 168static int __node_allowed(struct spu_context *ctx, int node)
 169{
 170        if (nr_cpus_node(node)) {
 171                const struct cpumask *mask = cpumask_of_node(node);
 172
 173                if (cpumask_intersects(mask, &ctx->cpus_allowed))
 174                        return 1;
 175        }
 176
 177        return 0;
 178}
 179
 180static int node_allowed(struct spu_context *ctx, int node)
 181{
 182        int rval;
 183
 184        spin_lock(&spu_prio->runq_lock);
 185        rval = __node_allowed(ctx, node);
 186        spin_unlock(&spu_prio->runq_lock);
 187
 188        return rval;
 189}
 190
 191void do_notify_spus_active(void)
 192{
 193        int node;
 194
 195        /*
 196         * Wake up the active spu_contexts.
 197         *
 198         * When the awakened processes see their "notify_active" flag is set,
 199         * they will call spu_switch_notify().
 200         */
 201        for_each_online_node(node) {
 202                struct spu *spu;
 203
 204                mutex_lock(&cbe_spu_info[node].list_mutex);
 205                list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 206                        if (spu->alloc_state != SPU_FREE) {
 207                                struct spu_context *ctx = spu->ctx;
 208                                set_bit(SPU_SCHED_NOTIFY_ACTIVE,
 209                                        &ctx->sched_flags);
 210                                mb();
 211                                wake_up_all(&ctx->stop_wq);
 212                        }
 213                }
 214                mutex_unlock(&cbe_spu_info[node].list_mutex);
 215        }
 216}
 217
 218/**
 219 * spu_bind_context - bind spu context to physical spu
 220 * @spu:        physical spu to bind to
 221 * @ctx:        context to bind
 222 */
 223static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
 224{
 225        spu_context_trace(spu_bind_context__enter, ctx, spu);
 226
 227        spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
 228
 229        if (ctx->flags & SPU_CREATE_NOSCHED)
 230                atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
 231
 232        ctx->stats.slb_flt_base = spu->stats.slb_flt;
 233        ctx->stats.class2_intr_base = spu->stats.class2_intr;
 234
 235        spu_associate_mm(spu, ctx->owner);
 236
 237        spin_lock_irq(&spu->register_lock);
 238        spu->ctx = ctx;
 239        spu->flags = 0;
 240        ctx->spu = spu;
 241        ctx->ops = &spu_hw_ops;
 242        spu->pid = current->pid;
 243        spu->tgid = current->tgid;
 244        spu->ibox_callback = spufs_ibox_callback;
 245        spu->wbox_callback = spufs_wbox_callback;
 246        spu->stop_callback = spufs_stop_callback;
 247        spu->mfc_callback = spufs_mfc_callback;
 248        spin_unlock_irq(&spu->register_lock);
 249
 250        spu_unmap_mappings(ctx);
 251
 252        spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
 253        spu_restore(&ctx->csa, spu);
 254        spu->timestamp = jiffies;
 255        spu_switch_notify(spu, ctx);
 256        ctx->state = SPU_STATE_RUNNABLE;
 257
 258        spuctx_switch_state(ctx, SPU_UTIL_USER);
 259}
 260
 261/*
 262 * Must be used with the list_mutex held.
 263 */
 264static inline int sched_spu(struct spu *spu)
 265{
 266        BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
 267
 268        return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
 269}
 270
 271static void aff_merge_remaining_ctxs(struct spu_gang *gang)
 272{
 273        struct spu_context *ctx;
 274
 275        list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
 276                if (list_empty(&ctx->aff_list))
 277                        list_add(&ctx->aff_list, &gang->aff_list_head);
 278        }
 279        gang->aff_flags |= AFF_MERGED;
 280}
 281
 282static void aff_set_offsets(struct spu_gang *gang)
 283{
 284        struct spu_context *ctx;
 285        int offset;
 286
 287        offset = -1;
 288        list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
 289                                                                aff_list) {
 290                if (&ctx->aff_list == &gang->aff_list_head)
 291                        break;
 292                ctx->aff_offset = offset--;
 293        }
 294
 295        offset = 0;
 296        list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
 297                if (&ctx->aff_list == &gang->aff_list_head)
 298                        break;
 299                ctx->aff_offset = offset++;
 300        }
 301
 302        gang->aff_flags |= AFF_OFFSETS_SET;
 303}
 304
 305static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
 306                 int group_size, int lowest_offset)
 307{
 308        struct spu *spu;
 309        int node, n;
 310
 311        /*
 312         * TODO: A better algorithm could be used to find a good spu to be
 313         *       used as reference location for the ctxs chain.
 314         */
 315        node = cpu_to_node(raw_smp_processor_id());
 316        for (n = 0; n < MAX_NUMNODES; n++, node++) {
 317                /*
 318                 * "available_spus" counts how many spus are not potentially
 319                 * going to be used by other affinity gangs whose reference
 320                 * context is already in place. Although this code seeks to
 321                 * avoid having affinity gangs with a summed amount of
 322                 * contexts bigger than the amount of spus in the node,
 323                 * this may happen sporadically. In this case, available_spus
 324                 * becomes negative, which is harmless.
 325                 */
 326                int available_spus;
 327
 328                node = (node < MAX_NUMNODES) ? node : 0;
 329                if (!node_allowed(ctx, node))
 330                        continue;
 331
 332                available_spus = 0;
 333                mutex_lock(&cbe_spu_info[node].list_mutex);
 334                list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 335                        if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
 336                                        && spu->ctx->gang->aff_ref_spu)
 337                                available_spus -= spu->ctx->gang->contexts;
 338                        available_spus++;
 339                }
 340                if (available_spus < ctx->gang->contexts) {
 341                        mutex_unlock(&cbe_spu_info[node].list_mutex);
 342                        continue;
 343                }
 344
 345                list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 346                        if ((!mem_aff || spu->has_mem_affinity) &&
 347                                                        sched_spu(spu)) {
 348                                mutex_unlock(&cbe_spu_info[node].list_mutex);
 349                                return spu;
 350                        }
 351                }
 352                mutex_unlock(&cbe_spu_info[node].list_mutex);
 353        }
 354        return NULL;
 355}
 356
 357static void aff_set_ref_point_location(struct spu_gang *gang)
 358{
 359        int mem_aff, gs, lowest_offset;
 360        struct spu_context *ctx;
 361        struct spu *tmp;
 362
 363        mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
 364        lowest_offset = 0;
 365        gs = 0;
 366
 367        list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
 368                gs++;
 369
 370        list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
 371                                                                aff_list) {
 372                if (&ctx->aff_list == &gang->aff_list_head)
 373                        break;
 374                lowest_offset = ctx->aff_offset;
 375        }
 376
 377        gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
 378                                                        lowest_offset);
 379}
 380
 381static struct spu *ctx_location(struct spu *ref, int offset, int node)
 382{
 383        struct spu *spu;
 384
 385        spu = NULL;
 386        if (offset >= 0) {
 387                list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
 388                        BUG_ON(spu->node != node);
 389                        if (offset == 0)
 390                                break;
 391                        if (sched_spu(spu))
 392                                offset--;
 393                }
 394        } else {
 395                list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
 396                        BUG_ON(spu->node != node);
 397                        if (offset == 0)
 398                                break;
 399                        if (sched_spu(spu))
 400                                offset++;
 401                }
 402        }
 403
 404        return spu;
 405}
 406
 407/*
 408 * affinity_check is called each time a context is going to be scheduled.
 409 * It returns the spu ptr on which the context must run.
 410 */
 411static int has_affinity(struct spu_context *ctx)
 412{
 413        struct spu_gang *gang = ctx->gang;
 414
 415        if (list_empty(&ctx->aff_list))
 416                return 0;
 417
 418        if (atomic_read(&ctx->gang->aff_sched_count) == 0)
 419                ctx->gang->aff_ref_spu = NULL;
 420
 421        if (!gang->aff_ref_spu) {
 422                if (!(gang->aff_flags & AFF_MERGED))
 423                        aff_merge_remaining_ctxs(gang);
 424                if (!(gang->aff_flags & AFF_OFFSETS_SET))
 425                        aff_set_offsets(gang);
 426                aff_set_ref_point_location(gang);
 427        }
 428
 429        return gang->aff_ref_spu != NULL;
 430}
 431
 432/**
 433 * spu_unbind_context - unbind spu context from physical spu
 434 * @spu:        physical spu to unbind from
 435 * @ctx:        context to unbind
 436 */
 437static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
 438{
 439        u32 status;
 440
 441        spu_context_trace(spu_unbind_context__enter, ctx, spu);
 442
 443        spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
 444
 445        if (spu->ctx->flags & SPU_CREATE_NOSCHED)
 446                atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
 447
 448        if (ctx->gang)
 449                /*
 450                 * If ctx->gang->aff_sched_count is positive, SPU affinity is
 451                 * being considered in this gang. Using atomic_dec_if_positive
 452                 * allow us to skip an explicit check for affinity in this gang
 453                 */
 454                atomic_dec_if_positive(&ctx->gang->aff_sched_count);
 455
 456        spu_switch_notify(spu, NULL);
 457        spu_unmap_mappings(ctx);
 458        spu_save(&ctx->csa, spu);
 459        spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
 460
 461        spin_lock_irq(&spu->register_lock);
 462        spu->timestamp = jiffies;
 463        ctx->state = SPU_STATE_SAVED;
 464        spu->ibox_callback = NULL;
 465        spu->wbox_callback = NULL;
 466        spu->stop_callback = NULL;
 467        spu->mfc_callback = NULL;
 468        spu->pid = 0;
 469        spu->tgid = 0;
 470        ctx->ops = &spu_backing_ops;
 471        spu->flags = 0;
 472        spu->ctx = NULL;
 473        spin_unlock_irq(&spu->register_lock);
 474
 475        spu_associate_mm(spu, NULL);
 476
 477        ctx->stats.slb_flt +=
 478                (spu->stats.slb_flt - ctx->stats.slb_flt_base);
 479        ctx->stats.class2_intr +=
 480                (spu->stats.class2_intr - ctx->stats.class2_intr_base);
 481
 482        /* This maps the underlying spu state to idle */
 483        spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
 484        ctx->spu = NULL;
 485
 486        if (spu_stopped(ctx, &status))
 487                wake_up_all(&ctx->stop_wq);
 488}
 489
 490/**
 491 * spu_add_to_rq - add a context to the runqueue
 492 * @ctx:       context to add
 493 */
 494static void __spu_add_to_rq(struct spu_context *ctx)
 495{
 496        /*
 497         * Unfortunately this code path can be called from multiple threads
 498         * on behalf of a single context due to the way the problem state
 499         * mmap support works.
 500         *
 501         * Fortunately we need to wake up all these threads at the same time
 502         * and can simply skip the runqueue addition for every but the first
 503         * thread getting into this codepath.
 504         *
 505         * It's still quite hacky, and long-term we should proxy all other
 506         * threads through the owner thread so that spu_run is in control
 507         * of all the scheduling activity for a given context.
 508         */
 509        if (list_empty(&ctx->rq)) {
 510                list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
 511                set_bit(ctx->prio, spu_prio->bitmap);
 512                if (!spu_prio->nr_waiting++)
 513                        mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
 514        }
 515}
 516
 517static void spu_add_to_rq(struct spu_context *ctx)
 518{
 519        spin_lock(&spu_prio->runq_lock);
 520        __spu_add_to_rq(ctx);
 521        spin_unlock(&spu_prio->runq_lock);
 522}
 523
 524static void __spu_del_from_rq(struct spu_context *ctx)
 525{
 526        int prio = ctx->prio;
 527
 528        if (!list_empty(&ctx->rq)) {
 529                if (!--spu_prio->nr_waiting)
 530                        del_timer(&spusched_timer);
 531                list_del_init(&ctx->rq);
 532
 533                if (list_empty(&spu_prio->runq[prio]))
 534                        clear_bit(prio, spu_prio->bitmap);
 535        }
 536}
 537
 538void spu_del_from_rq(struct spu_context *ctx)
 539{
 540        spin_lock(&spu_prio->runq_lock);
 541        __spu_del_from_rq(ctx);
 542        spin_unlock(&spu_prio->runq_lock);
 543}
 544
 545static void spu_prio_wait(struct spu_context *ctx)
 546{
 547        DEFINE_WAIT(wait);
 548
 549        /*
 550         * The caller must explicitly wait for a context to be loaded
 551         * if the nosched flag is set.  If NOSCHED is not set, the caller
 552         * queues the context and waits for an spu event or error.
 553         */
 554        BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
 555
 556        spin_lock(&spu_prio->runq_lock);
 557        prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
 558        if (!signal_pending(current)) {
 559                __spu_add_to_rq(ctx);
 560                spin_unlock(&spu_prio->runq_lock);
 561                mutex_unlock(&ctx->state_mutex);
 562                schedule();
 563                mutex_lock(&ctx->state_mutex);
 564                spin_lock(&spu_prio->runq_lock);
 565                __spu_del_from_rq(ctx);
 566        }
 567        spin_unlock(&spu_prio->runq_lock);
 568        __set_current_state(TASK_RUNNING);
 569        remove_wait_queue(&ctx->stop_wq, &wait);
 570}
 571
 572static struct spu *spu_get_idle(struct spu_context *ctx)
 573{
 574        struct spu *spu, *aff_ref_spu;
 575        int node, n;
 576
 577        spu_context_nospu_trace(spu_get_idle__enter, ctx);
 578
 579        if (ctx->gang) {
 580                mutex_lock(&ctx->gang->aff_mutex);
 581                if (has_affinity(ctx)) {
 582                        aff_ref_spu = ctx->gang->aff_ref_spu;
 583                        atomic_inc(&ctx->gang->aff_sched_count);
 584                        mutex_unlock(&ctx->gang->aff_mutex);
 585                        node = aff_ref_spu->node;
 586
 587                        mutex_lock(&cbe_spu_info[node].list_mutex);
 588                        spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
 589                        if (spu && spu->alloc_state == SPU_FREE)
 590                                goto found;
 591                        mutex_unlock(&cbe_spu_info[node].list_mutex);
 592
 593                        atomic_dec(&ctx->gang->aff_sched_count);
 594                        goto not_found;
 595                }
 596                mutex_unlock(&ctx->gang->aff_mutex);
 597        }
 598        node = cpu_to_node(raw_smp_processor_id());
 599        for (n = 0; n < MAX_NUMNODES; n++, node++) {
 600                node = (node < MAX_NUMNODES) ? node : 0;
 601                if (!node_allowed(ctx, node))
 602                        continue;
 603
 604                mutex_lock(&cbe_spu_info[node].list_mutex);
 605                list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 606                        if (spu->alloc_state == SPU_FREE)
 607                                goto found;
 608                }
 609                mutex_unlock(&cbe_spu_info[node].list_mutex);
 610        }
 611
 612 not_found:
 613        spu_context_nospu_trace(spu_get_idle__not_found, ctx);
 614        return NULL;
 615
 616 found:
 617        spu->alloc_state = SPU_USED;
 618        mutex_unlock(&cbe_spu_info[node].list_mutex);
 619        spu_context_trace(spu_get_idle__found, ctx, spu);
 620        spu_init_channels(spu);
 621        return spu;
 622}
 623
 624/**
 625 * find_victim - find a lower priority context to preempt
 626 * @ctx:        canidate context for running
 627 *
 628 * Returns the freed physical spu to run the new context on.
 629 */
 630static struct spu *find_victim(struct spu_context *ctx)
 631{
 632        struct spu_context *victim = NULL;
 633        struct spu *spu;
 634        int node, n;
 635
 636        spu_context_nospu_trace(spu_find_victim__enter, ctx);
 637
 638        /*
 639         * Look for a possible preemption candidate on the local node first.
 640         * If there is no candidate look at the other nodes.  This isn't
 641         * exactly fair, but so far the whole spu scheduler tries to keep
 642         * a strong node affinity.  We might want to fine-tune this in
 643         * the future.
 644         */
 645 restart:
 646        node = cpu_to_node(raw_smp_processor_id());
 647        for (n = 0; n < MAX_NUMNODES; n++, node++) {
 648                node = (node < MAX_NUMNODES) ? node : 0;
 649                if (!node_allowed(ctx, node))
 650                        continue;
 651
 652                mutex_lock(&cbe_spu_info[node].list_mutex);
 653                list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
 654                        struct spu_context *tmp = spu->ctx;
 655
 656                        if (tmp && tmp->prio > ctx->prio &&
 657                            !(tmp->flags & SPU_CREATE_NOSCHED) &&
 658                            (!victim || tmp->prio > victim->prio)) {
 659                                victim = spu->ctx;
 660                        }
 661                }
 662                if (victim)
 663                        get_spu_context(victim);
 664                mutex_unlock(&cbe_spu_info[node].list_mutex);
 665
 666                if (victim) {
 667                        /*
 668                         * This nests ctx->state_mutex, but we always lock
 669                         * higher priority contexts before lower priority
 670                         * ones, so this is safe until we introduce
 671                         * priority inheritance schemes.
 672                         *
 673                         * XXX if the highest priority context is locked,
 674                         * this can loop a long time.  Might be better to
 675                         * look at another context or give up after X retries.
 676                         */
 677                        if (!mutex_trylock(&victim->state_mutex)) {
 678                                put_spu_context(victim);
 679                                victim = NULL;
 680                                goto restart;
 681                        }
 682
 683                        spu = victim->spu;
 684                        if (!spu || victim->prio <= ctx->prio) {
 685                                /*
 686                                 * This race can happen because we've dropped
 687                                 * the active list mutex.  Not a problem, just
 688                                 * restart the search.
 689                                 */
 690                                mutex_unlock(&victim->state_mutex);
 691                                put_spu_context(victim);
 692                                victim = NULL;
 693                                goto restart;
 694                        }
 695
 696                        spu_context_trace(__spu_deactivate__unload, ctx, spu);
 697
 698                        mutex_lock(&cbe_spu_info[node].list_mutex);
 699                        cbe_spu_info[node].nr_active--;
 700                        spu_unbind_context(spu, victim);
 701                        mutex_unlock(&cbe_spu_info[node].list_mutex);
 702
 703                        victim->stats.invol_ctx_switch++;
 704                        spu->stats.invol_ctx_switch++;
 705                        if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
 706                                spu_add_to_rq(victim);
 707
 708                        mutex_unlock(&victim->state_mutex);
 709                        put_spu_context(victim);
 710
 711                        return spu;
 712                }
 713        }
 714
 715        return NULL;
 716}
 717
 718static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
 719{
 720        int node = spu->node;
 721        int success = 0;
 722
 723        spu_set_timeslice(ctx);
 724
 725        mutex_lock(&cbe_spu_info[node].list_mutex);
 726        if (spu->ctx == NULL) {
 727                spu_bind_context(spu, ctx);
 728                cbe_spu_info[node].nr_active++;
 729                spu->alloc_state = SPU_USED;
 730                success = 1;
 731        }
 732        mutex_unlock(&cbe_spu_info[node].list_mutex);
 733
 734        if (success)
 735                wake_up_all(&ctx->run_wq);
 736        else
 737                spu_add_to_rq(ctx);
 738}
 739
 740static void spu_schedule(struct spu *spu, struct spu_context *ctx)
 741{
 742        /* not a candidate for interruptible because it's called either
 743           from the scheduler thread or from spu_deactivate */
 744        mutex_lock(&ctx->state_mutex);
 745        if (ctx->state == SPU_STATE_SAVED)
 746                __spu_schedule(spu, ctx);
 747        spu_release(ctx);
 748}
 749
 750/**
 751 * spu_unschedule - remove a context from a spu, and possibly release it.
 752 * @spu:        The SPU to unschedule from
 753 * @ctx:        The context currently scheduled on the SPU
 754 * @free_spu    Whether to free the SPU for other contexts
 755 *
 756 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
 757 * SPU is made available for other contexts (ie, may be returned by
 758 * spu_get_idle). If this is zero, the caller is expected to schedule another
 759 * context to this spu.
 760 *
 761 * Should be called with ctx->state_mutex held.
 762 */
 763static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
 764                int free_spu)
 765{
 766        int node = spu->node;
 767
 768        mutex_lock(&cbe_spu_info[node].list_mutex);
 769        cbe_spu_info[node].nr_active--;
 770        if (free_spu)
 771                spu->alloc_state = SPU_FREE;
 772        spu_unbind_context(spu, ctx);
 773        ctx->stats.invol_ctx_switch++;
 774        spu->stats.invol_ctx_switch++;
 775        mutex_unlock(&cbe_spu_info[node].list_mutex);
 776}
 777
 778/**
 779 * spu_activate - find a free spu for a context and execute it
 780 * @ctx:        spu context to schedule
 781 * @flags:      flags (currently ignored)
 782 *
 783 * Tries to find a free spu to run @ctx.  If no free spu is available
 784 * add the context to the runqueue so it gets woken up once an spu
 785 * is available.
 786 */
 787int spu_activate(struct spu_context *ctx, unsigned long flags)
 788{
 789        struct spu *spu;
 790
 791        /*
 792         * If there are multiple threads waiting for a single context
 793         * only one actually binds the context while the others will
 794         * only be able to acquire the state_mutex once the context
 795         * already is in runnable state.
 796         */
 797        if (ctx->spu)
 798                return 0;
 799
 800spu_activate_top:
 801        if (signal_pending(current))
 802                return -ERESTARTSYS;
 803
 804        spu = spu_get_idle(ctx);
 805        /*
 806         * If this is a realtime thread we try to get it running by
 807         * preempting a lower priority thread.
 808         */
 809        if (!spu && rt_prio(ctx->prio))
 810                spu = find_victim(ctx);
 811        if (spu) {
 812                unsigned long runcntl;
 813
 814                runcntl = ctx->ops->runcntl_read(ctx);
 815                __spu_schedule(spu, ctx);
 816                if (runcntl & SPU_RUNCNTL_RUNNABLE)
 817                        spuctx_switch_state(ctx, SPU_UTIL_USER);
 818
 819                return 0;
 820        }
 821
 822        if (ctx->flags & SPU_CREATE_NOSCHED) {
 823                spu_prio_wait(ctx);
 824                goto spu_activate_top;
 825        }
 826
 827        spu_add_to_rq(ctx);
 828
 829        return 0;
 830}
 831
 832/**
 833 * grab_runnable_context - try to find a runnable context
 834 *
 835 * Remove the highest priority context on the runqueue and return it
 836 * to the caller.  Returns %NULL if no runnable context was found.
 837 */
 838static struct spu_context *grab_runnable_context(int prio, int node)
 839{
 840        struct spu_context *ctx;
 841        int best;
 842
 843        spin_lock(&spu_prio->runq_lock);
 844        best = find_first_bit(spu_prio->bitmap, prio);
 845        while (best < prio) {
 846                struct list_head *rq = &spu_prio->runq[best];
 847
 848                list_for_each_entry(ctx, rq, rq) {
 849                        /* XXX(hch): check for affinity here as well */
 850                        if (__node_allowed(ctx, node)) {
 851                                __spu_del_from_rq(ctx);
 852                                goto found;
 853                        }
 854                }
 855                best++;
 856        }
 857        ctx = NULL;
 858 found:
 859        spin_unlock(&spu_prio->runq_lock);
 860        return ctx;
 861}
 862
 863static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
 864{
 865        struct spu *spu = ctx->spu;
 866        struct spu_context *new = NULL;
 867
 868        if (spu) {
 869                new = grab_runnable_context(max_prio, spu->node);
 870                if (new || force) {
 871                        spu_unschedule(spu, ctx, new == NULL);
 872                        if (new) {
 873                                if (new->flags & SPU_CREATE_NOSCHED)
 874                                        wake_up(&new->stop_wq);
 875                                else {
 876                                        spu_release(ctx);
 877                                        spu_schedule(spu, new);
 878                                        /* this one can't easily be made
 879                                           interruptible */
 880                                        mutex_lock(&ctx->state_mutex);
 881                                }
 882                        }
 883                }
 884        }
 885
 886        return new != NULL;
 887}
 888
 889/**
 890 * spu_deactivate - unbind a context from it's physical spu
 891 * @ctx:        spu context to unbind
 892 *
 893 * Unbind @ctx from the physical spu it is running on and schedule
 894 * the highest priority context to run on the freed physical spu.
 895 */
 896void spu_deactivate(struct spu_context *ctx)
 897{
 898        spu_context_nospu_trace(spu_deactivate__enter, ctx);
 899        __spu_deactivate(ctx, 1, MAX_PRIO);
 900}
 901
 902/**
 903 * spu_yield -  yield a physical spu if others are waiting
 904 * @ctx:        spu context to yield
 905 *
 906 * Check if there is a higher priority context waiting and if yes
 907 * unbind @ctx from the physical spu and schedule the highest
 908 * priority context to run on the freed physical spu instead.
 909 */
 910void spu_yield(struct spu_context *ctx)
 911{
 912        spu_context_nospu_trace(spu_yield__enter, ctx);
 913        if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
 914                mutex_lock(&ctx->state_mutex);
 915                __spu_deactivate(ctx, 0, MAX_PRIO);
 916                mutex_unlock(&ctx->state_mutex);
 917        }
 918}
 919
 920static noinline void spusched_tick(struct spu_context *ctx)
 921{
 922        struct spu_context *new = NULL;
 923        struct spu *spu = NULL;
 924
 925        if (spu_acquire(ctx))
 926                BUG();  /* a kernel thread never has signals pending */
 927
 928        if (ctx->state != SPU_STATE_RUNNABLE)
 929                goto out;
 930        if (ctx->flags & SPU_CREATE_NOSCHED)
 931                goto out;
 932        if (ctx->policy == SCHED_FIFO)
 933                goto out;
 934
 935        if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
 936                goto out;
 937
 938        spu = ctx->spu;
 939
 940        spu_context_trace(spusched_tick__preempt, ctx, spu);
 941
 942        new = grab_runnable_context(ctx->prio + 1, spu->node);
 943        if (new) {
 944                spu_unschedule(spu, ctx, 0);
 945                if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
 946                        spu_add_to_rq(ctx);
 947        } else {
 948                spu_context_nospu_trace(spusched_tick__newslice, ctx);
 949                if (!ctx->time_slice)
 950                        ctx->time_slice++;
 951        }
 952out:
 953        spu_release(ctx);
 954
 955        if (new)
 956                spu_schedule(spu, new);
 957}
 958
 959/**
 960 * count_active_contexts - count nr of active tasks
 961 *
 962 * Return the number of tasks currently running or waiting to run.
 963 *
 964 * Note that we don't take runq_lock / list_mutex here.  Reading
 965 * a single 32bit value is atomic on powerpc, and we don't care
 966 * about memory ordering issues here.
 967 */
 968static unsigned long count_active_contexts(void)
 969{
 970        int nr_active = 0, node;
 971
 972        for (node = 0; node < MAX_NUMNODES; node++)
 973                nr_active += cbe_spu_info[node].nr_active;
 974        nr_active += spu_prio->nr_waiting;
 975
 976        return nr_active;
 977}
 978
 979/**
 980 * spu_calc_load - update the avenrun load estimates.
 981 *
 982 * No locking against reading these values from userspace, as for
 983 * the CPU loadavg code.
 984 */
 985static void spu_calc_load(void)
 986{
 987        unsigned long active_tasks; /* fixed-point */
 988
 989        active_tasks = count_active_contexts() * FIXED_1;
 990        CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
 991        CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
 992        CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
 993}
 994
 995static void spusched_wake(unsigned long data)
 996{
 997        mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
 998        wake_up_process(spusched_task);
 999}
1000
1001static void spuloadavg_wake(unsigned long data)
1002{
1003        mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
1004        spu_calc_load();
1005}
1006
1007static int spusched_thread(void *unused)
1008{
1009        struct spu *spu;
1010        int node;
1011
1012        while (!kthread_should_stop()) {
1013                set_current_state(TASK_INTERRUPTIBLE);
1014                schedule();
1015                for (node = 0; node < MAX_NUMNODES; node++) {
1016                        struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1017
1018                        mutex_lock(mtx);
1019                        list_for_each_entry(spu, &cbe_spu_info[node].spus,
1020                                        cbe_list) {
1021                                struct spu_context *ctx = spu->ctx;
1022
1023                                if (ctx) {
1024                                        get_spu_context(ctx);
1025                                        mutex_unlock(mtx);
1026                                        spusched_tick(ctx);
1027                                        mutex_lock(mtx);
1028                                        put_spu_context(ctx);
1029                                }
1030                        }
1031                        mutex_unlock(mtx);
1032                }
1033        }
1034
1035        return 0;
1036}
1037
1038void spuctx_switch_state(struct spu_context *ctx,
1039                enum spu_utilization_state new_state)
1040{
1041        unsigned long long curtime;
1042        signed long long delta;
1043        struct timespec ts;
1044        struct spu *spu;
1045        enum spu_utilization_state old_state;
1046        int node;
1047
1048        ktime_get_ts(&ts);
1049        curtime = timespec_to_ns(&ts);
1050        delta = curtime - ctx->stats.tstamp;
1051
1052        WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1053        WARN_ON(delta < 0);
1054
1055        spu = ctx->spu;
1056        old_state = ctx->stats.util_state;
1057        ctx->stats.util_state = new_state;
1058        ctx->stats.tstamp = curtime;
1059
1060        /*
1061         * Update the physical SPU utilization statistics.
1062         */
1063        if (spu) {
1064                ctx->stats.times[old_state] += delta;
1065                spu->stats.times[old_state] += delta;
1066                spu->stats.util_state = new_state;
1067                spu->stats.tstamp = curtime;
1068                node = spu->node;
1069                if (old_state == SPU_UTIL_USER)
1070                        atomic_dec(&cbe_spu_info[node].busy_spus);
1071                if (new_state == SPU_UTIL_USER)
1072                        atomic_inc(&cbe_spu_info[node].busy_spus);
1073        }
1074}
1075
1076#define LOAD_INT(x) ((x) >> FSHIFT)
1077#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
1078
1079static int show_spu_loadavg(struct seq_file *s, void *private)
1080{
1081        int a, b, c;
1082
1083        a = spu_avenrun[0] + (FIXED_1/200);
1084        b = spu_avenrun[1] + (FIXED_1/200);
1085        c = spu_avenrun[2] + (FIXED_1/200);
1086
1087        /*
1088         * Note that last_pid doesn't really make much sense for the
1089         * SPU loadavg (it even seems very odd on the CPU side...),
1090         * but we include it here to have a 100% compatible interface.
1091         */
1092        seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1093                LOAD_INT(a), LOAD_FRAC(a),
1094                LOAD_INT(b), LOAD_FRAC(b),
1095                LOAD_INT(c), LOAD_FRAC(c),
1096                count_active_contexts(),
1097                atomic_read(&nr_spu_contexts),
1098                task_active_pid_ns(current)->last_pid);
1099        return 0;
1100}
1101
1102static int spu_loadavg_open(struct inode *inode, struct file *file)
1103{
1104        return single_open(file, show_spu_loadavg, NULL);
1105}
1106
1107static const struct file_operations spu_loadavg_fops = {
1108        .open           = spu_loadavg_open,
1109        .read           = seq_read,
1110        .llseek         = seq_lseek,
1111        .release        = single_release,
1112};
1113
1114int __init spu_sched_init(void)
1115{
1116        struct proc_dir_entry *entry;
1117        int err = -ENOMEM, i;
1118
1119        spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1120        if (!spu_prio)
1121                goto out;
1122
1123        for (i = 0; i < MAX_PRIO; i++) {
1124                INIT_LIST_HEAD(&spu_prio->runq[i]);
1125                __clear_bit(i, spu_prio->bitmap);
1126        }
1127        spin_lock_init(&spu_prio->runq_lock);
1128
1129        setup_timer(&spusched_timer, spusched_wake, 0);
1130        setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1131
1132        spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1133        if (IS_ERR(spusched_task)) {
1134                err = PTR_ERR(spusched_task);
1135                goto out_free_spu_prio;
1136        }
1137
1138        mod_timer(&spuloadavg_timer, 0);
1139
1140        entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1141        if (!entry)
1142                goto out_stop_kthread;
1143
1144        pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1145                        SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1146        return 0;
1147
1148 out_stop_kthread:
1149        kthread_stop(spusched_task);
1150 out_free_spu_prio:
1151        kfree(spu_prio);
1152 out:
1153        return err;
1154}
1155
1156void spu_sched_exit(void)
1157{
1158        struct spu *spu;
1159        int node;
1160
1161        remove_proc_entry("spu_loadavg", NULL);
1162
1163        del_timer_sync(&spusched_timer);
1164        del_timer_sync(&spuloadavg_timer);
1165        kthread_stop(spusched_task);
1166
1167        for (node = 0; node < MAX_NUMNODES; node++) {
1168                mutex_lock(&cbe_spu_info[node].list_mutex);
1169                list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1170                        if (spu->alloc_state != SPU_FREE)
1171                                spu->alloc_state = SPU_FREE;
1172                mutex_unlock(&cbe_spu_info[node].list_mutex);
1173        }
1174        kfree(spu_prio);
1175}
1176