linux/arch/tile/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * TILE Huge TLB Page Support for Kernel.
  15 * Taken from i386 hugetlb implementation:
  16 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  17 */
  18
  19#include <linux/init.h>
  20#include <linux/fs.h>
  21#include <linux/mm.h>
  22#include <linux/hugetlb.h>
  23#include <linux/pagemap.h>
  24#include <linux/slab.h>
  25#include <linux/err.h>
  26#include <linux/sysctl.h>
  27#include <linux/mman.h>
  28#include <asm/tlb.h>
  29#include <asm/tlbflush.h>
  30#include <asm/setup.h>
  31
  32#ifdef CONFIG_HUGETLB_SUPER_PAGES
  33
  34/*
  35 * Provide an additional huge page size (in addition to the regular default
  36 * huge page size) if no "hugepagesz" arguments are specified.
  37 * Note that it must be smaller than the default huge page size so
  38 * that it's possible to allocate them on demand from the buddy allocator.
  39 * You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
  40 * or not define it at all.
  41 */
  42#define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)
  43
  44/* "Extra" page-size multipliers, one per level of the page table. */
  45int huge_shift[HUGE_SHIFT_ENTRIES] = {
  46#ifdef ADDITIONAL_HUGE_SIZE
  47#define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
  48        [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
  49#endif
  50};
  51
  52/*
  53 * This routine is a hybrid of pte_alloc_map() and pte_alloc_kernel().
  54 * It assumes that L2 PTEs are never in HIGHMEM (we don't support that).
  55 * It locks the user pagetable, and bumps up the mm->nr_ptes field,
  56 * but otherwise allocate the page table using the kernel versions.
  57 */
  58static pte_t *pte_alloc_hugetlb(struct mm_struct *mm, pmd_t *pmd,
  59                                unsigned long address)
  60{
  61        pte_t *new;
  62
  63        if (pmd_none(*pmd)) {
  64                new = pte_alloc_one_kernel(mm, address);
  65                if (!new)
  66                        return NULL;
  67
  68                smp_wmb(); /* See comment in __pte_alloc */
  69
  70                spin_lock(&mm->page_table_lock);
  71                if (likely(pmd_none(*pmd))) {  /* Has another populated it ? */
  72                        mm->nr_ptes++;
  73                        pmd_populate_kernel(mm, pmd, new);
  74                        new = NULL;
  75                } else
  76                        VM_BUG_ON(pmd_trans_splitting(*pmd));
  77                spin_unlock(&mm->page_table_lock);
  78                if (new)
  79                        pte_free_kernel(mm, new);
  80        }
  81
  82        return pte_offset_kernel(pmd, address);
  83}
  84#endif
  85
  86pte_t *huge_pte_alloc(struct mm_struct *mm,
  87                      unsigned long addr, unsigned long sz)
  88{
  89        pgd_t *pgd;
  90        pud_t *pud;
  91
  92        addr &= -sz;   /* Mask off any low bits in the address. */
  93
  94        pgd = pgd_offset(mm, addr);
  95        pud = pud_alloc(mm, pgd, addr);
  96
  97#ifdef CONFIG_HUGETLB_SUPER_PAGES
  98        if (sz >= PGDIR_SIZE) {
  99                BUG_ON(sz != PGDIR_SIZE &&
 100                       sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
 101                return (pte_t *)pud;
 102        } else {
 103                pmd_t *pmd = pmd_alloc(mm, pud, addr);
 104                if (sz >= PMD_SIZE) {
 105                        BUG_ON(sz != PMD_SIZE &&
 106                               sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
 107                        return (pte_t *)pmd;
 108                }
 109                else {
 110                        if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
 111                                panic("Unexpected page size %#lx\n", sz);
 112                        return pte_alloc_hugetlb(mm, pmd, addr);
 113                }
 114        }
 115#else
 116        BUG_ON(sz != PMD_SIZE);
 117        return (pte_t *) pmd_alloc(mm, pud, addr);
 118#endif
 119}
 120
 121static pte_t *get_pte(pte_t *base, int index, int level)
 122{
 123        pte_t *ptep = base + index;
 124#ifdef CONFIG_HUGETLB_SUPER_PAGES
 125        if (!pte_present(*ptep) && huge_shift[level] != 0) {
 126                unsigned long mask = -1UL << huge_shift[level];
 127                pte_t *super_ptep = base + (index & mask);
 128                pte_t pte = *super_ptep;
 129                if (pte_present(pte) && pte_super(pte))
 130                        ptep = super_ptep;
 131        }
 132#endif
 133        return ptep;
 134}
 135
 136pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 137{
 138        pgd_t *pgd;
 139        pud_t *pud;
 140        pmd_t *pmd;
 141#ifdef CONFIG_HUGETLB_SUPER_PAGES
 142        pte_t *pte;
 143#endif
 144
 145        /* Get the top-level page table entry. */
 146        pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
 147        if (!pgd_present(*pgd))
 148                return NULL;
 149
 150        /* We don't have four levels. */
 151        pud = pud_offset(pgd, addr);
 152#ifndef __PAGETABLE_PUD_FOLDED
 153# error support fourth page table level
 154#endif
 155
 156        /* Check for an L0 huge PTE, if we have three levels. */
 157#ifndef __PAGETABLE_PMD_FOLDED
 158        if (pud_huge(*pud))
 159                return (pte_t *)pud;
 160
 161        pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
 162                               pmd_index(addr), 1);
 163        if (!pmd_present(*pmd))
 164                return NULL;
 165#else
 166        pmd = pmd_offset(pud, addr);
 167#endif
 168
 169        /* Check for an L1 huge PTE. */
 170        if (pmd_huge(*pmd))
 171                return (pte_t *)pmd;
 172
 173#ifdef CONFIG_HUGETLB_SUPER_PAGES
 174        /* Check for an L2 huge PTE. */
 175        pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
 176        if (!pte_present(*pte))
 177                return NULL;
 178        if (pte_super(*pte))
 179                return pte;
 180#endif
 181
 182        return NULL;
 183}
 184
 185struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
 186                              int write)
 187{
 188        return ERR_PTR(-EINVAL);
 189}
 190
 191int pmd_huge(pmd_t pmd)
 192{
 193        return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
 194}
 195
 196int pud_huge(pud_t pud)
 197{
 198        return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
 199}
 200
 201struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 202                             pmd_t *pmd, int write)
 203{
 204        struct page *page;
 205
 206        page = pte_page(*(pte_t *)pmd);
 207        if (page)
 208                page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
 209        return page;
 210}
 211
 212struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
 213                             pud_t *pud, int write)
 214{
 215        struct page *page;
 216
 217        page = pte_page(*(pte_t *)pud);
 218        if (page)
 219                page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
 220        return page;
 221}
 222
 223int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 224{
 225        return 0;
 226}
 227
 228#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 229static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
 230                unsigned long addr, unsigned long len,
 231                unsigned long pgoff, unsigned long flags)
 232{
 233        struct hstate *h = hstate_file(file);
 234        struct vm_unmapped_area_info info;
 235
 236        info.flags = 0;
 237        info.length = len;
 238        info.low_limit = TASK_UNMAPPED_BASE;
 239        info.high_limit = TASK_SIZE;
 240        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 241        info.align_offset = 0;
 242        return vm_unmapped_area(&info);
 243}
 244
 245static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
 246                unsigned long addr0, unsigned long len,
 247                unsigned long pgoff, unsigned long flags)
 248{
 249        struct hstate *h = hstate_file(file);
 250        struct vm_unmapped_area_info info;
 251        unsigned long addr;
 252
 253        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 254        info.length = len;
 255        info.low_limit = PAGE_SIZE;
 256        info.high_limit = current->mm->mmap_base;
 257        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 258        info.align_offset = 0;
 259        addr = vm_unmapped_area(&info);
 260
 261        /*
 262         * A failed mmap() very likely causes application failure,
 263         * so fall back to the bottom-up function here. This scenario
 264         * can happen with large stack limits and large mmap()
 265         * allocations.
 266         */
 267        if (addr & ~PAGE_MASK) {
 268                VM_BUG_ON(addr != -ENOMEM);
 269                info.flags = 0;
 270                info.low_limit = TASK_UNMAPPED_BASE;
 271                info.high_limit = TASK_SIZE;
 272                addr = vm_unmapped_area(&info);
 273        }
 274
 275        return addr;
 276}
 277
 278unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 279                unsigned long len, unsigned long pgoff, unsigned long flags)
 280{
 281        struct hstate *h = hstate_file(file);
 282        struct mm_struct *mm = current->mm;
 283        struct vm_area_struct *vma;
 284
 285        if (len & ~huge_page_mask(h))
 286                return -EINVAL;
 287        if (len > TASK_SIZE)
 288                return -ENOMEM;
 289
 290        if (flags & MAP_FIXED) {
 291                if (prepare_hugepage_range(file, addr, len))
 292                        return -EINVAL;
 293                return addr;
 294        }
 295
 296        if (addr) {
 297                addr = ALIGN(addr, huge_page_size(h));
 298                vma = find_vma(mm, addr);
 299                if (TASK_SIZE - len >= addr &&
 300                    (!vma || addr + len <= vma->vm_start))
 301                        return addr;
 302        }
 303        if (current->mm->get_unmapped_area == arch_get_unmapped_area)
 304                return hugetlb_get_unmapped_area_bottomup(file, addr, len,
 305                                pgoff, flags);
 306        else
 307                return hugetlb_get_unmapped_area_topdown(file, addr, len,
 308                                pgoff, flags);
 309}
 310#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
 311
 312#ifdef CONFIG_HUGETLB_SUPER_PAGES
 313static __init int __setup_hugepagesz(unsigned long ps)
 314{
 315        int log_ps = __builtin_ctzl(ps);
 316        int level, base_shift;
 317
 318        if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
 319                pr_warn("Not enabling %ld byte huge pages;"
 320                        " must be a power of four.\n", ps);
 321                return -EINVAL;
 322        }
 323
 324        if (ps > 64*1024*1024*1024UL) {
 325                pr_warn("Not enabling %ld MB huge pages;"
 326                        " largest legal value is 64 GB .\n", ps >> 20);
 327                return -EINVAL;
 328        } else if (ps >= PUD_SIZE) {
 329                static long hv_jpage_size;
 330                if (hv_jpage_size == 0)
 331                        hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
 332                if (hv_jpage_size != PUD_SIZE) {
 333                        pr_warn("Not enabling >= %ld MB huge pages:"
 334                                " hypervisor reports size %ld\n",
 335                                PUD_SIZE >> 20, hv_jpage_size);
 336                        return -EINVAL;
 337                }
 338                level = 0;
 339                base_shift = PUD_SHIFT;
 340        } else if (ps >= PMD_SIZE) {
 341                level = 1;
 342                base_shift = PMD_SHIFT;
 343        } else if (ps > PAGE_SIZE) {
 344                level = 2;
 345                base_shift = PAGE_SHIFT;
 346        } else {
 347                pr_err("hugepagesz: huge page size %ld too small\n", ps);
 348                return -EINVAL;
 349        }
 350
 351        if (log_ps != base_shift) {
 352                int shift_val = log_ps - base_shift;
 353                if (huge_shift[level] != 0) {
 354                        int old_shift = base_shift + huge_shift[level];
 355                        pr_warn("Not enabling %ld MB huge pages;"
 356                                " already have size %ld MB.\n",
 357                                ps >> 20, (1UL << old_shift) >> 20);
 358                        return -EINVAL;
 359                }
 360                if (hv_set_pte_super_shift(level, shift_val) != 0) {
 361                        pr_warn("Not enabling %ld MB huge pages;"
 362                                " no hypervisor support.\n", ps >> 20);
 363                        return -EINVAL;
 364                }
 365                printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
 366                huge_shift[level] = shift_val;
 367        }
 368
 369        hugetlb_add_hstate(log_ps - PAGE_SHIFT);
 370
 371        return 0;
 372}
 373
 374static bool saw_hugepagesz;
 375
 376static __init int setup_hugepagesz(char *opt)
 377{
 378        if (!saw_hugepagesz) {
 379                saw_hugepagesz = true;
 380                memset(huge_shift, 0, sizeof(huge_shift));
 381        }
 382        return __setup_hugepagesz(memparse(opt, NULL));
 383}
 384__setup("hugepagesz=", setup_hugepagesz);
 385
 386#ifdef ADDITIONAL_HUGE_SIZE
 387/*
 388 * Provide an additional huge page size if no "hugepagesz" args are given.
 389 * In that case, all the cores have properly set up their hv super_shift
 390 * already, but we need to notify the hugetlb code to enable the
 391 * new huge page size from the Linux point of view.
 392 */
 393static __init int add_default_hugepagesz(void)
 394{
 395        if (!saw_hugepagesz) {
 396                BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
 397                             ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
 398                BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
 399                             ADDITIONAL_HUGE_SIZE);
 400                BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
 401                hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
 402        }
 403        return 0;
 404}
 405arch_initcall(add_default_hugepagesz);
 406#endif
 407
 408#endif /* CONFIG_HUGETLB_SUPER_PAGES */
 409