linux/arch/unicore32/mm/fault.c
<<
>>
Prefs
   1/*
   2 * linux/arch/unicore32/mm/fault.c
   3 *
   4 * Code specific to PKUnity SoC and UniCore ISA
   5 *
   6 * Copyright (C) 2001-2010 GUAN Xue-tao
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#include <linux/module.h>
  13#include <linux/signal.h>
  14#include <linux/mm.h>
  15#include <linux/hardirq.h>
  16#include <linux/init.h>
  17#include <linux/kprobes.h>
  18#include <linux/uaccess.h>
  19#include <linux/page-flags.h>
  20#include <linux/sched.h>
  21#include <linux/io.h>
  22
  23#include <asm/pgtable.h>
  24#include <asm/tlbflush.h>
  25
  26/*
  27 * Fault status register encodings.  We steal bit 31 for our own purposes.
  28 */
  29#define FSR_LNX_PF              (1 << 31)
  30
  31static inline int fsr_fs(unsigned int fsr)
  32{
  33        /* xyabcde will be abcde+xy */
  34        return (fsr & 31) + ((fsr & (3 << 5)) >> 5);
  35}
  36
  37/*
  38 * This is useful to dump out the page tables associated with
  39 * 'addr' in mm 'mm'.
  40 */
  41void show_pte(struct mm_struct *mm, unsigned long addr)
  42{
  43        pgd_t *pgd;
  44
  45        if (!mm)
  46                mm = &init_mm;
  47
  48        printk(KERN_ALERT "pgd = %p\n", mm->pgd);
  49        pgd = pgd_offset(mm, addr);
  50        printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
  51
  52        do {
  53                pmd_t *pmd;
  54                pte_t *pte;
  55
  56                if (pgd_none(*pgd))
  57                        break;
  58
  59                if (pgd_bad(*pgd)) {
  60                        printk("(bad)");
  61                        break;
  62                }
  63
  64                pmd = pmd_offset((pud_t *) pgd, addr);
  65                if (PTRS_PER_PMD != 1)
  66                        printk(", *pmd=%08lx", pmd_val(*pmd));
  67
  68                if (pmd_none(*pmd))
  69                        break;
  70
  71                if (pmd_bad(*pmd)) {
  72                        printk("(bad)");
  73                        break;
  74                }
  75
  76                /* We must not map this if we have highmem enabled */
  77                if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
  78                        break;
  79
  80                pte = pte_offset_map(pmd, addr);
  81                printk(", *pte=%08lx", pte_val(*pte));
  82                pte_unmap(pte);
  83        } while (0);
  84
  85        printk("\n");
  86}
  87
  88/*
  89 * Oops.  The kernel tried to access some page that wasn't present.
  90 */
  91static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
  92                unsigned int fsr, struct pt_regs *regs)
  93{
  94        /*
  95         * Are we prepared to handle this kernel fault?
  96         */
  97        if (fixup_exception(regs))
  98                return;
  99
 100        /*
 101         * No handler, we'll have to terminate things with extreme prejudice.
 102         */
 103        bust_spinlocks(1);
 104        printk(KERN_ALERT
 105               "Unable to handle kernel %s at virtual address %08lx\n",
 106               (addr < PAGE_SIZE) ? "NULL pointer dereference" :
 107               "paging request", addr);
 108
 109        show_pte(mm, addr);
 110        die("Oops", regs, fsr);
 111        bust_spinlocks(0);
 112        do_exit(SIGKILL);
 113}
 114
 115/*
 116 * Something tried to access memory that isn't in our memory map..
 117 * User mode accesses just cause a SIGSEGV
 118 */
 119static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
 120                unsigned int fsr, unsigned int sig, int code,
 121                struct pt_regs *regs)
 122{
 123        struct siginfo si;
 124
 125        tsk->thread.address = addr;
 126        tsk->thread.error_code = fsr;
 127        tsk->thread.trap_no = 14;
 128        si.si_signo = sig;
 129        si.si_errno = 0;
 130        si.si_code = code;
 131        si.si_addr = (void __user *)addr;
 132        force_sig_info(sig, &si, tsk);
 133}
 134
 135void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 136{
 137        struct task_struct *tsk = current;
 138        struct mm_struct *mm = tsk->active_mm;
 139
 140        /*
 141         * If we are in kernel mode at this point, we
 142         * have no context to handle this fault with.
 143         */
 144        if (user_mode(regs))
 145                __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
 146        else
 147                __do_kernel_fault(mm, addr, fsr, regs);
 148}
 149
 150#define VM_FAULT_BADMAP         0x010000
 151#define VM_FAULT_BADACCESS      0x020000
 152
 153/*
 154 * Check that the permissions on the VMA allow for the fault which occurred.
 155 * If we encountered a write fault, we must have write permission, otherwise
 156 * we allow any permission.
 157 */
 158static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
 159{
 160        unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
 161
 162        if (!(fsr ^ 0x12))      /* write? */
 163                mask = VM_WRITE;
 164        if (fsr & FSR_LNX_PF)
 165                mask = VM_EXEC;
 166
 167        return vma->vm_flags & mask ? false : true;
 168}
 169
 170static int __do_pf(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
 171                unsigned int flags, struct task_struct *tsk)
 172{
 173        struct vm_area_struct *vma;
 174        int fault;
 175
 176        vma = find_vma(mm, addr);
 177        fault = VM_FAULT_BADMAP;
 178        if (unlikely(!vma))
 179                goto out;
 180        if (unlikely(vma->vm_start > addr))
 181                goto check_stack;
 182
 183        /*
 184         * Ok, we have a good vm_area for this
 185         * memory access, so we can handle it.
 186         */
 187good_area:
 188        if (access_error(fsr, vma)) {
 189                fault = VM_FAULT_BADACCESS;
 190                goto out;
 191        }
 192
 193        /*
 194         * If for any reason at all we couldn't handle the fault, make
 195         * sure we exit gracefully rather than endlessly redo the fault.
 196         */
 197        fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
 198        return fault;
 199
 200check_stack:
 201        if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 202                goto good_area;
 203out:
 204        return fault;
 205}
 206
 207static int do_pf(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 208{
 209        struct task_struct *tsk;
 210        struct mm_struct *mm;
 211        int fault, sig, code;
 212        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
 213                                 ((!(fsr ^ 0x12)) ? FAULT_FLAG_WRITE : 0);
 214
 215        tsk = current;
 216        mm = tsk->mm;
 217
 218        /*
 219         * If we're in an interrupt or have no user
 220         * context, we must not take the fault..
 221         */
 222        if (in_atomic() || !mm)
 223                goto no_context;
 224
 225        /*
 226         * As per x86, we may deadlock here.  However, since the kernel only
 227         * validly references user space from well defined areas of the code,
 228         * we can bug out early if this is from code which shouldn't.
 229         */
 230        if (!down_read_trylock(&mm->mmap_sem)) {
 231                if (!user_mode(regs)
 232                    && !search_exception_tables(regs->UCreg_pc))
 233                        goto no_context;
 234retry:
 235                down_read(&mm->mmap_sem);
 236        } else {
 237                /*
 238                 * The above down_read_trylock() might have succeeded in
 239                 * which case, we'll have missed the might_sleep() from
 240                 * down_read()
 241                 */
 242                might_sleep();
 243#ifdef CONFIG_DEBUG_VM
 244                if (!user_mode(regs) &&
 245                    !search_exception_tables(regs->UCreg_pc))
 246                        goto no_context;
 247#endif
 248        }
 249
 250        fault = __do_pf(mm, addr, fsr, flags, tsk);
 251
 252        /* If we need to retry but a fatal signal is pending, handle the
 253         * signal first. We do not need to release the mmap_sem because
 254         * it would already be released in __lock_page_or_retry in
 255         * mm/filemap.c. */
 256        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 257                return 0;
 258
 259        if (!(fault & VM_FAULT_ERROR) && (flags & FAULT_FLAG_ALLOW_RETRY)) {
 260                if (fault & VM_FAULT_MAJOR)
 261                        tsk->maj_flt++;
 262                else
 263                        tsk->min_flt++;
 264                if (fault & VM_FAULT_RETRY) {
 265                        /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
 266                        * of starvation. */
 267                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 268                        goto retry;
 269                }
 270        }
 271
 272        up_read(&mm->mmap_sem);
 273
 274        /*
 275         * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
 276         */
 277        if (likely(!(fault &
 278               (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
 279                return 0;
 280
 281        if (fault & VM_FAULT_OOM) {
 282                /*
 283                 * We ran out of memory, call the OOM killer, and return to
 284                 * userspace (which will retry the fault, or kill us if we
 285                 * got oom-killed)
 286                 */
 287                pagefault_out_of_memory();
 288                return 0;
 289        }
 290
 291        /*
 292         * If we are in kernel mode at this point, we
 293         * have no context to handle this fault with.
 294         */
 295        if (!user_mode(regs))
 296                goto no_context;
 297
 298        if (fault & VM_FAULT_SIGBUS) {
 299                /*
 300                 * We had some memory, but were unable to
 301                 * successfully fix up this page fault.
 302                 */
 303                sig = SIGBUS;
 304                code = BUS_ADRERR;
 305        } else {
 306                /*
 307                 * Something tried to access memory that
 308                 * isn't in our memory map..
 309                 */
 310                sig = SIGSEGV;
 311                code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR;
 312        }
 313
 314        __do_user_fault(tsk, addr, fsr, sig, code, regs);
 315        return 0;
 316
 317no_context:
 318        __do_kernel_fault(mm, addr, fsr, regs);
 319        return 0;
 320}
 321
 322/*
 323 * First Level Translation Fault Handler
 324 *
 325 * We enter here because the first level page table doesn't contain
 326 * a valid entry for the address.
 327 *
 328 * If the address is in kernel space (>= TASK_SIZE), then we are
 329 * probably faulting in the vmalloc() area.
 330 *
 331 * If the init_task's first level page tables contains the relevant
 332 * entry, we copy the it to this task.  If not, we send the process
 333 * a signal, fixup the exception, or oops the kernel.
 334 *
 335 * NOTE! We MUST NOT take any locks for this case. We may be in an
 336 * interrupt or a critical region, and should only copy the information
 337 * from the master page table, nothing more.
 338 */
 339static int do_ifault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 340{
 341        unsigned int index;
 342        pgd_t *pgd, *pgd_k;
 343        pmd_t *pmd, *pmd_k;
 344
 345        if (addr < TASK_SIZE)
 346                return do_pf(addr, fsr, regs);
 347
 348        if (user_mode(regs))
 349                goto bad_area;
 350
 351        index = pgd_index(addr);
 352
 353        pgd = cpu_get_pgd() + index;
 354        pgd_k = init_mm.pgd + index;
 355
 356        if (pgd_none(*pgd_k))
 357                goto bad_area;
 358
 359        pmd_k = pmd_offset((pud_t *) pgd_k, addr);
 360        pmd = pmd_offset((pud_t *) pgd, addr);
 361
 362        if (pmd_none(*pmd_k))
 363                goto bad_area;
 364
 365        set_pmd(pmd, *pmd_k);
 366        flush_pmd_entry(pmd);
 367        return 0;
 368
 369bad_area:
 370        do_bad_area(addr, fsr, regs);
 371        return 0;
 372}
 373
 374/*
 375 * This abort handler always returns "fault".
 376 */
 377static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 378{
 379        return 1;
 380}
 381
 382static int do_good(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
 383{
 384        unsigned int res1, res2;
 385
 386        printk("dabt exception but no error!\n");
 387
 388        __asm__ __volatile__(
 389                        "mff %0,f0\n"
 390                        "mff %1,f1\n"
 391                        : "=r"(res1), "=r"(res2)
 392                        :
 393                        : "memory");
 394
 395        printk(KERN_EMERG "r0 :%08x  r1 :%08x\n", res1, res2);
 396        panic("shut up\n");
 397        return 0;
 398}
 399
 400static struct fsr_info {
 401        int (*fn) (unsigned long addr, unsigned int fsr, struct pt_regs *regs);
 402        int sig;
 403        int code;
 404        const char *name;
 405} fsr_info[] = {
 406        /*
 407         * The following are the standard Unicore-I and UniCore-II aborts.
 408         */
 409        { do_good,      SIGBUS,  0,             "no error"              },
 410        { do_bad,       SIGBUS,  BUS_ADRALN,    "alignment exception"   },
 411        { do_bad,       SIGBUS,  BUS_OBJERR,    "external exception"    },
 412        { do_bad,       SIGBUS,  0,             "burst operation"       },
 413        { do_bad,       SIGBUS,  0,             "unknown 00100"         },
 414        { do_ifault,    SIGSEGV, SEGV_MAPERR,   "2nd level pt non-exist"},
 415        { do_bad,       SIGBUS,  0,             "2nd lvl large pt non-exist" },
 416        { do_bad,       SIGBUS,  0,             "invalid pte"           },
 417        { do_pf,        SIGSEGV, SEGV_MAPERR,   "page miss"             },
 418        { do_bad,       SIGBUS,  0,             "middle page miss"      },
 419        { do_bad,       SIGBUS,  0,             "large page miss"       },
 420        { do_pf,        SIGSEGV, SEGV_MAPERR,   "super page (section) miss" },
 421        { do_bad,       SIGBUS,  0,             "unknown 01100"         },
 422        { do_bad,       SIGBUS,  0,             "unknown 01101"         },
 423        { do_bad,       SIGBUS,  0,             "unknown 01110"         },
 424        { do_bad,       SIGBUS,  0,             "unknown 01111"         },
 425        { do_bad,       SIGBUS,  0,             "addr: up 3G or IO"     },
 426        { do_pf,        SIGSEGV, SEGV_ACCERR,   "read unreadable addr"  },
 427        { do_pf,        SIGSEGV, SEGV_ACCERR,   "write unwriteable addr"},
 428        { do_pf,        SIGSEGV, SEGV_ACCERR,   "exec unexecutable addr"},
 429        { do_bad,       SIGBUS,  0,             "unknown 10100"         },
 430        { do_bad,       SIGBUS,  0,             "unknown 10101"         },
 431        { do_bad,       SIGBUS,  0,             "unknown 10110"         },
 432        { do_bad,       SIGBUS,  0,             "unknown 10111"         },
 433        { do_bad,       SIGBUS,  0,             "unknown 11000"         },
 434        { do_bad,       SIGBUS,  0,             "unknown 11001"         },
 435        { do_bad,       SIGBUS,  0,             "unknown 11010"         },
 436        { do_bad,       SIGBUS,  0,             "unknown 11011"         },
 437        { do_bad,       SIGBUS,  0,             "unknown 11100"         },
 438        { do_bad,       SIGBUS,  0,             "unknown 11101"         },
 439        { do_bad,       SIGBUS,  0,             "unknown 11110"         },
 440        { do_bad,       SIGBUS,  0,             "unknown 11111"         }
 441};
 442
 443void __init hook_fault_code(int nr,
 444                int (*fn) (unsigned long, unsigned int, struct pt_regs *),
 445                int sig, int code, const char *name)
 446{
 447        if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
 448                BUG();
 449
 450        fsr_info[nr].fn   = fn;
 451        fsr_info[nr].sig  = sig;
 452        fsr_info[nr].code = code;
 453        fsr_info[nr].name = name;
 454}
 455
 456/*
 457 * Dispatch a data abort to the relevant handler.
 458 */
 459asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr,
 460                        struct pt_regs *regs)
 461{
 462        const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
 463        struct siginfo info;
 464
 465        if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
 466                return;
 467
 468        printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
 469               inf->name, fsr, addr);
 470
 471        info.si_signo = inf->sig;
 472        info.si_errno = 0;
 473        info.si_code = inf->code;
 474        info.si_addr = (void __user *)addr;
 475        uc32_notify_die("", regs, &info, fsr, 0);
 476}
 477
 478asmlinkage void do_PrefetchAbort(unsigned long addr,
 479                        unsigned int ifsr, struct pt_regs *regs)
 480{
 481        const struct fsr_info *inf = fsr_info + fsr_fs(ifsr);
 482        struct siginfo info;
 483
 484        if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
 485                return;
 486
 487        printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
 488               inf->name, ifsr, addr);
 489
 490        info.si_signo = inf->sig;
 491        info.si_errno = 0;
 492        info.si_code = inf->code;
 493        info.si_addr = (void __user *)addr;
 494        uc32_notify_die("", regs, &info, ifsr, 0);
 495}
 496