linux/arch/tile/mm/fault.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * From i386 code copyright (C) 1995  Linus Torvalds
  15 */
  16
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/smp.h>
  27#include <linux/interrupt.h>
  28#include <linux/init.h>
  29#include <linux/tty.h>
  30#include <linux/vt_kern.h>              /* For unblank_screen() */
  31#include <linux/highmem.h>
  32#include <linux/module.h>
  33#include <linux/kprobes.h>
  34#include <linux/hugetlb.h>
  35#include <linux/syscalls.h>
  36#include <linux/uaccess.h>
  37
  38#include <asm/pgalloc.h>
  39#include <asm/sections.h>
  40#include <asm/traps.h>
  41#include <asm/syscalls.h>
  42
  43#include <arch/interrupts.h>
  44
  45static noinline void force_sig_info_fault(const char *type, int si_signo,
  46                                          int si_code, unsigned long address,
  47                                          int fault_num,
  48                                          struct task_struct *tsk,
  49                                          struct pt_regs *regs)
  50{
  51        siginfo_t info;
  52
  53        if (unlikely(tsk->pid < 2)) {
  54                panic("Signal %d (code %d) at %#lx sent to %s!",
  55                      si_signo, si_code & 0xffff, address,
  56                      is_idle_task(tsk) ? "the idle task" : "init");
  57        }
  58
  59        info.si_signo = si_signo;
  60        info.si_errno = 0;
  61        info.si_code = si_code;
  62        info.si_addr = (void __user *)address;
  63        info.si_trapno = fault_num;
  64        trace_unhandled_signal(type, regs, address, si_signo);
  65        force_sig_info(si_signo, &info, tsk);
  66}
  67
  68#ifndef __tilegx__
  69/*
  70 * Synthesize the fault a PL0 process would get by doing a word-load of
  71 * an unaligned address or a high kernel address.
  72 */
  73SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
  74{
  75        struct pt_regs *regs = current_pt_regs();
  76
  77        if (address >= PAGE_OFFSET)
  78                force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
  79                                     address, INT_DTLB_MISS, current, regs);
  80        else
  81                force_sig_info_fault("atomic alignment fault", SIGBUS,
  82                                     BUS_ADRALN, address,
  83                                     INT_UNALIGN_DATA, current, regs);
  84
  85        /*
  86         * Adjust pc to point at the actual instruction, which is unusual
  87         * for syscalls normally, but is appropriate when we are claiming
  88         * that a syscall swint1 caused a page fault or bus error.
  89         */
  90        regs->pc -= 8;
  91
  92        /*
  93         * Mark this as a caller-save interrupt, like a normal page fault,
  94         * so that when we go through the signal handler path we will
  95         * properly restore r0, r1, and r2 for the signal handler arguments.
  96         */
  97        regs->flags |= PT_FLAGS_CALLER_SAVES;
  98
  99        return 0;
 100}
 101#endif
 102
 103static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 104{
 105        unsigned index = pgd_index(address);
 106        pgd_t *pgd_k;
 107        pud_t *pud, *pud_k;
 108        pmd_t *pmd, *pmd_k;
 109
 110        pgd += index;
 111        pgd_k = init_mm.pgd + index;
 112
 113        if (!pgd_present(*pgd_k))
 114                return NULL;
 115
 116        pud = pud_offset(pgd, address);
 117        pud_k = pud_offset(pgd_k, address);
 118        if (!pud_present(*pud_k))
 119                return NULL;
 120
 121        pmd = pmd_offset(pud, address);
 122        pmd_k = pmd_offset(pud_k, address);
 123        if (!pmd_present(*pmd_k))
 124                return NULL;
 125        if (!pmd_present(*pmd)) {
 126                set_pmd(pmd, *pmd_k);
 127                arch_flush_lazy_mmu_mode();
 128        } else
 129                BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
 130        return pmd_k;
 131}
 132
 133/*
 134 * Handle a fault on the vmalloc area.
 135 */
 136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
 137{
 138        pmd_t *pmd_k;
 139        pte_t *pte_k;
 140
 141        /* Make sure we are in vmalloc area */
 142        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 143                return -1;
 144
 145        /*
 146         * Synchronize this task's top level page-table
 147         * with the 'reference' page table.
 148         */
 149        pmd_k = vmalloc_sync_one(pgd, address);
 150        if (!pmd_k)
 151                return -1;
 152        if (pmd_huge(*pmd_k))
 153                return 0;   /* support TILE huge_vmap() API */
 154        pte_k = pte_offset_kernel(pmd_k, address);
 155        if (!pte_present(*pte_k))
 156                return -1;
 157        return 0;
 158}
 159
 160/* Wait until this PTE has completed migration. */
 161static void wait_for_migration(pte_t *pte)
 162{
 163        if (pte_migrating(*pte)) {
 164                /*
 165                 * Wait until the migrater fixes up this pte.
 166                 * We scale the loop count by the clock rate so we'll wait for
 167                 * a few seconds here.
 168                 */
 169                int retries = 0;
 170                int bound = get_clock_rate();
 171                while (pte_migrating(*pte)) {
 172                        barrier();
 173                        if (++retries > bound)
 174                                panic("Hit migrating PTE (%#llx) and"
 175                                      " page PFN %#lx still migrating",
 176                                      pte->val, pte_pfn(*pte));
 177                }
 178        }
 179}
 180
 181/*
 182 * It's not generally safe to use "current" to get the page table pointer,
 183 * since we might be running an oprofile interrupt in the middle of a
 184 * task switch.
 185 */
 186static pgd_t *get_current_pgd(void)
 187{
 188        HV_Context ctx = hv_inquire_context();
 189        unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
 190        struct page *pgd_page = pfn_to_page(pgd_pfn);
 191        BUG_ON(PageHighMem(pgd_page));
 192        return (pgd_t *) __va(ctx.page_table);
 193}
 194
 195/*
 196 * We can receive a page fault from a migrating PTE at any time.
 197 * Handle it by just waiting until the fault resolves.
 198 *
 199 * It's also possible to get a migrating kernel PTE that resolves
 200 * itself during the downcall from hypervisor to Linux.  We just check
 201 * here to see if the PTE seems valid, and if so we retry it.
 202 *
 203 * NOTE! We MUST NOT take any locks for this case.  We may be in an
 204 * interrupt or a critical region, and must do as little as possible.
 205 * Similarly, we can't use atomic ops here, since we may be handling a
 206 * fault caused by an atomic op access.
 207 *
 208 * If we find a migrating PTE while we're in an NMI context, and we're
 209 * at a PC that has a registered exception handler, we don't wait,
 210 * since this thread may (e.g.) have been interrupted while migrating
 211 * its own stack, which would then cause us to self-deadlock.
 212 */
 213static int handle_migrating_pte(pgd_t *pgd, int fault_num,
 214                                unsigned long address, unsigned long pc,
 215                                int is_kernel_mode, int write)
 216{
 217        pud_t *pud;
 218        pmd_t *pmd;
 219        pte_t *pte;
 220        pte_t pteval;
 221
 222        if (pgd_addr_invalid(address))
 223                return 0;
 224
 225        pgd += pgd_index(address);
 226        pud = pud_offset(pgd, address);
 227        if (!pud || !pud_present(*pud))
 228                return 0;
 229        pmd = pmd_offset(pud, address);
 230        if (!pmd || !pmd_present(*pmd))
 231                return 0;
 232        pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
 233                pte_offset_kernel(pmd, address);
 234        pteval = *pte;
 235        if (pte_migrating(pteval)) {
 236                if (in_nmi() && search_exception_tables(pc))
 237                        return 0;
 238                wait_for_migration(pte);
 239                return 1;
 240        }
 241
 242        if (!is_kernel_mode || !pte_present(pteval))
 243                return 0;
 244        if (fault_num == INT_ITLB_MISS) {
 245                if (pte_exec(pteval))
 246                        return 1;
 247        } else if (write) {
 248                if (pte_write(pteval))
 249                        return 1;
 250        } else {
 251                if (pte_read(pteval))
 252                        return 1;
 253        }
 254
 255        return 0;
 256}
 257
 258/*
 259 * This routine is responsible for faulting in user pages.
 260 * It passes the work off to one of the appropriate routines.
 261 * It returns true if the fault was successfully handled.
 262 */
 263static int handle_page_fault(struct pt_regs *regs,
 264                             int fault_num,
 265                             int is_page_fault,
 266                             unsigned long address,
 267                             int write)
 268{
 269        struct task_struct *tsk;
 270        struct mm_struct *mm;
 271        struct vm_area_struct *vma;
 272        unsigned long stack_offset;
 273        int fault;
 274        int si_code;
 275        int is_kernel_mode;
 276        pgd_t *pgd;
 277        unsigned int flags;
 278
 279        /* on TILE, protection faults are always writes */
 280        if (!is_page_fault)
 281                write = 1;
 282
 283        flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
 284                 (write ? FAULT_FLAG_WRITE : 0));
 285
 286        is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
 287
 288        tsk = validate_current();
 289
 290        /*
 291         * Check to see if we might be overwriting the stack, and bail
 292         * out if so.  The page fault code is a relatively likely
 293         * place to get trapped in an infinite regress, and once we
 294         * overwrite the whole stack, it becomes very hard to recover.
 295         */
 296        stack_offset = stack_pointer & (THREAD_SIZE-1);
 297        if (stack_offset < THREAD_SIZE / 8) {
 298                pr_alert("Potential stack overrun: sp %#lx\n",
 299                       stack_pointer);
 300                show_regs(regs);
 301                pr_alert("Killing current process %d/%s\n",
 302                       tsk->pid, tsk->comm);
 303                do_group_exit(SIGKILL);
 304        }
 305
 306        /*
 307         * Early on, we need to check for migrating PTE entries;
 308         * see homecache.c.  If we find a migrating PTE, we wait until
 309         * the backing page claims to be done migrating, then we proceed.
 310         * For kernel PTEs, we rewrite the PTE and return and retry.
 311         * Otherwise, we treat the fault like a normal "no PTE" fault,
 312         * rather than trying to patch up the existing PTE.
 313         */
 314        pgd = get_current_pgd();
 315        if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
 316                                 is_kernel_mode, write))
 317                return 1;
 318
 319        si_code = SEGV_MAPERR;
 320
 321        /*
 322         * We fault-in kernel-space virtual memory on-demand. The
 323         * 'reference' page table is init_mm.pgd.
 324         *
 325         * NOTE! We MUST NOT take any locks for this case. We may
 326         * be in an interrupt or a critical region, and should
 327         * only copy the information from the master page table,
 328         * nothing more.
 329         *
 330         * This verifies that the fault happens in kernel space
 331         * and that the fault was not a protection fault.
 332         */
 333        if (unlikely(address >= TASK_SIZE &&
 334                     !is_arch_mappable_range(address, 0))) {
 335                if (is_kernel_mode && is_page_fault &&
 336                    vmalloc_fault(pgd, address) >= 0)
 337                        return 1;
 338                /*
 339                 * Don't take the mm semaphore here. If we fixup a prefetch
 340                 * fault we could otherwise deadlock.
 341                 */
 342                mm = NULL;  /* happy compiler */
 343                vma = NULL;
 344                goto bad_area_nosemaphore;
 345        }
 346
 347        /*
 348         * If we're trying to touch user-space addresses, we must
 349         * be either at PL0, or else with interrupts enabled in the
 350         * kernel, so either way we can re-enable interrupts here
 351         * unless we are doing atomic access to user space with
 352         * interrupts disabled.
 353         */
 354        if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
 355                local_irq_enable();
 356
 357        mm = tsk->mm;
 358
 359        /*
 360         * If we're in an interrupt, have no user context or are running in an
 361         * atomic region then we must not take the fault.
 362         */
 363        if (in_atomic() || !mm) {
 364                vma = NULL;  /* happy compiler */
 365                goto bad_area_nosemaphore;
 366        }
 367
 368        /*
 369         * When running in the kernel we expect faults to occur only to
 370         * addresses in user space.  All other faults represent errors in the
 371         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 372         * erroneous fault occurring in a code path which already holds mmap_sem
 373         * we will deadlock attempting to validate the fault against the
 374         * address space.  Luckily the kernel only validly references user
 375         * space from well defined areas of code, which are listed in the
 376         * exceptions table.
 377         *
 378         * As the vast majority of faults will be valid we will only perform
 379         * the source reference check when there is a possibility of a deadlock.
 380         * Attempt to lock the address space, if we cannot we then validate the
 381         * source.  If this is invalid we can skip the address space check,
 382         * thus avoiding the deadlock.
 383         */
 384        if (!down_read_trylock(&mm->mmap_sem)) {
 385                if (is_kernel_mode &&
 386                    !search_exception_tables(regs->pc)) {
 387                        vma = NULL;  /* happy compiler */
 388                        goto bad_area_nosemaphore;
 389                }
 390
 391retry:
 392                down_read(&mm->mmap_sem);
 393        }
 394
 395        vma = find_vma(mm, address);
 396        if (!vma)
 397                goto bad_area;
 398        if (vma->vm_start <= address)
 399                goto good_area;
 400        if (!(vma->vm_flags & VM_GROWSDOWN))
 401                goto bad_area;
 402        if (regs->sp < PAGE_OFFSET) {
 403                /*
 404                 * accessing the stack below sp is always a bug.
 405                 */
 406                if (address < regs->sp)
 407                        goto bad_area;
 408        }
 409        if (expand_stack(vma, address))
 410                goto bad_area;
 411
 412/*
 413 * Ok, we have a good vm_area for this memory access, so
 414 * we can handle it..
 415 */
 416good_area:
 417        si_code = SEGV_ACCERR;
 418        if (fault_num == INT_ITLB_MISS) {
 419                if (!(vma->vm_flags & VM_EXEC))
 420                        goto bad_area;
 421        } else if (write) {
 422#ifdef TEST_VERIFY_AREA
 423                if (!is_page_fault && regs->cs == KERNEL_CS)
 424                        pr_err("WP fault at "REGFMT"\n", regs->eip);
 425#endif
 426                if (!(vma->vm_flags & VM_WRITE))
 427                        goto bad_area;
 428        } else {
 429                if (!is_page_fault || !(vma->vm_flags & VM_READ))
 430                        goto bad_area;
 431        }
 432
 433 survive:
 434        /*
 435         * If for any reason at all we couldn't handle the fault,
 436         * make sure we exit gracefully rather than endlessly redo
 437         * the fault.
 438         */
 439        fault = handle_mm_fault(mm, vma, address, flags);
 440
 441        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 442                return 0;
 443
 444        if (unlikely(fault & VM_FAULT_ERROR)) {
 445                if (fault & VM_FAULT_OOM)
 446                        goto out_of_memory;
 447                else if (fault & VM_FAULT_SIGBUS)
 448                        goto do_sigbus;
 449                BUG();
 450        }
 451        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 452                if (fault & VM_FAULT_MAJOR)
 453                        tsk->maj_flt++;
 454                else
 455                        tsk->min_flt++;
 456                if (fault & VM_FAULT_RETRY) {
 457                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 458                        flags |= FAULT_FLAG_TRIED;
 459
 460                         /*
 461                          * No need to up_read(&mm->mmap_sem) as we would
 462                          * have already released it in __lock_page_or_retry
 463                          * in mm/filemap.c.
 464                          */
 465                        goto retry;
 466                }
 467        }
 468
 469#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
 470        /*
 471         * If this was an asynchronous fault,
 472         * restart the appropriate engine.
 473         */
 474        switch (fault_num) {
 475#if CHIP_HAS_TILE_DMA()
 476        case INT_DMATLB_MISS:
 477        case INT_DMATLB_MISS_DWNCL:
 478        case INT_DMATLB_ACCESS:
 479        case INT_DMATLB_ACCESS_DWNCL:
 480                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 481                break;
 482#endif
 483#if CHIP_HAS_SN_PROC()
 484        case INT_SNITLB_MISS:
 485        case INT_SNITLB_MISS_DWNCL:
 486                __insn_mtspr(SPR_SNCTL,
 487                             __insn_mfspr(SPR_SNCTL) &
 488                             ~SPR_SNCTL__FRZPROC_MASK);
 489                break;
 490#endif
 491        }
 492#endif
 493
 494        up_read(&mm->mmap_sem);
 495        return 1;
 496
 497/*
 498 * Something tried to access memory that isn't in our memory map..
 499 * Fix it, but check if it's kernel or user first..
 500 */
 501bad_area:
 502        up_read(&mm->mmap_sem);
 503
 504bad_area_nosemaphore:
 505        /* User mode accesses just cause a SIGSEGV */
 506        if (!is_kernel_mode) {
 507                /*
 508                 * It's possible to have interrupts off here.
 509                 */
 510                local_irq_enable();
 511
 512                force_sig_info_fault("segfault", SIGSEGV, si_code, address,
 513                                     fault_num, tsk, regs);
 514                return 0;
 515        }
 516
 517no_context:
 518        /* Are we prepared to handle this kernel fault?  */
 519        if (fixup_exception(regs))
 520                return 0;
 521
 522/*
 523 * Oops. The kernel tried to access some bad page. We'll have to
 524 * terminate things with extreme prejudice.
 525 */
 526
 527        bust_spinlocks(1);
 528
 529        /* FIXME: no lookup_address() yet */
 530#ifdef SUPPORT_LOOKUP_ADDRESS
 531        if (fault_num == INT_ITLB_MISS) {
 532                pte_t *pte = lookup_address(address);
 533
 534                if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
 535                        pr_crit("kernel tried to execute"
 536                               " non-executable page - exploit attempt?"
 537                               " (uid: %d)\n", current->uid);
 538        }
 539#endif
 540        if (address < PAGE_SIZE)
 541                pr_alert("Unable to handle kernel NULL pointer dereference\n");
 542        else
 543                pr_alert("Unable to handle kernel paging request\n");
 544        pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
 545                 address, regs->pc);
 546
 547        show_regs(regs);
 548
 549        if (unlikely(tsk->pid < 2)) {
 550                panic("Kernel page fault running %s!",
 551                      is_idle_task(tsk) ? "the idle task" : "init");
 552        }
 553
 554        /*
 555         * More FIXME: we should probably copy the i386 here and
 556         * implement a generic die() routine.  Not today.
 557         */
 558#ifdef SUPPORT_DIE
 559        die("Oops", regs);
 560#endif
 561        bust_spinlocks(1);
 562
 563        do_group_exit(SIGKILL);
 564
 565/*
 566 * We ran out of memory, or some other thing happened to us that made
 567 * us unable to handle the page fault gracefully.
 568 */
 569out_of_memory:
 570        up_read(&mm->mmap_sem);
 571        if (is_global_init(tsk)) {
 572                yield();
 573                down_read(&mm->mmap_sem);
 574                goto survive;
 575        }
 576        if (is_kernel_mode)
 577                goto no_context;
 578        pagefault_out_of_memory();
 579        return 0;
 580
 581do_sigbus:
 582        up_read(&mm->mmap_sem);
 583
 584        /* Kernel mode? Handle exceptions or die */
 585        if (is_kernel_mode)
 586                goto no_context;
 587
 588        force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
 589                             fault_num, tsk, regs);
 590        return 0;
 591}
 592
 593#ifndef __tilegx__
 594
 595/* We must release ICS before panicking or we won't get anywhere. */
 596#define ics_panic(fmt, ...) do { \
 597        __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
 598        panic(fmt, __VA_ARGS__); \
 599} while (0)
 600
 601/*
 602 * When we take an ITLB or DTLB fault or access violation in the
 603 * supervisor while the critical section bit is set, the hypervisor is
 604 * reluctant to write new values into the EX_CONTEXT_K_x registers,
 605 * since that might indicate we have not yet squirreled the SPR
 606 * contents away and can thus safely take a recursive interrupt.
 607 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
 608 *
 609 * Note that this routine is called before homecache_tlb_defer_enter(),
 610 * which means that we can properly unlock any atomics that might
 611 * be used there (good), but also means we must be very sensitive
 612 * to not touch any data structures that might be located in memory
 613 * that could migrate, as we could be entering the kernel on a dataplane
 614 * cpu that has been deferring kernel TLB updates.  This means, for
 615 * example, that we can't migrate init_mm or its pgd.
 616 */
 617struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
 618                                      unsigned long address,
 619                                      unsigned long info)
 620{
 621        unsigned long pc = info & ~1;
 622        int write = info & 1;
 623        pgd_t *pgd = get_current_pgd();
 624
 625        /* Retval is 1 at first since we will handle the fault fully. */
 626        struct intvec_state state = {
 627                do_page_fault, fault_num, address, write, 1
 628        };
 629
 630        /* Validate that we are plausibly in the right routine. */
 631        if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
 632            (fault_num != INT_DTLB_MISS &&
 633             fault_num != INT_DTLB_ACCESS)) {
 634                unsigned long old_pc = regs->pc;
 635                regs->pc = pc;
 636                ics_panic("Bad ICS page fault args:"
 637                          " old PC %#lx, fault %d/%d at %#lx\n",
 638                          old_pc, fault_num, write, address);
 639        }
 640
 641        /* We might be faulting on a vmalloc page, so check that first. */
 642        if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
 643                return state;
 644
 645        /*
 646         * If we faulted with ICS set in sys_cmpxchg, we are providing
 647         * a user syscall service that should generate a signal on
 648         * fault.  We didn't set up a kernel stack on initial entry to
 649         * sys_cmpxchg, but instead had one set up by the fault, which
 650         * (because sys_cmpxchg never releases ICS) came to us via the
 651         * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
 652         * still referencing the original user code.  We release the
 653         * atomic lock and rewrite pt_regs so that it appears that we
 654         * came from user-space directly, and after we finish the
 655         * fault we'll go back to user space and re-issue the swint.
 656         * This way the backtrace information is correct if we need to
 657         * emit a stack dump at any point while handling this.
 658         *
 659         * Must match register use in sys_cmpxchg().
 660         */
 661        if (pc >= (unsigned long) sys_cmpxchg &&
 662            pc < (unsigned long) __sys_cmpxchg_end) {
 663#ifdef CONFIG_SMP
 664                /* Don't unlock before we could have locked. */
 665                if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
 666                        int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
 667                        __atomic_fault_unlock(lock_ptr);
 668                }
 669#endif
 670                regs->sp = regs->regs[27];
 671        }
 672
 673        /*
 674         * We can also fault in the atomic assembly, in which
 675         * case we use the exception table to do the first-level fixup.
 676         * We may re-fixup again in the real fault handler if it
 677         * turns out the faulting address is just bad, and not,
 678         * for example, migrating.
 679         */
 680        else if (pc >= (unsigned long) __start_atomic_asm_code &&
 681                   pc < (unsigned long) __end_atomic_asm_code) {
 682                const struct exception_table_entry *fixup;
 683#ifdef CONFIG_SMP
 684                /* Unlock the atomic lock. */
 685                int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
 686                __atomic_fault_unlock(lock_ptr);
 687#endif
 688                fixup = search_exception_tables(pc);
 689                if (!fixup)
 690                        ics_panic("ICS atomic fault not in table:"
 691                                  " PC %#lx, fault %d", pc, fault_num);
 692                regs->pc = fixup->fixup;
 693                regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
 694        }
 695
 696        /*
 697         * Now that we have released the atomic lock (if necessary),
 698         * it's safe to spin if the PTE that caused the fault was migrating.
 699         */
 700        if (fault_num == INT_DTLB_ACCESS)
 701                write = 1;
 702        if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
 703                return state;
 704
 705        /* Return zero so that we continue on with normal fault handling. */
 706        state.retval = 0;
 707        return state;
 708}
 709
 710#endif /* !__tilegx__ */
 711
 712/*
 713 * This routine handles page faults.  It determines the address, and the
 714 * problem, and then passes it handle_page_fault() for normal DTLB and
 715 * ITLB issues, and for DMA or SN processor faults when we are in user
 716 * space.  For the latter, if we're in kernel mode, we just save the
 717 * interrupt away appropriately and return immediately.  We can't do
 718 * page faults for user code while in kernel mode.
 719 */
 720void do_page_fault(struct pt_regs *regs, int fault_num,
 721                   unsigned long address, unsigned long write)
 722{
 723        int is_page_fault;
 724
 725        /* This case should have been handled by do_page_fault_ics(). */
 726        BUG_ON(write & ~1);
 727
 728#if CHIP_HAS_TILE_DMA()
 729        /*
 730         * If it's a DMA fault, suspend the transfer while we're
 731         * handling the miss; we'll restart after it's handled.  If we
 732         * don't suspend, it's possible that this process could swap
 733         * out and back in, and restart the engine since the DMA is
 734         * still 'running'.
 735         */
 736        if (fault_num == INT_DMATLB_MISS ||
 737            fault_num == INT_DMATLB_ACCESS ||
 738            fault_num == INT_DMATLB_MISS_DWNCL ||
 739            fault_num == INT_DMATLB_ACCESS_DWNCL) {
 740                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
 741                while (__insn_mfspr(SPR_DMA_USER_STATUS) &
 742                       SPR_DMA_STATUS__BUSY_MASK)
 743                        ;
 744        }
 745#endif
 746
 747        /* Validate fault num and decide if this is a first-time page fault. */
 748        switch (fault_num) {
 749        case INT_ITLB_MISS:
 750        case INT_DTLB_MISS:
 751#if CHIP_HAS_TILE_DMA()
 752        case INT_DMATLB_MISS:
 753        case INT_DMATLB_MISS_DWNCL:
 754#endif
 755#if CHIP_HAS_SN_PROC()
 756        case INT_SNITLB_MISS:
 757        case INT_SNITLB_MISS_DWNCL:
 758#endif
 759                is_page_fault = 1;
 760                break;
 761
 762        case INT_DTLB_ACCESS:
 763#if CHIP_HAS_TILE_DMA()
 764        case INT_DMATLB_ACCESS:
 765        case INT_DMATLB_ACCESS_DWNCL:
 766#endif
 767                is_page_fault = 0;
 768                break;
 769
 770        default:
 771                panic("Bad fault number %d in do_page_fault", fault_num);
 772        }
 773
 774#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
 775        if (EX1_PL(regs->ex1) != USER_PL) {
 776                struct async_tlb *async;
 777                switch (fault_num) {
 778#if CHIP_HAS_TILE_DMA()
 779                case INT_DMATLB_MISS:
 780                case INT_DMATLB_ACCESS:
 781                case INT_DMATLB_MISS_DWNCL:
 782                case INT_DMATLB_ACCESS_DWNCL:
 783                        async = &current->thread.dma_async_tlb;
 784                        break;
 785#endif
 786#if CHIP_HAS_SN_PROC()
 787                case INT_SNITLB_MISS:
 788                case INT_SNITLB_MISS_DWNCL:
 789                        async = &current->thread.sn_async_tlb;
 790                        break;
 791#endif
 792                default:
 793                        async = NULL;
 794                }
 795                if (async) {
 796
 797                        /*
 798                         * No vmalloc check required, so we can allow
 799                         * interrupts immediately at this point.
 800                         */
 801                        local_irq_enable();
 802
 803                        set_thread_flag(TIF_ASYNC_TLB);
 804                        if (async->fault_num != 0) {
 805                                panic("Second async fault %d;"
 806                                      " old fault was %d (%#lx/%ld)",
 807                                      fault_num, async->fault_num,
 808                                      address, write);
 809                        }
 810                        BUG_ON(fault_num == 0);
 811                        async->fault_num = fault_num;
 812                        async->is_fault = is_page_fault;
 813                        async->is_write = write;
 814                        async->address = address;
 815                        return;
 816                }
 817        }
 818#endif
 819
 820        handle_page_fault(regs, fault_num, is_page_fault, address, write);
 821}
 822
 823
 824#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
 825/*
 826 * Check an async_tlb structure to see if a deferred fault is waiting,
 827 * and if so pass it to the page-fault code.
 828 */
 829static void handle_async_page_fault(struct pt_regs *regs,
 830                                    struct async_tlb *async)
 831{
 832        if (async->fault_num) {
 833                /*
 834                 * Clear async->fault_num before calling the page-fault
 835                 * handler so that if we re-interrupt before returning
 836                 * from the function we have somewhere to put the
 837                 * information from the new interrupt.
 838                 */
 839                int fault_num = async->fault_num;
 840                async->fault_num = 0;
 841                handle_page_fault(regs, fault_num, async->is_fault,
 842                                  async->address, async->is_write);
 843        }
 844}
 845
 846/*
 847 * This routine effectively re-issues asynchronous page faults
 848 * when we are returning to user space.
 849 */
 850void do_async_page_fault(struct pt_regs *regs)
 851{
 852        /*
 853         * Clear thread flag early.  If we re-interrupt while processing
 854         * code here, we will reset it and recall this routine before
 855         * returning to user space.
 856         */
 857        clear_thread_flag(TIF_ASYNC_TLB);
 858
 859#if CHIP_HAS_TILE_DMA()
 860        handle_async_page_fault(regs, &current->thread.dma_async_tlb);
 861#endif
 862#if CHIP_HAS_SN_PROC()
 863        handle_async_page_fault(regs, &current->thread.sn_async_tlb);
 864#endif
 865}
 866#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
 867
 868
 869void vmalloc_sync_all(void)
 870{
 871#ifdef __tilegx__
 872        /* Currently all L1 kernel pmd's are static and shared. */
 873        BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
 874#else
 875        /*
 876         * Note that races in the updates of insync and start aren't
 877         * problematic: insync can only get set bits added, and updates to
 878         * start are only improving performance (without affecting correctness
 879         * if undone).
 880         */
 881        static DECLARE_BITMAP(insync, PTRS_PER_PGD);
 882        static unsigned long start = PAGE_OFFSET;
 883        unsigned long address;
 884
 885        BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
 886        for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
 887                if (!test_bit(pgd_index(address), insync)) {
 888                        unsigned long flags;
 889                        struct list_head *pos;
 890
 891                        spin_lock_irqsave(&pgd_lock, flags);
 892                        list_for_each(pos, &pgd_list)
 893                                if (!vmalloc_sync_one(list_to_pgd(pos),
 894                                                                address)) {
 895                                        /* Must be at first entry in list. */
 896                                        BUG_ON(pos != pgd_list.next);
 897                                        break;
 898                                }
 899                        spin_unlock_irqrestore(&pgd_lock, flags);
 900                        if (pos != pgd_list.next)
 901                                set_bit(pgd_index(address), insync);
 902                }
 903                if (address == start && test_bit(pgd_index(address), insync))
 904                        start = address + PGDIR_SIZE;
 905        }
 906#endif
 907}
 908