linux/arch/sh/mm/cache-sh5.c
<<
>>
Prefs
   1/*
   2 * arch/sh/mm/cache-sh5.c
   3 *
   4 * Copyright (C) 2000, 2001  Paolo Alberelli
   5 * Copyright (C) 2002  Benedict Gaster
   6 * Copyright (C) 2003  Richard Curnow
   7 * Copyright (C) 2003 - 2008  Paul Mundt
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 */
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/mm.h>
  16#include <asm/tlb.h>
  17#include <asm/processor.h>
  18#include <asm/cache.h>
  19#include <asm/pgalloc.h>
  20#include <asm/uaccess.h>
  21#include <asm/mmu_context.h>
  22
  23extern void __weak sh4__flush_region_init(void);
  24
  25/* Wired TLB entry for the D-cache */
  26static unsigned long long dtlb_cache_slot;
  27
  28/*
  29 * The following group of functions deal with mapping and unmapping a
  30 * temporary page into a DTLB slot that has been set aside for exclusive
  31 * use.
  32 */
  33static inline void
  34sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
  35                           unsigned long paddr)
  36{
  37        local_irq_disable();
  38        sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
  39}
  40
  41static inline void sh64_teardown_dtlb_cache_slot(void)
  42{
  43        sh64_teardown_tlb_slot(dtlb_cache_slot);
  44        local_irq_enable();
  45}
  46
  47static inline void sh64_icache_inv_all(void)
  48{
  49        unsigned long long addr, flag, data;
  50        unsigned long flags;
  51
  52        addr = ICCR0;
  53        flag = ICCR0_ICI;
  54        data = 0;
  55
  56        /* Make this a critical section for safety (probably not strictly necessary.) */
  57        local_irq_save(flags);
  58
  59        /* Without %1 it gets unexplicably wrong */
  60        __asm__ __volatile__ (
  61                "getcfg %3, 0, %0\n\t"
  62                "or     %0, %2, %0\n\t"
  63                "putcfg %3, 0, %0\n\t"
  64                "synci"
  65                : "=&r" (data)
  66                : "0" (data), "r" (flag), "r" (addr));
  67
  68        local_irq_restore(flags);
  69}
  70
  71static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
  72{
  73        /* Invalidate range of addresses [start,end] from the I-cache, where
  74         * the addresses lie in the kernel superpage. */
  75
  76        unsigned long long ullend, addr, aligned_start;
  77        aligned_start = (unsigned long long)(signed long long)(signed long) start;
  78        addr = L1_CACHE_ALIGN(aligned_start);
  79        ullend = (unsigned long long) (signed long long) (signed long) end;
  80
  81        while (addr <= ullend) {
  82                __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
  83                addr += L1_CACHE_BYTES;
  84        }
  85}
  86
  87static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
  88{
  89        /* If we get called, we know that vma->vm_flags contains VM_EXEC.
  90           Also, eaddr is page-aligned. */
  91        unsigned int cpu = smp_processor_id();
  92        unsigned long long addr, end_addr;
  93        unsigned long flags = 0;
  94        unsigned long running_asid, vma_asid;
  95        addr = eaddr;
  96        end_addr = addr + PAGE_SIZE;
  97
  98        /* Check whether we can use the current ASID for the I-cache
  99           invalidation.  For example, if we're called via
 100           access_process_vm->flush_cache_page->here, (e.g. when reading from
 101           /proc), 'running_asid' will be that of the reader, not of the
 102           victim.
 103
 104           Also, note the risk that we might get pre-empted between the ASID
 105           compare and blocking IRQs, and before we regain control, the
 106           pid->ASID mapping changes.  However, the whole cache will get
 107           invalidated when the mapping is renewed, so the worst that can
 108           happen is that the loop below ends up invalidating somebody else's
 109           cache entries.
 110        */
 111
 112        running_asid = get_asid();
 113        vma_asid = cpu_asid(cpu, vma->vm_mm);
 114        if (running_asid != vma_asid) {
 115                local_irq_save(flags);
 116                switch_and_save_asid(vma_asid);
 117        }
 118        while (addr < end_addr) {
 119                /* Worth unrolling a little */
 120                __asm__ __volatile__("icbi %0,  0" : : "r" (addr));
 121                __asm__ __volatile__("icbi %0, 32" : : "r" (addr));
 122                __asm__ __volatile__("icbi %0, 64" : : "r" (addr));
 123                __asm__ __volatile__("icbi %0, 96" : : "r" (addr));
 124                addr += 128;
 125        }
 126        if (running_asid != vma_asid) {
 127                switch_and_save_asid(running_asid);
 128                local_irq_restore(flags);
 129        }
 130}
 131
 132static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
 133                          unsigned long start, unsigned long end)
 134{
 135        /* Used for invalidating big chunks of I-cache, i.e. assume the range
 136           is whole pages.  If 'start' or 'end' is not page aligned, the code
 137           is conservative and invalidates to the ends of the enclosing pages.
 138           This is functionally OK, just a performance loss. */
 139
 140        /* See the comments below in sh64_dcache_purge_user_range() regarding
 141           the choice of algorithm.  However, for the I-cache option (2) isn't
 142           available because there are no physical tags so aliases can't be
 143           resolved.  The icbi instruction has to be used through the user
 144           mapping.   Because icbi is cheaper than ocbp on a cache hit, it
 145           would be cheaper to use the selective code for a large range than is
 146           possible with the D-cache.  Just assume 64 for now as a working
 147           figure.
 148           */
 149        int n_pages;
 150
 151        if (!mm)
 152                return;
 153
 154        n_pages = ((end - start) >> PAGE_SHIFT);
 155        if (n_pages >= 64) {
 156                sh64_icache_inv_all();
 157        } else {
 158                unsigned long aligned_start;
 159                unsigned long eaddr;
 160                unsigned long after_last_page_start;
 161                unsigned long mm_asid, current_asid;
 162                unsigned long flags = 0;
 163
 164                mm_asid = cpu_asid(smp_processor_id(), mm);
 165                current_asid = get_asid();
 166
 167                if (mm_asid != current_asid) {
 168                        /* Switch ASID and run the invalidate loop under cli */
 169                        local_irq_save(flags);
 170                        switch_and_save_asid(mm_asid);
 171                }
 172
 173                aligned_start = start & PAGE_MASK;
 174                after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
 175
 176                while (aligned_start < after_last_page_start) {
 177                        struct vm_area_struct *vma;
 178                        unsigned long vma_end;
 179                        vma = find_vma(mm, aligned_start);
 180                        if (!vma || (aligned_start <= vma->vm_end)) {
 181                                /* Avoid getting stuck in an error condition */
 182                                aligned_start += PAGE_SIZE;
 183                                continue;
 184                        }
 185                        vma_end = vma->vm_end;
 186                        if (vma->vm_flags & VM_EXEC) {
 187                                /* Executable */
 188                                eaddr = aligned_start;
 189                                while (eaddr < vma_end) {
 190                                        sh64_icache_inv_user_page(vma, eaddr);
 191                                        eaddr += PAGE_SIZE;
 192                                }
 193                        }
 194                        aligned_start = vma->vm_end; /* Skip to start of next region */
 195                }
 196
 197                if (mm_asid != current_asid) {
 198                        switch_and_save_asid(current_asid);
 199                        local_irq_restore(flags);
 200                }
 201        }
 202}
 203
 204static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
 205{
 206        /* The icbi instruction never raises ITLBMISS.  i.e. if there's not a
 207           cache hit on the virtual tag the instruction ends there, without a
 208           TLB lookup. */
 209
 210        unsigned long long aligned_start;
 211        unsigned long long ull_end;
 212        unsigned long long addr;
 213
 214        ull_end = end;
 215
 216        /* Just invalidate over the range using the natural addresses.  TLB
 217           miss handling will be OK (TBC).  Since it's for the current process,
 218           either we're already in the right ASID context, or the ASIDs have
 219           been recycled since we were last active in which case we might just
 220           invalidate another processes I-cache entries : no worries, just a
 221           performance drop for him. */
 222        aligned_start = L1_CACHE_ALIGN(start);
 223        addr = aligned_start;
 224        while (addr < ull_end) {
 225                __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
 226                __asm__ __volatile__ ("nop");
 227                __asm__ __volatile__ ("nop");
 228                addr += L1_CACHE_BYTES;
 229        }
 230}
 231
 232/* Buffer used as the target of alloco instructions to purge data from cache
 233   sets by natural eviction. -- RPC */
 234#define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
 235static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
 236
 237static void inline sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
 238{
 239        /* Purge all ways in a particular block of sets, specified by the base
 240           set number and number of sets.  Can handle wrap-around, if that's
 241           needed.  */
 242
 243        int dummy_buffer_base_set;
 244        unsigned long long eaddr, eaddr0, eaddr1;
 245        int j;
 246        int set_offset;
 247
 248        dummy_buffer_base_set = ((int)&dummy_alloco_area &
 249                                 cpu_data->dcache.entry_mask) >>
 250                                 cpu_data->dcache.entry_shift;
 251        set_offset = sets_to_purge_base - dummy_buffer_base_set;
 252
 253        for (j = 0; j < n_sets; j++, set_offset++) {
 254                set_offset &= (cpu_data->dcache.sets - 1);
 255                eaddr0 = (unsigned long long)dummy_alloco_area +
 256                        (set_offset << cpu_data->dcache.entry_shift);
 257
 258                /*
 259                 * Do one alloco which hits the required set per cache
 260                 * way.  For write-back mode, this will purge the #ways
 261                 * resident lines.  There's little point unrolling this
 262                 * loop because the allocos stall more if they're too
 263                 * close together.
 264                 */
 265                eaddr1 = eaddr0 + cpu_data->dcache.way_size *
 266                                  cpu_data->dcache.ways;
 267
 268                for (eaddr = eaddr0; eaddr < eaddr1;
 269                     eaddr += cpu_data->dcache.way_size) {
 270                        __asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
 271                        __asm__ __volatile__ ("synco"); /* TAKum03020 */
 272                }
 273
 274                eaddr1 = eaddr0 + cpu_data->dcache.way_size *
 275                                  cpu_data->dcache.ways;
 276
 277                for (eaddr = eaddr0; eaddr < eaddr1;
 278                     eaddr += cpu_data->dcache.way_size) {
 279                        /*
 280                         * Load from each address.  Required because
 281                         * alloco is a NOP if the cache is write-through.
 282                         */
 283                        if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
 284                                __raw_readb((unsigned long)eaddr);
 285                }
 286        }
 287
 288        /*
 289         * Don't use OCBI to invalidate the lines.  That costs cycles
 290         * directly.  If the dummy block is just left resident, it will
 291         * naturally get evicted as required.
 292         */
 293}
 294
 295/*
 296 * Purge the entire contents of the dcache.  The most efficient way to
 297 * achieve this is to use alloco instructions on a region of unused
 298 * memory equal in size to the cache, thereby causing the current
 299 * contents to be discarded by natural eviction.  The alternative, namely
 300 * reading every tag, setting up a mapping for the corresponding page and
 301 * doing an OCBP for the line, would be much more expensive.
 302 */
 303static void sh64_dcache_purge_all(void)
 304{
 305
 306        sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
 307}
 308
 309
 310/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
 311   anything else in the kernel */
 312#define MAGIC_PAGE0_START 0xffffffffec000000ULL
 313
 314/* Purge the physical page 'paddr' from the cache.  It's known that any
 315 * cache lines requiring attention have the same page colour as the the
 316 * address 'eaddr'.
 317 *
 318 * This relies on the fact that the D-cache matches on physical tags when
 319 * no virtual tag matches.  So we create an alias for the original page
 320 * and purge through that.  (Alternatively, we could have done this by
 321 * switching ASID to match the original mapping and purged through that,
 322 * but that involves ASID switching cost + probably a TLBMISS + refill
 323 * anyway.)
 324 */
 325static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
 326                                                unsigned long eaddr)
 327{
 328        unsigned long long magic_page_start;
 329        unsigned long long magic_eaddr, magic_eaddr_end;
 330
 331        magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
 332
 333        /* As long as the kernel is not pre-emptible, this doesn't need to be
 334           under cli/sti. */
 335        sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
 336
 337        magic_eaddr = magic_page_start;
 338        magic_eaddr_end = magic_eaddr + PAGE_SIZE;
 339
 340        while (magic_eaddr < magic_eaddr_end) {
 341                /* Little point in unrolling this loop - the OCBPs are blocking
 342                   and won't go any quicker (i.e. the loop overhead is parallel
 343                   to part of the OCBP execution.) */
 344                __asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
 345                magic_eaddr += L1_CACHE_BYTES;
 346        }
 347
 348        sh64_teardown_dtlb_cache_slot();
 349}
 350
 351/*
 352 * Purge a page given its physical start address, by creating a temporary
 353 * 1 page mapping and purging across that.  Even if we know the virtual
 354 * address (& vma or mm) of the page, the method here is more elegant
 355 * because it avoids issues of coping with page faults on the purge
 356 * instructions (i.e. no special-case code required in the critical path
 357 * in the TLB miss handling).
 358 */
 359static void sh64_dcache_purge_phy_page(unsigned long paddr)
 360{
 361        unsigned long long eaddr_start, eaddr, eaddr_end;
 362        int i;
 363
 364        /* As long as the kernel is not pre-emptible, this doesn't need to be
 365           under cli/sti. */
 366        eaddr_start = MAGIC_PAGE0_START;
 367        for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
 368                sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
 369
 370                eaddr = eaddr_start;
 371                eaddr_end = eaddr + PAGE_SIZE;
 372                while (eaddr < eaddr_end) {
 373                        __asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
 374                        eaddr += L1_CACHE_BYTES;
 375                }
 376
 377                sh64_teardown_dtlb_cache_slot();
 378                eaddr_start += PAGE_SIZE;
 379        }
 380}
 381
 382static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
 383                                unsigned long addr, unsigned long end)
 384{
 385        pgd_t *pgd;
 386        pud_t *pud;
 387        pmd_t *pmd;
 388        pte_t *pte;
 389        pte_t entry;
 390        spinlock_t *ptl;
 391        unsigned long paddr;
 392
 393        if (!mm)
 394                return; /* No way to find physical address of page */
 395
 396        pgd = pgd_offset(mm, addr);
 397        if (pgd_bad(*pgd))
 398                return;
 399
 400        pud = pud_offset(pgd, addr);
 401        if (pud_none(*pud) || pud_bad(*pud))
 402                return;
 403
 404        pmd = pmd_offset(pud, addr);
 405        if (pmd_none(*pmd) || pmd_bad(*pmd))
 406                return;
 407
 408        pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
 409        do {
 410                entry = *pte;
 411                if (pte_none(entry) || !pte_present(entry))
 412                        continue;
 413                paddr = pte_val(entry) & PAGE_MASK;
 414                sh64_dcache_purge_coloured_phy_page(paddr, addr);
 415        } while (pte++, addr += PAGE_SIZE, addr != end);
 416        pte_unmap_unlock(pte - 1, ptl);
 417}
 418
 419/*
 420 * There are at least 5 choices for the implementation of this, with
 421 * pros (+), cons(-), comments(*):
 422 *
 423 * 1. ocbp each line in the range through the original user's ASID
 424 *    + no lines spuriously evicted
 425 *    - tlbmiss handling (must either handle faults on demand => extra
 426 *      special-case code in tlbmiss critical path), or map the page in
 427 *      advance (=> flush_tlb_range in advance to avoid multiple hits)
 428 *    - ASID switching
 429 *    - expensive for large ranges
 430 *
 431 * 2. temporarily map each page in the range to a special effective
 432 *    address and ocbp through the temporary mapping; relies on the
 433 *    fact that SH-5 OCB* always do TLB lookup and match on ptags (they
 434 *    never look at the etags)
 435 *    + no spurious evictions
 436 *    - expensive for large ranges
 437 *    * surely cheaper than (1)
 438 *
 439 * 3. walk all the lines in the cache, check the tags, if a match
 440 *    occurs create a page mapping to ocbp the line through
 441 *    + no spurious evictions
 442 *    - tag inspection overhead
 443 *    - (especially for small ranges)
 444 *    - potential cost of setting up/tearing down page mapping for
 445 *      every line that matches the range
 446 *    * cost partly independent of range size
 447 *
 448 * 4. walk all the lines in the cache, check the tags, if a match
 449 *    occurs use 4 * alloco to purge the line (+3 other probably
 450 *    innocent victims) by natural eviction
 451 *    + no tlb mapping overheads
 452 *    - spurious evictions
 453 *    - tag inspection overhead
 454 *
 455 * 5. implement like flush_cache_all
 456 *    + no tag inspection overhead
 457 *    - spurious evictions
 458 *    - bad for small ranges
 459 *
 460 * (1) can be ruled out as more expensive than (2).  (2) appears best
 461 * for small ranges.  The choice between (3), (4) and (5) for large
 462 * ranges and the range size for the large/small boundary need
 463 * benchmarking to determine.
 464 *
 465 * For now use approach (2) for small ranges and (5) for large ones.
 466 */
 467static void sh64_dcache_purge_user_range(struct mm_struct *mm,
 468                          unsigned long start, unsigned long end)
 469{
 470        int n_pages = ((end - start) >> PAGE_SHIFT);
 471
 472        if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
 473                sh64_dcache_purge_all();
 474        } else {
 475                /* Small range, covered by a single page table page */
 476                start &= PAGE_MASK;     /* should already be so */
 477                end = PAGE_ALIGN(end);  /* should already be so */
 478                sh64_dcache_purge_user_pages(mm, start, end);
 479        }
 480}
 481
 482/*
 483 * Invalidate the entire contents of both caches, after writing back to
 484 * memory any dirty data from the D-cache.
 485 */
 486static void sh5_flush_cache_all(void *unused)
 487{
 488        sh64_dcache_purge_all();
 489        sh64_icache_inv_all();
 490}
 491
 492/*
 493 * Invalidate an entire user-address space from both caches, after
 494 * writing back dirty data (e.g. for shared mmap etc).
 495 *
 496 * This could be coded selectively by inspecting all the tags then
 497 * doing 4*alloco on any set containing a match (as for
 498 * flush_cache_range), but fork/exit/execve (where this is called from)
 499 * are expensive anyway.
 500 *
 501 * Have to do a purge here, despite the comments re I-cache below.
 502 * There could be odd-coloured dirty data associated with the mm still
 503 * in the cache - if this gets written out through natural eviction
 504 * after the kernel has reused the page there will be chaos.
 505 *
 506 * The mm being torn down won't ever be active again, so any Icache
 507 * lines tagged with its ASID won't be visible for the rest of the
 508 * lifetime of this ASID cycle.  Before the ASID gets reused, there
 509 * will be a flush_cache_all.  Hence we don't need to touch the
 510 * I-cache.  This is similar to the lack of action needed in
 511 * flush_tlb_mm - see fault.c.
 512 */
 513static void sh5_flush_cache_mm(void *unused)
 514{
 515        sh64_dcache_purge_all();
 516}
 517
 518/*
 519 * Invalidate (from both caches) the range [start,end) of virtual
 520 * addresses from the user address space specified by mm, after writing
 521 * back any dirty data.
 522 *
 523 * Note, 'end' is 1 byte beyond the end of the range to flush.
 524 */
 525static void sh5_flush_cache_range(void *args)
 526{
 527        struct flusher_data *data = args;
 528        struct vm_area_struct *vma;
 529        unsigned long start, end;
 530
 531        vma = data->vma;
 532        start = data->addr1;
 533        end = data->addr2;
 534
 535        sh64_dcache_purge_user_range(vma->vm_mm, start, end);
 536        sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
 537}
 538
 539/*
 540 * Invalidate any entries in either cache for the vma within the user
 541 * address space vma->vm_mm for the page starting at virtual address
 542 * 'eaddr'.   This seems to be used primarily in breaking COW.  Note,
 543 * the I-cache must be searched too in case the page in question is
 544 * both writable and being executed from (e.g. stack trampolines.)
 545 *
 546 * Note, this is called with pte lock held.
 547 */
 548static void sh5_flush_cache_page(void *args)
 549{
 550        struct flusher_data *data = args;
 551        struct vm_area_struct *vma;
 552        unsigned long eaddr, pfn;
 553
 554        vma = data->vma;
 555        eaddr = data->addr1;
 556        pfn = data->addr2;
 557
 558        sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
 559
 560        if (vma->vm_flags & VM_EXEC)
 561                sh64_icache_inv_user_page(vma, eaddr);
 562}
 563
 564static void sh5_flush_dcache_page(void *page)
 565{
 566        sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
 567        wmb();
 568}
 569
 570/*
 571 * Flush the range [start,end] of kernel virtual address space from
 572 * the I-cache.  The corresponding range must be purged from the
 573 * D-cache also because the SH-5 doesn't have cache snooping between
 574 * the caches.  The addresses will be visible through the superpage
 575 * mapping, therefore it's guaranteed that there no cache entries for
 576 * the range in cache sets of the wrong colour.
 577 */
 578static void sh5_flush_icache_range(void *args)
 579{
 580        struct flusher_data *data = args;
 581        unsigned long start, end;
 582
 583        start = data->addr1;
 584        end = data->addr2;
 585
 586        __flush_purge_region((void *)start, end);
 587        wmb();
 588        sh64_icache_inv_kernel_range(start, end);
 589}
 590
 591/*
 592 * For the address range [start,end), write back the data from the
 593 * D-cache and invalidate the corresponding region of the I-cache for the
 594 * current process.  Used to flush signal trampolines on the stack to
 595 * make them executable.
 596 */
 597static void sh5_flush_cache_sigtramp(void *vaddr)
 598{
 599        unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
 600
 601        __flush_wback_region(vaddr, L1_CACHE_BYTES);
 602        wmb();
 603        sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
 604}
 605
 606void __init sh5_cache_init(void)
 607{
 608        local_flush_cache_all           = sh5_flush_cache_all;
 609        local_flush_cache_mm            = sh5_flush_cache_mm;
 610        local_flush_cache_dup_mm        = sh5_flush_cache_mm;
 611        local_flush_cache_page          = sh5_flush_cache_page;
 612        local_flush_cache_range         = sh5_flush_cache_range;
 613        local_flush_dcache_page         = sh5_flush_dcache_page;
 614        local_flush_icache_range        = sh5_flush_icache_range;
 615        local_flush_cache_sigtramp      = sh5_flush_cache_sigtramp;
 616
 617        /* Reserve a slot for dcache colouring in the DTLB */
 618        dtlb_cache_slot = sh64_get_wired_dtlb_entry();
 619
 620        sh4__flush_region_init();
 621}
 622