linux/arch/sh/mm/cache-sh4.c
<<
>>
Prefs
   1/*
   2 * arch/sh/mm/cache-sh4.c
   3 *
   4 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
   5 * Copyright (C) 2001 - 2009  Paul Mundt
   6 * Copyright (C) 2003  Richard Curnow
   7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 */
  13#include <linux/init.h>
  14#include <linux/mm.h>
  15#include <linux/io.h>
  16#include <linux/mutex.h>
  17#include <linux/fs.h>
  18#include <linux/highmem.h>
  19#include <asm/pgtable.h>
  20#include <asm/mmu_context.h>
  21#include <asm/cache_insns.h>
  22#include <asm/cacheflush.h>
  23
  24/*
  25 * The maximum number of pages we support up to when doing ranged dcache
  26 * flushing. Anything exceeding this will simply flush the dcache in its
  27 * entirety.
  28 */
  29#define MAX_ICACHE_PAGES        32
  30
  31static void __flush_cache_one(unsigned long addr, unsigned long phys,
  32                               unsigned long exec_offset);
  33
  34/*
  35 * Write back the range of D-cache, and purge the I-cache.
  36 *
  37 * Called from kernel/module.c:sys_init_module and routine for a.out format,
  38 * signal handler code and kprobes code
  39 */
  40static void sh4_flush_icache_range(void *args)
  41{
  42        struct flusher_data *data = args;
  43        unsigned long start, end;
  44        unsigned long flags, v;
  45        int i;
  46
  47        start = data->addr1;
  48        end = data->addr2;
  49
  50        /* If there are too many pages then just blow away the caches */
  51        if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
  52                local_flush_cache_all(NULL);
  53                return;
  54        }
  55
  56        /*
  57         * Selectively flush d-cache then invalidate the i-cache.
  58         * This is inefficient, so only use this for small ranges.
  59         */
  60        start &= ~(L1_CACHE_BYTES-1);
  61        end += L1_CACHE_BYTES-1;
  62        end &= ~(L1_CACHE_BYTES-1);
  63
  64        local_irq_save(flags);
  65        jump_to_uncached();
  66
  67        for (v = start; v < end; v += L1_CACHE_BYTES) {
  68                unsigned long icacheaddr;
  69                int j, n;
  70
  71                __ocbwb(v);
  72
  73                icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
  74                                cpu_data->icache.entry_mask);
  75
  76                /* Clear i-cache line valid-bit */
  77                n = boot_cpu_data.icache.n_aliases;
  78                for (i = 0; i < cpu_data->icache.ways; i++) {
  79                        for (j = 0; j < n; j++)
  80                                __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
  81                        icacheaddr += cpu_data->icache.way_incr;
  82                }
  83        }
  84
  85        back_to_cached();
  86        local_irq_restore(flags);
  87}
  88
  89static inline void flush_cache_one(unsigned long start, unsigned long phys)
  90{
  91        unsigned long flags, exec_offset = 0;
  92
  93        /*
  94         * All types of SH-4 require PC to be uncached to operate on the I-cache.
  95         * Some types of SH-4 require PC to be uncached to operate on the D-cache.
  96         */
  97        if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
  98            (start < CACHE_OC_ADDRESS_ARRAY))
  99                exec_offset = cached_to_uncached;
 100
 101        local_irq_save(flags);
 102        __flush_cache_one(start, phys, exec_offset);
 103        local_irq_restore(flags);
 104}
 105
 106/*
 107 * Write back & invalidate the D-cache of the page.
 108 * (To avoid "alias" issues)
 109 */
 110static void sh4_flush_dcache_page(void *arg)
 111{
 112        struct page *page = arg;
 113        unsigned long addr = (unsigned long)page_address(page);
 114#ifndef CONFIG_SMP
 115        struct address_space *mapping = page_mapping(page);
 116
 117        if (mapping && !mapping_mapped(mapping))
 118                clear_bit(PG_dcache_clean, &page->flags);
 119        else
 120#endif
 121                flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
 122                                (addr & shm_align_mask), page_to_phys(page));
 123
 124        wmb();
 125}
 126
 127/* TODO: Selective icache invalidation through IC address array.. */
 128static void flush_icache_all(void)
 129{
 130        unsigned long flags, ccr;
 131
 132        local_irq_save(flags);
 133        jump_to_uncached();
 134
 135        /* Flush I-cache */
 136        ccr = __raw_readl(CCR);
 137        ccr |= CCR_CACHE_ICI;
 138        __raw_writel(ccr, CCR);
 139
 140        /*
 141         * back_to_cached() will take care of the barrier for us, don't add
 142         * another one!
 143         */
 144
 145        back_to_cached();
 146        local_irq_restore(flags);
 147}
 148
 149static void flush_dcache_all(void)
 150{
 151        unsigned long addr, end_addr, entry_offset;
 152
 153        end_addr = CACHE_OC_ADDRESS_ARRAY +
 154                (current_cpu_data.dcache.sets <<
 155                 current_cpu_data.dcache.entry_shift) *
 156                        current_cpu_data.dcache.ways;
 157
 158        entry_offset = 1 << current_cpu_data.dcache.entry_shift;
 159
 160        for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
 161                __raw_writel(0, addr); addr += entry_offset;
 162                __raw_writel(0, addr); addr += entry_offset;
 163                __raw_writel(0, addr); addr += entry_offset;
 164                __raw_writel(0, addr); addr += entry_offset;
 165                __raw_writel(0, addr); addr += entry_offset;
 166                __raw_writel(0, addr); addr += entry_offset;
 167                __raw_writel(0, addr); addr += entry_offset;
 168                __raw_writel(0, addr); addr += entry_offset;
 169        }
 170}
 171
 172static void sh4_flush_cache_all(void *unused)
 173{
 174        flush_dcache_all();
 175        flush_icache_all();
 176}
 177
 178/*
 179 * Note : (RPC) since the caches are physically tagged, the only point
 180 * of flush_cache_mm for SH-4 is to get rid of aliases from the
 181 * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
 182 * lines can stay resident so long as the virtual address they were
 183 * accessed with (hence cache set) is in accord with the physical
 184 * address (i.e. tag).  It's no different here.
 185 *
 186 * Caller takes mm->mmap_sem.
 187 */
 188static void sh4_flush_cache_mm(void *arg)
 189{
 190        struct mm_struct *mm = arg;
 191
 192        if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
 193                return;
 194
 195        flush_dcache_all();
 196}
 197
 198/*
 199 * Write back and invalidate I/D-caches for the page.
 200 *
 201 * ADDR: Virtual Address (U0 address)
 202 * PFN: Physical page number
 203 */
 204static void sh4_flush_cache_page(void *args)
 205{
 206        struct flusher_data *data = args;
 207        struct vm_area_struct *vma;
 208        struct page *page;
 209        unsigned long address, pfn, phys;
 210        int map_coherent = 0;
 211        pgd_t *pgd;
 212        pud_t *pud;
 213        pmd_t *pmd;
 214        pte_t *pte;
 215        void *vaddr;
 216
 217        vma = data->vma;
 218        address = data->addr1 & PAGE_MASK;
 219        pfn = data->addr2;
 220        phys = pfn << PAGE_SHIFT;
 221        page = pfn_to_page(pfn);
 222
 223        if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
 224                return;
 225
 226        pgd = pgd_offset(vma->vm_mm, address);
 227        pud = pud_offset(pgd, address);
 228        pmd = pmd_offset(pud, address);
 229        pte = pte_offset_kernel(pmd, address);
 230
 231        /* If the page isn't present, there is nothing to do here. */
 232        if (!(pte_val(*pte) & _PAGE_PRESENT))
 233                return;
 234
 235        if ((vma->vm_mm == current->active_mm))
 236                vaddr = NULL;
 237        else {
 238                /*
 239                 * Use kmap_coherent or kmap_atomic to do flushes for
 240                 * another ASID than the current one.
 241                 */
 242                map_coherent = (current_cpu_data.dcache.n_aliases &&
 243                        test_bit(PG_dcache_clean, &page->flags) &&
 244                        page_mapped(page));
 245                if (map_coherent)
 246                        vaddr = kmap_coherent(page, address);
 247                else
 248                        vaddr = kmap_atomic(page);
 249
 250                address = (unsigned long)vaddr;
 251        }
 252
 253        flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
 254                        (address & shm_align_mask), phys);
 255
 256        if (vma->vm_flags & VM_EXEC)
 257                flush_icache_all();
 258
 259        if (vaddr) {
 260                if (map_coherent)
 261                        kunmap_coherent(vaddr);
 262                else
 263                        kunmap_atomic(vaddr);
 264        }
 265}
 266
 267/*
 268 * Write back and invalidate D-caches.
 269 *
 270 * START, END: Virtual Address (U0 address)
 271 *
 272 * NOTE: We need to flush the _physical_ page entry.
 273 * Flushing the cache lines for U0 only isn't enough.
 274 * We need to flush for P1 too, which may contain aliases.
 275 */
 276static void sh4_flush_cache_range(void *args)
 277{
 278        struct flusher_data *data = args;
 279        struct vm_area_struct *vma;
 280        unsigned long start, end;
 281
 282        vma = data->vma;
 283        start = data->addr1;
 284        end = data->addr2;
 285
 286        if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
 287                return;
 288
 289        /*
 290         * If cache is only 4k-per-way, there are never any 'aliases'.  Since
 291         * the cache is physically tagged, the data can just be left in there.
 292         */
 293        if (boot_cpu_data.dcache.n_aliases == 0)
 294                return;
 295
 296        flush_dcache_all();
 297
 298        if (vma->vm_flags & VM_EXEC)
 299                flush_icache_all();
 300}
 301
 302/**
 303 * __flush_cache_one
 304 *
 305 * @addr:  address in memory mapped cache array
 306 * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
 307 *         set i.e. associative write)
 308 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
 309 *               region else 0x0
 310 *
 311 * The offset into the cache array implied by 'addr' selects the
 312 * 'colour' of the virtual address range that will be flushed.  The
 313 * operation (purge/write-back) is selected by the lower 2 bits of
 314 * 'phys'.
 315 */
 316static void __flush_cache_one(unsigned long addr, unsigned long phys,
 317                               unsigned long exec_offset)
 318{
 319        int way_count;
 320        unsigned long base_addr = addr;
 321        struct cache_info *dcache;
 322        unsigned long way_incr;
 323        unsigned long a, ea, p;
 324        unsigned long temp_pc;
 325
 326        dcache = &boot_cpu_data.dcache;
 327        /* Write this way for better assembly. */
 328        way_count = dcache->ways;
 329        way_incr = dcache->way_incr;
 330
 331        /*
 332         * Apply exec_offset (i.e. branch to P2 if required.).
 333         *
 334         * FIXME:
 335         *
 336         *      If I write "=r" for the (temp_pc), it puts this in r6 hence
 337         *      trashing exec_offset before it's been added on - why?  Hence
 338         *      "=&r" as a 'workaround'
 339         */
 340        asm volatile("mov.l 1f, %0\n\t"
 341                     "add   %1, %0\n\t"
 342                     "jmp   @%0\n\t"
 343                     "nop\n\t"
 344                     ".balign 4\n\t"
 345                     "1:  .long 2f\n\t"
 346                     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
 347
 348        /*
 349         * We know there will be >=1 iteration, so write as do-while to avoid
 350         * pointless nead-of-loop check for 0 iterations.
 351         */
 352        do {
 353                ea = base_addr + PAGE_SIZE;
 354                a = base_addr;
 355                p = phys;
 356
 357                do {
 358                        *(volatile unsigned long *)a = p;
 359                        /*
 360                         * Next line: intentionally not p+32, saves an add, p
 361                         * will do since only the cache tag bits need to
 362                         * match.
 363                         */
 364                        *(volatile unsigned long *)(a+32) = p;
 365                        a += 64;
 366                        p += 64;
 367                } while (a < ea);
 368
 369                base_addr += way_incr;
 370        } while (--way_count != 0);
 371}
 372
 373extern void __weak sh4__flush_region_init(void);
 374
 375/*
 376 * SH-4 has virtually indexed and physically tagged cache.
 377 */
 378void __init sh4_cache_init(void)
 379{
 380        printk("PVR=%08x CVR=%08x PRR=%08x\n",
 381                __raw_readl(CCN_PVR),
 382                __raw_readl(CCN_CVR),
 383                __raw_readl(CCN_PRR));
 384
 385        local_flush_icache_range        = sh4_flush_icache_range;
 386        local_flush_dcache_page         = sh4_flush_dcache_page;
 387        local_flush_cache_all           = sh4_flush_cache_all;
 388        local_flush_cache_mm            = sh4_flush_cache_mm;
 389        local_flush_cache_dup_mm        = sh4_flush_cache_mm;
 390        local_flush_cache_page          = sh4_flush_cache_page;
 391        local_flush_cache_range         = sh4_flush_cache_range;
 392
 393        sh4__flush_region_init();
 394}
 395