linux/arch/tile/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/mmzone.h>
  18#include <linux/bootmem.h>
  19#include <linux/module.h>
  20#include <linux/node.h>
  21#include <linux/cpu.h>
  22#include <linux/ioport.h>
  23#include <linux/irq.h>
  24#include <linux/kexec.h>
  25#include <linux/pci.h>
  26#include <linux/swiotlb.h>
  27#include <linux/initrd.h>
  28#include <linux/io.h>
  29#include <linux/highmem.h>
  30#include <linux/smp.h>
  31#include <linux/timex.h>
  32#include <linux/hugetlb.h>
  33#include <linux/start_kernel.h>
  34#include <linux/screen_info.h>
  35#include <asm/setup.h>
  36#include <asm/sections.h>
  37#include <asm/cacheflush.h>
  38#include <asm/pgalloc.h>
  39#include <asm/mmu_context.h>
  40#include <hv/hypervisor.h>
  41#include <arch/interrupts.h>
  42
  43/* <linux/smp.h> doesn't provide this definition. */
  44#ifndef CONFIG_SMP
  45#define setup_max_cpus 1
  46#endif
  47
  48static inline int ABS(int x) { return x >= 0 ? x : -x; }
  49
  50/* Chip information */
  51char chip_model[64] __write_once;
  52
  53#ifdef CONFIG_VT
  54struct screen_info screen_info;
  55#endif
  56
  57struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
  58EXPORT_SYMBOL(node_data);
  59
  60/* Information on the NUMA nodes that we compute early */
  61unsigned long node_start_pfn[MAX_NUMNODES];
  62unsigned long node_end_pfn[MAX_NUMNODES];
  63unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
  64unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
  65unsigned long __initdata node_free_pfn[MAX_NUMNODES];
  66
  67static unsigned long __initdata node_percpu[MAX_NUMNODES];
  68
  69/*
  70 * per-CPU stack and boot info.
  71 */
  72DEFINE_PER_CPU(unsigned long, boot_sp) =
  73        (unsigned long)init_stack + THREAD_SIZE;
  74
  75#ifdef CONFIG_SMP
  76DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
  77#else
  78/*
  79 * The variable must be __initdata since it references __init code.
  80 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
  81 */
  82unsigned long __initdata boot_pc = (unsigned long)start_kernel;
  83#endif
  84
  85#ifdef CONFIG_HIGHMEM
  86/* Page frame index of end of lowmem on each controller. */
  87unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
  88
  89/* Number of pages that can be mapped into lowmem. */
  90static unsigned long __initdata mappable_physpages;
  91#endif
  92
  93/* Data on which physical memory controller corresponds to which NUMA node */
  94int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
  95
  96#ifdef CONFIG_HIGHMEM
  97/* Map information from VAs to PAs */
  98unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  99  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 100EXPORT_SYMBOL(pbase_map);
 101
 102/* Map information from PAs to VAs */
 103void *vbase_map[NR_PA_HIGHBIT_VALUES]
 104  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 105EXPORT_SYMBOL(vbase_map);
 106#endif
 107
 108/* Node number as a function of the high PA bits */
 109int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
 110EXPORT_SYMBOL(highbits_to_node);
 111
 112static unsigned int __initdata maxmem_pfn = -1U;
 113static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
 114        [0 ... MAX_NUMNODES-1] = -1U
 115};
 116static nodemask_t __initdata isolnodes;
 117
 118#if defined(CONFIG_PCI) && !defined(__tilegx__)
 119enum { DEFAULT_PCI_RESERVE_MB = 64 };
 120static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
 121unsigned long __initdata pci_reserve_start_pfn = -1U;
 122unsigned long __initdata pci_reserve_end_pfn = -1U;
 123#endif
 124
 125static int __init setup_maxmem(char *str)
 126{
 127        unsigned long long maxmem;
 128        if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
 129                return -EINVAL;
 130
 131        maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
 132        pr_info("Forcing RAM used to no more than %dMB\n",
 133               maxmem_pfn >> (20 - PAGE_SHIFT));
 134        return 0;
 135}
 136early_param("maxmem", setup_maxmem);
 137
 138static int __init setup_maxnodemem(char *str)
 139{
 140        char *endp;
 141        unsigned long long maxnodemem;
 142        long node;
 143
 144        node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
 145        if (node >= MAX_NUMNODES || *endp != ':')
 146                return -EINVAL;
 147
 148        maxnodemem = memparse(endp+1, NULL);
 149        maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
 150                (HPAGE_SHIFT - PAGE_SHIFT);
 151        pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
 152               node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
 153        return 0;
 154}
 155early_param("maxnodemem", setup_maxnodemem);
 156
 157static int __init setup_isolnodes(char *str)
 158{
 159        char buf[MAX_NUMNODES * 5];
 160        if (str == NULL || nodelist_parse(str, isolnodes) != 0)
 161                return -EINVAL;
 162
 163        nodelist_scnprintf(buf, sizeof(buf), isolnodes);
 164        pr_info("Set isolnodes value to '%s'\n", buf);
 165        return 0;
 166}
 167early_param("isolnodes", setup_isolnodes);
 168
 169#if defined(CONFIG_PCI) && !defined(__tilegx__)
 170static int __init setup_pci_reserve(char* str)
 171{
 172        unsigned long mb;
 173
 174        if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
 175            mb > 3 * 1024)
 176                return -EINVAL;
 177
 178        pci_reserve_mb = mb;
 179        pr_info("Reserving %dMB for PCIE root complex mappings\n",
 180                pci_reserve_mb);
 181        return 0;
 182}
 183early_param("pci_reserve", setup_pci_reserve);
 184#endif
 185
 186#ifndef __tilegx__
 187/*
 188 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 189 * This can be used to increase (or decrease) the vmalloc area.
 190 */
 191static int __init parse_vmalloc(char *arg)
 192{
 193        if (!arg)
 194                return -EINVAL;
 195
 196        VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
 197
 198        /* See validate_va() for more on this test. */
 199        if ((long)_VMALLOC_START >= 0)
 200                early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
 201                            VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
 202
 203        return 0;
 204}
 205early_param("vmalloc", parse_vmalloc);
 206#endif
 207
 208#ifdef CONFIG_HIGHMEM
 209/*
 210 * Determine for each controller where its lowmem is mapped and how much of
 211 * it is mapped there.  On controller zero, the first few megabytes are
 212 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 213 * start our data mappings higher up, but for now we don't bother, to avoid
 214 * additional confusion.
 215 *
 216 * One question is whether, on systems with more than 768 Mb and
 217 * controllers of different sizes, to map in a proportionate amount of
 218 * each one, or to try to map the same amount from each controller.
 219 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 220 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 221 * MB, and 128 MB respectively?)  For now we use a proportionate
 222 * solution like the latter.
 223 *
 224 * The VA/PA mapping demands that we align our decisions at 16 MB
 225 * boundaries so that we can rapidly convert VA to PA.
 226 */
 227static void *__init setup_pa_va_mapping(void)
 228{
 229        unsigned long curr_pages = 0;
 230        unsigned long vaddr = PAGE_OFFSET;
 231        nodemask_t highonlynodes = isolnodes;
 232        int i, j;
 233
 234        memset(pbase_map, -1, sizeof(pbase_map));
 235        memset(vbase_map, -1, sizeof(vbase_map));
 236
 237        /* Node zero cannot be isolated for LOWMEM purposes. */
 238        node_clear(0, highonlynodes);
 239
 240        /* Count up the number of pages on non-highonlynodes controllers. */
 241        mappable_physpages = 0;
 242        for_each_online_node(i) {
 243                if (!node_isset(i, highonlynodes))
 244                        mappable_physpages +=
 245                                node_end_pfn[i] - node_start_pfn[i];
 246        }
 247
 248        for_each_online_node(i) {
 249                unsigned long start = node_start_pfn[i];
 250                unsigned long end = node_end_pfn[i];
 251                unsigned long size = end - start;
 252                unsigned long vaddr_end;
 253
 254                if (node_isset(i, highonlynodes)) {
 255                        /* Mark this controller as having no lowmem. */
 256                        node_lowmem_end_pfn[i] = start;
 257                        continue;
 258                }
 259
 260                curr_pages += size;
 261                if (mappable_physpages > MAXMEM_PFN) {
 262                        vaddr_end = PAGE_OFFSET +
 263                                (((u64)curr_pages * MAXMEM_PFN /
 264                                  mappable_physpages)
 265                                 << PAGE_SHIFT);
 266                } else {
 267                        vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
 268                }
 269                for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
 270                        unsigned long this_pfn =
 271                                start + (j << HUGETLB_PAGE_ORDER);
 272                        pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
 273                        if (vbase_map[__pfn_to_highbits(this_pfn)] ==
 274                            (void *)-1)
 275                                vbase_map[__pfn_to_highbits(this_pfn)] =
 276                                        (void *)(vaddr & HPAGE_MASK);
 277                }
 278                node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
 279                BUG_ON(node_lowmem_end_pfn[i] > end);
 280        }
 281
 282        /* Return highest address of any mapped memory. */
 283        return (void *)vaddr;
 284}
 285#endif /* CONFIG_HIGHMEM */
 286
 287/*
 288 * Register our most important memory mappings with the debug stub.
 289 *
 290 * This is up to 4 mappings for lowmem, one mapping per memory
 291 * controller, plus one for our text segment.
 292 */
 293static void store_permanent_mappings(void)
 294{
 295        int i;
 296
 297        for_each_online_node(i) {
 298                HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
 299#ifdef CONFIG_HIGHMEM
 300                HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
 301#else
 302                HV_PhysAddr high_mapped_pa = node_end_pfn[i];
 303#endif
 304
 305                unsigned long pages = high_mapped_pa - node_start_pfn[i];
 306                HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
 307                hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
 308        }
 309
 310        hv_store_mapping((HV_VirtAddr)_text,
 311                         (uint32_t)(_einittext - _text), 0);
 312}
 313
 314/*
 315 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 316 * and node_online_map, doing suitable sanity-checking.
 317 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 318 */
 319static void __init setup_memory(void)
 320{
 321        int i, j;
 322        int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
 323#ifdef CONFIG_HIGHMEM
 324        long highmem_pages;
 325#endif
 326#ifndef __tilegx__
 327        int cap;
 328#endif
 329#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
 330        long lowmem_pages;
 331#endif
 332        unsigned long physpages = 0;
 333
 334        /* We are using a char to hold the cpu_2_node[] mapping */
 335        BUILD_BUG_ON(MAX_NUMNODES > 127);
 336
 337        /* Discover the ranges of memory available to us */
 338        for (i = 0; ; ++i) {
 339                unsigned long start, size, end, highbits;
 340                HV_PhysAddrRange range = hv_inquire_physical(i);
 341                if (range.size == 0)
 342                        break;
 343#ifdef CONFIG_FLATMEM
 344                if (i > 0) {
 345                        pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
 346                               range.size, range.start + range.size);
 347                        continue;
 348                }
 349#endif
 350#ifndef __tilegx__
 351                if ((unsigned long)range.start) {
 352                        pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
 353                               range.start, range.start + range.size);
 354                        continue;
 355                }
 356#endif
 357                if ((range.start & (HPAGE_SIZE-1)) != 0 ||
 358                    (range.size & (HPAGE_SIZE-1)) != 0) {
 359                        unsigned long long start_pa = range.start;
 360                        unsigned long long orig_size = range.size;
 361                        range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
 362                        range.size -= (range.start - start_pa);
 363                        range.size &= HPAGE_MASK;
 364                        pr_err("Range not hugepage-aligned: %#llx..%#llx:"
 365                               " now %#llx-%#llx\n",
 366                               start_pa, start_pa + orig_size,
 367                               range.start, range.start + range.size);
 368                }
 369                highbits = __pa_to_highbits(range.start);
 370                if (highbits >= NR_PA_HIGHBIT_VALUES) {
 371                        pr_err("PA high bits too high: %#llx..%#llx\n",
 372                               range.start, range.start + range.size);
 373                        continue;
 374                }
 375                if (highbits_seen[highbits]) {
 376                        pr_err("Range overlaps in high bits: %#llx..%#llx\n",
 377                               range.start, range.start + range.size);
 378                        continue;
 379                }
 380                highbits_seen[highbits] = 1;
 381                if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
 382                        int max_size = maxnodemem_pfn[i];
 383                        if (max_size > 0) {
 384                                pr_err("Maxnodemem reduced node %d to"
 385                                       " %d pages\n", i, max_size);
 386                                range.size = PFN_PHYS(max_size);
 387                        } else {
 388                                pr_err("Maxnodemem disabled node %d\n", i);
 389                                continue;
 390                        }
 391                }
 392                if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
 393                        int max_size = maxmem_pfn - physpages;
 394                        if (max_size > 0) {
 395                                pr_err("Maxmem reduced node %d to %d pages\n",
 396                                       i, max_size);
 397                                range.size = PFN_PHYS(max_size);
 398                        } else {
 399                                pr_err("Maxmem disabled node %d\n", i);
 400                                continue;
 401                        }
 402                }
 403                if (i >= MAX_NUMNODES) {
 404                        pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
 405                               i, range.size, range.size + range.start);
 406                        continue;
 407                }
 408
 409                start = range.start >> PAGE_SHIFT;
 410                size = range.size >> PAGE_SHIFT;
 411                end = start + size;
 412
 413#ifndef __tilegx__
 414                if (((HV_PhysAddr)end << PAGE_SHIFT) !=
 415                    (range.start + range.size)) {
 416                        pr_err("PAs too high to represent: %#llx..%#llx\n",
 417                               range.start, range.start + range.size);
 418                        continue;
 419                }
 420#endif
 421#if defined(CONFIG_PCI) && !defined(__tilegx__)
 422                /*
 423                 * Blocks that overlap the pci reserved region must
 424                 * have enough space to hold the maximum percpu data
 425                 * region at the top of the range.  If there isn't
 426                 * enough space above the reserved region, just
 427                 * truncate the node.
 428                 */
 429                if (start <= pci_reserve_start_pfn &&
 430                    end > pci_reserve_start_pfn) {
 431                        unsigned int per_cpu_size =
 432                                __per_cpu_end - __per_cpu_start;
 433                        unsigned int percpu_pages =
 434                                NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
 435                        if (end < pci_reserve_end_pfn + percpu_pages) {
 436                                end = pci_reserve_start_pfn;
 437                                pr_err("PCI mapping region reduced node %d to"
 438                                       " %ld pages\n", i, end - start);
 439                        }
 440                }
 441#endif
 442
 443                for (j = __pfn_to_highbits(start);
 444                     j <= __pfn_to_highbits(end - 1); j++)
 445                        highbits_to_node[j] = i;
 446
 447                node_start_pfn[i] = start;
 448                node_end_pfn[i] = end;
 449                node_controller[i] = range.controller;
 450                physpages += size;
 451                max_pfn = end;
 452
 453                /* Mark node as online */
 454                node_set(i, node_online_map);
 455                node_set(i, node_possible_map);
 456        }
 457
 458#ifndef __tilegx__
 459        /*
 460         * For 4KB pages, mem_map "struct page" data is 1% of the size
 461         * of the physical memory, so can be quite big (640 MB for
 462         * four 16G zones).  These structures must be mapped in
 463         * lowmem, and since we currently cap out at about 768 MB,
 464         * it's impractical to try to use this much address space.
 465         * For now, arbitrarily cap the amount of physical memory
 466         * we're willing to use at 8 million pages (32GB of 4KB pages).
 467         */
 468        cap = 8 * 1024 * 1024;  /* 8 million pages */
 469        if (physpages > cap) {
 470                int num_nodes = num_online_nodes();
 471                int cap_each = cap / num_nodes;
 472                unsigned long dropped_pages = 0;
 473                for (i = 0; i < num_nodes; ++i) {
 474                        int size = node_end_pfn[i] - node_start_pfn[i];
 475                        if (size > cap_each) {
 476                                dropped_pages += (size - cap_each);
 477                                node_end_pfn[i] = node_start_pfn[i] + cap_each;
 478                        }
 479                }
 480                physpages -= dropped_pages;
 481                pr_warning("Only using %ldMB memory;"
 482                       " ignoring %ldMB.\n",
 483                       physpages >> (20 - PAGE_SHIFT),
 484                       dropped_pages >> (20 - PAGE_SHIFT));
 485                pr_warning("Consider using a larger page size.\n");
 486        }
 487#endif
 488
 489        /* Heap starts just above the last loaded address. */
 490        min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
 491
 492#ifdef CONFIG_HIGHMEM
 493        /* Find where we map lowmem from each controller. */
 494        high_memory = setup_pa_va_mapping();
 495
 496        /* Set max_low_pfn based on what node 0 can directly address. */
 497        max_low_pfn = node_lowmem_end_pfn[0];
 498
 499        lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
 500                MAXMEM_PFN : mappable_physpages;
 501        highmem_pages = (long) (physpages - lowmem_pages);
 502
 503        pr_notice("%ldMB HIGHMEM available.\n",
 504               pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
 505        pr_notice("%ldMB LOWMEM available.\n",
 506                        pages_to_mb(lowmem_pages));
 507#else
 508        /* Set max_low_pfn based on what node 0 can directly address. */
 509        max_low_pfn = node_end_pfn[0];
 510
 511#ifndef __tilegx__
 512        if (node_end_pfn[0] > MAXMEM_PFN) {
 513                pr_warning("Only using %ldMB LOWMEM.\n",
 514                       MAXMEM>>20);
 515                pr_warning("Use a HIGHMEM enabled kernel.\n");
 516                max_low_pfn = MAXMEM_PFN;
 517                max_pfn = MAXMEM_PFN;
 518                node_end_pfn[0] = MAXMEM_PFN;
 519        } else {
 520                pr_notice("%ldMB memory available.\n",
 521                       pages_to_mb(node_end_pfn[0]));
 522        }
 523        for (i = 1; i < MAX_NUMNODES; ++i) {
 524                node_start_pfn[i] = 0;
 525                node_end_pfn[i] = 0;
 526        }
 527        high_memory = __va(node_end_pfn[0]);
 528#else
 529        lowmem_pages = 0;
 530        for (i = 0; i < MAX_NUMNODES; ++i) {
 531                int pages = node_end_pfn[i] - node_start_pfn[i];
 532                lowmem_pages += pages;
 533                if (pages)
 534                        high_memory = pfn_to_kaddr(node_end_pfn[i]);
 535        }
 536        pr_notice("%ldMB memory available.\n",
 537               pages_to_mb(lowmem_pages));
 538#endif
 539#endif
 540}
 541
 542/*
 543 * On 32-bit machines, we only put bootmem on the low controller,
 544 * since PAs > 4GB can't be used in bootmem.  In principle one could
 545 * imagine, e.g., multiple 1 GB controllers all of which could support
 546 * bootmem, but in practice using controllers this small isn't a
 547 * particularly interesting scenario, so we just keep it simple and
 548 * use only the first controller for bootmem on 32-bit machines.
 549 */
 550static inline int node_has_bootmem(int nid)
 551{
 552#ifdef CONFIG_64BIT
 553        return 1;
 554#else
 555        return nid == 0;
 556#endif
 557}
 558
 559static inline unsigned long alloc_bootmem_pfn(int nid,
 560                                              unsigned long size,
 561                                              unsigned long goal)
 562{
 563        void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
 564                                         PAGE_SIZE, goal);
 565        unsigned long pfn = kaddr_to_pfn(kva);
 566        BUG_ON(goal && PFN_PHYS(pfn) != goal);
 567        return pfn;
 568}
 569
 570static void __init setup_bootmem_allocator_node(int i)
 571{
 572        unsigned long start, end, mapsize, mapstart;
 573
 574        if (node_has_bootmem(i)) {
 575                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 576        } else {
 577                /* Share controller zero's bdata for now. */
 578                NODE_DATA(i)->bdata = &bootmem_node_data[0];
 579                return;
 580        }
 581
 582        /* Skip up to after the bss in node 0. */
 583        start = (i == 0) ? min_low_pfn : node_start_pfn[i];
 584
 585        /* Only lowmem, if we're a HIGHMEM build. */
 586#ifdef CONFIG_HIGHMEM
 587        end = node_lowmem_end_pfn[i];
 588#else
 589        end = node_end_pfn[i];
 590#endif
 591
 592        /* No memory here. */
 593        if (end == start)
 594                return;
 595
 596        /* Figure out where the bootmem bitmap is located. */
 597        mapsize = bootmem_bootmap_pages(end - start);
 598        if (i == 0) {
 599                /* Use some space right before the heap on node 0. */
 600                mapstart = start;
 601                start += mapsize;
 602        } else {
 603                /* Allocate bitmap on node 0 to avoid page table issues. */
 604                mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
 605        }
 606
 607        /* Initialize a node. */
 608        init_bootmem_node(NODE_DATA(i), mapstart, start, end);
 609
 610        /* Free all the space back into the allocator. */
 611        free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
 612
 613#if defined(CONFIG_PCI) && !defined(__tilegx__)
 614        /*
 615         * Throw away any memory aliased by the PCI region.
 616         */
 617        if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
 618                reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
 619                                PFN_PHYS(pci_reserve_end_pfn -
 620                                         pci_reserve_start_pfn),
 621                                BOOTMEM_EXCLUSIVE);
 622#endif
 623}
 624
 625static void __init setup_bootmem_allocator(void)
 626{
 627        int i;
 628        for (i = 0; i < MAX_NUMNODES; ++i)
 629                setup_bootmem_allocator_node(i);
 630
 631#ifdef CONFIG_KEXEC
 632        if (crashk_res.start != crashk_res.end)
 633                reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
 634#endif
 635}
 636
 637void *__init alloc_remap(int nid, unsigned long size)
 638{
 639        int pages = node_end_pfn[nid] - node_start_pfn[nid];
 640        void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
 641        BUG_ON(size != pages * sizeof(struct page));
 642        memset(map, 0, size);
 643        return map;
 644}
 645
 646static int __init percpu_size(void)
 647{
 648        int size = __per_cpu_end - __per_cpu_start;
 649        size += PERCPU_MODULE_RESERVE;
 650        size += PERCPU_DYNAMIC_EARLY_SIZE;
 651        if (size < PCPU_MIN_UNIT_SIZE)
 652                size = PCPU_MIN_UNIT_SIZE;
 653        size = roundup(size, PAGE_SIZE);
 654
 655        /* In several places we assume the per-cpu data fits on a huge page. */
 656        BUG_ON(kdata_huge && size > HPAGE_SIZE);
 657        return size;
 658}
 659
 660static void __init zone_sizes_init(void)
 661{
 662        unsigned long zones_size[MAX_NR_ZONES] = { 0 };
 663        int size = percpu_size();
 664        int num_cpus = smp_height * smp_width;
 665        const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
 666
 667        int i;
 668
 669        for (i = 0; i < num_cpus; ++i)
 670                node_percpu[cpu_to_node(i)] += size;
 671
 672        for_each_online_node(i) {
 673                unsigned long start = node_start_pfn[i];
 674                unsigned long end = node_end_pfn[i];
 675#ifdef CONFIG_HIGHMEM
 676                unsigned long lowmem_end = node_lowmem_end_pfn[i];
 677#else
 678                unsigned long lowmem_end = end;
 679#endif
 680                int memmap_size = (end - start) * sizeof(struct page);
 681                node_free_pfn[i] = start;
 682
 683                /*
 684                 * Set aside pages for per-cpu data and the mem_map array.
 685                 *
 686                 * Since the per-cpu data requires special homecaching,
 687                 * if we are in kdata_huge mode, we put it at the end of
 688                 * the lowmem region.  If we're not in kdata_huge mode,
 689                 * we take the per-cpu pages from the bottom of the
 690                 * controller, since that avoids fragmenting a huge page
 691                 * that users might want.  We always take the memmap
 692                 * from the bottom of the controller, since with
 693                 * kdata_huge that lets it be under a huge TLB entry.
 694                 *
 695                 * If the user has requested isolnodes for a controller,
 696                 * though, there'll be no lowmem, so we just alloc_bootmem
 697                 * the memmap.  There will be no percpu memory either.
 698                 */
 699                if (i != 0 && cpu_isset(i, isolnodes)) {
 700                        node_memmap_pfn[i] =
 701                                alloc_bootmem_pfn(0, memmap_size, 0);
 702                        BUG_ON(node_percpu[i] != 0);
 703                } else if (node_has_bootmem(start)) {
 704                        unsigned long goal = 0;
 705                        node_memmap_pfn[i] =
 706                                alloc_bootmem_pfn(i, memmap_size, 0);
 707                        if (kdata_huge)
 708                                goal = PFN_PHYS(lowmem_end) - node_percpu[i];
 709                        if (node_percpu[i])
 710                                node_percpu_pfn[i] =
 711                                        alloc_bootmem_pfn(i, node_percpu[i],
 712                                                          goal);
 713                } else {
 714                        /* In non-bootmem zones, just reserve some pages. */
 715                        node_memmap_pfn[i] = node_free_pfn[i];
 716                        node_free_pfn[i] += PFN_UP(memmap_size);
 717                        if (!kdata_huge) {
 718                                node_percpu_pfn[i] = node_free_pfn[i];
 719                                node_free_pfn[i] += PFN_UP(node_percpu[i]);
 720                        } else {
 721                                node_percpu_pfn[i] =
 722                                        lowmem_end - PFN_UP(node_percpu[i]);
 723                        }
 724                }
 725
 726#ifdef CONFIG_HIGHMEM
 727                if (start > lowmem_end) {
 728                        zones_size[ZONE_NORMAL] = 0;
 729                        zones_size[ZONE_HIGHMEM] = end - start;
 730                } else {
 731                        zones_size[ZONE_NORMAL] = lowmem_end - start;
 732                        zones_size[ZONE_HIGHMEM] = end - lowmem_end;
 733                }
 734#else
 735                zones_size[ZONE_NORMAL] = end - start;
 736#endif
 737
 738                if (start < dma_end) {
 739                        zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
 740                                                   dma_end - start);
 741                        zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
 742                } else {
 743                        zones_size[ZONE_DMA] = 0;
 744                }
 745
 746                /* Take zone metadata from controller 0 if we're isolnode. */
 747                if (node_isset(i, isolnodes))
 748                        NODE_DATA(i)->bdata = &bootmem_node_data[0];
 749
 750                free_area_init_node(i, zones_size, start, NULL);
 751                printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
 752                       PFN_UP(node_percpu[i]));
 753
 754                /* Track the type of memory on each node */
 755                if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
 756                        node_set_state(i, N_NORMAL_MEMORY);
 757#ifdef CONFIG_HIGHMEM
 758                if (end != start)
 759                        node_set_state(i, N_HIGH_MEMORY);
 760#endif
 761
 762                node_set_online(i);
 763        }
 764}
 765
 766#ifdef CONFIG_NUMA
 767
 768/* which logical CPUs are on which nodes */
 769struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
 770EXPORT_SYMBOL(node_2_cpu_mask);
 771
 772/* which node each logical CPU is on */
 773char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
 774EXPORT_SYMBOL(cpu_2_node);
 775
 776/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
 777static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
 778{
 779        if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
 780                return -1;
 781        else
 782                return cpu_to_node(cpu);
 783}
 784
 785/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
 786static int __init node_neighbors(int node, int cpu,
 787                                 struct cpumask *unbound_cpus)
 788{
 789        int neighbors = 0;
 790        int w = smp_width;
 791        int h = smp_height;
 792        int x = cpu % w;
 793        int y = cpu / w;
 794        if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
 795                ++neighbors;
 796        if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
 797                ++neighbors;
 798        if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
 799                ++neighbors;
 800        if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
 801                ++neighbors;
 802        return neighbors;
 803}
 804
 805static void __init setup_numa_mapping(void)
 806{
 807        int distance[MAX_NUMNODES][NR_CPUS];
 808        HV_Coord coord;
 809        int cpu, node, cpus, i, x, y;
 810        int num_nodes = num_online_nodes();
 811        struct cpumask unbound_cpus;
 812        nodemask_t default_nodes;
 813
 814        cpumask_clear(&unbound_cpus);
 815
 816        /* Get set of nodes we will use for defaults */
 817        nodes_andnot(default_nodes, node_online_map, isolnodes);
 818        if (nodes_empty(default_nodes)) {
 819                BUG_ON(!node_isset(0, node_online_map));
 820                pr_err("Forcing NUMA node zero available as a default node\n");
 821                node_set(0, default_nodes);
 822        }
 823
 824        /* Populate the distance[] array */
 825        memset(distance, -1, sizeof(distance));
 826        cpu = 0;
 827        for (coord.y = 0; coord.y < smp_height; ++coord.y) {
 828                for (coord.x = 0; coord.x < smp_width;
 829                     ++coord.x, ++cpu) {
 830                        BUG_ON(cpu >= nr_cpu_ids);
 831                        if (!cpu_possible(cpu)) {
 832                                cpu_2_node[cpu] = -1;
 833                                continue;
 834                        }
 835                        for_each_node_mask(node, default_nodes) {
 836                                HV_MemoryControllerInfo info =
 837                                        hv_inquire_memory_controller(
 838                                                coord, node_controller[node]);
 839                                distance[node][cpu] =
 840                                        ABS(info.coord.x) + ABS(info.coord.y);
 841                        }
 842                        cpumask_set_cpu(cpu, &unbound_cpus);
 843                }
 844        }
 845        cpus = cpu;
 846
 847        /*
 848         * Round-robin through the NUMA nodes until all the cpus are
 849         * assigned.  We could be more clever here (e.g. create four
 850         * sorted linked lists on the same set of cpu nodes, and pull
 851         * off them in round-robin sequence, removing from all four
 852         * lists each time) but given the relatively small numbers
 853         * involved, O(n^2) seem OK for a one-time cost.
 854         */
 855        node = first_node(default_nodes);
 856        while (!cpumask_empty(&unbound_cpus)) {
 857                int best_cpu = -1;
 858                int best_distance = INT_MAX;
 859                for (cpu = 0; cpu < cpus; ++cpu) {
 860                        if (cpumask_test_cpu(cpu, &unbound_cpus)) {
 861                                /*
 862                                 * Compute metric, which is how much
 863                                 * closer the cpu is to this memory
 864                                 * controller than the others, shifted
 865                                 * up, and then the number of
 866                                 * neighbors already in the node as an
 867                                 * epsilon adjustment to try to keep
 868                                 * the nodes compact.
 869                                 */
 870                                int d = distance[node][cpu] * num_nodes;
 871                                for_each_node_mask(i, default_nodes) {
 872                                        if (i != node)
 873                                                d -= distance[i][cpu];
 874                                }
 875                                d *= 8;  /* allow space for epsilon */
 876                                d -= node_neighbors(node, cpu, &unbound_cpus);
 877                                if (d < best_distance) {
 878                                        best_cpu = cpu;
 879                                        best_distance = d;
 880                                }
 881                        }
 882                }
 883                BUG_ON(best_cpu < 0);
 884                cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
 885                cpu_2_node[best_cpu] = node;
 886                cpumask_clear_cpu(best_cpu, &unbound_cpus);
 887                node = next_node(node, default_nodes);
 888                if (node == MAX_NUMNODES)
 889                        node = first_node(default_nodes);
 890        }
 891
 892        /* Print out node assignments and set defaults for disabled cpus */
 893        cpu = 0;
 894        for (y = 0; y < smp_height; ++y) {
 895                printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
 896                for (x = 0; x < smp_width; ++x, ++cpu) {
 897                        if (cpu_to_node(cpu) < 0) {
 898                                pr_cont(" -");
 899                                cpu_2_node[cpu] = first_node(default_nodes);
 900                        } else {
 901                                pr_cont(" %d", cpu_to_node(cpu));
 902                        }
 903                }
 904                pr_cont("\n");
 905        }
 906}
 907
 908static struct cpu cpu_devices[NR_CPUS];
 909
 910static int __init topology_init(void)
 911{
 912        int i;
 913
 914        for_each_online_node(i)
 915                register_one_node(i);
 916
 917        for (i = 0; i < smp_height * smp_width; ++i)
 918                register_cpu(&cpu_devices[i], i);
 919
 920        return 0;
 921}
 922
 923subsys_initcall(topology_init);
 924
 925#else /* !CONFIG_NUMA */
 926
 927#define setup_numa_mapping() do { } while (0)
 928
 929#endif /* CONFIG_NUMA */
 930
 931/*
 932 * Initialize hugepage support on this cpu.  We do this on all cores
 933 * early in boot: before argument parsing for the boot cpu, and after
 934 * argument parsing but before the init functions run on the secondaries.
 935 * So the values we set up here in the hypervisor may be overridden on
 936 * the boot cpu as arguments are parsed.
 937 */
 938static void init_super_pages(void)
 939{
 940#ifdef CONFIG_HUGETLB_SUPER_PAGES
 941        int i;
 942        for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
 943                hv_set_pte_super_shift(i, huge_shift[i]);
 944#endif
 945}
 946
 947/**
 948 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 949 * @boot: Is this the boot cpu?
 950 *
 951 * Called from setup_arch() on the boot cpu, or online_secondary().
 952 */
 953void setup_cpu(int boot)
 954{
 955        /* The boot cpu sets up its permanent mappings much earlier. */
 956        if (!boot)
 957                store_permanent_mappings();
 958
 959        /* Allow asynchronous TLB interrupts. */
 960#if CHIP_HAS_TILE_DMA()
 961        arch_local_irq_unmask(INT_DMATLB_MISS);
 962        arch_local_irq_unmask(INT_DMATLB_ACCESS);
 963#endif
 964#if CHIP_HAS_SN_PROC()
 965        arch_local_irq_unmask(INT_SNITLB_MISS);
 966#endif
 967#ifdef __tilegx__
 968        arch_local_irq_unmask(INT_SINGLE_STEP_K);
 969#endif
 970
 971        /*
 972         * Allow user access to many generic SPRs, like the cycle
 973         * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
 974         */
 975        __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
 976
 977#if CHIP_HAS_SN()
 978        /* Static network is not restricted. */
 979        __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
 980#endif
 981#if CHIP_HAS_SN_PROC()
 982        __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
 983        __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
 984#endif
 985
 986        /*
 987         * Set the MPL for interrupt control 0 & 1 to the corresponding
 988         * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
 989         * SPRs, as well as the interrupt mask.
 990         */
 991        __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
 992        __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
 993
 994        /* Initialize IRQ support for this cpu. */
 995        setup_irq_regs();
 996
 997#ifdef CONFIG_HARDWALL
 998        /* Reset the network state on this cpu. */
 999        reset_network_state();
1000#endif
1001
1002        init_super_pages();
1003}
1004
1005#ifdef CONFIG_BLK_DEV_INITRD
1006
1007static int __initdata set_initramfs_file;
1008static char __initdata initramfs_file[128] = "initramfs";
1009
1010static int __init setup_initramfs_file(char *str)
1011{
1012        if (str == NULL)
1013                return -EINVAL;
1014        strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1015        set_initramfs_file = 1;
1016
1017        return 0;
1018}
1019early_param("initramfs_file", setup_initramfs_file);
1020
1021/*
1022 * We look for a file called "initramfs" in the hvfs.  If there is one, we
1023 * allocate some memory for it and it will be unpacked to the initramfs.
1024 * If it's compressed, the initd code will uncompress it first.
1025 */
1026static void __init load_hv_initrd(void)
1027{
1028        HV_FS_StatInfo stat;
1029        int fd, rc;
1030        void *initrd;
1031
1032        fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1033        if (fd == HV_ENOENT) {
1034                if (set_initramfs_file) {
1035                        pr_warning("No such hvfs initramfs file '%s'\n",
1036                                   initramfs_file);
1037                        return;
1038                } else {
1039                        /* Try old backwards-compatible name. */
1040                        fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1041                        if (fd == HV_ENOENT)
1042                                return;
1043                }
1044        }
1045        BUG_ON(fd < 0);
1046        stat = hv_fs_fstat(fd);
1047        BUG_ON(stat.size < 0);
1048        if (stat.flags & HV_FS_ISDIR) {
1049                pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1050                           initramfs_file);
1051                return;
1052        }
1053        initrd = alloc_bootmem_pages(stat.size);
1054        rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1055        if (rc != stat.size) {
1056                pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1057                       stat.size, initramfs_file, rc);
1058                free_initrd_mem((unsigned long) initrd, stat.size);
1059                return;
1060        }
1061        initrd_start = (unsigned long) initrd;
1062        initrd_end = initrd_start + stat.size;
1063}
1064
1065void __init free_initrd_mem(unsigned long begin, unsigned long end)
1066{
1067        free_bootmem(__pa(begin), end - begin);
1068}
1069
1070#else
1071static inline void load_hv_initrd(void) {}
1072#endif /* CONFIG_BLK_DEV_INITRD */
1073
1074static void __init validate_hv(void)
1075{
1076        /*
1077         * It may already be too late, but let's check our built-in
1078         * configuration against what the hypervisor is providing.
1079         */
1080        unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1081        int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1082        int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1083        HV_ASIDRange asid_range;
1084
1085#ifndef CONFIG_SMP
1086        HV_Topology topology = hv_inquire_topology();
1087        BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1088        if (topology.width != 1 || topology.height != 1) {
1089                pr_warning("Warning: booting UP kernel on %dx%d grid;"
1090                           " will ignore all but first tile.\n",
1091                           topology.width, topology.height);
1092        }
1093#endif
1094
1095        if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1096                early_panic("Hypervisor glue size %ld is too big!\n",
1097                            glue_size);
1098        if (hv_page_size != PAGE_SIZE)
1099                early_panic("Hypervisor page size %#x != our %#lx\n",
1100                            hv_page_size, PAGE_SIZE);
1101        if (hv_hpage_size != HPAGE_SIZE)
1102                early_panic("Hypervisor huge page size %#x != our %#lx\n",
1103                            hv_hpage_size, HPAGE_SIZE);
1104
1105#ifdef CONFIG_SMP
1106        /*
1107         * Some hypervisor APIs take a pointer to a bitmap array
1108         * whose size is at least the number of cpus on the chip.
1109         * We use a struct cpumask for this, so it must be big enough.
1110         */
1111        if ((smp_height * smp_width) > nr_cpu_ids)
1112                early_panic("Hypervisor %d x %d grid too big for Linux"
1113                            " NR_CPUS %d\n", smp_height, smp_width,
1114                            nr_cpu_ids);
1115#endif
1116
1117        /*
1118         * Check that we're using allowed ASIDs, and initialize the
1119         * various asid variables to their appropriate initial states.
1120         */
1121        asid_range = hv_inquire_asid(0);
1122        __get_cpu_var(current_asid) = min_asid = asid_range.start;
1123        max_asid = asid_range.start + asid_range.size - 1;
1124
1125        if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1126                       sizeof(chip_model)) < 0) {
1127                pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1128                strlcpy(chip_model, "unknown", sizeof(chip_model));
1129        }
1130}
1131
1132static void __init validate_va(void)
1133{
1134#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1135        /*
1136         * Similarly, make sure we're only using allowed VAs.
1137         * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1138         * and 0 .. KERNEL_HIGH_VADDR.
1139         * In addition, make sure we CAN'T use the end of memory, since
1140         * we use the last chunk of each pgd for the pgd_list.
1141         */
1142        int i, user_kernel_ok = 0;
1143        unsigned long max_va = 0;
1144        unsigned long list_va =
1145                ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1146
1147        for (i = 0; ; ++i) {
1148                HV_VirtAddrRange range = hv_inquire_virtual(i);
1149                if (range.size == 0)
1150                        break;
1151                if (range.start <= MEM_USER_INTRPT &&
1152                    range.start + range.size >= MEM_HV_INTRPT)
1153                        user_kernel_ok = 1;
1154                if (range.start == 0)
1155                        max_va = range.size;
1156                BUG_ON(range.start + range.size > list_va);
1157        }
1158        if (!user_kernel_ok)
1159                early_panic("Hypervisor not configured for user/kernel VAs\n");
1160        if (max_va == 0)
1161                early_panic("Hypervisor not configured for low VAs\n");
1162        if (max_va < KERNEL_HIGH_VADDR)
1163                early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1164                            max_va, KERNEL_HIGH_VADDR);
1165
1166        /* Kernel PCs must have their high bit set; see intvec.S. */
1167        if ((long)VMALLOC_START >= 0)
1168                early_panic(
1169                        "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1170                        "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1171                        "or smaller VMALLOC_RESERVE.\n",
1172                        VMALLOC_START);
1173#endif
1174}
1175
1176/*
1177 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1178 * to cache data on at a page level, i.e. what cpus can be placed in
1179 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1180 * cpus plus any other cpus that are willing to share their cache.
1181 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1182 */
1183struct cpumask __write_once cpu_lotar_map;
1184EXPORT_SYMBOL(cpu_lotar_map);
1185
1186#if CHIP_HAS_CBOX_HOME_MAP()
1187/*
1188 * hash_for_home_map lists all the tiles that hash-for-home data
1189 * will be cached on.  Note that this may includes tiles that are not
1190 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1191 * device is being shared between multiple supervisors).
1192 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1193 */
1194struct cpumask hash_for_home_map;
1195EXPORT_SYMBOL(hash_for_home_map);
1196#endif
1197
1198/*
1199 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1200 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1201 * hash_for_home_map, and it is what should be passed to
1202 * hv_flush_remote() to flush all caches.  Note that if there are
1203 * dedicated hypervisor driver tiles that have authorized use of their
1204 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1205 * cpu_cacheable_map, as they are a special case.
1206 */
1207struct cpumask __write_once cpu_cacheable_map;
1208EXPORT_SYMBOL(cpu_cacheable_map);
1209
1210static __initdata struct cpumask disabled_map;
1211
1212static int __init disabled_cpus(char *str)
1213{
1214        int boot_cpu = smp_processor_id();
1215
1216        if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1217                return -EINVAL;
1218        if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1219                pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1220                cpumask_clear_cpu(boot_cpu, &disabled_map);
1221        }
1222        return 0;
1223}
1224
1225early_param("disabled_cpus", disabled_cpus);
1226
1227void __init print_disabled_cpus(void)
1228{
1229        if (!cpumask_empty(&disabled_map)) {
1230                char buf[100];
1231                cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1232                pr_info("CPUs not available for Linux: %s\n", buf);
1233        }
1234}
1235
1236static void __init setup_cpu_maps(void)
1237{
1238        struct cpumask hv_disabled_map, cpu_possible_init;
1239        int boot_cpu = smp_processor_id();
1240        int cpus, i, rc;
1241
1242        /* Learn which cpus are allowed by the hypervisor. */
1243        rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1244                              (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1245                              sizeof(cpu_cacheable_map));
1246        if (rc < 0)
1247                early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1248        if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1249                early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1250
1251        /* Compute the cpus disabled by the hvconfig file. */
1252        cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1253
1254        /* Include them with the cpus disabled by "disabled_cpus". */
1255        cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1256
1257        /*
1258         * Disable every cpu after "setup_max_cpus".  But don't mark
1259         * as disabled the cpus that are outside of our initial rectangle,
1260         * since that turns out to be confusing.
1261         */
1262        cpus = 1;                          /* this cpu */
1263        cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1264        for (i = 0; cpus < setup_max_cpus; ++i)
1265                if (!cpumask_test_cpu(i, &disabled_map))
1266                        ++cpus;
1267        for (; i < smp_height * smp_width; ++i)
1268                cpumask_set_cpu(i, &disabled_map);
1269        cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1270        for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1271                cpumask_clear_cpu(i, &disabled_map);
1272
1273        /*
1274         * Setup cpu_possible map as every cpu allocated to us, minus
1275         * the results of any "disabled_cpus" settings.
1276         */
1277        cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1278        init_cpu_possible(&cpu_possible_init);
1279
1280        /* Learn which cpus are valid for LOTAR caching. */
1281        rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1282                              (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1283                              sizeof(cpu_lotar_map));
1284        if (rc < 0) {
1285                pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1286                cpu_lotar_map = *cpu_possible_mask;
1287        }
1288
1289#if CHIP_HAS_CBOX_HOME_MAP()
1290        /* Retrieve set of CPUs used for hash-for-home caching */
1291        rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1292                              (HV_VirtAddr) hash_for_home_map.bits,
1293                              sizeof(hash_for_home_map));
1294        if (rc < 0)
1295                early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1296        cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1297#else
1298        cpu_cacheable_map = *cpu_possible_mask;
1299#endif
1300}
1301
1302
1303static int __init dataplane(char *str)
1304{
1305        pr_warning("WARNING: dataplane support disabled in this kernel\n");
1306        return 0;
1307}
1308
1309early_param("dataplane", dataplane);
1310
1311#ifdef CONFIG_CMDLINE_BOOL
1312static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1313#endif
1314
1315void __init setup_arch(char **cmdline_p)
1316{
1317        int len;
1318
1319#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1320        len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1321                                  COMMAND_LINE_SIZE);
1322        if (boot_command_line[0])
1323                pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1324                           boot_command_line);
1325        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1326#else
1327        char *hv_cmdline;
1328#if defined(CONFIG_CMDLINE_BOOL)
1329        if (builtin_cmdline[0]) {
1330                int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1331                                          COMMAND_LINE_SIZE);
1332                if (builtin_len < COMMAND_LINE_SIZE-1)
1333                        boot_command_line[builtin_len++] = ' ';
1334                hv_cmdline = &boot_command_line[builtin_len];
1335                len = COMMAND_LINE_SIZE - builtin_len;
1336        } else
1337#endif
1338        {
1339                hv_cmdline = boot_command_line;
1340                len = COMMAND_LINE_SIZE;
1341        }
1342        len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1343        if (len < 0 || len > COMMAND_LINE_SIZE)
1344                early_panic("hv_get_command_line failed: %d\n", len);
1345#endif
1346
1347        *cmdline_p = boot_command_line;
1348
1349        /* Set disabled_map and setup_max_cpus very early */
1350        parse_early_param();
1351
1352        /* Make sure the kernel is compatible with the hypervisor. */
1353        validate_hv();
1354        validate_va();
1355
1356        setup_cpu_maps();
1357
1358
1359#if defined(CONFIG_PCI) && !defined(__tilegx__)
1360        /*
1361         * Initialize the PCI structures.  This is done before memory
1362         * setup so that we know whether or not a pci_reserve region
1363         * is necessary.
1364         */
1365        if (tile_pci_init() == 0)
1366                pci_reserve_mb = 0;
1367
1368        /* PCI systems reserve a region just below 4GB for mapping iomem. */
1369        pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1370        pci_reserve_start_pfn = pci_reserve_end_pfn -
1371                (pci_reserve_mb << (20 - PAGE_SHIFT));
1372#endif
1373
1374        init_mm.start_code = (unsigned long) _text;
1375        init_mm.end_code = (unsigned long) _etext;
1376        init_mm.end_data = (unsigned long) _edata;
1377        init_mm.brk = (unsigned long) _end;
1378
1379        setup_memory();
1380        store_permanent_mappings();
1381        setup_bootmem_allocator();
1382
1383        /*
1384         * NOTE: before this point _nobody_ is allowed to allocate
1385         * any memory using the bootmem allocator.
1386         */
1387
1388#ifdef CONFIG_SWIOTLB
1389        swiotlb_init(0);
1390#endif
1391
1392        paging_init();
1393        setup_numa_mapping();
1394        zone_sizes_init();
1395        set_page_homes();
1396        setup_cpu(1);
1397        setup_clock();
1398        load_hv_initrd();
1399}
1400
1401
1402/*
1403 * Set up per-cpu memory.
1404 */
1405
1406unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1407EXPORT_SYMBOL(__per_cpu_offset);
1408
1409static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1410static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1411
1412/*
1413 * As the percpu code allocates pages, we return the pages from the
1414 * end of the node for the specified cpu.
1415 */
1416static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1417{
1418        int nid = cpu_to_node(cpu);
1419        unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1420
1421        BUG_ON(size % PAGE_SIZE != 0);
1422        pfn_offset[nid] += size / PAGE_SIZE;
1423        BUG_ON(node_percpu[nid] < size);
1424        node_percpu[nid] -= size;
1425        if (percpu_pfn[cpu] == 0)
1426                percpu_pfn[cpu] = pfn;
1427        return pfn_to_kaddr(pfn);
1428}
1429
1430/*
1431 * Pages reserved for percpu memory are not freeable, and in any case we are
1432 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1433 */
1434static void __init pcpu_fc_free(void *ptr, size_t size)
1435{
1436}
1437
1438/*
1439 * Set up vmalloc page tables using bootmem for the percpu code.
1440 */
1441static void __init pcpu_fc_populate_pte(unsigned long addr)
1442{
1443        pgd_t *pgd;
1444        pud_t *pud;
1445        pmd_t *pmd;
1446        pte_t *pte;
1447
1448        BUG_ON(pgd_addr_invalid(addr));
1449        if (addr < VMALLOC_START || addr >= VMALLOC_END)
1450                panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1451                      " try increasing CONFIG_VMALLOC_RESERVE\n",
1452                      addr, VMALLOC_START, VMALLOC_END);
1453
1454        pgd = swapper_pg_dir + pgd_index(addr);
1455        pud = pud_offset(pgd, addr);
1456        BUG_ON(!pud_present(*pud));
1457        pmd = pmd_offset(pud, addr);
1458        if (pmd_present(*pmd)) {
1459                BUG_ON(pmd_huge_page(*pmd));
1460        } else {
1461                pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1462                                      HV_PAGE_TABLE_ALIGN, 0);
1463                pmd_populate_kernel(&init_mm, pmd, pte);
1464        }
1465}
1466
1467void __init setup_per_cpu_areas(void)
1468{
1469        struct page *pg;
1470        unsigned long delta, pfn, lowmem_va;
1471        unsigned long size = percpu_size();
1472        char *ptr;
1473        int rc, cpu, i;
1474
1475        rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1476                                   pcpu_fc_free, pcpu_fc_populate_pte);
1477        if (rc < 0)
1478                panic("Cannot initialize percpu area (err=%d)", rc);
1479
1480        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1481        for_each_possible_cpu(cpu) {
1482                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1483
1484                /* finv the copy out of cache so we can change homecache */
1485                ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1486                __finv_buffer(ptr, size);
1487                pfn = percpu_pfn[cpu];
1488
1489                /* Rewrite the page tables to cache on that cpu */
1490                pg = pfn_to_page(pfn);
1491                for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1492
1493                        /* Update the vmalloc mapping and page home. */
1494                        unsigned long addr = (unsigned long)ptr + i;
1495                        pte_t *ptep = virt_to_pte(NULL, addr);
1496                        pte_t pte = *ptep;
1497                        BUG_ON(pfn != pte_pfn(pte));
1498                        pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1499                        pte = set_remote_cache_cpu(pte, cpu);
1500                        set_pte_at(&init_mm, addr, ptep, pte);
1501
1502                        /* Update the lowmem mapping for consistency. */
1503                        lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1504                        ptep = virt_to_pte(NULL, lowmem_va);
1505                        if (pte_huge(*ptep)) {
1506                                printk(KERN_DEBUG "early shatter of huge page"
1507                                       " at %#lx\n", lowmem_va);
1508                                shatter_pmd((pmd_t *)ptep);
1509                                ptep = virt_to_pte(NULL, lowmem_va);
1510                                BUG_ON(pte_huge(*ptep));
1511                        }
1512                        BUG_ON(pfn != pte_pfn(*ptep));
1513                        set_pte_at(&init_mm, lowmem_va, ptep, pte);
1514                }
1515        }
1516
1517        /* Set our thread pointer appropriately. */
1518        set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1519
1520        /* Make sure the finv's have completed. */
1521        mb_incoherent();
1522
1523        /* Flush the TLB so we reference it properly from here on out. */
1524        local_flush_tlb_all();
1525}
1526
1527static struct resource data_resource = {
1528        .name   = "Kernel data",
1529        .start  = 0,
1530        .end    = 0,
1531        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1532};
1533
1534static struct resource code_resource = {
1535        .name   = "Kernel code",
1536        .start  = 0,
1537        .end    = 0,
1538        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1539};
1540
1541/*
1542 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1543 * mappings above 4GB.
1544 */
1545#if defined(CONFIG_PCI) && !defined(__tilegx__)
1546static struct resource* __init
1547insert_non_bus_resource(void)
1548{
1549        struct resource *res =
1550                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1551        res->name = "Non-Bus Physical Address Space";
1552        res->start = (1ULL << 32);
1553        res->end = -1LL;
1554        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1555        if (insert_resource(&iomem_resource, res)) {
1556                kfree(res);
1557                return NULL;
1558        }
1559        return res;
1560}
1561#endif
1562
1563static struct resource* __init
1564insert_ram_resource(u64 start_pfn, u64 end_pfn)
1565{
1566        struct resource *res =
1567                kzalloc(sizeof(struct resource), GFP_ATOMIC);
1568        res->name = "System RAM";
1569        res->start = start_pfn << PAGE_SHIFT;
1570        res->end = (end_pfn << PAGE_SHIFT) - 1;
1571        res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1572        if (insert_resource(&iomem_resource, res)) {
1573                kfree(res);
1574                return NULL;
1575        }
1576        return res;
1577}
1578
1579/*
1580 * Request address space for all standard resources
1581 *
1582 * If the system includes PCI root complex drivers, we need to create
1583 * a window just below 4GB where PCI BARs can be mapped.
1584 */
1585static int __init request_standard_resources(void)
1586{
1587        int i;
1588        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1589
1590#if defined(CONFIG_PCI) && !defined(__tilegx__)
1591        insert_non_bus_resource();
1592#endif
1593
1594        for_each_online_node(i) {
1595                u64 start_pfn = node_start_pfn[i];
1596                u64 end_pfn = node_end_pfn[i];
1597
1598#if defined(CONFIG_PCI) && !defined(__tilegx__)
1599                if (start_pfn <= pci_reserve_start_pfn &&
1600                    end_pfn > pci_reserve_start_pfn) {
1601                        if (end_pfn > pci_reserve_end_pfn)
1602                                insert_ram_resource(pci_reserve_end_pfn,
1603                                                     end_pfn);
1604                        end_pfn = pci_reserve_start_pfn;
1605                }
1606#endif
1607                insert_ram_resource(start_pfn, end_pfn);
1608        }
1609
1610        code_resource.start = __pa(_text - CODE_DELTA);
1611        code_resource.end = __pa(_etext - CODE_DELTA)-1;
1612        data_resource.start = __pa(_sdata);
1613        data_resource.end = __pa(_end)-1;
1614
1615        insert_resource(&iomem_resource, &code_resource);
1616        insert_resource(&iomem_resource, &data_resource);
1617
1618#ifdef CONFIG_KEXEC
1619        insert_resource(&iomem_resource, &crashk_res);
1620#endif
1621
1622        return 0;
1623}
1624
1625subsys_initcall(request_standard_resources);
1626