linux/arch/x86/kernel/cpu/perf_event.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/module.h>
  21#include <linux/kdebug.h>
  22#include <linux/sched.h>
  23#include <linux/uaccess.h>
  24#include <linux/slab.h>
  25#include <linux/cpu.h>
  26#include <linux/bitops.h>
  27#include <linux/device.h>
  28
  29#include <asm/apic.h>
  30#include <asm/stacktrace.h>
  31#include <asm/nmi.h>
  32#include <asm/smp.h>
  33#include <asm/alternative.h>
  34#include <asm/timer.h>
  35#include <asm/desc.h>
  36#include <asm/ldt.h>
  37
  38#include "perf_event.h"
  39
  40struct x86_pmu x86_pmu __read_mostly;
  41
  42DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  43        .enabled = 1,
  44};
  45
  46u64 __read_mostly hw_cache_event_ids
  47                                [PERF_COUNT_HW_CACHE_MAX]
  48                                [PERF_COUNT_HW_CACHE_OP_MAX]
  49                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  50u64 __read_mostly hw_cache_extra_regs
  51                                [PERF_COUNT_HW_CACHE_MAX]
  52                                [PERF_COUNT_HW_CACHE_OP_MAX]
  53                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  54
  55/*
  56 * Propagate event elapsed time into the generic event.
  57 * Can only be executed on the CPU where the event is active.
  58 * Returns the delta events processed.
  59 */
  60u64 x86_perf_event_update(struct perf_event *event)
  61{
  62        struct hw_perf_event *hwc = &event->hw;
  63        int shift = 64 - x86_pmu.cntval_bits;
  64        u64 prev_raw_count, new_raw_count;
  65        int idx = hwc->idx;
  66        s64 delta;
  67
  68        if (idx == INTEL_PMC_IDX_FIXED_BTS)
  69                return 0;
  70
  71        /*
  72         * Careful: an NMI might modify the previous event value.
  73         *
  74         * Our tactic to handle this is to first atomically read and
  75         * exchange a new raw count - then add that new-prev delta
  76         * count to the generic event atomically:
  77         */
  78again:
  79        prev_raw_count = local64_read(&hwc->prev_count);
  80        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  81
  82        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  83                                        new_raw_count) != prev_raw_count)
  84                goto again;
  85
  86        /*
  87         * Now we have the new raw value and have updated the prev
  88         * timestamp already. We can now calculate the elapsed delta
  89         * (event-)time and add that to the generic event.
  90         *
  91         * Careful, not all hw sign-extends above the physical width
  92         * of the count.
  93         */
  94        delta = (new_raw_count << shift) - (prev_raw_count << shift);
  95        delta >>= shift;
  96
  97        local64_add(delta, &event->count);
  98        local64_sub(delta, &hwc->period_left);
  99
 100        return new_raw_count;
 101}
 102
 103/*
 104 * Find and validate any extra registers to set up.
 105 */
 106static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 107{
 108        struct hw_perf_event_extra *reg;
 109        struct extra_reg *er;
 110
 111        reg = &event->hw.extra_reg;
 112
 113        if (!x86_pmu.extra_regs)
 114                return 0;
 115
 116        for (er = x86_pmu.extra_regs; er->msr; er++) {
 117                if (er->event != (config & er->config_mask))
 118                        continue;
 119                if (event->attr.config1 & ~er->valid_mask)
 120                        return -EINVAL;
 121
 122                reg->idx = er->idx;
 123                reg->config = event->attr.config1;
 124                reg->reg = er->msr;
 125                break;
 126        }
 127        return 0;
 128}
 129
 130static atomic_t active_events;
 131static DEFINE_MUTEX(pmc_reserve_mutex);
 132
 133#ifdef CONFIG_X86_LOCAL_APIC
 134
 135static bool reserve_pmc_hardware(void)
 136{
 137        int i;
 138
 139        for (i = 0; i < x86_pmu.num_counters; i++) {
 140                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 141                        goto perfctr_fail;
 142        }
 143
 144        for (i = 0; i < x86_pmu.num_counters; i++) {
 145                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 146                        goto eventsel_fail;
 147        }
 148
 149        return true;
 150
 151eventsel_fail:
 152        for (i--; i >= 0; i--)
 153                release_evntsel_nmi(x86_pmu_config_addr(i));
 154
 155        i = x86_pmu.num_counters;
 156
 157perfctr_fail:
 158        for (i--; i >= 0; i--)
 159                release_perfctr_nmi(x86_pmu_event_addr(i));
 160
 161        return false;
 162}
 163
 164static void release_pmc_hardware(void)
 165{
 166        int i;
 167
 168        for (i = 0; i < x86_pmu.num_counters; i++) {
 169                release_perfctr_nmi(x86_pmu_event_addr(i));
 170                release_evntsel_nmi(x86_pmu_config_addr(i));
 171        }
 172}
 173
 174#else
 175
 176static bool reserve_pmc_hardware(void) { return true; }
 177static void release_pmc_hardware(void) {}
 178
 179#endif
 180
 181static bool check_hw_exists(void)
 182{
 183        u64 val, val_fail, val_new= ~0;
 184        int i, reg, reg_fail, ret = 0;
 185        int bios_fail = 0;
 186
 187        /*
 188         * Check to see if the BIOS enabled any of the counters, if so
 189         * complain and bail.
 190         */
 191        for (i = 0; i < x86_pmu.num_counters; i++) {
 192                reg = x86_pmu_config_addr(i);
 193                ret = rdmsrl_safe(reg, &val);
 194                if (ret)
 195                        goto msr_fail;
 196                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 197                        bios_fail = 1;
 198                        val_fail = val;
 199                        reg_fail = reg;
 200                }
 201        }
 202
 203        if (x86_pmu.num_counters_fixed) {
 204                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 205                ret = rdmsrl_safe(reg, &val);
 206                if (ret)
 207                        goto msr_fail;
 208                for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 209                        if (val & (0x03 << i*4)) {
 210                                bios_fail = 1;
 211                                val_fail = val;
 212                                reg_fail = reg;
 213                        }
 214                }
 215        }
 216
 217        /*
 218         * Read the current value, change it and read it back to see if it
 219         * matches, this is needed to detect certain hardware emulators
 220         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 221         */
 222        reg = x86_pmu_event_addr(0);
 223        if (rdmsrl_safe(reg, &val))
 224                goto msr_fail;
 225        val ^= 0xffffUL;
 226        ret = wrmsrl_safe(reg, val);
 227        ret |= rdmsrl_safe(reg, &val_new);
 228        if (ret || val != val_new)
 229                goto msr_fail;
 230
 231        /*
 232         * We still allow the PMU driver to operate:
 233         */
 234        if (bios_fail) {
 235                printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
 236                printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
 237        }
 238
 239        return true;
 240
 241msr_fail:
 242        printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
 243        printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
 244
 245        return false;
 246}
 247
 248static void hw_perf_event_destroy(struct perf_event *event)
 249{
 250        if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
 251                release_pmc_hardware();
 252                release_ds_buffers();
 253                mutex_unlock(&pmc_reserve_mutex);
 254        }
 255}
 256
 257static inline int x86_pmu_initialized(void)
 258{
 259        return x86_pmu.handle_irq != NULL;
 260}
 261
 262static inline int
 263set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 264{
 265        struct perf_event_attr *attr = &event->attr;
 266        unsigned int cache_type, cache_op, cache_result;
 267        u64 config, val;
 268
 269        config = attr->config;
 270
 271        cache_type = (config >>  0) & 0xff;
 272        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 273                return -EINVAL;
 274
 275        cache_op = (config >>  8) & 0xff;
 276        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 277                return -EINVAL;
 278
 279        cache_result = (config >> 16) & 0xff;
 280        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 281                return -EINVAL;
 282
 283        val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 284
 285        if (val == 0)
 286                return -ENOENT;
 287
 288        if (val == -1)
 289                return -EINVAL;
 290
 291        hwc->config |= val;
 292        attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 293        return x86_pmu_extra_regs(val, event);
 294}
 295
 296int x86_setup_perfctr(struct perf_event *event)
 297{
 298        struct perf_event_attr *attr = &event->attr;
 299        struct hw_perf_event *hwc = &event->hw;
 300        u64 config;
 301
 302        if (!is_sampling_event(event)) {
 303                hwc->sample_period = x86_pmu.max_period;
 304                hwc->last_period = hwc->sample_period;
 305                local64_set(&hwc->period_left, hwc->sample_period);
 306        } else {
 307                /*
 308                 * If we have a PMU initialized but no APIC
 309                 * interrupts, we cannot sample hardware
 310                 * events (user-space has to fall back and
 311                 * sample via a hrtimer based software event):
 312                 */
 313                if (!x86_pmu.apic)
 314                        return -EOPNOTSUPP;
 315        }
 316
 317        if (attr->type == PERF_TYPE_RAW)
 318                return x86_pmu_extra_regs(event->attr.config, event);
 319
 320        if (attr->type == PERF_TYPE_HW_CACHE)
 321                return set_ext_hw_attr(hwc, event);
 322
 323        if (attr->config >= x86_pmu.max_events)
 324                return -EINVAL;
 325
 326        /*
 327         * The generic map:
 328         */
 329        config = x86_pmu.event_map(attr->config);
 330
 331        if (config == 0)
 332                return -ENOENT;
 333
 334        if (config == -1LL)
 335                return -EINVAL;
 336
 337        /*
 338         * Branch tracing:
 339         */
 340        if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
 341            !attr->freq && hwc->sample_period == 1) {
 342                /* BTS is not supported by this architecture. */
 343                if (!x86_pmu.bts_active)
 344                        return -EOPNOTSUPP;
 345
 346                /* BTS is currently only allowed for user-mode. */
 347                if (!attr->exclude_kernel)
 348                        return -EOPNOTSUPP;
 349        }
 350
 351        hwc->config |= config;
 352
 353        return 0;
 354}
 355
 356/*
 357 * check that branch_sample_type is compatible with
 358 * settings needed for precise_ip > 1 which implies
 359 * using the LBR to capture ALL taken branches at the
 360 * priv levels of the measurement
 361 */
 362static inline int precise_br_compat(struct perf_event *event)
 363{
 364        u64 m = event->attr.branch_sample_type;
 365        u64 b = 0;
 366
 367        /* must capture all branches */
 368        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 369                return 0;
 370
 371        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 372
 373        if (!event->attr.exclude_user)
 374                b |= PERF_SAMPLE_BRANCH_USER;
 375
 376        if (!event->attr.exclude_kernel)
 377                b |= PERF_SAMPLE_BRANCH_KERNEL;
 378
 379        /*
 380         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 381         */
 382
 383        return m == b;
 384}
 385
 386int x86_pmu_hw_config(struct perf_event *event)
 387{
 388        if (event->attr.precise_ip) {
 389                int precise = 0;
 390
 391                /* Support for constant skid */
 392                if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 393                        precise++;
 394
 395                        /* Support for IP fixup */
 396                        if (x86_pmu.lbr_nr)
 397                                precise++;
 398                }
 399
 400                if (event->attr.precise_ip > precise)
 401                        return -EOPNOTSUPP;
 402                /*
 403                 * check that PEBS LBR correction does not conflict with
 404                 * whatever the user is asking with attr->branch_sample_type
 405                 */
 406                if (event->attr.precise_ip > 1 &&
 407                    x86_pmu.intel_cap.pebs_format < 2) {
 408                        u64 *br_type = &event->attr.branch_sample_type;
 409
 410                        if (has_branch_stack(event)) {
 411                                if (!precise_br_compat(event))
 412                                        return -EOPNOTSUPP;
 413
 414                                /* branch_sample_type is compatible */
 415
 416                        } else {
 417                                /*
 418                                 * user did not specify  branch_sample_type
 419                                 *
 420                                 * For PEBS fixups, we capture all
 421                                 * the branches at the priv level of the
 422                                 * event.
 423                                 */
 424                                *br_type = PERF_SAMPLE_BRANCH_ANY;
 425
 426                                if (!event->attr.exclude_user)
 427                                        *br_type |= PERF_SAMPLE_BRANCH_USER;
 428
 429                                if (!event->attr.exclude_kernel)
 430                                        *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 431                        }
 432                }
 433        }
 434
 435        /*
 436         * Generate PMC IRQs:
 437         * (keep 'enabled' bit clear for now)
 438         */
 439        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 440
 441        /*
 442         * Count user and OS events unless requested not to
 443         */
 444        if (!event->attr.exclude_user)
 445                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 446        if (!event->attr.exclude_kernel)
 447                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 448
 449        if (event->attr.type == PERF_TYPE_RAW)
 450                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 451
 452        return x86_setup_perfctr(event);
 453}
 454
 455/*
 456 * Setup the hardware configuration for a given attr_type
 457 */
 458static int __x86_pmu_event_init(struct perf_event *event)
 459{
 460        int err;
 461
 462        if (!x86_pmu_initialized())
 463                return -ENODEV;
 464
 465        err = 0;
 466        if (!atomic_inc_not_zero(&active_events)) {
 467                mutex_lock(&pmc_reserve_mutex);
 468                if (atomic_read(&active_events) == 0) {
 469                        if (!reserve_pmc_hardware())
 470                                err = -EBUSY;
 471                        else
 472                                reserve_ds_buffers();
 473                }
 474                if (!err)
 475                        atomic_inc(&active_events);
 476                mutex_unlock(&pmc_reserve_mutex);
 477        }
 478        if (err)
 479                return err;
 480
 481        event->destroy = hw_perf_event_destroy;
 482
 483        event->hw.idx = -1;
 484        event->hw.last_cpu = -1;
 485        event->hw.last_tag = ~0ULL;
 486
 487        /* mark unused */
 488        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 489        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 490
 491        return x86_pmu.hw_config(event);
 492}
 493
 494void x86_pmu_disable_all(void)
 495{
 496        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 497        int idx;
 498
 499        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 500                u64 val;
 501
 502                if (!test_bit(idx, cpuc->active_mask))
 503                        continue;
 504                rdmsrl(x86_pmu_config_addr(idx), val);
 505                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 506                        continue;
 507                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 508                wrmsrl(x86_pmu_config_addr(idx), val);
 509        }
 510}
 511
 512static void x86_pmu_disable(struct pmu *pmu)
 513{
 514        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 515
 516        if (!x86_pmu_initialized())
 517                return;
 518
 519        if (!cpuc->enabled)
 520                return;
 521
 522        cpuc->n_added = 0;
 523        cpuc->enabled = 0;
 524        barrier();
 525
 526        x86_pmu.disable_all();
 527}
 528
 529void x86_pmu_enable_all(int added)
 530{
 531        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 532        int idx;
 533
 534        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 535                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 536
 537                if (!test_bit(idx, cpuc->active_mask))
 538                        continue;
 539
 540                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 541        }
 542}
 543
 544static struct pmu pmu;
 545
 546static inline int is_x86_event(struct perf_event *event)
 547{
 548        return event->pmu == &pmu;
 549}
 550
 551/*
 552 * Event scheduler state:
 553 *
 554 * Assign events iterating over all events and counters, beginning
 555 * with events with least weights first. Keep the current iterator
 556 * state in struct sched_state.
 557 */
 558struct sched_state {
 559        int     weight;
 560        int     event;          /* event index */
 561        int     counter;        /* counter index */
 562        int     unassigned;     /* number of events to be assigned left */
 563        unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 564};
 565
 566/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 567#define SCHED_STATES_MAX        2
 568
 569struct perf_sched {
 570        int                     max_weight;
 571        int                     max_events;
 572        struct perf_event       **events;
 573        struct sched_state      state;
 574        int                     saved_states;
 575        struct sched_state      saved[SCHED_STATES_MAX];
 576};
 577
 578/*
 579 * Initialize interator that runs through all events and counters.
 580 */
 581static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
 582                            int num, int wmin, int wmax)
 583{
 584        int idx;
 585
 586        memset(sched, 0, sizeof(*sched));
 587        sched->max_events       = num;
 588        sched->max_weight       = wmax;
 589        sched->events           = events;
 590
 591        for (idx = 0; idx < num; idx++) {
 592                if (events[idx]->hw.constraint->weight == wmin)
 593                        break;
 594        }
 595
 596        sched->state.event      = idx;          /* start with min weight */
 597        sched->state.weight     = wmin;
 598        sched->state.unassigned = num;
 599}
 600
 601static void perf_sched_save_state(struct perf_sched *sched)
 602{
 603        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 604                return;
 605
 606        sched->saved[sched->saved_states] = sched->state;
 607        sched->saved_states++;
 608}
 609
 610static bool perf_sched_restore_state(struct perf_sched *sched)
 611{
 612        if (!sched->saved_states)
 613                return false;
 614
 615        sched->saved_states--;
 616        sched->state = sched->saved[sched->saved_states];
 617
 618        /* continue with next counter: */
 619        clear_bit(sched->state.counter++, sched->state.used);
 620
 621        return true;
 622}
 623
 624/*
 625 * Select a counter for the current event to schedule. Return true on
 626 * success.
 627 */
 628static bool __perf_sched_find_counter(struct perf_sched *sched)
 629{
 630        struct event_constraint *c;
 631        int idx;
 632
 633        if (!sched->state.unassigned)
 634                return false;
 635
 636        if (sched->state.event >= sched->max_events)
 637                return false;
 638
 639        c = sched->events[sched->state.event]->hw.constraint;
 640        /* Prefer fixed purpose counters */
 641        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 642                idx = INTEL_PMC_IDX_FIXED;
 643                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 644                        if (!__test_and_set_bit(idx, sched->state.used))
 645                                goto done;
 646                }
 647        }
 648        /* Grab the first unused counter starting with idx */
 649        idx = sched->state.counter;
 650        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 651                if (!__test_and_set_bit(idx, sched->state.used))
 652                        goto done;
 653        }
 654
 655        return false;
 656
 657done:
 658        sched->state.counter = idx;
 659
 660        if (c->overlap)
 661                perf_sched_save_state(sched);
 662
 663        return true;
 664}
 665
 666static bool perf_sched_find_counter(struct perf_sched *sched)
 667{
 668        while (!__perf_sched_find_counter(sched)) {
 669                if (!perf_sched_restore_state(sched))
 670                        return false;
 671        }
 672
 673        return true;
 674}
 675
 676/*
 677 * Go through all unassigned events and find the next one to schedule.
 678 * Take events with the least weight first. Return true on success.
 679 */
 680static bool perf_sched_next_event(struct perf_sched *sched)
 681{
 682        struct event_constraint *c;
 683
 684        if (!sched->state.unassigned || !--sched->state.unassigned)
 685                return false;
 686
 687        do {
 688                /* next event */
 689                sched->state.event++;
 690                if (sched->state.event >= sched->max_events) {
 691                        /* next weight */
 692                        sched->state.event = 0;
 693                        sched->state.weight++;
 694                        if (sched->state.weight > sched->max_weight)
 695                                return false;
 696                }
 697                c = sched->events[sched->state.event]->hw.constraint;
 698        } while (c->weight != sched->state.weight);
 699
 700        sched->state.counter = 0;       /* start with first counter */
 701
 702        return true;
 703}
 704
 705/*
 706 * Assign a counter for each event.
 707 */
 708int perf_assign_events(struct perf_event **events, int n,
 709                        int wmin, int wmax, int *assign)
 710{
 711        struct perf_sched sched;
 712
 713        perf_sched_init(&sched, events, n, wmin, wmax);
 714
 715        do {
 716                if (!perf_sched_find_counter(&sched))
 717                        break;  /* failed */
 718                if (assign)
 719                        assign[sched.state.event] = sched.state.counter;
 720        } while (perf_sched_next_event(&sched));
 721
 722        return sched.state.unassigned;
 723}
 724
 725int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 726{
 727        struct event_constraint *c;
 728        unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 729        struct perf_event *e;
 730        int i, wmin, wmax, num = 0;
 731        struct hw_perf_event *hwc;
 732
 733        bitmap_zero(used_mask, X86_PMC_IDX_MAX);
 734
 735        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 736                hwc = &cpuc->event_list[i]->hw;
 737                c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
 738                hwc->constraint = c;
 739
 740                wmin = min(wmin, c->weight);
 741                wmax = max(wmax, c->weight);
 742        }
 743
 744        /*
 745         * fastpath, try to reuse previous register
 746         */
 747        for (i = 0; i < n; i++) {
 748                hwc = &cpuc->event_list[i]->hw;
 749                c = hwc->constraint;
 750
 751                /* never assigned */
 752                if (hwc->idx == -1)
 753                        break;
 754
 755                /* constraint still honored */
 756                if (!test_bit(hwc->idx, c->idxmsk))
 757                        break;
 758
 759                /* not already used */
 760                if (test_bit(hwc->idx, used_mask))
 761                        break;
 762
 763                __set_bit(hwc->idx, used_mask);
 764                if (assign)
 765                        assign[i] = hwc->idx;
 766        }
 767
 768        /* slow path */
 769        if (i != n)
 770                num = perf_assign_events(cpuc->event_list, n, wmin,
 771                                         wmax, assign);
 772
 773        /*
 774         * Mark the event as committed, so we do not put_constraint()
 775         * in case new events are added and fail scheduling.
 776         */
 777        if (!num && assign) {
 778                for (i = 0; i < n; i++) {
 779                        e = cpuc->event_list[i];
 780                        e->hw.flags |= PERF_X86_EVENT_COMMITTED;
 781                }
 782        }
 783        /*
 784         * scheduling failed or is just a simulation,
 785         * free resources if necessary
 786         */
 787        if (!assign || num) {
 788                for (i = 0; i < n; i++) {
 789                        e = cpuc->event_list[i];
 790                        /*
 791                         * do not put_constraint() on comitted events,
 792                         * because they are good to go
 793                         */
 794                        if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
 795                                continue;
 796
 797                        if (x86_pmu.put_event_constraints)
 798                                x86_pmu.put_event_constraints(cpuc, e);
 799                }
 800        }
 801        return num ? -EINVAL : 0;
 802}
 803
 804/*
 805 * dogrp: true if must collect siblings events (group)
 806 * returns total number of events and error code
 807 */
 808static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
 809{
 810        struct perf_event *event;
 811        int n, max_count;
 812
 813        max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
 814
 815        /* current number of events already accepted */
 816        n = cpuc->n_events;
 817
 818        if (is_x86_event(leader)) {
 819                if (n >= max_count)
 820                        return -EINVAL;
 821                cpuc->event_list[n] = leader;
 822                n++;
 823        }
 824        if (!dogrp)
 825                return n;
 826
 827        list_for_each_entry(event, &leader->sibling_list, group_entry) {
 828                if (!is_x86_event(event) ||
 829                    event->state <= PERF_EVENT_STATE_OFF)
 830                        continue;
 831
 832                if (n >= max_count)
 833                        return -EINVAL;
 834
 835                cpuc->event_list[n] = event;
 836                n++;
 837        }
 838        return n;
 839}
 840
 841static inline void x86_assign_hw_event(struct perf_event *event,
 842                                struct cpu_hw_events *cpuc, int i)
 843{
 844        struct hw_perf_event *hwc = &event->hw;
 845
 846        hwc->idx = cpuc->assign[i];
 847        hwc->last_cpu = smp_processor_id();
 848        hwc->last_tag = ++cpuc->tags[i];
 849
 850        if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
 851                hwc->config_base = 0;
 852                hwc->event_base = 0;
 853        } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
 854                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 855                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
 856                hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
 857        } else {
 858                hwc->config_base = x86_pmu_config_addr(hwc->idx);
 859                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
 860                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
 861        }
 862}
 863
 864static inline int match_prev_assignment(struct hw_perf_event *hwc,
 865                                        struct cpu_hw_events *cpuc,
 866                                        int i)
 867{
 868        return hwc->idx == cpuc->assign[i] &&
 869                hwc->last_cpu == smp_processor_id() &&
 870                hwc->last_tag == cpuc->tags[i];
 871}
 872
 873static void x86_pmu_start(struct perf_event *event, int flags);
 874
 875static void x86_pmu_enable(struct pmu *pmu)
 876{
 877        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 878        struct perf_event *event;
 879        struct hw_perf_event *hwc;
 880        int i, added = cpuc->n_added;
 881
 882        if (!x86_pmu_initialized())
 883                return;
 884
 885        if (cpuc->enabled)
 886                return;
 887
 888        if (cpuc->n_added) {
 889                int n_running = cpuc->n_events - cpuc->n_added;
 890                /*
 891                 * apply assignment obtained either from
 892                 * hw_perf_group_sched_in() or x86_pmu_enable()
 893                 *
 894                 * step1: save events moving to new counters
 895                 * step2: reprogram moved events into new counters
 896                 */
 897                for (i = 0; i < n_running; i++) {
 898                        event = cpuc->event_list[i];
 899                        hwc = &event->hw;
 900
 901                        /*
 902                         * we can avoid reprogramming counter if:
 903                         * - assigned same counter as last time
 904                         * - running on same CPU as last time
 905                         * - no other event has used the counter since
 906                         */
 907                        if (hwc->idx == -1 ||
 908                            match_prev_assignment(hwc, cpuc, i))
 909                                continue;
 910
 911                        /*
 912                         * Ensure we don't accidentally enable a stopped
 913                         * counter simply because we rescheduled.
 914                         */
 915                        if (hwc->state & PERF_HES_STOPPED)
 916                                hwc->state |= PERF_HES_ARCH;
 917
 918                        x86_pmu_stop(event, PERF_EF_UPDATE);
 919                }
 920
 921                for (i = 0; i < cpuc->n_events; i++) {
 922                        event = cpuc->event_list[i];
 923                        hwc = &event->hw;
 924
 925                        if (!match_prev_assignment(hwc, cpuc, i))
 926                                x86_assign_hw_event(event, cpuc, i);
 927                        else if (i < n_running)
 928                                continue;
 929
 930                        if (hwc->state & PERF_HES_ARCH)
 931                                continue;
 932
 933                        x86_pmu_start(event, PERF_EF_RELOAD);
 934                }
 935                cpuc->n_added = 0;
 936                perf_events_lapic_init();
 937        }
 938
 939        cpuc->enabled = 1;
 940        barrier();
 941
 942        x86_pmu.enable_all(added);
 943}
 944
 945static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
 946
 947/*
 948 * Set the next IRQ period, based on the hwc->period_left value.
 949 * To be called with the event disabled in hw:
 950 */
 951int x86_perf_event_set_period(struct perf_event *event)
 952{
 953        struct hw_perf_event *hwc = &event->hw;
 954        s64 left = local64_read(&hwc->period_left);
 955        s64 period = hwc->sample_period;
 956        int ret = 0, idx = hwc->idx;
 957
 958        if (idx == INTEL_PMC_IDX_FIXED_BTS)
 959                return 0;
 960
 961        /*
 962         * If we are way outside a reasonable range then just skip forward:
 963         */
 964        if (unlikely(left <= -period)) {
 965                left = period;
 966                local64_set(&hwc->period_left, left);
 967                hwc->last_period = period;
 968                ret = 1;
 969        }
 970
 971        if (unlikely(left <= 0)) {
 972                left += period;
 973                local64_set(&hwc->period_left, left);
 974                hwc->last_period = period;
 975                ret = 1;
 976        }
 977        /*
 978         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
 979         */
 980        if (unlikely(left < 2))
 981                left = 2;
 982
 983        if (left > x86_pmu.max_period)
 984                left = x86_pmu.max_period;
 985
 986        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
 987
 988        /*
 989         * The hw event starts counting from this event offset,
 990         * mark it to be able to extra future deltas:
 991         */
 992        local64_set(&hwc->prev_count, (u64)-left);
 993
 994        wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
 995
 996        /*
 997         * Due to erratum on certan cpu we need
 998         * a second write to be sure the register
 999         * is updated properly
1000         */
1001        if (x86_pmu.perfctr_second_write) {
1002                wrmsrl(hwc->event_base,
1003                        (u64)(-left) & x86_pmu.cntval_mask);
1004        }
1005
1006        perf_event_update_userpage(event);
1007
1008        return ret;
1009}
1010
1011void x86_pmu_enable_event(struct perf_event *event)
1012{
1013        if (__this_cpu_read(cpu_hw_events.enabled))
1014                __x86_pmu_enable_event(&event->hw,
1015                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1016}
1017
1018/*
1019 * Add a single event to the PMU.
1020 *
1021 * The event is added to the group of enabled events
1022 * but only if it can be scehduled with existing events.
1023 */
1024static int x86_pmu_add(struct perf_event *event, int flags)
1025{
1026        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1027        struct hw_perf_event *hwc;
1028        int assign[X86_PMC_IDX_MAX];
1029        int n, n0, ret;
1030
1031        hwc = &event->hw;
1032
1033        perf_pmu_disable(event->pmu);
1034        n0 = cpuc->n_events;
1035        ret = n = collect_events(cpuc, event, false);
1036        if (ret < 0)
1037                goto out;
1038
1039        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1040        if (!(flags & PERF_EF_START))
1041                hwc->state |= PERF_HES_ARCH;
1042
1043        /*
1044         * If group events scheduling transaction was started,
1045         * skip the schedulability test here, it will be performed
1046         * at commit time (->commit_txn) as a whole
1047         */
1048        if (cpuc->group_flag & PERF_EVENT_TXN)
1049                goto done_collect;
1050
1051        ret = x86_pmu.schedule_events(cpuc, n, assign);
1052        if (ret)
1053                goto out;
1054        /*
1055         * copy new assignment, now we know it is possible
1056         * will be used by hw_perf_enable()
1057         */
1058        memcpy(cpuc->assign, assign, n*sizeof(int));
1059
1060done_collect:
1061        cpuc->n_events = n;
1062        cpuc->n_added += n - n0;
1063        cpuc->n_txn += n - n0;
1064
1065        ret = 0;
1066out:
1067        perf_pmu_enable(event->pmu);
1068        return ret;
1069}
1070
1071static void x86_pmu_start(struct perf_event *event, int flags)
1072{
1073        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1074        int idx = event->hw.idx;
1075
1076        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1077                return;
1078
1079        if (WARN_ON_ONCE(idx == -1))
1080                return;
1081
1082        if (flags & PERF_EF_RELOAD) {
1083                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1084                x86_perf_event_set_period(event);
1085        }
1086
1087        event->hw.state = 0;
1088
1089        cpuc->events[idx] = event;
1090        __set_bit(idx, cpuc->active_mask);
1091        __set_bit(idx, cpuc->running);
1092        x86_pmu.enable(event);
1093        perf_event_update_userpage(event);
1094}
1095
1096void perf_event_print_debug(void)
1097{
1098        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1099        u64 pebs;
1100        struct cpu_hw_events *cpuc;
1101        unsigned long flags;
1102        int cpu, idx;
1103
1104        if (!x86_pmu.num_counters)
1105                return;
1106
1107        local_irq_save(flags);
1108
1109        cpu = smp_processor_id();
1110        cpuc = &per_cpu(cpu_hw_events, cpu);
1111
1112        if (x86_pmu.version >= 2) {
1113                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1114                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1115                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1116                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1117                rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1118
1119                pr_info("\n");
1120                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1121                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1122                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1123                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1124                pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1125        }
1126        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1127
1128        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1129                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1130                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1131
1132                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1133
1134                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1135                        cpu, idx, pmc_ctrl);
1136                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1137                        cpu, idx, pmc_count);
1138                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1139                        cpu, idx, prev_left);
1140        }
1141        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1142                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1143
1144                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1145                        cpu, idx, pmc_count);
1146        }
1147        local_irq_restore(flags);
1148}
1149
1150void x86_pmu_stop(struct perf_event *event, int flags)
1151{
1152        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153        struct hw_perf_event *hwc = &event->hw;
1154
1155        if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1156                x86_pmu.disable(event);
1157                cpuc->events[hwc->idx] = NULL;
1158                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1159                hwc->state |= PERF_HES_STOPPED;
1160        }
1161
1162        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1163                /*
1164                 * Drain the remaining delta count out of a event
1165                 * that we are disabling:
1166                 */
1167                x86_perf_event_update(event);
1168                hwc->state |= PERF_HES_UPTODATE;
1169        }
1170}
1171
1172static void x86_pmu_del(struct perf_event *event, int flags)
1173{
1174        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1175        int i;
1176
1177        /*
1178         * event is descheduled
1179         */
1180        event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1181
1182        /*
1183         * If we're called during a txn, we don't need to do anything.
1184         * The events never got scheduled and ->cancel_txn will truncate
1185         * the event_list.
1186         */
1187        if (cpuc->group_flag & PERF_EVENT_TXN)
1188                return;
1189
1190        x86_pmu_stop(event, PERF_EF_UPDATE);
1191
1192        for (i = 0; i < cpuc->n_events; i++) {
1193                if (event == cpuc->event_list[i]) {
1194
1195                        if (x86_pmu.put_event_constraints)
1196                                x86_pmu.put_event_constraints(cpuc, event);
1197
1198                        while (++i < cpuc->n_events)
1199                                cpuc->event_list[i-1] = cpuc->event_list[i];
1200
1201                        --cpuc->n_events;
1202                        break;
1203                }
1204        }
1205        perf_event_update_userpage(event);
1206}
1207
1208int x86_pmu_handle_irq(struct pt_regs *regs)
1209{
1210        struct perf_sample_data data;
1211        struct cpu_hw_events *cpuc;
1212        struct perf_event *event;
1213        int idx, handled = 0;
1214        u64 val;
1215
1216        cpuc = &__get_cpu_var(cpu_hw_events);
1217
1218        /*
1219         * Some chipsets need to unmask the LVTPC in a particular spot
1220         * inside the nmi handler.  As a result, the unmasking was pushed
1221         * into all the nmi handlers.
1222         *
1223         * This generic handler doesn't seem to have any issues where the
1224         * unmasking occurs so it was left at the top.
1225         */
1226        apic_write(APIC_LVTPC, APIC_DM_NMI);
1227
1228        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1229                if (!test_bit(idx, cpuc->active_mask)) {
1230                        /*
1231                         * Though we deactivated the counter some cpus
1232                         * might still deliver spurious interrupts still
1233                         * in flight. Catch them:
1234                         */
1235                        if (__test_and_clear_bit(idx, cpuc->running))
1236                                handled++;
1237                        continue;
1238                }
1239
1240                event = cpuc->events[idx];
1241
1242                val = x86_perf_event_update(event);
1243                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1244                        continue;
1245
1246                /*
1247                 * event overflow
1248                 */
1249                handled++;
1250                perf_sample_data_init(&data, 0, event->hw.last_period);
1251
1252                if (!x86_perf_event_set_period(event))
1253                        continue;
1254
1255                if (perf_event_overflow(event, &data, regs))
1256                        x86_pmu_stop(event, 0);
1257        }
1258
1259        if (handled)
1260                inc_irq_stat(apic_perf_irqs);
1261
1262        return handled;
1263}
1264
1265void perf_events_lapic_init(void)
1266{
1267        if (!x86_pmu.apic || !x86_pmu_initialized())
1268                return;
1269
1270        /*
1271         * Always use NMI for PMU
1272         */
1273        apic_write(APIC_LVTPC, APIC_DM_NMI);
1274}
1275
1276static int __kprobes
1277perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1278{
1279        int ret;
1280        u64 start_clock;
1281        u64 finish_clock;
1282
1283        if (!atomic_read(&active_events))
1284                return NMI_DONE;
1285
1286        start_clock = local_clock();
1287        ret = x86_pmu.handle_irq(regs);
1288        finish_clock = local_clock();
1289
1290        perf_sample_event_took(finish_clock - start_clock);
1291
1292        return ret;
1293}
1294
1295struct event_constraint emptyconstraint;
1296struct event_constraint unconstrained;
1297
1298static int
1299x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1300{
1301        unsigned int cpu = (long)hcpu;
1302        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1303        int ret = NOTIFY_OK;
1304
1305        switch (action & ~CPU_TASKS_FROZEN) {
1306        case CPU_UP_PREPARE:
1307                cpuc->kfree_on_online = NULL;
1308                if (x86_pmu.cpu_prepare)
1309                        ret = x86_pmu.cpu_prepare(cpu);
1310                break;
1311
1312        case CPU_STARTING:
1313                if (x86_pmu.attr_rdpmc)
1314                        set_in_cr4(X86_CR4_PCE);
1315                if (x86_pmu.cpu_starting)
1316                        x86_pmu.cpu_starting(cpu);
1317                break;
1318
1319        case CPU_ONLINE:
1320                kfree(cpuc->kfree_on_online);
1321                break;
1322
1323        case CPU_DYING:
1324                if (x86_pmu.cpu_dying)
1325                        x86_pmu.cpu_dying(cpu);
1326                break;
1327
1328        case CPU_UP_CANCELED:
1329        case CPU_DEAD:
1330                if (x86_pmu.cpu_dead)
1331                        x86_pmu.cpu_dead(cpu);
1332                break;
1333
1334        default:
1335                break;
1336        }
1337
1338        return ret;
1339}
1340
1341static void __init pmu_check_apic(void)
1342{
1343        if (cpu_has_apic)
1344                return;
1345
1346        x86_pmu.apic = 0;
1347        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1348        pr_info("no hardware sampling interrupt available.\n");
1349}
1350
1351static struct attribute_group x86_pmu_format_group = {
1352        .name = "format",
1353        .attrs = NULL,
1354};
1355
1356/*
1357 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1358 * out of events_attr attributes.
1359 */
1360static void __init filter_events(struct attribute **attrs)
1361{
1362        struct device_attribute *d;
1363        struct perf_pmu_events_attr *pmu_attr;
1364        int i, j;
1365
1366        for (i = 0; attrs[i]; i++) {
1367                d = (struct device_attribute *)attrs[i];
1368                pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1369                /* str trumps id */
1370                if (pmu_attr->event_str)
1371                        continue;
1372                if (x86_pmu.event_map(i))
1373                        continue;
1374
1375                for (j = i; attrs[j]; j++)
1376                        attrs[j] = attrs[j + 1];
1377
1378                /* Check the shifted attr. */
1379                i--;
1380        }
1381}
1382
1383/* Merge two pointer arrays */
1384static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1385{
1386        struct attribute **new;
1387        int j, i;
1388
1389        for (j = 0; a[j]; j++)
1390                ;
1391        for (i = 0; b[i]; i++)
1392                j++;
1393        j++;
1394
1395        new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1396        if (!new)
1397                return NULL;
1398
1399        j = 0;
1400        for (i = 0; a[i]; i++)
1401                new[j++] = a[i];
1402        for (i = 0; b[i]; i++)
1403                new[j++] = b[i];
1404        new[j] = NULL;
1405
1406        return new;
1407}
1408
1409ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1410                          char *page)
1411{
1412        struct perf_pmu_events_attr *pmu_attr = \
1413                container_of(attr, struct perf_pmu_events_attr, attr);
1414        u64 config = x86_pmu.event_map(pmu_attr->id);
1415
1416        /* string trumps id */
1417        if (pmu_attr->event_str)
1418                return sprintf(page, "%s", pmu_attr->event_str);
1419
1420        return x86_pmu.events_sysfs_show(page, config);
1421}
1422
1423EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1424EVENT_ATTR(instructions,                INSTRUCTIONS            );
1425EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1426EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1427EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1428EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1429EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1430EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1431EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1432EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1433
1434static struct attribute *empty_attrs;
1435
1436static struct attribute *events_attr[] = {
1437        EVENT_PTR(CPU_CYCLES),
1438        EVENT_PTR(INSTRUCTIONS),
1439        EVENT_PTR(CACHE_REFERENCES),
1440        EVENT_PTR(CACHE_MISSES),
1441        EVENT_PTR(BRANCH_INSTRUCTIONS),
1442        EVENT_PTR(BRANCH_MISSES),
1443        EVENT_PTR(BUS_CYCLES),
1444        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1445        EVENT_PTR(STALLED_CYCLES_BACKEND),
1446        EVENT_PTR(REF_CPU_CYCLES),
1447        NULL,
1448};
1449
1450static struct attribute_group x86_pmu_events_group = {
1451        .name = "events",
1452        .attrs = events_attr,
1453};
1454
1455ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1456{
1457        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1458        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1459        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1460        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1461        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1462        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1463        ssize_t ret;
1464
1465        /*
1466        * We have whole page size to spend and just little data
1467        * to write, so we can safely use sprintf.
1468        */
1469        ret = sprintf(page, "event=0x%02llx", event);
1470
1471        if (umask)
1472                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1473
1474        if (edge)
1475                ret += sprintf(page + ret, ",edge");
1476
1477        if (pc)
1478                ret += sprintf(page + ret, ",pc");
1479
1480        if (any)
1481                ret += sprintf(page + ret, ",any");
1482
1483        if (inv)
1484                ret += sprintf(page + ret, ",inv");
1485
1486        if (cmask)
1487                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1488
1489        ret += sprintf(page + ret, "\n");
1490
1491        return ret;
1492}
1493
1494static int __init init_hw_perf_events(void)
1495{
1496        struct x86_pmu_quirk *quirk;
1497        int err;
1498
1499        pr_info("Performance Events: ");
1500
1501        switch (boot_cpu_data.x86_vendor) {
1502        case X86_VENDOR_INTEL:
1503                err = intel_pmu_init();
1504                break;
1505        case X86_VENDOR_AMD:
1506                err = amd_pmu_init();
1507                break;
1508        default:
1509                return 0;
1510        }
1511        if (err != 0) {
1512                pr_cont("no PMU driver, software events only.\n");
1513                return 0;
1514        }
1515
1516        pmu_check_apic();
1517
1518        /* sanity check that the hardware exists or is emulated */
1519        if (!check_hw_exists())
1520                return 0;
1521
1522        pr_cont("%s PMU driver.\n", x86_pmu.name);
1523
1524        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1525                quirk->func();
1526
1527        if (!x86_pmu.intel_ctrl)
1528                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1529
1530        perf_events_lapic_init();
1531        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1532
1533        unconstrained = (struct event_constraint)
1534                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1535                                   0, x86_pmu.num_counters, 0, 0);
1536
1537        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1538        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1539
1540        if (x86_pmu.event_attrs)
1541                x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1542
1543        if (!x86_pmu.events_sysfs_show)
1544                x86_pmu_events_group.attrs = &empty_attrs;
1545        else
1546                filter_events(x86_pmu_events_group.attrs);
1547
1548        if (x86_pmu.cpu_events) {
1549                struct attribute **tmp;
1550
1551                tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1552                if (!WARN_ON(!tmp))
1553                        x86_pmu_events_group.attrs = tmp;
1554        }
1555
1556        pr_info("... version:                %d\n",     x86_pmu.version);
1557        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1558        pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1559        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1560        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1561        pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1562        pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1563
1564        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1565        perf_cpu_notifier(x86_pmu_notifier);
1566
1567        return 0;
1568}
1569early_initcall(init_hw_perf_events);
1570
1571static inline void x86_pmu_read(struct perf_event *event)
1572{
1573        x86_perf_event_update(event);
1574}
1575
1576/*
1577 * Start group events scheduling transaction
1578 * Set the flag to make pmu::enable() not perform the
1579 * schedulability test, it will be performed at commit time
1580 */
1581static void x86_pmu_start_txn(struct pmu *pmu)
1582{
1583        perf_pmu_disable(pmu);
1584        __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1585        __this_cpu_write(cpu_hw_events.n_txn, 0);
1586}
1587
1588/*
1589 * Stop group events scheduling transaction
1590 * Clear the flag and pmu::enable() will perform the
1591 * schedulability test.
1592 */
1593static void x86_pmu_cancel_txn(struct pmu *pmu)
1594{
1595        __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1596        /*
1597         * Truncate the collected events.
1598         */
1599        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1600        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1601        perf_pmu_enable(pmu);
1602}
1603
1604/*
1605 * Commit group events scheduling transaction
1606 * Perform the group schedulability test as a whole
1607 * Return 0 if success
1608 */
1609static int x86_pmu_commit_txn(struct pmu *pmu)
1610{
1611        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1612        int assign[X86_PMC_IDX_MAX];
1613        int n, ret;
1614
1615        n = cpuc->n_events;
1616
1617        if (!x86_pmu_initialized())
1618                return -EAGAIN;
1619
1620        ret = x86_pmu.schedule_events(cpuc, n, assign);
1621        if (ret)
1622                return ret;
1623
1624        /*
1625         * copy new assignment, now we know it is possible
1626         * will be used by hw_perf_enable()
1627         */
1628        memcpy(cpuc->assign, assign, n*sizeof(int));
1629
1630        cpuc->group_flag &= ~PERF_EVENT_TXN;
1631        perf_pmu_enable(pmu);
1632        return 0;
1633}
1634/*
1635 * a fake_cpuc is used to validate event groups. Due to
1636 * the extra reg logic, we need to also allocate a fake
1637 * per_core and per_cpu structure. Otherwise, group events
1638 * using extra reg may conflict without the kernel being
1639 * able to catch this when the last event gets added to
1640 * the group.
1641 */
1642static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1643{
1644        kfree(cpuc->shared_regs);
1645        kfree(cpuc);
1646}
1647
1648static struct cpu_hw_events *allocate_fake_cpuc(void)
1649{
1650        struct cpu_hw_events *cpuc;
1651        int cpu = raw_smp_processor_id();
1652
1653        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1654        if (!cpuc)
1655                return ERR_PTR(-ENOMEM);
1656
1657        /* only needed, if we have extra_regs */
1658        if (x86_pmu.extra_regs) {
1659                cpuc->shared_regs = allocate_shared_regs(cpu);
1660                if (!cpuc->shared_regs)
1661                        goto error;
1662        }
1663        cpuc->is_fake = 1;
1664        return cpuc;
1665error:
1666        free_fake_cpuc(cpuc);
1667        return ERR_PTR(-ENOMEM);
1668}
1669
1670/*
1671 * validate that we can schedule this event
1672 */
1673static int validate_event(struct perf_event *event)
1674{
1675        struct cpu_hw_events *fake_cpuc;
1676        struct event_constraint *c;
1677        int ret = 0;
1678
1679        fake_cpuc = allocate_fake_cpuc();
1680        if (IS_ERR(fake_cpuc))
1681                return PTR_ERR(fake_cpuc);
1682
1683        c = x86_pmu.get_event_constraints(fake_cpuc, event);
1684
1685        if (!c || !c->weight)
1686                ret = -EINVAL;
1687
1688        if (x86_pmu.put_event_constraints)
1689                x86_pmu.put_event_constraints(fake_cpuc, event);
1690
1691        free_fake_cpuc(fake_cpuc);
1692
1693        return ret;
1694}
1695
1696/*
1697 * validate a single event group
1698 *
1699 * validation include:
1700 *      - check events are compatible which each other
1701 *      - events do not compete for the same counter
1702 *      - number of events <= number of counters
1703 *
1704 * validation ensures the group can be loaded onto the
1705 * PMU if it was the only group available.
1706 */
1707static int validate_group(struct perf_event *event)
1708{
1709        struct perf_event *leader = event->group_leader;
1710        struct cpu_hw_events *fake_cpuc;
1711        int ret = -EINVAL, n;
1712
1713        fake_cpuc = allocate_fake_cpuc();
1714        if (IS_ERR(fake_cpuc))
1715                return PTR_ERR(fake_cpuc);
1716        /*
1717         * the event is not yet connected with its
1718         * siblings therefore we must first collect
1719         * existing siblings, then add the new event
1720         * before we can simulate the scheduling
1721         */
1722        n = collect_events(fake_cpuc, leader, true);
1723        if (n < 0)
1724                goto out;
1725
1726        fake_cpuc->n_events = n;
1727        n = collect_events(fake_cpuc, event, false);
1728        if (n < 0)
1729                goto out;
1730
1731        fake_cpuc->n_events = n;
1732
1733        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1734
1735out:
1736        free_fake_cpuc(fake_cpuc);
1737        return ret;
1738}
1739
1740static int x86_pmu_event_init(struct perf_event *event)
1741{
1742        struct pmu *tmp;
1743        int err;
1744
1745        switch (event->attr.type) {
1746        case PERF_TYPE_RAW:
1747        case PERF_TYPE_HARDWARE:
1748        case PERF_TYPE_HW_CACHE:
1749                break;
1750
1751        default:
1752                return -ENOENT;
1753        }
1754
1755        err = __x86_pmu_event_init(event);
1756        if (!err) {
1757                /*
1758                 * we temporarily connect event to its pmu
1759                 * such that validate_group() can classify
1760                 * it as an x86 event using is_x86_event()
1761                 */
1762                tmp = event->pmu;
1763                event->pmu = &pmu;
1764
1765                if (event->group_leader != event)
1766                        err = validate_group(event);
1767                else
1768                        err = validate_event(event);
1769
1770                event->pmu = tmp;
1771        }
1772        if (err) {
1773                if (event->destroy)
1774                        event->destroy(event);
1775        }
1776
1777        return err;
1778}
1779
1780static int x86_pmu_event_idx(struct perf_event *event)
1781{
1782        int idx = event->hw.idx;
1783
1784        if (!x86_pmu.attr_rdpmc)
1785                return 0;
1786
1787        if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1788                idx -= INTEL_PMC_IDX_FIXED;
1789                idx |= 1 << 30;
1790        }
1791
1792        return idx + 1;
1793}
1794
1795static ssize_t get_attr_rdpmc(struct device *cdev,
1796                              struct device_attribute *attr,
1797                              char *buf)
1798{
1799        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1800}
1801
1802static void change_rdpmc(void *info)
1803{
1804        bool enable = !!(unsigned long)info;
1805
1806        if (enable)
1807                set_in_cr4(X86_CR4_PCE);
1808        else
1809                clear_in_cr4(X86_CR4_PCE);
1810}
1811
1812static ssize_t set_attr_rdpmc(struct device *cdev,
1813                              struct device_attribute *attr,
1814                              const char *buf, size_t count)
1815{
1816        unsigned long val;
1817        ssize_t ret;
1818
1819        ret = kstrtoul(buf, 0, &val);
1820        if (ret)
1821                return ret;
1822
1823        if (!!val != !!x86_pmu.attr_rdpmc) {
1824                x86_pmu.attr_rdpmc = !!val;
1825                smp_call_function(change_rdpmc, (void *)val, 1);
1826        }
1827
1828        return count;
1829}
1830
1831static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1832
1833static struct attribute *x86_pmu_attrs[] = {
1834        &dev_attr_rdpmc.attr,
1835        NULL,
1836};
1837
1838static struct attribute_group x86_pmu_attr_group = {
1839        .attrs = x86_pmu_attrs,
1840};
1841
1842static const struct attribute_group *x86_pmu_attr_groups[] = {
1843        &x86_pmu_attr_group,
1844        &x86_pmu_format_group,
1845        &x86_pmu_events_group,
1846        NULL,
1847};
1848
1849static void x86_pmu_flush_branch_stack(void)
1850{
1851        if (x86_pmu.flush_branch_stack)
1852                x86_pmu.flush_branch_stack();
1853}
1854
1855void perf_check_microcode(void)
1856{
1857        if (x86_pmu.check_microcode)
1858                x86_pmu.check_microcode();
1859}
1860EXPORT_SYMBOL_GPL(perf_check_microcode);
1861
1862static struct pmu pmu = {
1863        .pmu_enable             = x86_pmu_enable,
1864        .pmu_disable            = x86_pmu_disable,
1865
1866        .attr_groups            = x86_pmu_attr_groups,
1867
1868        .event_init             = x86_pmu_event_init,
1869
1870        .add                    = x86_pmu_add,
1871        .del                    = x86_pmu_del,
1872        .start                  = x86_pmu_start,
1873        .stop                   = x86_pmu_stop,
1874        .read                   = x86_pmu_read,
1875
1876        .start_txn              = x86_pmu_start_txn,
1877        .cancel_txn             = x86_pmu_cancel_txn,
1878        .commit_txn             = x86_pmu_commit_txn,
1879
1880        .event_idx              = x86_pmu_event_idx,
1881        .flush_branch_stack     = x86_pmu_flush_branch_stack,
1882};
1883
1884void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1885{
1886        userpg->cap_usr_time = 0;
1887        userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1888        userpg->pmc_width = x86_pmu.cntval_bits;
1889
1890        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1891                return;
1892
1893        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1894                return;
1895
1896        userpg->cap_usr_time = 1;
1897        userpg->time_mult = this_cpu_read(cyc2ns);
1898        userpg->time_shift = CYC2NS_SCALE_FACTOR;
1899        userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1900}
1901
1902/*
1903 * callchain support
1904 */
1905
1906static int backtrace_stack(void *data, char *name)
1907{
1908        return 0;
1909}
1910
1911static void backtrace_address(void *data, unsigned long addr, int reliable)
1912{
1913        struct perf_callchain_entry *entry = data;
1914
1915        perf_callchain_store(entry, addr);
1916}
1917
1918static const struct stacktrace_ops backtrace_ops = {
1919        .stack                  = backtrace_stack,
1920        .address                = backtrace_address,
1921        .walk_stack             = print_context_stack_bp,
1922};
1923
1924void
1925perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1926{
1927        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1928                /* TODO: We don't support guest os callchain now */
1929                return;
1930        }
1931
1932        perf_callchain_store(entry, regs->ip);
1933
1934        dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1935}
1936
1937static inline int
1938valid_user_frame(const void __user *fp, unsigned long size)
1939{
1940        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1941}
1942
1943static unsigned long get_segment_base(unsigned int segment)
1944{
1945        struct desc_struct *desc;
1946        int idx = segment >> 3;
1947
1948        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1949                if (idx > LDT_ENTRIES)
1950                        return 0;
1951
1952                if (idx > current->active_mm->context.size)
1953                        return 0;
1954
1955                desc = current->active_mm->context.ldt;
1956        } else {
1957                if (idx > GDT_ENTRIES)
1958                        return 0;
1959
1960                desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1961        }
1962
1963        return get_desc_base(desc + idx);
1964}
1965
1966#ifdef CONFIG_COMPAT
1967
1968#include <asm/compat.h>
1969
1970static inline int
1971perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1972{
1973        /* 32-bit process in 64-bit kernel. */
1974        unsigned long ss_base, cs_base;
1975        struct stack_frame_ia32 frame;
1976        const void __user *fp;
1977
1978        if (!test_thread_flag(TIF_IA32))
1979                return 0;
1980
1981        cs_base = get_segment_base(regs->cs);
1982        ss_base = get_segment_base(regs->ss);
1983
1984        fp = compat_ptr(ss_base + regs->bp);
1985        while (entry->nr < PERF_MAX_STACK_DEPTH) {
1986                unsigned long bytes;
1987                frame.next_frame     = 0;
1988                frame.return_address = 0;
1989
1990                bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1991                if (bytes != sizeof(frame))
1992                        break;
1993
1994                if (!valid_user_frame(fp, sizeof(frame)))
1995                        break;
1996
1997                perf_callchain_store(entry, cs_base + frame.return_address);
1998                fp = compat_ptr(ss_base + frame.next_frame);
1999        }
2000        return 1;
2001}
2002#else
2003static inline int
2004perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2005{
2006    return 0;
2007}
2008#endif
2009
2010void
2011perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2012{
2013        struct stack_frame frame;
2014        const void __user *fp;
2015
2016        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2017                /* TODO: We don't support guest os callchain now */
2018                return;
2019        }
2020
2021        /*
2022         * We don't know what to do with VM86 stacks.. ignore them for now.
2023         */
2024        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2025                return;
2026
2027        fp = (void __user *)regs->bp;
2028
2029        perf_callchain_store(entry, regs->ip);
2030
2031        if (!current->mm)
2032                return;
2033
2034        if (perf_callchain_user32(regs, entry))
2035                return;
2036
2037        while (entry->nr < PERF_MAX_STACK_DEPTH) {
2038                unsigned long bytes;
2039                frame.next_frame             = NULL;
2040                frame.return_address = 0;
2041
2042                bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2043                if (bytes != sizeof(frame))
2044                        break;
2045
2046                if (!valid_user_frame(fp, sizeof(frame)))
2047                        break;
2048
2049                perf_callchain_store(entry, frame.return_address);
2050                fp = frame.next_frame;
2051        }
2052}
2053
2054/*
2055 * Deal with code segment offsets for the various execution modes:
2056 *
2057 *   VM86 - the good olde 16 bit days, where the linear address is
2058 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2059 *
2060 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2061 *          to figure out what the 32bit base address is.
2062 *
2063 *    X32 - has TIF_X32 set, but is running in x86_64
2064 *
2065 * X86_64 - CS,DS,SS,ES are all zero based.
2066 */
2067static unsigned long code_segment_base(struct pt_regs *regs)
2068{
2069        /*
2070         * If we are in VM86 mode, add the segment offset to convert to a
2071         * linear address.
2072         */
2073        if (regs->flags & X86_VM_MASK)
2074                return 0x10 * regs->cs;
2075
2076        /*
2077         * For IA32 we look at the GDT/LDT segment base to convert the
2078         * effective IP to a linear address.
2079         */
2080#ifdef CONFIG_X86_32
2081        if (user_mode(regs) && regs->cs != __USER_CS)
2082                return get_segment_base(regs->cs);
2083#else
2084        if (test_thread_flag(TIF_IA32)) {
2085                if (user_mode(regs) && regs->cs != __USER32_CS)
2086                        return get_segment_base(regs->cs);
2087        }
2088#endif
2089        return 0;
2090}
2091
2092unsigned long perf_instruction_pointer(struct pt_regs *regs)
2093{
2094        if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2095                return perf_guest_cbs->get_guest_ip();
2096
2097        return regs->ip + code_segment_base(regs);
2098}
2099
2100unsigned long perf_misc_flags(struct pt_regs *regs)
2101{
2102        int misc = 0;
2103
2104        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2105                if (perf_guest_cbs->is_user_mode())
2106                        misc |= PERF_RECORD_MISC_GUEST_USER;
2107                else
2108                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2109        } else {
2110                if (user_mode(regs))
2111                        misc |= PERF_RECORD_MISC_USER;
2112                else
2113                        misc |= PERF_RECORD_MISC_KERNEL;
2114        }
2115
2116        if (regs->flags & PERF_EFLAGS_EXACT)
2117                misc |= PERF_RECORD_MISC_EXACT_IP;
2118
2119        return misc;
2120}
2121
2122void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2123{
2124        cap->version            = x86_pmu.version;
2125        cap->num_counters_gp    = x86_pmu.num_counters;
2126        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2127        cap->bit_width_gp       = x86_pmu.cntval_bits;
2128        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2129        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2130        cap->events_mask_len    = x86_pmu.events_mask_len;
2131}
2132EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2133