linux/arch/tile/mm/init.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/tlb.h>
  46#include <asm/tlbflush.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/homecache.h>
  50#include <hv/hypervisor.h>
  51#include <arch/chip.h>
  52
  53#include "migrate.h"
  54
  55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  56
  57#ifndef __tilegx__
  58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  59EXPORT_SYMBOL(VMALLOC_RESERVE);
  60#endif
  61
  62/* Create an L2 page table */
  63static pte_t * __init alloc_pte(void)
  64{
  65        return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  66}
  67
  68/*
  69 * L2 page tables per controller.  We allocate these all at once from
  70 * the bootmem allocator and store them here.  This saves on kernel L2
  71 * page table memory, compared to allocating a full 64K page per L2
  72 * page table, and also means that in cases where we use huge pages,
  73 * we are guaranteed to later be able to shatter those huge pages and
  74 * switch to using these page tables instead, without requiring
  75 * further allocation.  Each l2_ptes[] entry points to the first page
  76 * table for the first hugepage-size piece of memory on the
  77 * controller; other page tables are just indexed directly, i.e. the
  78 * L2 page tables are contiguous in memory for each controller.
  79 */
  80static pte_t *l2_ptes[MAX_NUMNODES];
  81static int num_l2_ptes[MAX_NUMNODES];
  82
  83static void init_prealloc_ptes(int node, int pages)
  84{
  85        BUG_ON(pages & (PTRS_PER_PTE - 1));
  86        if (pages) {
  87                num_l2_ptes[node] = pages;
  88                l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  89                                                HV_PAGE_TABLE_ALIGN, 0);
  90        }
  91}
  92
  93pte_t *get_prealloc_pte(unsigned long pfn)
  94{
  95        int node = pfn_to_nid(pfn);
  96        pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  97        BUG_ON(node >= MAX_NUMNODES);
  98        BUG_ON(pfn >= num_l2_ptes[node]);
  99        return &l2_ptes[node][pfn];
 100}
 101
 102/*
 103 * What caching do we expect pages from the heap to have when
 104 * they are allocated during bootup?  (Once we've installed the
 105 * "real" swapper_pg_dir.)
 106 */
 107static int initial_heap_home(void)
 108{
 109#if CHIP_HAS_CBOX_HOME_MAP()
 110        if (hash_default)
 111                return PAGE_HOME_HASH;
 112#endif
 113        return smp_processor_id();
 114}
 115
 116/*
 117 * Place a pointer to an L2 page table in a middle page
 118 * directory entry.
 119 */
 120static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 121{
 122        phys_addr_t pa = __pa(page_table);
 123        unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 124        pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 125        BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 126        pteval = pte_set_home(pteval, initial_heap_home());
 127        *(pte_t *)pmd = pteval;
 128        if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 129                BUG();
 130}
 131
 132#ifdef __tilegx__
 133
 134static inline pmd_t *alloc_pmd(void)
 135{
 136        return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 137}
 138
 139static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 140{
 141        assign_pte((pmd_t *)pud, (pte_t *)pmd);
 142}
 143
 144#endif /* __tilegx__ */
 145
 146/* Replace the given pmd with a full PTE table. */
 147void __init shatter_pmd(pmd_t *pmd)
 148{
 149        pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 150        assign_pte(pmd, pte);
 151}
 152
 153#ifdef __tilegx__
 154static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 155{
 156        pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 157        if (pud_none(*pud))
 158                assign_pmd(pud, alloc_pmd());
 159        return pmd_offset(pud, va);
 160}
 161#else
 162static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 163{
 164        return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 165}
 166#endif
 167
 168/*
 169 * This function initializes a certain range of kernel virtual memory
 170 * with new bootmem page tables, everywhere page tables are missing in
 171 * the given range.
 172 */
 173
 174/*
 175 * NOTE: The pagetables are allocated contiguous on the physical space
 176 * so we can cache the place of the first one and move around without
 177 * checking the pgd every time.
 178 */
 179static void __init page_table_range_init(unsigned long start,
 180                                         unsigned long end, pgd_t *pgd)
 181{
 182        unsigned long vaddr;
 183        start = round_down(start, PMD_SIZE);
 184        end = round_up(end, PMD_SIZE);
 185        for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
 186                pmd_t *pmd = get_pmd(pgd, vaddr);
 187                if (pmd_none(*pmd))
 188                        assign_pte(pmd, alloc_pte());
 189        }
 190}
 191
 192
 193#if CHIP_HAS_CBOX_HOME_MAP()
 194
 195static int __initdata ktext_hash = 1;  /* .text pages */
 196static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 197int __write_once hash_default = 1;     /* kernel allocator pages */
 198EXPORT_SYMBOL(hash_default);
 199int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 200#endif /* CHIP_HAS_CBOX_HOME_MAP */
 201
 202/*
 203 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 204 * is available, this is only relevant if kcache_hash sets up the
 205 * .data and .bss to be page-homed, and we don't want the default mode
 206 * of using the full set of kernel cpus for the striping.
 207 */
 208static __initdata struct cpumask kdata_mask;
 209static __initdata int kdata_arg_seen;
 210
 211int __write_once kdata_huge;       /* if no homecaching, small pages */
 212
 213
 214/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 215static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 216{
 217        prot = pte_set_home(prot, home);
 218#if CHIP_HAS_CBOX_HOME_MAP()
 219        if (home == PAGE_HOME_IMMUTABLE) {
 220                if (ktext_hash)
 221                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 222                else
 223                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 224        }
 225#endif
 226        return prot;
 227}
 228
 229/*
 230 * For a given kernel data VA, how should it be cached?
 231 * We return the complete pgprot_t with caching bits set.
 232 */
 233static pgprot_t __init init_pgprot(ulong address)
 234{
 235        int cpu;
 236        unsigned long page;
 237        enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
 238
 239#if CHIP_HAS_CBOX_HOME_MAP()
 240        /* For kdata=huge, everything is just hash-for-home. */
 241        if (kdata_huge)
 242                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 243#endif
 244
 245        /* We map the aliased pages of permanent text inaccessible. */
 246        if (address < (ulong) _sinittext - CODE_DELTA)
 247                return PAGE_NONE;
 248
 249        /*
 250         * We map read-only data non-coherent for performance.  We could
 251         * use neighborhood caching on TILE64, but it's not clear it's a win.
 252         */
 253        if ((address >= (ulong) __start_rodata &&
 254             address < (ulong) __end_rodata) ||
 255            address == (ulong) empty_zero_page) {
 256                return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 257        }
 258
 259#ifndef __tilegx__
 260#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 261        /* Force the atomic_locks[] array page to be hash-for-home. */
 262        if (address == (ulong) atomic_locks)
 263                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 264#endif
 265#endif
 266
 267        /*
 268         * Everything else that isn't data or bss is heap, so mark it
 269         * with the initial heap home (hash-for-home, or this cpu).  This
 270         * includes any addresses after the loaded image and any address before
 271         * _einitdata, since we already captured the case of text before
 272         * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
 273         *
 274         * All the LOWMEM pages that we mark this way will get their
 275         * struct page homecache properly marked later, in set_page_homes().
 276         * The HIGHMEM pages we leave with a default zero for their
 277         * homes, but with a zero free_time we don't have to actually
 278         * do a flush action the first time we use them, either.
 279         */
 280        if (address >= (ulong) _end || address < (ulong) _einitdata)
 281                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 282
 283#if CHIP_HAS_CBOX_HOME_MAP()
 284        /* Use hash-for-home if requested for data/bss. */
 285        if (kdata_hash)
 286                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 287#endif
 288
 289        /*
 290         * Make the w1data homed like heap to start with, to avoid
 291         * making it part of the page-striped data area when we're just
 292         * going to convert it to read-only soon anyway.
 293         */
 294        if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
 295                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 296
 297        /*
 298         * Otherwise we just hand out consecutive cpus.  To avoid
 299         * requiring this function to hold state, we just walk forward from
 300         * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
 301         * the requested address, while walking cpu home around kdata_mask.
 302         * This is typically no more than a dozen or so iterations.
 303         */
 304        page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
 305        BUG_ON(address < page || address >= (ulong)_end);
 306        cpu = cpumask_first(&kdata_mask);
 307        for (; page < address; page += PAGE_SIZE) {
 308                if (page >= (ulong)&init_thread_union &&
 309                    page < (ulong)&init_thread_union + THREAD_SIZE)
 310                        continue;
 311                if (page == (ulong)empty_zero_page)
 312                        continue;
 313#ifndef __tilegx__
 314#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
 315                if (page == (ulong)atomic_locks)
 316                        continue;
 317#endif
 318#endif
 319                cpu = cpumask_next(cpu, &kdata_mask);
 320                if (cpu == NR_CPUS)
 321                        cpu = cpumask_first(&kdata_mask);
 322        }
 323        return construct_pgprot(PAGE_KERNEL, cpu);
 324}
 325
 326/*
 327 * This function sets up how we cache the kernel text.  If we have
 328 * hash-for-home support, normally that is used instead (see the
 329 * kcache_hash boot flag for more information).  But if we end up
 330 * using a page-based caching technique, this option sets up the
 331 * details of that.  In addition, the "ktext=nocache" option may
 332 * always be used to disable local caching of text pages, if desired.
 333 */
 334
 335static int __initdata ktext_arg_seen;
 336static int __initdata ktext_small;
 337static int __initdata ktext_local;
 338static int __initdata ktext_all;
 339static int __initdata ktext_nondataplane;
 340static int __initdata ktext_nocache;
 341static struct cpumask __initdata ktext_mask;
 342
 343static int __init setup_ktext(char *str)
 344{
 345        if (str == NULL)
 346                return -EINVAL;
 347
 348        /* If you have a leading "nocache", turn off ktext caching */
 349        if (strncmp(str, "nocache", 7) == 0) {
 350                ktext_nocache = 1;
 351                pr_info("ktext: disabling local caching of kernel text\n");
 352                str += 7;
 353                if (*str == ',')
 354                        ++str;
 355                if (*str == '\0')
 356                        return 0;
 357        }
 358
 359        ktext_arg_seen = 1;
 360
 361        /* Default setting on Tile64: use a huge page */
 362        if (strcmp(str, "huge") == 0)
 363                pr_info("ktext: using one huge locally cached page\n");
 364
 365        /* Pay TLB cost but get no cache benefit: cache small pages locally */
 366        else if (strcmp(str, "local") == 0) {
 367                ktext_small = 1;
 368                ktext_local = 1;
 369                pr_info("ktext: using small pages with local caching\n");
 370        }
 371
 372        /* Neighborhood cache ktext pages on all cpus. */
 373        else if (strcmp(str, "all") == 0) {
 374                ktext_small = 1;
 375                ktext_all = 1;
 376                pr_info("ktext: using maximal caching neighborhood\n");
 377        }
 378
 379
 380        /* Neighborhood ktext pages on specified mask */
 381        else if (cpulist_parse(str, &ktext_mask) == 0) {
 382                char buf[NR_CPUS * 5];
 383                cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
 384                if (cpumask_weight(&ktext_mask) > 1) {
 385                        ktext_small = 1;
 386                        pr_info("ktext: using caching neighborhood %s "
 387                               "with small pages\n", buf);
 388                } else {
 389                        pr_info("ktext: caching on cpu %s with one huge page\n",
 390                               buf);
 391                }
 392        }
 393
 394        else if (*str)
 395                return -EINVAL;
 396
 397        return 0;
 398}
 399
 400early_param("ktext", setup_ktext);
 401
 402
 403static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 404{
 405        if (!ktext_nocache)
 406                prot = hv_pte_set_nc(prot);
 407#if CHIP_HAS_NC_AND_NOALLOC_BITS()
 408        else
 409                prot = hv_pte_set_no_alloc_l2(prot);
 410#endif
 411        return prot;
 412}
 413
 414/* Temporary page table we use for staging. */
 415static pgd_t pgtables[PTRS_PER_PGD]
 416 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 417
 418/*
 419 * This maps the physical memory to kernel virtual address space, a total
 420 * of max_low_pfn pages, by creating page tables starting from address
 421 * PAGE_OFFSET.
 422 *
 423 * This routine transitions us from using a set of compiled-in large
 424 * pages to using some more precise caching, including removing access
 425 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 426 * marking read-only data as locally cacheable, striping the remaining
 427 * .data and .bss across all the available tiles, and removing access
 428 * to pages above the top of RAM (thus ensuring a page fault from a bad
 429 * virtual address rather than a hypervisor shoot down for accessing
 430 * memory outside the assigned limits).
 431 */
 432static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 433{
 434        unsigned long long irqmask;
 435        unsigned long address, pfn;
 436        pmd_t *pmd;
 437        pte_t *pte;
 438        int pte_ofs;
 439        const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 440        struct cpumask kstripe_mask;
 441        int rc, i;
 442
 443#if CHIP_HAS_CBOX_HOME_MAP()
 444        if (ktext_arg_seen && ktext_hash) {
 445                pr_warning("warning: \"ktext\" boot argument ignored"
 446                           " if \"kcache_hash\" sets up text hash-for-home\n");
 447                ktext_small = 0;
 448        }
 449
 450        if (kdata_arg_seen && kdata_hash) {
 451                pr_warning("warning: \"kdata\" boot argument ignored"
 452                           " if \"kcache_hash\" sets up data hash-for-home\n");
 453        }
 454
 455        if (kdata_huge && !hash_default) {
 456                pr_warning("warning: disabling \"kdata=huge\"; requires"
 457                          " kcache_hash=all or =allbutstack\n");
 458                kdata_huge = 0;
 459        }
 460#endif
 461
 462        /*
 463         * Set up a mask for cpus to use for kernel striping.
 464         * This is normally all cpus, but minus dataplane cpus if any.
 465         * If the dataplane covers the whole chip, we stripe over
 466         * the whole chip too.
 467         */
 468        cpumask_copy(&kstripe_mask, cpu_possible_mask);
 469        if (!kdata_arg_seen)
 470                kdata_mask = kstripe_mask;
 471
 472        /* Allocate and fill in L2 page tables */
 473        for (i = 0; i < MAX_NUMNODES; ++i) {
 474#ifdef CONFIG_HIGHMEM
 475                unsigned long end_pfn = node_lowmem_end_pfn[i];
 476#else
 477                unsigned long end_pfn = node_end_pfn[i];
 478#endif
 479                unsigned long end_huge_pfn = 0;
 480
 481                /* Pre-shatter the last huge page to allow per-cpu pages. */
 482                if (kdata_huge)
 483                        end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 484
 485                pfn = node_start_pfn[i];
 486
 487                /* Allocate enough memory to hold L2 page tables for node. */
 488                init_prealloc_ptes(i, end_pfn - pfn);
 489
 490                address = (unsigned long) pfn_to_kaddr(pfn);
 491                while (pfn < end_pfn) {
 492                        BUG_ON(address & (HPAGE_SIZE-1));
 493                        pmd = get_pmd(pgtables, address);
 494                        pte = get_prealloc_pte(pfn);
 495                        if (pfn < end_huge_pfn) {
 496                                pgprot_t prot = init_pgprot(address);
 497                                *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 498                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 499                                     pfn++, pte_ofs++, address += PAGE_SIZE)
 500                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 501                        } else {
 502                                if (kdata_huge)
 503                                        printk(KERN_DEBUG "pre-shattered huge"
 504                                               " page at %#lx\n", address);
 505                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 506                                     pfn++, pte_ofs++, address += PAGE_SIZE) {
 507                                        pgprot_t prot = init_pgprot(address);
 508                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 509                                }
 510                                assign_pte(pmd, pte);
 511                        }
 512                }
 513        }
 514
 515        /*
 516         * Set or check ktext_map now that we have cpu_possible_mask
 517         * and kstripe_mask to work with.
 518         */
 519        if (ktext_all)
 520                cpumask_copy(&ktext_mask, cpu_possible_mask);
 521        else if (ktext_nondataplane)
 522                ktext_mask = kstripe_mask;
 523        else if (!cpumask_empty(&ktext_mask)) {
 524                /* Sanity-check any mask that was requested */
 525                struct cpumask bad;
 526                cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 527                cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 528                if (!cpumask_empty(&bad)) {
 529                        char buf[NR_CPUS * 5];
 530                        cpulist_scnprintf(buf, sizeof(buf), &bad);
 531                        pr_info("ktext: not using unavailable cpus %s\n", buf);
 532                }
 533                if (cpumask_empty(&ktext_mask)) {
 534                        pr_warning("ktext: no valid cpus; caching on %d.\n",
 535                                   smp_processor_id());
 536                        cpumask_copy(&ktext_mask,
 537                                     cpumask_of(smp_processor_id()));
 538                }
 539        }
 540
 541        address = MEM_SV_INTRPT;
 542        pmd = get_pmd(pgtables, address);
 543        pfn = 0;  /* code starts at PA 0 */
 544        if (ktext_small) {
 545                /* Allocate an L2 PTE for the kernel text */
 546                int cpu = 0;
 547                pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 548                                                 PAGE_HOME_IMMUTABLE);
 549
 550                if (ktext_local) {
 551                        if (ktext_nocache)
 552                                prot = hv_pte_set_mode(prot,
 553                                                       HV_PTE_MODE_UNCACHED);
 554                        else
 555                                prot = hv_pte_set_mode(prot,
 556                                                       HV_PTE_MODE_CACHE_NO_L3);
 557                } else {
 558                        prot = hv_pte_set_mode(prot,
 559                                               HV_PTE_MODE_CACHE_TILE_L3);
 560                        cpu = cpumask_first(&ktext_mask);
 561
 562                        prot = ktext_set_nocache(prot);
 563                }
 564
 565                BUG_ON(address != (unsigned long)_text);
 566                pte = NULL;
 567                for (; address < (unsigned long)_einittext;
 568                     pfn++, address += PAGE_SIZE) {
 569                        pte_ofs = pte_index(address);
 570                        if (pte_ofs == 0) {
 571                                if (pte)
 572                                        assign_pte(pmd++, pte);
 573                                pte = alloc_pte();
 574                        }
 575                        if (!ktext_local) {
 576                                prot = set_remote_cache_cpu(prot, cpu);
 577                                cpu = cpumask_next(cpu, &ktext_mask);
 578                                if (cpu == NR_CPUS)
 579                                        cpu = cpumask_first(&ktext_mask);
 580                        }
 581                        pte[pte_ofs] = pfn_pte(pfn, prot);
 582                }
 583                if (pte)
 584                        assign_pte(pmd, pte);
 585        } else {
 586                pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 587                pteval = pte_mkhuge(pteval);
 588#if CHIP_HAS_CBOX_HOME_MAP()
 589                if (ktext_hash) {
 590                        pteval = hv_pte_set_mode(pteval,
 591                                                 HV_PTE_MODE_CACHE_HASH_L3);
 592                        pteval = ktext_set_nocache(pteval);
 593                } else
 594#endif /* CHIP_HAS_CBOX_HOME_MAP() */
 595                if (cpumask_weight(&ktext_mask) == 1) {
 596                        pteval = set_remote_cache_cpu(pteval,
 597                                              cpumask_first(&ktext_mask));
 598                        pteval = hv_pte_set_mode(pteval,
 599                                                 HV_PTE_MODE_CACHE_TILE_L3);
 600                        pteval = ktext_set_nocache(pteval);
 601                } else if (ktext_nocache)
 602                        pteval = hv_pte_set_mode(pteval,
 603                                                 HV_PTE_MODE_UNCACHED);
 604                else
 605                        pteval = hv_pte_set_mode(pteval,
 606                                                 HV_PTE_MODE_CACHE_NO_L3);
 607                for (; address < (unsigned long)_einittext;
 608                     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
 609                        *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
 610        }
 611
 612        /* Set swapper_pgprot here so it is flushed to memory right away. */
 613        swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 614
 615        /*
 616         * Since we may be changing the caching of the stack and page
 617         * table itself, we invoke an assembly helper to do the
 618         * following steps:
 619         *
 620         *  - flush the cache so we start with an empty slate
 621         *  - install pgtables[] as the real page table
 622         *  - flush the TLB so the new page table takes effect
 623         */
 624        irqmask = interrupt_mask_save_mask();
 625        interrupt_mask_set_mask(-1ULL);
 626        rc = flush_and_install_context(__pa(pgtables),
 627                                       init_pgprot((unsigned long)pgtables),
 628                                       __get_cpu_var(current_asid),
 629                                       cpumask_bits(my_cpu_mask));
 630        interrupt_mask_restore_mask(irqmask);
 631        BUG_ON(rc != 0);
 632
 633        /* Copy the page table back to the normal swapper_pg_dir. */
 634        memcpy(pgd_base, pgtables, sizeof(pgtables));
 635        __install_page_table(pgd_base, __get_cpu_var(current_asid),
 636                             swapper_pgprot);
 637
 638        /*
 639         * We just read swapper_pgprot and thus brought it into the cache,
 640         * with its new home & caching mode.  When we start the other CPUs,
 641         * they're going to reference swapper_pgprot via their initial fake
 642         * VA-is-PA mappings, which cache everything locally.  At that
 643         * time, if it's in our cache with a conflicting home, the
 644         * simulator's coherence checker will complain.  So, flush it out
 645         * of our cache; we're not going to ever use it again anyway.
 646         */
 647        __insn_finv(&swapper_pgprot);
 648}
 649
 650/*
 651 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 652 * is valid. The argument is a physical page number.
 653 *
 654 * On Tile, the only valid things for which we can just hand out unchecked
 655 * PTEs are the kernel code and data.  Anything else might change its
 656 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 657 * Note that init_thread_union is released to heap soon after boot,
 658 * so we include it in the init data.
 659 *
 660 * For TILE-Gx, we might want to consider allowing access to PA
 661 * regions corresponding to PCI space, etc.
 662 */
 663int devmem_is_allowed(unsigned long pagenr)
 664{
 665        return pagenr < kaddr_to_pfn(_end) &&
 666                !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 667                  pagenr < kaddr_to_pfn(_einitdata)) &&
 668                !(pagenr >= kaddr_to_pfn(_sinittext) ||
 669                  pagenr <= kaddr_to_pfn(_einittext-1));
 670}
 671
 672#ifdef CONFIG_HIGHMEM
 673static void __init permanent_kmaps_init(pgd_t *pgd_base)
 674{
 675        pgd_t *pgd;
 676        pud_t *pud;
 677        pmd_t *pmd;
 678        pte_t *pte;
 679        unsigned long vaddr;
 680
 681        vaddr = PKMAP_BASE;
 682        page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 683
 684        pgd = swapper_pg_dir + pgd_index(vaddr);
 685        pud = pud_offset(pgd, vaddr);
 686        pmd = pmd_offset(pud, vaddr);
 687        pte = pte_offset_kernel(pmd, vaddr);
 688        pkmap_page_table = pte;
 689}
 690#endif /* CONFIG_HIGHMEM */
 691
 692
 693#ifndef CONFIG_64BIT
 694static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 695{
 696        unsigned long pfn;
 697        struct page *page = pfn_to_page(start);
 698
 699        for (pfn = start; pfn < end; ) {
 700                /* Optimize by freeing pages in large batches */
 701                int order = __ffs(pfn);
 702                int count, i;
 703                struct page *p;
 704
 705                if (order >= MAX_ORDER)
 706                        order = MAX_ORDER-1;
 707                count = 1 << order;
 708                while (pfn + count > end) {
 709                        count >>= 1;
 710                        --order;
 711                }
 712                for (p = page, i = 0; i < count; ++i, ++p) {
 713                        __ClearPageReserved(p);
 714                        /*
 715                         * Hacky direct set to avoid unnecessary
 716                         * lock take/release for EVERY page here.
 717                         */
 718                        p->_count.counter = 0;
 719                        p->_mapcount.counter = -1;
 720                }
 721                init_page_count(page);
 722                __free_pages(page, order);
 723                adjust_managed_page_count(page, count);
 724
 725                page += count;
 726                pfn += count;
 727        }
 728}
 729
 730static void __init set_non_bootmem_pages_init(void)
 731{
 732        struct zone *z;
 733        for_each_zone(z) {
 734                unsigned long start, end;
 735                int nid = z->zone_pgdat->node_id;
 736#ifdef CONFIG_HIGHMEM
 737                int idx = zone_idx(z);
 738#endif
 739
 740                start = z->zone_start_pfn;
 741                end = start + z->spanned_pages;
 742                start = max(start, node_free_pfn[nid]);
 743                start = max(start, max_low_pfn);
 744
 745#ifdef CONFIG_HIGHMEM
 746                if (idx == ZONE_HIGHMEM)
 747                        totalhigh_pages += z->spanned_pages;
 748#endif
 749                if (kdata_huge) {
 750                        unsigned long percpu_pfn = node_percpu_pfn[nid];
 751                        if (start < percpu_pfn && end > percpu_pfn)
 752                                end = percpu_pfn;
 753                }
 754#ifdef CONFIG_PCI
 755                if (start <= pci_reserve_start_pfn &&
 756                    end > pci_reserve_start_pfn) {
 757                        if (end > pci_reserve_end_pfn)
 758                                init_free_pfn_range(pci_reserve_end_pfn, end);
 759                        end = pci_reserve_start_pfn;
 760                }
 761#endif
 762                init_free_pfn_range(start, end);
 763        }
 764}
 765#endif
 766
 767/*
 768 * paging_init() sets up the page tables - note that all of lowmem is
 769 * already mapped by head.S.
 770 */
 771void __init paging_init(void)
 772{
 773#ifdef __tilegx__
 774        pud_t *pud;
 775#endif
 776        pgd_t *pgd_base = swapper_pg_dir;
 777
 778        kernel_physical_mapping_init(pgd_base);
 779
 780        /*
 781         * Fixed mappings, only the page table structure has to be
 782         * created - mappings will be set by set_fixmap():
 783         */
 784        page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
 785                              FIXADDR_TOP, pgd_base);
 786
 787#ifdef CONFIG_HIGHMEM
 788        permanent_kmaps_init(pgd_base);
 789#endif
 790
 791#ifdef __tilegx__
 792        /*
 793         * Since GX allocates just one pmd_t array worth of vmalloc space,
 794         * we go ahead and allocate it statically here, then share it
 795         * globally.  As a result we don't have to worry about any task
 796         * changing init_mm once we get up and running, and there's no
 797         * need for e.g. vmalloc_sync_all().
 798         */
 799        BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
 800        pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 801        assign_pmd(pud, alloc_pmd());
 802#endif
 803}
 804
 805
 806/*
 807 * Walk the kernel page tables and derive the page_home() from
 808 * the PTEs, so that set_pte() can properly validate the caching
 809 * of all PTEs it sees.
 810 */
 811void __init set_page_homes(void)
 812{
 813}
 814
 815static void __init set_max_mapnr_init(void)
 816{
 817#ifdef CONFIG_FLATMEM
 818        max_mapnr = max_low_pfn;
 819#endif
 820}
 821
 822void __init mem_init(void)
 823{
 824        int i;
 825#ifndef __tilegx__
 826        void *last;
 827#endif
 828
 829#ifdef CONFIG_FLATMEM
 830        BUG_ON(!mem_map);
 831#endif
 832
 833#ifdef CONFIG_HIGHMEM
 834        /* check that fixmap and pkmap do not overlap */
 835        if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 836                pr_err("fixmap and kmap areas overlap"
 837                       " - this will crash\n");
 838                pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 839                       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
 840                       FIXADDR_START);
 841                BUG();
 842        }
 843#endif
 844
 845        set_max_mapnr_init();
 846
 847        /* this will put all bootmem onto the freelists */
 848        free_all_bootmem();
 849
 850#ifndef CONFIG_64BIT
 851        /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 852        set_non_bootmem_pages_init();
 853#endif
 854
 855        mem_init_print_info(NULL);
 856
 857        /*
 858         * In debug mode, dump some interesting memory mappings.
 859         */
 860#ifdef CONFIG_HIGHMEM
 861        printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 862               FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 863        printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 864               PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 865#endif
 866#ifdef CONFIG_HUGEVMAP
 867        printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
 868               HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
 869#endif
 870        printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 871               _VMALLOC_START, _VMALLOC_END - 1);
 872#ifdef __tilegx__
 873        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 874                struct pglist_data *node = &node_data[i];
 875                if (node->node_present_pages) {
 876                        unsigned long start = (unsigned long)
 877                                pfn_to_kaddr(node->node_start_pfn);
 878                        unsigned long end = start +
 879                                (node->node_present_pages << PAGE_SHIFT);
 880                        printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 881                               i, start, end - 1);
 882                }
 883        }
 884#else
 885        last = high_memory;
 886        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 887                if ((unsigned long)vbase_map[i] != -1UL) {
 888                        printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 889                               i, (unsigned long) (vbase_map[i]),
 890                               (unsigned long) (last-1));
 891                        last = vbase_map[i];
 892                }
 893        }
 894#endif
 895
 896#ifndef __tilegx__
 897        /*
 898         * Convert from using one lock for all atomic operations to
 899         * one per cpu.
 900         */
 901        __init_atomic_per_cpu();
 902#endif
 903}
 904
 905/*
 906 * this is for the non-NUMA, single node SMP system case.
 907 * Specifically, in the case of x86, we will always add
 908 * memory to the highmem for now.
 909 */
 910#ifndef CONFIG_NEED_MULTIPLE_NODES
 911int arch_add_memory(u64 start, u64 size)
 912{
 913        struct pglist_data *pgdata = &contig_page_data;
 914        struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 915        unsigned long start_pfn = start >> PAGE_SHIFT;
 916        unsigned long nr_pages = size >> PAGE_SHIFT;
 917
 918        return __add_pages(zone, start_pfn, nr_pages);
 919}
 920
 921int remove_memory(u64 start, u64 size)
 922{
 923        return -EINVAL;
 924}
 925
 926#ifdef CONFIG_MEMORY_HOTREMOVE
 927int arch_remove_memory(u64 start, u64 size)
 928{
 929        /* TODO */
 930        return -EBUSY;
 931}
 932#endif
 933#endif
 934
 935struct kmem_cache *pgd_cache;
 936
 937void __init pgtable_cache_init(void)
 938{
 939        pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 940        if (!pgd_cache)
 941                panic("pgtable_cache_init(): Cannot create pgd cache");
 942}
 943
 944#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
 945/*
 946 * The __w1data area holds data that is only written during initialization,
 947 * and is read-only and thus freely cacheable thereafter.  Fix the page
 948 * table entries that cover that region accordingly.
 949 */
 950static void mark_w1data_ro(void)
 951{
 952        /* Loop over page table entries */
 953        unsigned long addr = (unsigned long)__w1data_begin;
 954        BUG_ON((addr & (PAGE_SIZE-1)) != 0);
 955        for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
 956                unsigned long pfn = kaddr_to_pfn((void *)addr);
 957                pte_t *ptep = virt_to_pte(NULL, addr);
 958                BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
 959                set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
 960        }
 961}
 962#endif
 963
 964#ifdef CONFIG_DEBUG_PAGEALLOC
 965static long __write_once initfree;
 966#else
 967static long __write_once initfree = 1;
 968#endif
 969
 970/* Select whether to free (1) or mark unusable (0) the __init pages. */
 971static int __init set_initfree(char *str)
 972{
 973        long val;
 974        if (strict_strtol(str, 0, &val) == 0) {
 975                initfree = val;
 976                pr_info("initfree: %s free init pages\n",
 977                        initfree ? "will" : "won't");
 978        }
 979        return 1;
 980}
 981__setup("initfree=", set_initfree);
 982
 983static void free_init_pages(char *what, unsigned long begin, unsigned long end)
 984{
 985        unsigned long addr = (unsigned long) begin;
 986
 987        if (kdata_huge && !initfree) {
 988                pr_warning("Warning: ignoring initfree=0:"
 989                           " incompatible with kdata=huge\n");
 990                initfree = 1;
 991        }
 992        end = (end + PAGE_SIZE - 1) & PAGE_MASK;
 993        local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
 994        for (addr = begin; addr < end; addr += PAGE_SIZE) {
 995                /*
 996                 * Note we just reset the home here directly in the
 997                 * page table.  We know this is safe because our caller
 998                 * just flushed the caches on all the other cpus,
 999                 * and they won't be touching any of these pages.
1000                 */
1001                int pfn = kaddr_to_pfn((void *)addr);
1002                struct page *page = pfn_to_page(pfn);
1003                pte_t *ptep = virt_to_pte(NULL, addr);
1004                if (!initfree) {
1005                        /*
1006                         * If debugging page accesses then do not free
1007                         * this memory but mark them not present - any
1008                         * buggy init-section access will create a
1009                         * kernel page fault:
1010                         */
1011                        pte_clear(&init_mm, addr, ptep);
1012                        continue;
1013                }
1014                if (pte_huge(*ptep))
1015                        BUG_ON(!kdata_huge);
1016                else
1017                        set_pte_at(&init_mm, addr, ptep,
1018                                   pfn_pte(pfn, PAGE_KERNEL));
1019                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1020                free_reserved_page(page);
1021        }
1022        pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1023}
1024
1025void free_initmem(void)
1026{
1027        const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1028
1029        /*
1030         * Evict the dirty initdata on the boot cpu, evict the w1data
1031         * wherever it's homed, and evict all the init code everywhere.
1032         * We are guaranteed that no one will touch the init pages any
1033         * more, and although other cpus may be touching the w1data,
1034         * we only actually change the caching on tile64, which won't
1035         * be keeping local copies in the other tiles' caches anyway.
1036         */
1037        homecache_evict(&cpu_cacheable_map);
1038
1039        /* Free the data pages that we won't use again after init. */
1040        free_init_pages("unused kernel data",
1041                        (unsigned long)_sinitdata,
1042                        (unsigned long)_einitdata);
1043
1044        /*
1045         * Free the pages mapped from 0xc0000000 that correspond to code
1046         * pages from MEM_SV_INTRPT that we won't use again after init.
1047         */
1048        free_init_pages("unused kernel text",
1049                        (unsigned long)_sinittext - text_delta,
1050                        (unsigned long)_einittext - text_delta);
1051
1052#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1053        /*
1054         * Upgrade the .w1data section to globally cached.
1055         * We don't do this on tilepro, since the cache architecture
1056         * pretty much makes it irrelevant, and in any case we end
1057         * up having racing issues with other tiles that may touch
1058         * the data after we flush the cache but before we update
1059         * the PTEs and flush the TLBs, causing sharer shootdowns
1060         * later.  Even though this is to clean data, it seems like
1061         * an unnecessary complication.
1062         */
1063        mark_w1data_ro();
1064#endif
1065
1066        /* Do a global TLB flush so everyone sees the changes. */
1067        flush_tlb_all();
1068}
1069