linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup. For
  16 * s390 31 bit we "fold" the mid level into the top-level page table, so
  17 * that we physically have the same two-level page table as the s390 mmu
  18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  19 * the hardware provides (region first and region second tables are not
  20 * used).
  21 *
  22 * The "pgd_xxx()" functions are trivial for a folded two-level
  23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  24 * into the pgd entry)
  25 *
  26 * This file contains the functions and defines necessary to modify and use
  27 * the S390 page table tree.
  28 */
  29#ifndef __ASSEMBLY__
  30#include <linux/sched.h>
  31#include <linux/mm_types.h>
  32#include <linux/page-flags.h>
  33#include <asm/bug.h>
  34#include <asm/page.h>
  35
  36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  37extern void paging_init(void);
  38extern void vmem_map_init(void);
  39
  40/*
  41 * The S390 doesn't have any external MMU info: the kernel page
  42 * tables contain all the necessary information.
  43 */
  44#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  46
  47/*
  48 * ZERO_PAGE is a global shared page that is always zero; used
  49 * for zero-mapped memory areas etc..
  50 */
  51
  52extern unsigned long empty_zero_page;
  53extern unsigned long zero_page_mask;
  54
  55#define ZERO_PAGE(vaddr) \
  56        (virt_to_page((void *)(empty_zero_page + \
  57         (((unsigned long)(vaddr)) &zero_page_mask))))
  58#define __HAVE_COLOR_ZERO_PAGE
  59
  60/* TODO: s390 cannot support io_remap_pfn_range... */
  61#endif /* !__ASSEMBLY__ */
  62
  63/*
  64 * PMD_SHIFT determines the size of the area a second-level page
  65 * table can map
  66 * PGDIR_SHIFT determines what a third-level page table entry can map
  67 */
  68#ifndef CONFIG_64BIT
  69# define PMD_SHIFT      20
  70# define PUD_SHIFT      20
  71# define PGDIR_SHIFT    20
  72#else /* CONFIG_64BIT */
  73# define PMD_SHIFT      20
  74# define PUD_SHIFT      31
  75# define PGDIR_SHIFT    42
  76#endif /* CONFIG_64BIT */
  77
  78#define PMD_SIZE        (1UL << PMD_SHIFT)
  79#define PMD_MASK        (~(PMD_SIZE-1))
  80#define PUD_SIZE        (1UL << PUD_SHIFT)
  81#define PUD_MASK        (~(PUD_SIZE-1))
  82#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  83#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  84
  85/*
  86 * entries per page directory level: the S390 is two-level, so
  87 * we don't really have any PMD directory physically.
  88 * for S390 segment-table entries are combined to one PGD
  89 * that leads to 1024 pte per pgd
  90 */
  91#define PTRS_PER_PTE    256
  92#ifndef CONFIG_64BIT
  93#define PTRS_PER_PMD    1
  94#define PTRS_PER_PUD    1
  95#else /* CONFIG_64BIT */
  96#define PTRS_PER_PMD    2048
  97#define PTRS_PER_PUD    2048
  98#endif /* CONFIG_64BIT */
  99#define PTRS_PER_PGD    2048
 100
 101#define FIRST_USER_ADDRESS  0
 102
 103#define pte_ERROR(e) \
 104        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 105#define pmd_ERROR(e) \
 106        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 107#define pud_ERROR(e) \
 108        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 109#define pgd_ERROR(e) \
 110        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 111
 112#ifndef __ASSEMBLY__
 113/*
 114 * The vmalloc and module area will always be on the topmost area of the kernel
 115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
 116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 117 * modules will reside. That makes sure that inter module branches always
 118 * happen without trampolines and in addition the placement within a 2GB frame
 119 * is branch prediction unit friendly.
 120 */
 121extern unsigned long VMALLOC_START;
 122extern unsigned long VMALLOC_END;
 123extern struct page *vmemmap;
 124
 125#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 126
 127#ifdef CONFIG_64BIT
 128extern unsigned long MODULES_VADDR;
 129extern unsigned long MODULES_END;
 130#define MODULES_VADDR   MODULES_VADDR
 131#define MODULES_END     MODULES_END
 132#define MODULES_LEN     (1UL << 31)
 133#endif
 134
 135/*
 136 * A 31 bit pagetable entry of S390 has following format:
 137 *  |   PFRA          |    |  OS  |
 138 * 0                   0IP0
 139 * 00000000001111111111222222222233
 140 * 01234567890123456789012345678901
 141 *
 142 * I Page-Invalid Bit:    Page is not available for address-translation
 143 * P Page-Protection Bit: Store access not possible for page
 144 *
 145 * A 31 bit segmenttable entry of S390 has following format:
 146 *  |   P-table origin      |  |PTL
 147 * 0                         IC
 148 * 00000000001111111111222222222233
 149 * 01234567890123456789012345678901
 150 *
 151 * I Segment-Invalid Bit:    Segment is not available for address-translation
 152 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 153 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 154 *
 155 * The 31 bit segmenttable origin of S390 has following format:
 156 *
 157 *  |S-table origin   |     | STL |
 158 * X                   **GPS
 159 * 00000000001111111111222222222233
 160 * 01234567890123456789012345678901
 161 *
 162 * X Space-Switch event:
 163 * G Segment-Invalid Bit:     *
 164 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 165 * S Storage-Alteration:
 166 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 167 *
 168 * A 64 bit pagetable entry of S390 has following format:
 169 * |                     PFRA                         |0IPC|  OS  |
 170 * 0000000000111111111122222222223333333333444444444455555555556666
 171 * 0123456789012345678901234567890123456789012345678901234567890123
 172 *
 173 * I Page-Invalid Bit:    Page is not available for address-translation
 174 * P Page-Protection Bit: Store access not possible for page
 175 * C Change-bit override: HW is not required to set change bit
 176 *
 177 * A 64 bit segmenttable entry of S390 has following format:
 178 * |        P-table origin                              |      TT
 179 * 0000000000111111111122222222223333333333444444444455555555556666
 180 * 0123456789012345678901234567890123456789012345678901234567890123
 181 *
 182 * I Segment-Invalid Bit:    Segment is not available for address-translation
 183 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 184 * P Page-Protection Bit: Store access not possible for page
 185 * TT Type 00
 186 *
 187 * A 64 bit region table entry of S390 has following format:
 188 * |        S-table origin                             |   TF  TTTL
 189 * 0000000000111111111122222222223333333333444444444455555555556666
 190 * 0123456789012345678901234567890123456789012345678901234567890123
 191 *
 192 * I Segment-Invalid Bit:    Segment is not available for address-translation
 193 * TT Type 01
 194 * TF
 195 * TL Table length
 196 *
 197 * The 64 bit regiontable origin of S390 has following format:
 198 * |      region table origon                          |       DTTL
 199 * 0000000000111111111122222222223333333333444444444455555555556666
 200 * 0123456789012345678901234567890123456789012345678901234567890123
 201 *
 202 * X Space-Switch event:
 203 * G Segment-Invalid Bit:  
 204 * P Private-Space Bit:    
 205 * S Storage-Alteration:
 206 * R Real space
 207 * TL Table-Length:
 208 *
 209 * A storage key has the following format:
 210 * | ACC |F|R|C|0|
 211 *  0   3 4 5 6 7
 212 * ACC: access key
 213 * F  : fetch protection bit
 214 * R  : referenced bit
 215 * C  : changed bit
 216 */
 217
 218/* Hardware bits in the page table entry */
 219#define _PAGE_CO        0x100           /* HW Change-bit override */
 220#define _PAGE_RO        0x200           /* HW read-only bit  */
 221#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 222
 223/* Software bits in the page table entry */
 224#define _PAGE_SWT       0x001           /* SW pte type bit t */
 225#define _PAGE_SWX       0x002           /* SW pte type bit x */
 226#define _PAGE_SWC       0x004           /* SW pte changed bit */
 227#define _PAGE_SWR       0x008           /* SW pte referenced bit */
 228#define _PAGE_SWW       0x010           /* SW pte write bit */
 229#define _PAGE_SPECIAL   0x020           /* SW associated with special page */
 230#define __HAVE_ARCH_PTE_SPECIAL
 231
 232/* Set of bits not changed in pte_modify */
 233#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
 234                                 _PAGE_SWC | _PAGE_SWR)
 235
 236/* Six different types of pages. */
 237#define _PAGE_TYPE_EMPTY        0x400
 238#define _PAGE_TYPE_NONE         0x401
 239#define _PAGE_TYPE_SWAP         0x403
 240#define _PAGE_TYPE_FILE         0x601   /* bit 0x002 is used for offset !! */
 241#define _PAGE_TYPE_RO           0x200
 242#define _PAGE_TYPE_RW           0x000
 243
 244/*
 245 * Only four types for huge pages, using the invalid bit and protection bit
 246 * of a segment table entry.
 247 */
 248#define _HPAGE_TYPE_EMPTY       0x020   /* _SEGMENT_ENTRY_INV */
 249#define _HPAGE_TYPE_NONE        0x220
 250#define _HPAGE_TYPE_RO          0x200   /* _SEGMENT_ENTRY_RO  */
 251#define _HPAGE_TYPE_RW          0x000
 252
 253/*
 254 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 255 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 256 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 257 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 258 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 259 * This change is done while holding the lock, but the intermediate step
 260 * of a previously valid pte with the hw invalid bit set can be observed by
 261 * handle_pte_fault. That makes it necessary that all valid pte types with
 262 * the hw invalid bit set must be distinguishable from the four pte types
 263 * empty, none, swap and file.
 264 *
 265 *                      irxt  ipte  irxt
 266 * _PAGE_TYPE_EMPTY     1000   ->   1000
 267 * _PAGE_TYPE_NONE      1001   ->   1001
 268 * _PAGE_TYPE_SWAP      1011   ->   1011
 269 * _PAGE_TYPE_FILE      11?1   ->   11?1
 270 * _PAGE_TYPE_RO        0100   ->   1100
 271 * _PAGE_TYPE_RW        0000   ->   1000
 272 *
 273 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 274 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 275 * pte_file is true for bits combinations 1101, 1111
 276 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 277 */
 278
 279#ifndef CONFIG_64BIT
 280
 281/* Bits in the segment table address-space-control-element */
 282#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 283#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 284#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 285#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 286#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 287
 288/* Bits in the segment table entry */
 289#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 290#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 291#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 292#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 293#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 294
 295#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 296#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 297
 298/* Page status table bits for virtualization */
 299#define PGSTE_ACC_BITS  0xf0000000UL
 300#define PGSTE_FP_BIT    0x08000000UL
 301#define PGSTE_PCL_BIT   0x00800000UL
 302#define PGSTE_HR_BIT    0x00400000UL
 303#define PGSTE_HC_BIT    0x00200000UL
 304#define PGSTE_GR_BIT    0x00040000UL
 305#define PGSTE_GC_BIT    0x00020000UL
 306#define PGSTE_UR_BIT    0x00008000UL
 307#define PGSTE_UC_BIT    0x00004000UL    /* user dirty (migration) */
 308#define PGSTE_IN_BIT    0x00002000UL    /* IPTE notify bit */
 309
 310#else /* CONFIG_64BIT */
 311
 312/* Bits in the segment/region table address-space-control-element */
 313#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 314#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 315#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 316#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 317#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 318#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 319#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 320#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 321#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 322#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 323#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 324
 325/* Bits in the region table entry */
 326#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 327#define _REGION_ENTRY_RO        0x200   /* region protection bit            */
 328#define _REGION_ENTRY_INV       0x20    /* invalid region table entry       */
 329#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 330#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 331#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 332#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 333#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 334
 335#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 336#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 337#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 338#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 339#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 340#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 341
 342#define _REGION3_ENTRY_LARGE    0x400   /* RTTE-format control, large page  */
 343#define _REGION3_ENTRY_RO       0x200   /* page protection bit              */
 344#define _REGION3_ENTRY_CO       0x100   /* change-recording override        */
 345
 346/* Bits in the segment table entry */
 347#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 348#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 349#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 350#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 351
 352#define _SEGMENT_ENTRY          (0)
 353#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 354
 355#define _SEGMENT_ENTRY_LARGE    0x400   /* STE-format control, large page   */
 356#define _SEGMENT_ENTRY_CO       0x100   /* change-recording override   */
 357#define _SEGMENT_ENTRY_SPLIT_BIT 0      /* THP splitting bit number */
 358#define _SEGMENT_ENTRY_SPLIT    (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
 359
 360/* Set of bits not changed in pmd_modify */
 361#define _SEGMENT_CHG_MASK       (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
 362                                 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
 363
 364/* Page status table bits for virtualization */
 365#define PGSTE_ACC_BITS  0xf000000000000000UL
 366#define PGSTE_FP_BIT    0x0800000000000000UL
 367#define PGSTE_PCL_BIT   0x0080000000000000UL
 368#define PGSTE_HR_BIT    0x0040000000000000UL
 369#define PGSTE_HC_BIT    0x0020000000000000UL
 370#define PGSTE_GR_BIT    0x0004000000000000UL
 371#define PGSTE_GC_BIT    0x0002000000000000UL
 372#define PGSTE_UR_BIT    0x0000800000000000UL
 373#define PGSTE_UC_BIT    0x0000400000000000UL    /* user dirty (migration) */
 374#define PGSTE_IN_BIT    0x0000200000000000UL    /* IPTE notify bit */
 375
 376#endif /* CONFIG_64BIT */
 377
 378/*
 379 * A user page table pointer has the space-switch-event bit, the
 380 * private-space-control bit and the storage-alteration-event-control
 381 * bit set. A kernel page table pointer doesn't need them.
 382 */
 383#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 384                                 _ASCE_ALT_EVENT)
 385
 386/*
 387 * Page protection definitions.
 388 */
 389#define PAGE_NONE       __pgprot(_PAGE_TYPE_NONE)
 390#define PAGE_RO         __pgprot(_PAGE_TYPE_RO)
 391#define PAGE_RW         __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
 392#define PAGE_RWC        __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
 393
 394#define PAGE_KERNEL     PAGE_RWC
 395#define PAGE_SHARED     PAGE_KERNEL
 396#define PAGE_COPY       PAGE_RO
 397
 398/*
 399 * On s390 the page table entry has an invalid bit and a read-only bit.
 400 * Read permission implies execute permission and write permission
 401 * implies read permission.
 402 */
 403         /*xwr*/
 404#define __P000  PAGE_NONE
 405#define __P001  PAGE_RO
 406#define __P010  PAGE_RO
 407#define __P011  PAGE_RO
 408#define __P100  PAGE_RO
 409#define __P101  PAGE_RO
 410#define __P110  PAGE_RO
 411#define __P111  PAGE_RO
 412
 413#define __S000  PAGE_NONE
 414#define __S001  PAGE_RO
 415#define __S010  PAGE_RW
 416#define __S011  PAGE_RW
 417#define __S100  PAGE_RO
 418#define __S101  PAGE_RO
 419#define __S110  PAGE_RW
 420#define __S111  PAGE_RW
 421
 422/*
 423 * Segment entry (large page) protection definitions.
 424 */
 425#define SEGMENT_NONE    __pgprot(_HPAGE_TYPE_NONE)
 426#define SEGMENT_RO      __pgprot(_HPAGE_TYPE_RO)
 427#define SEGMENT_RW      __pgprot(_HPAGE_TYPE_RW)
 428
 429static inline int mm_exclusive(struct mm_struct *mm)
 430{
 431        return likely(mm == current->active_mm &&
 432                      atomic_read(&mm->context.attach_count) <= 1);
 433}
 434
 435static inline int mm_has_pgste(struct mm_struct *mm)
 436{
 437#ifdef CONFIG_PGSTE
 438        if (unlikely(mm->context.has_pgste))
 439                return 1;
 440#endif
 441        return 0;
 442}
 443/*
 444 * pgd/pmd/pte query functions
 445 */
 446#ifndef CONFIG_64BIT
 447
 448static inline int pgd_present(pgd_t pgd) { return 1; }
 449static inline int pgd_none(pgd_t pgd)    { return 0; }
 450static inline int pgd_bad(pgd_t pgd)     { return 0; }
 451
 452static inline int pud_present(pud_t pud) { return 1; }
 453static inline int pud_none(pud_t pud)    { return 0; }
 454static inline int pud_large(pud_t pud)   { return 0; }
 455static inline int pud_bad(pud_t pud)     { return 0; }
 456
 457#else /* CONFIG_64BIT */
 458
 459static inline int pgd_present(pgd_t pgd)
 460{
 461        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 462                return 1;
 463        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 464}
 465
 466static inline int pgd_none(pgd_t pgd)
 467{
 468        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 469                return 0;
 470        return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
 471}
 472
 473static inline int pgd_bad(pgd_t pgd)
 474{
 475        /*
 476         * With dynamic page table levels the pgd can be a region table
 477         * entry or a segment table entry. Check for the bit that are
 478         * invalid for either table entry.
 479         */
 480        unsigned long mask =
 481                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 482                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 483        return (pgd_val(pgd) & mask) != 0;
 484}
 485
 486static inline int pud_present(pud_t pud)
 487{
 488        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 489                return 1;
 490        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 491}
 492
 493static inline int pud_none(pud_t pud)
 494{
 495        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 496                return 0;
 497        return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 498}
 499
 500static inline int pud_large(pud_t pud)
 501{
 502        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 503                return 0;
 504        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 505}
 506
 507static inline int pud_bad(pud_t pud)
 508{
 509        /*
 510         * With dynamic page table levels the pud can be a region table
 511         * entry or a segment table entry. Check for the bit that are
 512         * invalid for either table entry.
 513         */
 514        unsigned long mask =
 515                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 516                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 517        return (pud_val(pud) & mask) != 0;
 518}
 519
 520#endif /* CONFIG_64BIT */
 521
 522static inline int pmd_present(pmd_t pmd)
 523{
 524        unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
 525        return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
 526               !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
 527}
 528
 529static inline int pmd_none(pmd_t pmd)
 530{
 531        return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
 532               !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
 533}
 534
 535static inline int pmd_large(pmd_t pmd)
 536{
 537#ifdef CONFIG_64BIT
 538        return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
 539#else
 540        return 0;
 541#endif
 542}
 543
 544static inline int pmd_bad(pmd_t pmd)
 545{
 546        unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 547        return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 548}
 549
 550#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 551extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 552                                 unsigned long addr, pmd_t *pmdp);
 553
 554#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 555extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 556                                 unsigned long address, pmd_t *pmdp,
 557                                 pmd_t entry, int dirty);
 558
 559#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 560extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 561                                  unsigned long address, pmd_t *pmdp);
 562
 563#define __HAVE_ARCH_PMD_WRITE
 564static inline int pmd_write(pmd_t pmd)
 565{
 566        return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
 567}
 568
 569static inline int pmd_young(pmd_t pmd)
 570{
 571        return 0;
 572}
 573
 574static inline int pte_none(pte_t pte)
 575{
 576        return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 577}
 578
 579static inline int pte_present(pte_t pte)
 580{
 581        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 582        return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 583                (!(pte_val(pte) & _PAGE_INVALID) &&
 584                 !(pte_val(pte) & _PAGE_SWT));
 585}
 586
 587static inline int pte_file(pte_t pte)
 588{
 589        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 590        return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 591}
 592
 593static inline int pte_special(pte_t pte)
 594{
 595        return (pte_val(pte) & _PAGE_SPECIAL);
 596}
 597
 598#define __HAVE_ARCH_PTE_SAME
 599static inline int pte_same(pte_t a, pte_t b)
 600{
 601        return pte_val(a) == pte_val(b);
 602}
 603
 604static inline pgste_t pgste_get_lock(pte_t *ptep)
 605{
 606        unsigned long new = 0;
 607#ifdef CONFIG_PGSTE
 608        unsigned long old;
 609
 610        preempt_disable();
 611        asm(
 612                "       lg      %0,%2\n"
 613                "0:     lgr     %1,%0\n"
 614                "       nihh    %0,0xff7f\n"    /* clear PCL bit in old */
 615                "       oihh    %1,0x0080\n"    /* set PCL bit in new */
 616                "       csg     %0,%1,%2\n"
 617                "       jl      0b\n"
 618                : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 619                : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
 620#endif
 621        return __pgste(new);
 622}
 623
 624static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 625{
 626#ifdef CONFIG_PGSTE
 627        asm(
 628                "       nihh    %1,0xff7f\n"    /* clear PCL bit */
 629                "       stg     %1,%0\n"
 630                : "=Q" (ptep[PTRS_PER_PTE])
 631                : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
 632                : "cc", "memory");
 633        preempt_enable();
 634#endif
 635}
 636
 637static inline void pgste_set(pte_t *ptep, pgste_t pgste)
 638{
 639#ifdef CONFIG_PGSTE
 640        *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
 641#endif
 642}
 643
 644static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
 645{
 646#ifdef CONFIG_PGSTE
 647        unsigned long address, bits;
 648        unsigned char skey;
 649
 650        if (pte_val(*ptep) & _PAGE_INVALID)
 651                return pgste;
 652        address = pte_val(*ptep) & PAGE_MASK;
 653        skey = page_get_storage_key(address);
 654        bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 655        /* Clear page changed & referenced bit in the storage key */
 656        if (bits & _PAGE_CHANGED)
 657                page_set_storage_key(address, skey ^ bits, 0);
 658        else if (bits)
 659                page_reset_referenced(address);
 660        /* Transfer page changed & referenced bit to guest bits in pgste */
 661        pgste_val(pgste) |= bits << 48;         /* GR bit & GC bit */
 662        /* Get host changed & referenced bits from pgste */
 663        bits |= (pgste_val(pgste) & (PGSTE_HR_BIT | PGSTE_HC_BIT)) >> 52;
 664        /* Transfer page changed & referenced bit to kvm user bits */
 665        pgste_val(pgste) |= bits << 45;         /* PGSTE_UR_BIT & PGSTE_UC_BIT */
 666        /* Clear relevant host bits in pgste. */
 667        pgste_val(pgste) &= ~(PGSTE_HR_BIT | PGSTE_HC_BIT);
 668        pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
 669        /* Copy page access key and fetch protection bit to pgste */
 670        pgste_val(pgste) |=
 671                (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 672        /* Transfer referenced bit to pte */
 673        pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
 674#endif
 675        return pgste;
 676
 677}
 678
 679static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
 680{
 681#ifdef CONFIG_PGSTE
 682        int young;
 683
 684        if (pte_val(*ptep) & _PAGE_INVALID)
 685                return pgste;
 686        /* Get referenced bit from storage key */
 687        young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
 688        if (young)
 689                pgste_val(pgste) |= PGSTE_GR_BIT;
 690        /* Get host referenced bit from pgste */
 691        if (pgste_val(pgste) & PGSTE_HR_BIT) {
 692                pgste_val(pgste) &= ~PGSTE_HR_BIT;
 693                young = 1;
 694        }
 695        /* Transfer referenced bit to kvm user bits and pte */
 696        if (young) {
 697                pgste_val(pgste) |= PGSTE_UR_BIT;
 698                pte_val(*ptep) |= _PAGE_SWR;
 699        }
 700#endif
 701        return pgste;
 702}
 703
 704static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
 705{
 706#ifdef CONFIG_PGSTE
 707        unsigned long address;
 708        unsigned long nkey;
 709
 710        if (pte_val(entry) & _PAGE_INVALID)
 711                return;
 712        VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
 713        address = pte_val(entry) & PAGE_MASK;
 714        /*
 715         * Set page access key and fetch protection bit from pgste.
 716         * The guest C/R information is still in the PGSTE, set real
 717         * key C/R to 0.
 718         */
 719        nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
 720        page_set_storage_key(address, nkey, 0);
 721#endif
 722}
 723
 724static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
 725{
 726        if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
 727                /*
 728                 * Without enhanced suppression-on-protection force
 729                 * the dirty bit on for all writable ptes.
 730                 */
 731                pte_val(entry) |= _PAGE_SWC;
 732                pte_val(entry) &= ~_PAGE_RO;
 733        }
 734        *ptep = entry;
 735}
 736
 737/**
 738 * struct gmap_struct - guest address space
 739 * @mm: pointer to the parent mm_struct
 740 * @table: pointer to the page directory
 741 * @asce: address space control element for gmap page table
 742 * @crst_list: list of all crst tables used in the guest address space
 743 */
 744struct gmap {
 745        struct list_head list;
 746        struct mm_struct *mm;
 747        unsigned long *table;
 748        unsigned long asce;
 749        void *private;
 750        struct list_head crst_list;
 751};
 752
 753/**
 754 * struct gmap_rmap - reverse mapping for segment table entries
 755 * @gmap: pointer to the gmap_struct
 756 * @entry: pointer to a segment table entry
 757 * @vmaddr: virtual address in the guest address space
 758 */
 759struct gmap_rmap {
 760        struct list_head list;
 761        struct gmap *gmap;
 762        unsigned long *entry;
 763        unsigned long vmaddr;
 764};
 765
 766/**
 767 * struct gmap_pgtable - gmap information attached to a page table
 768 * @vmaddr: address of the 1MB segment in the process virtual memory
 769 * @mapper: list of segment table entries mapping a page table
 770 */
 771struct gmap_pgtable {
 772        unsigned long vmaddr;
 773        struct list_head mapper;
 774};
 775
 776/**
 777 * struct gmap_notifier - notify function block for page invalidation
 778 * @notifier_call: address of callback function
 779 */
 780struct gmap_notifier {
 781        struct list_head list;
 782        void (*notifier_call)(struct gmap *gmap, unsigned long address);
 783};
 784
 785struct gmap *gmap_alloc(struct mm_struct *mm);
 786void gmap_free(struct gmap *gmap);
 787void gmap_enable(struct gmap *gmap);
 788void gmap_disable(struct gmap *gmap);
 789int gmap_map_segment(struct gmap *gmap, unsigned long from,
 790                     unsigned long to, unsigned long len);
 791int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 792unsigned long __gmap_translate(unsigned long address, struct gmap *);
 793unsigned long gmap_translate(unsigned long address, struct gmap *);
 794unsigned long __gmap_fault(unsigned long address, struct gmap *);
 795unsigned long gmap_fault(unsigned long address, struct gmap *);
 796void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
 797
 798void gmap_register_ipte_notifier(struct gmap_notifier *);
 799void gmap_unregister_ipte_notifier(struct gmap_notifier *);
 800int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
 801void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
 802
 803static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
 804                                        unsigned long addr,
 805                                        pte_t *ptep, pgste_t pgste)
 806{
 807#ifdef CONFIG_PGSTE
 808        if (pgste_val(pgste) & PGSTE_IN_BIT) {
 809                pgste_val(pgste) &= ~PGSTE_IN_BIT;
 810                gmap_do_ipte_notify(mm, addr, ptep);
 811        }
 812#endif
 813        return pgste;
 814}
 815
 816/*
 817 * Certain architectures need to do special things when PTEs
 818 * within a page table are directly modified.  Thus, the following
 819 * hook is made available.
 820 */
 821static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 822                              pte_t *ptep, pte_t entry)
 823{
 824        pgste_t pgste;
 825
 826        if (mm_has_pgste(mm)) {
 827                pgste = pgste_get_lock(ptep);
 828                pgste_set_key(ptep, pgste, entry);
 829                pgste_set_pte(ptep, entry);
 830                pgste_set_unlock(ptep, pgste);
 831        } else {
 832                if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
 833                        pte_val(entry) |= _PAGE_CO;
 834                *ptep = entry;
 835        }
 836}
 837
 838/*
 839 * query functions pte_write/pte_dirty/pte_young only work if
 840 * pte_present() is true. Undefined behaviour if not..
 841 */
 842static inline int pte_write(pte_t pte)
 843{
 844        return (pte_val(pte) & _PAGE_SWW) != 0;
 845}
 846
 847static inline int pte_dirty(pte_t pte)
 848{
 849        return (pte_val(pte) & _PAGE_SWC) != 0;
 850}
 851
 852static inline int pte_young(pte_t pte)
 853{
 854#ifdef CONFIG_PGSTE
 855        if (pte_val(pte) & _PAGE_SWR)
 856                return 1;
 857#endif
 858        return 0;
 859}
 860
 861/*
 862 * pgd/pmd/pte modification functions
 863 */
 864
 865static inline void pgd_clear(pgd_t *pgd)
 866{
 867#ifdef CONFIG_64BIT
 868        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 869                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 870#endif
 871}
 872
 873static inline void pud_clear(pud_t *pud)
 874{
 875#ifdef CONFIG_64BIT
 876        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 877                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 878#endif
 879}
 880
 881static inline void pmd_clear(pmd_t *pmdp)
 882{
 883        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 884}
 885
 886static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 887{
 888        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 889}
 890
 891/*
 892 * The following pte modification functions only work if
 893 * pte_present() is true. Undefined behaviour if not..
 894 */
 895static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 896{
 897        pte_val(pte) &= _PAGE_CHG_MASK;
 898        pte_val(pte) |= pgprot_val(newprot);
 899        if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
 900                pte_val(pte) &= ~_PAGE_RO;
 901        return pte;
 902}
 903
 904static inline pte_t pte_wrprotect(pte_t pte)
 905{
 906        pte_val(pte) &= ~_PAGE_SWW;
 907        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 908        if (!(pte_val(pte) & _PAGE_INVALID))
 909                pte_val(pte) |= _PAGE_RO;
 910        return pte;
 911}
 912
 913static inline pte_t pte_mkwrite(pte_t pte)
 914{
 915        pte_val(pte) |= _PAGE_SWW;
 916        if (pte_val(pte) & _PAGE_SWC)
 917                pte_val(pte) &= ~_PAGE_RO;
 918        return pte;
 919}
 920
 921static inline pte_t pte_mkclean(pte_t pte)
 922{
 923        pte_val(pte) &= ~_PAGE_SWC;
 924        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 925        if (!(pte_val(pte) & _PAGE_INVALID))
 926                pte_val(pte) |= _PAGE_RO;
 927        return pte;
 928}
 929
 930static inline pte_t pte_mkdirty(pte_t pte)
 931{
 932        pte_val(pte) |= _PAGE_SWC;
 933        if (pte_val(pte) & _PAGE_SWW)
 934                pte_val(pte) &= ~_PAGE_RO;
 935        return pte;
 936}
 937
 938static inline pte_t pte_mkold(pte_t pte)
 939{
 940#ifdef CONFIG_PGSTE
 941        pte_val(pte) &= ~_PAGE_SWR;
 942#endif
 943        return pte;
 944}
 945
 946static inline pte_t pte_mkyoung(pte_t pte)
 947{
 948        return pte;
 949}
 950
 951static inline pte_t pte_mkspecial(pte_t pte)
 952{
 953        pte_val(pte) |= _PAGE_SPECIAL;
 954        return pte;
 955}
 956
 957#ifdef CONFIG_HUGETLB_PAGE
 958static inline pte_t pte_mkhuge(pte_t pte)
 959{
 960        pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
 961        return pte;
 962}
 963#endif
 964
 965/*
 966 * Get (and clear) the user dirty bit for a pte.
 967 */
 968static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
 969                                                 pte_t *ptep)
 970{
 971        pgste_t pgste;
 972        int dirty = 0;
 973
 974        if (mm_has_pgste(mm)) {
 975                pgste = pgste_get_lock(ptep);
 976                pgste = pgste_update_all(ptep, pgste);
 977                dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
 978                pgste_val(pgste) &= ~PGSTE_UC_BIT;
 979                pgste_set_unlock(ptep, pgste);
 980                return dirty;
 981        }
 982        return dirty;
 983}
 984
 985/*
 986 * Get (and clear) the user referenced bit for a pte.
 987 */
 988static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
 989                                                 pte_t *ptep)
 990{
 991        pgste_t pgste;
 992        int young = 0;
 993
 994        if (mm_has_pgste(mm)) {
 995                pgste = pgste_get_lock(ptep);
 996                pgste = pgste_update_young(ptep, pgste);
 997                young = !!(pgste_val(pgste) & PGSTE_UR_BIT);
 998                pgste_val(pgste) &= ~PGSTE_UR_BIT;
 999                pgste_set_unlock(ptep, pgste);
1000        }
1001        return young;
1002}
1003
1004#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1005static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1006                                            unsigned long addr, pte_t *ptep)
1007{
1008        pgste_t pgste;
1009        pte_t pte;
1010
1011        if (mm_has_pgste(vma->vm_mm)) {
1012                pgste = pgste_get_lock(ptep);
1013                pgste = pgste_update_young(ptep, pgste);
1014                pte = *ptep;
1015                *ptep = pte_mkold(pte);
1016                pgste_set_unlock(ptep, pgste);
1017                return pte_young(pte);
1018        }
1019        return 0;
1020}
1021
1022#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1023static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1024                                         unsigned long address, pte_t *ptep)
1025{
1026        /* No need to flush TLB
1027         * On s390 reference bits are in storage key and never in TLB
1028         * With virtualization we handle the reference bit, without we
1029         * we can simply return */
1030        return ptep_test_and_clear_young(vma, address, ptep);
1031}
1032
1033static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1034{
1035        if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1036#ifndef CONFIG_64BIT
1037                /* pto must point to the start of the segment table */
1038                pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1039#else
1040                /* ipte in zarch mode can do the math */
1041                pte_t *pto = ptep;
1042#endif
1043                asm volatile(
1044                        "       ipte    %2,%3"
1045                        : "=m" (*ptep) : "m" (*ptep),
1046                          "a" (pto), "a" (address));
1047        }
1048}
1049
1050/*
1051 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1052 * both clear the TLB for the unmapped pte. The reason is that
1053 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1054 * to modify an active pte. The sequence is
1055 *   1) ptep_get_and_clear
1056 *   2) set_pte_at
1057 *   3) flush_tlb_range
1058 * On s390 the tlb needs to get flushed with the modification of the pte
1059 * if the pte is active. The only way how this can be implemented is to
1060 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1061 * is a nop.
1062 */
1063#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1064static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1065                                       unsigned long address, pte_t *ptep)
1066{
1067        pgste_t pgste;
1068        pte_t pte;
1069
1070        mm->context.flush_mm = 1;
1071        if (mm_has_pgste(mm)) {
1072                pgste = pgste_get_lock(ptep);
1073                pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1074        }
1075
1076        pte = *ptep;
1077        if (!mm_exclusive(mm))
1078                __ptep_ipte(address, ptep);
1079        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1080
1081        if (mm_has_pgste(mm)) {
1082                pgste = pgste_update_all(&pte, pgste);
1083                pgste_set_unlock(ptep, pgste);
1084        }
1085        return pte;
1086}
1087
1088#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1089static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1090                                           unsigned long address,
1091                                           pte_t *ptep)
1092{
1093        pgste_t pgste;
1094        pte_t pte;
1095
1096        mm->context.flush_mm = 1;
1097        if (mm_has_pgste(mm)) {
1098                pgste = pgste_get_lock(ptep);
1099                pgste_ipte_notify(mm, address, ptep, pgste);
1100        }
1101
1102        pte = *ptep;
1103        if (!mm_exclusive(mm))
1104                __ptep_ipte(address, ptep);
1105
1106        if (mm_has_pgste(mm)) {
1107                pgste = pgste_update_all(&pte, pgste);
1108                pgste_set(ptep, pgste);
1109        }
1110        return pte;
1111}
1112
1113static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1114                                           unsigned long address,
1115                                           pte_t *ptep, pte_t pte)
1116{
1117        pgste_t pgste;
1118
1119        if (mm_has_pgste(mm)) {
1120                pgste = *(pgste_t *)(ptep + PTRS_PER_PTE);
1121                pgste_set_key(ptep, pgste, pte);
1122                pgste_set_pte(ptep, pte);
1123                pgste_set_unlock(ptep, pgste);
1124        } else
1125                *ptep = pte;
1126}
1127
1128#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1129static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1130                                     unsigned long address, pte_t *ptep)
1131{
1132        pgste_t pgste;
1133        pte_t pte;
1134
1135        if (mm_has_pgste(vma->vm_mm)) {
1136                pgste = pgste_get_lock(ptep);
1137                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1138        }
1139
1140        pte = *ptep;
1141        __ptep_ipte(address, ptep);
1142        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1143
1144        if (mm_has_pgste(vma->vm_mm)) {
1145                pgste = pgste_update_all(&pte, pgste);
1146                pgste_set_unlock(ptep, pgste);
1147        }
1148        return pte;
1149}
1150
1151/*
1152 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1153 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1154 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1155 * cannot be accessed while the batched unmap is running. In this case
1156 * full==1 and a simple pte_clear is enough. See tlb.h.
1157 */
1158#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1159static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1160                                            unsigned long address,
1161                                            pte_t *ptep, int full)
1162{
1163        pgste_t pgste;
1164        pte_t pte;
1165
1166        if (mm_has_pgste(mm)) {
1167                pgste = pgste_get_lock(ptep);
1168                if (!full)
1169                        pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1170        }
1171
1172        pte = *ptep;
1173        if (!full)
1174                __ptep_ipte(address, ptep);
1175        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1176
1177        if (mm_has_pgste(mm)) {
1178                pgste = pgste_update_all(&pte, pgste);
1179                pgste_set_unlock(ptep, pgste);
1180        }
1181        return pte;
1182}
1183
1184#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1185static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1186                                       unsigned long address, pte_t *ptep)
1187{
1188        pgste_t pgste;
1189        pte_t pte = *ptep;
1190
1191        if (pte_write(pte)) {
1192                mm->context.flush_mm = 1;
1193                if (mm_has_pgste(mm)) {
1194                        pgste = pgste_get_lock(ptep);
1195                        pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1196                }
1197
1198                if (!mm_exclusive(mm))
1199                        __ptep_ipte(address, ptep);
1200                pte = pte_wrprotect(pte);
1201
1202                if (mm_has_pgste(mm)) {
1203                        pgste_set_pte(ptep, pte);
1204                        pgste_set_unlock(ptep, pgste);
1205                } else
1206                        *ptep = pte;
1207        }
1208        return pte;
1209}
1210
1211#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1212static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1213                                        unsigned long address, pte_t *ptep,
1214                                        pte_t entry, int dirty)
1215{
1216        pgste_t pgste;
1217
1218        if (pte_same(*ptep, entry))
1219                return 0;
1220        if (mm_has_pgste(vma->vm_mm)) {
1221                pgste = pgste_get_lock(ptep);
1222                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1223        }
1224
1225        __ptep_ipte(address, ptep);
1226
1227        if (mm_has_pgste(vma->vm_mm)) {
1228                pgste_set_pte(ptep, entry);
1229                pgste_set_unlock(ptep, pgste);
1230        } else
1231                *ptep = entry;
1232        return 1;
1233}
1234
1235/*
1236 * Conversion functions: convert a page and protection to a page entry,
1237 * and a page entry and page directory to the page they refer to.
1238 */
1239static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1240{
1241        pte_t __pte;
1242        pte_val(__pte) = physpage + pgprot_val(pgprot);
1243        return __pte;
1244}
1245
1246static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1247{
1248        unsigned long physpage = page_to_phys(page);
1249        pte_t __pte = mk_pte_phys(physpage, pgprot);
1250
1251        if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1252                pte_val(__pte) |= _PAGE_SWC;
1253                pte_val(__pte) &= ~_PAGE_RO;
1254        }
1255        return __pte;
1256}
1257
1258#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1259#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1260#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1261#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1262
1263#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1264#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1265
1266#ifndef CONFIG_64BIT
1267
1268#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1269#define pud_deref(pmd) ({ BUG(); 0UL; })
1270#define pgd_deref(pmd) ({ BUG(); 0UL; })
1271
1272#define pud_offset(pgd, address) ((pud_t *) pgd)
1273#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1274
1275#else /* CONFIG_64BIT */
1276
1277#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1278#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1279#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1280
1281static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1282{
1283        pud_t *pud = (pud_t *) pgd;
1284        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1285                pud = (pud_t *) pgd_deref(*pgd);
1286        return pud  + pud_index(address);
1287}
1288
1289static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1290{
1291        pmd_t *pmd = (pmd_t *) pud;
1292        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1293                pmd = (pmd_t *) pud_deref(*pud);
1294        return pmd + pmd_index(address);
1295}
1296
1297#endif /* CONFIG_64BIT */
1298
1299#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1300#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1301#define pte_page(x) pfn_to_page(pte_pfn(x))
1302
1303#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1304
1305/* Find an entry in the lowest level page table.. */
1306#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1307#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1308#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1309#define pte_unmap(pte) do { } while (0)
1310
1311static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1312{
1313        unsigned long sto = (unsigned long) pmdp -
1314                            pmd_index(address) * sizeof(pmd_t);
1315
1316        if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1317                asm volatile(
1318                        "       .insn   rrf,0xb98e0000,%2,%3,0,0"
1319                        : "=m" (*pmdp)
1320                        : "m" (*pmdp), "a" (sto),
1321                          "a" ((address & HPAGE_MASK))
1322                        : "cc"
1323                );
1324        }
1325}
1326
1327#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1328static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1329{
1330        /*
1331         * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1332         * Convert to segment table entry format.
1333         */
1334        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1335                return pgprot_val(SEGMENT_NONE);
1336        if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1337                return pgprot_val(SEGMENT_RO);
1338        return pgprot_val(SEGMENT_RW);
1339}
1340
1341static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1342{
1343        pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1344        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1345        return pmd;
1346}
1347
1348static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1349{
1350        pmd_t __pmd;
1351        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1352        return __pmd;
1353}
1354
1355static inline pmd_t pmd_mkwrite(pmd_t pmd)
1356{
1357        /* Do not clobber _HPAGE_TYPE_NONE pages! */
1358        if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1359                pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1360        return pmd;
1361}
1362#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1363
1364#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1365
1366#define __HAVE_ARCH_PGTABLE_DEPOSIT
1367extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1368                                       pgtable_t pgtable);
1369
1370#define __HAVE_ARCH_PGTABLE_WITHDRAW
1371extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1372
1373static inline int pmd_trans_splitting(pmd_t pmd)
1374{
1375        return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1376}
1377
1378static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1379                              pmd_t *pmdp, pmd_t entry)
1380{
1381        if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1382                pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1383        *pmdp = entry;
1384}
1385
1386static inline pmd_t pmd_mkhuge(pmd_t pmd)
1387{
1388        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1389        return pmd;
1390}
1391
1392static inline pmd_t pmd_wrprotect(pmd_t pmd)
1393{
1394        pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1395        return pmd;
1396}
1397
1398static inline pmd_t pmd_mkdirty(pmd_t pmd)
1399{
1400        /* No dirty bit in the segment table entry. */
1401        return pmd;
1402}
1403
1404static inline pmd_t pmd_mkold(pmd_t pmd)
1405{
1406        /* No referenced bit in the segment table entry. */
1407        return pmd;
1408}
1409
1410static inline pmd_t pmd_mkyoung(pmd_t pmd)
1411{
1412        /* No referenced bit in the segment table entry. */
1413        return pmd;
1414}
1415
1416#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1417static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1418                                            unsigned long address, pmd_t *pmdp)
1419{
1420        unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1421        long tmp, rc;
1422        int counter;
1423
1424        rc = 0;
1425        if (MACHINE_HAS_RRBM) {
1426                counter = PTRS_PER_PTE >> 6;
1427                asm volatile(
1428                        "0:     .insn   rre,0xb9ae0000,%0,%3\n" /* rrbm */
1429                        "       ogr     %1,%0\n"
1430                        "       la      %3,0(%4,%3)\n"
1431                        "       brct    %2,0b\n"
1432                        : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1433                          "+a" (pmd_addr)
1434                        : "a" (64 * 4096UL) : "cc");
1435                rc = !!rc;
1436        } else {
1437                counter = PTRS_PER_PTE;
1438                asm volatile(
1439                        "0:     rrbe    0,%2\n"
1440                        "       la      %2,0(%3,%2)\n"
1441                        "       brc     12,1f\n"
1442                        "       lhi     %0,1\n"
1443                        "1:     brct    %1,0b\n"
1444                        : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1445                        : "a" (4096UL) : "cc");
1446        }
1447        return rc;
1448}
1449
1450#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1451static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1452                                       unsigned long address, pmd_t *pmdp)
1453{
1454        pmd_t pmd = *pmdp;
1455
1456        __pmd_idte(address, pmdp);
1457        pmd_clear(pmdp);
1458        return pmd;
1459}
1460
1461#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1462static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1463                                     unsigned long address, pmd_t *pmdp)
1464{
1465        return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1466}
1467
1468#define __HAVE_ARCH_PMDP_INVALIDATE
1469static inline void pmdp_invalidate(struct vm_area_struct *vma,
1470                                   unsigned long address, pmd_t *pmdp)
1471{
1472        __pmd_idte(address, pmdp);
1473}
1474
1475#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1476static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1477                                      unsigned long address, pmd_t *pmdp)
1478{
1479        pmd_t pmd = *pmdp;
1480
1481        if (pmd_write(pmd)) {
1482                __pmd_idte(address, pmdp);
1483                set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1484        }
1485}
1486
1487#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1488#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1489
1490static inline int pmd_trans_huge(pmd_t pmd)
1491{
1492        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1493}
1494
1495static inline int has_transparent_hugepage(void)
1496{
1497        return MACHINE_HAS_HPAGE ? 1 : 0;
1498}
1499
1500static inline unsigned long pmd_pfn(pmd_t pmd)
1501{
1502        return pmd_val(pmd) >> PAGE_SHIFT;
1503}
1504#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1505
1506/*
1507 * 31 bit swap entry format:
1508 * A page-table entry has some bits we have to treat in a special way.
1509 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1510 * exception will occur instead of a page translation exception. The
1511 * specifiation exception has the bad habit not to store necessary
1512 * information in the lowcore.
1513 * Bit 21 and bit 22 are the page invalid bit and the page protection
1514 * bit. We set both to indicate a swapped page.
1515 * Bit 30 and 31 are used to distinguish the different page types. For
1516 * a swapped page these bits need to be zero.
1517 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1518 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1519 * plus 24 for the offset.
1520 * 0|     offset        |0110|o|type |00|
1521 * 0 0000000001111111111 2222 2 22222 33
1522 * 0 1234567890123456789 0123 4 56789 01
1523 *
1524 * 64 bit swap entry format:
1525 * A page-table entry has some bits we have to treat in a special way.
1526 * Bits 52 and bit 55 have to be zero, otherwise an specification
1527 * exception will occur instead of a page translation exception. The
1528 * specifiation exception has the bad habit not to store necessary
1529 * information in the lowcore.
1530 * Bit 53 and bit 54 are the page invalid bit and the page protection
1531 * bit. We set both to indicate a swapped page.
1532 * Bit 62 and 63 are used to distinguish the different page types. For
1533 * a swapped page these bits need to be zero.
1534 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1535 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1536 * plus 56 for the offset.
1537 * |                      offset                        |0110|o|type |00|
1538 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1539 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1540 */
1541#ifndef CONFIG_64BIT
1542#define __SWP_OFFSET_MASK (~0UL >> 12)
1543#else
1544#define __SWP_OFFSET_MASK (~0UL >> 11)
1545#endif
1546static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1547{
1548        pte_t pte;
1549        offset &= __SWP_OFFSET_MASK;
1550        pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1551                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1552        return pte;
1553}
1554
1555#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1556#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1557#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1558
1559#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1560#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1561
1562#ifndef CONFIG_64BIT
1563# define PTE_FILE_MAX_BITS      26
1564#else /* CONFIG_64BIT */
1565# define PTE_FILE_MAX_BITS      59
1566#endif /* CONFIG_64BIT */
1567
1568#define pte_to_pgoff(__pte) \
1569        ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1570
1571#define pgoff_to_pte(__off) \
1572        ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1573                   | _PAGE_TYPE_FILE })
1574
1575#endif /* !__ASSEMBLY__ */
1576
1577#define kern_addr_valid(addr)   (1)
1578
1579extern int vmem_add_mapping(unsigned long start, unsigned long size);
1580extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1581extern int s390_enable_sie(void);
1582
1583/*
1584 * No page table caches to initialise
1585 */
1586static inline void pgtable_cache_init(void) { }
1587static inline void check_pgt_cache(void) { }
1588
1589#include <asm-generic/pgtable.h>
1590
1591#endif /* _S390_PAGE_H */
1592