linux/arch/x86/kernel/cpu/perf_event_intel.c
<<
>>
Prefs
   1/*
   2 * Per core/cpu state
   3 *
   4 * Used to coordinate shared registers between HT threads or
   5 * among events on a single PMU.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/stddef.h>
  11#include <linux/types.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15
  16#include <asm/cpufeature.h>
  17#include <asm/hardirq.h>
  18#include <asm/apic.h>
  19
  20#include "perf_event.h"
  21
  22/*
  23 * Intel PerfMon, used on Core and later.
  24 */
  25static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  26{
  27        [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
  28        [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
  29        [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
  30        [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
  31        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
  32        [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
  33        [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
  34        [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
  35};
  36
  37static struct event_constraint intel_core_event_constraints[] __read_mostly =
  38{
  39        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  40        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  41        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  42        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  43        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  44        INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  45        EVENT_CONSTRAINT_END
  46};
  47
  48static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  49{
  50        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  51        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  52        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  53        INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  54        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  55        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  56        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  57        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  58        INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  59        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  60        INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  61        INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  62        INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  63        EVENT_CONSTRAINT_END
  64};
  65
  66static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  67{
  68        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  69        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  70        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  71        INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  72        INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  73        INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  74        INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  75        INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  76        INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  77        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  78        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  79        EVENT_CONSTRAINT_END
  80};
  81
  82static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  83{
  84        INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  85        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  86        EVENT_EXTRA_END
  87};
  88
  89static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  90{
  91        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  92        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  93        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  94        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  95        INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  96        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  97        INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  98        EVENT_CONSTRAINT_END
  99};
 100
 101static struct event_constraint intel_snb_event_constraints[] __read_mostly =
 102{
 103        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 104        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 105        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 106        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 107        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 108        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 109        INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 110        INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 111        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 112        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 113        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 114        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 115        EVENT_CONSTRAINT_END
 116};
 117
 118static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
 119{
 120        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 121        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 122        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 123        INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
 124        INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
 125        INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
 126        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 127        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 128        INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
 129        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 130        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 131        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 132        /*
 133         * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
 134         * siblings; disable these events because they can corrupt unrelated
 135         * counters.
 136         */
 137        INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
 138        INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
 139        INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 140        INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 141        EVENT_CONSTRAINT_END
 142};
 143
 144static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 145{
 146        INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 147        INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 148        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 149        EVENT_EXTRA_END
 150};
 151
 152static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 153{
 154        EVENT_CONSTRAINT_END
 155};
 156
 157static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 158{
 159        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 160        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 161        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 162        EVENT_CONSTRAINT_END
 163};
 164
 165static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 166        INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
 167        INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
 168        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 169        EVENT_EXTRA_END
 170};
 171
 172static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
 173        INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 174        INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 175        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 176        EVENT_EXTRA_END
 177};
 178
 179EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
 180EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
 181EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
 182
 183struct attribute *nhm_events_attrs[] = {
 184        EVENT_PTR(mem_ld_nhm),
 185        NULL,
 186};
 187
 188struct attribute *snb_events_attrs[] = {
 189        EVENT_PTR(mem_ld_snb),
 190        EVENT_PTR(mem_st_snb),
 191        NULL,
 192};
 193
 194static struct event_constraint intel_hsw_event_constraints[] = {
 195        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 196        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 197        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 198        INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
 199        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 200        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 201        /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 202        INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
 203        /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 204        INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
 205        /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 206        INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
 207        EVENT_CONSTRAINT_END
 208};
 209
 210static u64 intel_pmu_event_map(int hw_event)
 211{
 212        return intel_perfmon_event_map[hw_event];
 213}
 214
 215#define SNB_DMND_DATA_RD        (1ULL << 0)
 216#define SNB_DMND_RFO            (1ULL << 1)
 217#define SNB_DMND_IFETCH         (1ULL << 2)
 218#define SNB_DMND_WB             (1ULL << 3)
 219#define SNB_PF_DATA_RD          (1ULL << 4)
 220#define SNB_PF_RFO              (1ULL << 5)
 221#define SNB_PF_IFETCH           (1ULL << 6)
 222#define SNB_LLC_DATA_RD         (1ULL << 7)
 223#define SNB_LLC_RFO             (1ULL << 8)
 224#define SNB_LLC_IFETCH          (1ULL << 9)
 225#define SNB_BUS_LOCKS           (1ULL << 10)
 226#define SNB_STRM_ST             (1ULL << 11)
 227#define SNB_OTHER               (1ULL << 15)
 228#define SNB_RESP_ANY            (1ULL << 16)
 229#define SNB_NO_SUPP             (1ULL << 17)
 230#define SNB_LLC_HITM            (1ULL << 18)
 231#define SNB_LLC_HITE            (1ULL << 19)
 232#define SNB_LLC_HITS            (1ULL << 20)
 233#define SNB_LLC_HITF            (1ULL << 21)
 234#define SNB_LOCAL               (1ULL << 22)
 235#define SNB_REMOTE              (0xffULL << 23)
 236#define SNB_SNP_NONE            (1ULL << 31)
 237#define SNB_SNP_NOT_NEEDED      (1ULL << 32)
 238#define SNB_SNP_MISS            (1ULL << 33)
 239#define SNB_NO_FWD              (1ULL << 34)
 240#define SNB_SNP_FWD             (1ULL << 35)
 241#define SNB_HITM                (1ULL << 36)
 242#define SNB_NON_DRAM            (1ULL << 37)
 243
 244#define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
 245#define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
 246#define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
 247
 248#define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
 249                                 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
 250                                 SNB_HITM)
 251
 252#define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
 253#define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
 254
 255#define SNB_L3_ACCESS           SNB_RESP_ANY
 256#define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
 257
 258static __initconst const u64 snb_hw_cache_extra_regs
 259                                [PERF_COUNT_HW_CACHE_MAX]
 260                                [PERF_COUNT_HW_CACHE_OP_MAX]
 261                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 262{
 263 [ C(LL  ) ] = {
 264        [ C(OP_READ) ] = {
 265                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
 266                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
 267        },
 268        [ C(OP_WRITE) ] = {
 269                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
 270                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
 271        },
 272        [ C(OP_PREFETCH) ] = {
 273                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
 274                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
 275        },
 276 },
 277 [ C(NODE) ] = {
 278        [ C(OP_READ) ] = {
 279                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
 280                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
 281        },
 282        [ C(OP_WRITE) ] = {
 283                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
 284                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
 285        },
 286        [ C(OP_PREFETCH) ] = {
 287                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
 288                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
 289        },
 290 },
 291};
 292
 293static __initconst const u64 snb_hw_cache_event_ids
 294                                [PERF_COUNT_HW_CACHE_MAX]
 295                                [PERF_COUNT_HW_CACHE_OP_MAX]
 296                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 297{
 298 [ C(L1D) ] = {
 299        [ C(OP_READ) ] = {
 300                [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 301                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 302        },
 303        [ C(OP_WRITE) ] = {
 304                [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 305                [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 306        },
 307        [ C(OP_PREFETCH) ] = {
 308                [ C(RESULT_ACCESS) ] = 0x0,
 309                [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 310        },
 311 },
 312 [ C(L1I ) ] = {
 313        [ C(OP_READ) ] = {
 314                [ C(RESULT_ACCESS) ] = 0x0,
 315                [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 316        },
 317        [ C(OP_WRITE) ] = {
 318                [ C(RESULT_ACCESS) ] = -1,
 319                [ C(RESULT_MISS)   ] = -1,
 320        },
 321        [ C(OP_PREFETCH) ] = {
 322                [ C(RESULT_ACCESS) ] = 0x0,
 323                [ C(RESULT_MISS)   ] = 0x0,
 324        },
 325 },
 326 [ C(LL  ) ] = {
 327        [ C(OP_READ) ] = {
 328                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 329                [ C(RESULT_ACCESS) ] = 0x01b7,
 330                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 331                [ C(RESULT_MISS)   ] = 0x01b7,
 332        },
 333        [ C(OP_WRITE) ] = {
 334                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 335                [ C(RESULT_ACCESS) ] = 0x01b7,
 336                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 337                [ C(RESULT_MISS)   ] = 0x01b7,
 338        },
 339        [ C(OP_PREFETCH) ] = {
 340                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 341                [ C(RESULT_ACCESS) ] = 0x01b7,
 342                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 343                [ C(RESULT_MISS)   ] = 0x01b7,
 344        },
 345 },
 346 [ C(DTLB) ] = {
 347        [ C(OP_READ) ] = {
 348                [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 349                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 350        },
 351        [ C(OP_WRITE) ] = {
 352                [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 353                [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 354        },
 355        [ C(OP_PREFETCH) ] = {
 356                [ C(RESULT_ACCESS) ] = 0x0,
 357                [ C(RESULT_MISS)   ] = 0x0,
 358        },
 359 },
 360 [ C(ITLB) ] = {
 361        [ C(OP_READ) ] = {
 362                [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 363                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 364        },
 365        [ C(OP_WRITE) ] = {
 366                [ C(RESULT_ACCESS) ] = -1,
 367                [ C(RESULT_MISS)   ] = -1,
 368        },
 369        [ C(OP_PREFETCH) ] = {
 370                [ C(RESULT_ACCESS) ] = -1,
 371                [ C(RESULT_MISS)   ] = -1,
 372        },
 373 },
 374 [ C(BPU ) ] = {
 375        [ C(OP_READ) ] = {
 376                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 377                [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 378        },
 379        [ C(OP_WRITE) ] = {
 380                [ C(RESULT_ACCESS) ] = -1,
 381                [ C(RESULT_MISS)   ] = -1,
 382        },
 383        [ C(OP_PREFETCH) ] = {
 384                [ C(RESULT_ACCESS) ] = -1,
 385                [ C(RESULT_MISS)   ] = -1,
 386        },
 387 },
 388 [ C(NODE) ] = {
 389        [ C(OP_READ) ] = {
 390                [ C(RESULT_ACCESS) ] = 0x01b7,
 391                [ C(RESULT_MISS)   ] = 0x01b7,
 392        },
 393        [ C(OP_WRITE) ] = {
 394                [ C(RESULT_ACCESS) ] = 0x01b7,
 395                [ C(RESULT_MISS)   ] = 0x01b7,
 396        },
 397        [ C(OP_PREFETCH) ] = {
 398                [ C(RESULT_ACCESS) ] = 0x01b7,
 399                [ C(RESULT_MISS)   ] = 0x01b7,
 400        },
 401 },
 402
 403};
 404
 405static __initconst const u64 westmere_hw_cache_event_ids
 406                                [PERF_COUNT_HW_CACHE_MAX]
 407                                [PERF_COUNT_HW_CACHE_OP_MAX]
 408                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 409{
 410 [ C(L1D) ] = {
 411        [ C(OP_READ) ] = {
 412                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 413                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 414        },
 415        [ C(OP_WRITE) ] = {
 416                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 417                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 418        },
 419        [ C(OP_PREFETCH) ] = {
 420                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 421                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 422        },
 423 },
 424 [ C(L1I ) ] = {
 425        [ C(OP_READ) ] = {
 426                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 427                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 428        },
 429        [ C(OP_WRITE) ] = {
 430                [ C(RESULT_ACCESS) ] = -1,
 431                [ C(RESULT_MISS)   ] = -1,
 432        },
 433        [ C(OP_PREFETCH) ] = {
 434                [ C(RESULT_ACCESS) ] = 0x0,
 435                [ C(RESULT_MISS)   ] = 0x0,
 436        },
 437 },
 438 [ C(LL  ) ] = {
 439        [ C(OP_READ) ] = {
 440                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 441                [ C(RESULT_ACCESS) ] = 0x01b7,
 442                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 443                [ C(RESULT_MISS)   ] = 0x01b7,
 444        },
 445        /*
 446         * Use RFO, not WRITEBACK, because a write miss would typically occur
 447         * on RFO.
 448         */
 449        [ C(OP_WRITE) ] = {
 450                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 451                [ C(RESULT_ACCESS) ] = 0x01b7,
 452                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 453                [ C(RESULT_MISS)   ] = 0x01b7,
 454        },
 455        [ C(OP_PREFETCH) ] = {
 456                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 457                [ C(RESULT_ACCESS) ] = 0x01b7,
 458                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 459                [ C(RESULT_MISS)   ] = 0x01b7,
 460        },
 461 },
 462 [ C(DTLB) ] = {
 463        [ C(OP_READ) ] = {
 464                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 465                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 466        },
 467        [ C(OP_WRITE) ] = {
 468                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 469                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 470        },
 471        [ C(OP_PREFETCH) ] = {
 472                [ C(RESULT_ACCESS) ] = 0x0,
 473                [ C(RESULT_MISS)   ] = 0x0,
 474        },
 475 },
 476 [ C(ITLB) ] = {
 477        [ C(OP_READ) ] = {
 478                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 479                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
 480        },
 481        [ C(OP_WRITE) ] = {
 482                [ C(RESULT_ACCESS) ] = -1,
 483                [ C(RESULT_MISS)   ] = -1,
 484        },
 485        [ C(OP_PREFETCH) ] = {
 486                [ C(RESULT_ACCESS) ] = -1,
 487                [ C(RESULT_MISS)   ] = -1,
 488        },
 489 },
 490 [ C(BPU ) ] = {
 491        [ C(OP_READ) ] = {
 492                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 493                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 494        },
 495        [ C(OP_WRITE) ] = {
 496                [ C(RESULT_ACCESS) ] = -1,
 497                [ C(RESULT_MISS)   ] = -1,
 498        },
 499        [ C(OP_PREFETCH) ] = {
 500                [ C(RESULT_ACCESS) ] = -1,
 501                [ C(RESULT_MISS)   ] = -1,
 502        },
 503 },
 504 [ C(NODE) ] = {
 505        [ C(OP_READ) ] = {
 506                [ C(RESULT_ACCESS) ] = 0x01b7,
 507                [ C(RESULT_MISS)   ] = 0x01b7,
 508        },
 509        [ C(OP_WRITE) ] = {
 510                [ C(RESULT_ACCESS) ] = 0x01b7,
 511                [ C(RESULT_MISS)   ] = 0x01b7,
 512        },
 513        [ C(OP_PREFETCH) ] = {
 514                [ C(RESULT_ACCESS) ] = 0x01b7,
 515                [ C(RESULT_MISS)   ] = 0x01b7,
 516        },
 517 },
 518};
 519
 520/*
 521 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 522 * See IA32 SDM Vol 3B 30.6.1.3
 523 */
 524
 525#define NHM_DMND_DATA_RD        (1 << 0)
 526#define NHM_DMND_RFO            (1 << 1)
 527#define NHM_DMND_IFETCH         (1 << 2)
 528#define NHM_DMND_WB             (1 << 3)
 529#define NHM_PF_DATA_RD          (1 << 4)
 530#define NHM_PF_DATA_RFO         (1 << 5)
 531#define NHM_PF_IFETCH           (1 << 6)
 532#define NHM_OFFCORE_OTHER       (1 << 7)
 533#define NHM_UNCORE_HIT          (1 << 8)
 534#define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
 535#define NHM_OTHER_CORE_HITM     (1 << 10)
 536                                /* reserved */
 537#define NHM_REMOTE_CACHE_FWD    (1 << 12)
 538#define NHM_REMOTE_DRAM         (1 << 13)
 539#define NHM_LOCAL_DRAM          (1 << 14)
 540#define NHM_NON_DRAM            (1 << 15)
 541
 542#define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
 543#define NHM_REMOTE              (NHM_REMOTE_DRAM)
 544
 545#define NHM_DMND_READ           (NHM_DMND_DATA_RD)
 546#define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
 547#define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
 548
 549#define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
 550#define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
 551#define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
 552
 553static __initconst const u64 nehalem_hw_cache_extra_regs
 554                                [PERF_COUNT_HW_CACHE_MAX]
 555                                [PERF_COUNT_HW_CACHE_OP_MAX]
 556                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 557{
 558 [ C(LL  ) ] = {
 559        [ C(OP_READ) ] = {
 560                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
 561                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
 562        },
 563        [ C(OP_WRITE) ] = {
 564                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
 565                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
 566        },
 567        [ C(OP_PREFETCH) ] = {
 568                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
 569                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
 570        },
 571 },
 572 [ C(NODE) ] = {
 573        [ C(OP_READ) ] = {
 574                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
 575                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
 576        },
 577        [ C(OP_WRITE) ] = {
 578                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
 579                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
 580        },
 581        [ C(OP_PREFETCH) ] = {
 582                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
 583                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
 584        },
 585 },
 586};
 587
 588static __initconst const u64 nehalem_hw_cache_event_ids
 589                                [PERF_COUNT_HW_CACHE_MAX]
 590                                [PERF_COUNT_HW_CACHE_OP_MAX]
 591                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 592{
 593 [ C(L1D) ] = {
 594        [ C(OP_READ) ] = {
 595                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 596                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 597        },
 598        [ C(OP_WRITE) ] = {
 599                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 600                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 601        },
 602        [ C(OP_PREFETCH) ] = {
 603                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 604                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 605        },
 606 },
 607 [ C(L1I ) ] = {
 608        [ C(OP_READ) ] = {
 609                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 610                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 611        },
 612        [ C(OP_WRITE) ] = {
 613                [ C(RESULT_ACCESS) ] = -1,
 614                [ C(RESULT_MISS)   ] = -1,
 615        },
 616        [ C(OP_PREFETCH) ] = {
 617                [ C(RESULT_ACCESS) ] = 0x0,
 618                [ C(RESULT_MISS)   ] = 0x0,
 619        },
 620 },
 621 [ C(LL  ) ] = {
 622        [ C(OP_READ) ] = {
 623                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 624                [ C(RESULT_ACCESS) ] = 0x01b7,
 625                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 626                [ C(RESULT_MISS)   ] = 0x01b7,
 627        },
 628        /*
 629         * Use RFO, not WRITEBACK, because a write miss would typically occur
 630         * on RFO.
 631         */
 632        [ C(OP_WRITE) ] = {
 633                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 634                [ C(RESULT_ACCESS) ] = 0x01b7,
 635                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 636                [ C(RESULT_MISS)   ] = 0x01b7,
 637        },
 638        [ C(OP_PREFETCH) ] = {
 639                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 640                [ C(RESULT_ACCESS) ] = 0x01b7,
 641                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 642                [ C(RESULT_MISS)   ] = 0x01b7,
 643        },
 644 },
 645 [ C(DTLB) ] = {
 646        [ C(OP_READ) ] = {
 647                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
 648                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 649        },
 650        [ C(OP_WRITE) ] = {
 651                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
 652                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 653        },
 654        [ C(OP_PREFETCH) ] = {
 655                [ C(RESULT_ACCESS) ] = 0x0,
 656                [ C(RESULT_MISS)   ] = 0x0,
 657        },
 658 },
 659 [ C(ITLB) ] = {
 660        [ C(OP_READ) ] = {
 661                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 662                [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
 663        },
 664        [ C(OP_WRITE) ] = {
 665                [ C(RESULT_ACCESS) ] = -1,
 666                [ C(RESULT_MISS)   ] = -1,
 667        },
 668        [ C(OP_PREFETCH) ] = {
 669                [ C(RESULT_ACCESS) ] = -1,
 670                [ C(RESULT_MISS)   ] = -1,
 671        },
 672 },
 673 [ C(BPU ) ] = {
 674        [ C(OP_READ) ] = {
 675                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 676                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 677        },
 678        [ C(OP_WRITE) ] = {
 679                [ C(RESULT_ACCESS) ] = -1,
 680                [ C(RESULT_MISS)   ] = -1,
 681        },
 682        [ C(OP_PREFETCH) ] = {
 683                [ C(RESULT_ACCESS) ] = -1,
 684                [ C(RESULT_MISS)   ] = -1,
 685        },
 686 },
 687 [ C(NODE) ] = {
 688        [ C(OP_READ) ] = {
 689                [ C(RESULT_ACCESS) ] = 0x01b7,
 690                [ C(RESULT_MISS)   ] = 0x01b7,
 691        },
 692        [ C(OP_WRITE) ] = {
 693                [ C(RESULT_ACCESS) ] = 0x01b7,
 694                [ C(RESULT_MISS)   ] = 0x01b7,
 695        },
 696        [ C(OP_PREFETCH) ] = {
 697                [ C(RESULT_ACCESS) ] = 0x01b7,
 698                [ C(RESULT_MISS)   ] = 0x01b7,
 699        },
 700 },
 701};
 702
 703static __initconst const u64 core2_hw_cache_event_ids
 704                                [PERF_COUNT_HW_CACHE_MAX]
 705                                [PERF_COUNT_HW_CACHE_OP_MAX]
 706                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 707{
 708 [ C(L1D) ] = {
 709        [ C(OP_READ) ] = {
 710                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
 711                [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
 712        },
 713        [ C(OP_WRITE) ] = {
 714                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
 715                [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
 716        },
 717        [ C(OP_PREFETCH) ] = {
 718                [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
 719                [ C(RESULT_MISS)   ] = 0,
 720        },
 721 },
 722 [ C(L1I ) ] = {
 723        [ C(OP_READ) ] = {
 724                [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
 725                [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
 726        },
 727        [ C(OP_WRITE) ] = {
 728                [ C(RESULT_ACCESS) ] = -1,
 729                [ C(RESULT_MISS)   ] = -1,
 730        },
 731        [ C(OP_PREFETCH) ] = {
 732                [ C(RESULT_ACCESS) ] = 0,
 733                [ C(RESULT_MISS)   ] = 0,
 734        },
 735 },
 736 [ C(LL  ) ] = {
 737        [ C(OP_READ) ] = {
 738                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
 739                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
 740        },
 741        [ C(OP_WRITE) ] = {
 742                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
 743                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
 744        },
 745        [ C(OP_PREFETCH) ] = {
 746                [ C(RESULT_ACCESS) ] = 0,
 747                [ C(RESULT_MISS)   ] = 0,
 748        },
 749 },
 750 [ C(DTLB) ] = {
 751        [ C(OP_READ) ] = {
 752                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
 753                [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
 754        },
 755        [ C(OP_WRITE) ] = {
 756                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
 757                [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
 758        },
 759        [ C(OP_PREFETCH) ] = {
 760                [ C(RESULT_ACCESS) ] = 0,
 761                [ C(RESULT_MISS)   ] = 0,
 762        },
 763 },
 764 [ C(ITLB) ] = {
 765        [ C(OP_READ) ] = {
 766                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
 767                [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
 768        },
 769        [ C(OP_WRITE) ] = {
 770                [ C(RESULT_ACCESS) ] = -1,
 771                [ C(RESULT_MISS)   ] = -1,
 772        },
 773        [ C(OP_PREFETCH) ] = {
 774                [ C(RESULT_ACCESS) ] = -1,
 775                [ C(RESULT_MISS)   ] = -1,
 776        },
 777 },
 778 [ C(BPU ) ] = {
 779        [ C(OP_READ) ] = {
 780                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
 781                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
 782        },
 783        [ C(OP_WRITE) ] = {
 784                [ C(RESULT_ACCESS) ] = -1,
 785                [ C(RESULT_MISS)   ] = -1,
 786        },
 787        [ C(OP_PREFETCH) ] = {
 788                [ C(RESULT_ACCESS) ] = -1,
 789                [ C(RESULT_MISS)   ] = -1,
 790        },
 791 },
 792};
 793
 794static __initconst const u64 atom_hw_cache_event_ids
 795                                [PERF_COUNT_HW_CACHE_MAX]
 796                                [PERF_COUNT_HW_CACHE_OP_MAX]
 797                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 798{
 799 [ C(L1D) ] = {
 800        [ C(OP_READ) ] = {
 801                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
 802                [ C(RESULT_MISS)   ] = 0,
 803        },
 804        [ C(OP_WRITE) ] = {
 805                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
 806                [ C(RESULT_MISS)   ] = 0,
 807        },
 808        [ C(OP_PREFETCH) ] = {
 809                [ C(RESULT_ACCESS) ] = 0x0,
 810                [ C(RESULT_MISS)   ] = 0,
 811        },
 812 },
 813 [ C(L1I ) ] = {
 814        [ C(OP_READ) ] = {
 815                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
 816                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
 817        },
 818        [ C(OP_WRITE) ] = {
 819                [ C(RESULT_ACCESS) ] = -1,
 820                [ C(RESULT_MISS)   ] = -1,
 821        },
 822        [ C(OP_PREFETCH) ] = {
 823                [ C(RESULT_ACCESS) ] = 0,
 824                [ C(RESULT_MISS)   ] = 0,
 825        },
 826 },
 827 [ C(LL  ) ] = {
 828        [ C(OP_READ) ] = {
 829                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
 830                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
 831        },
 832        [ C(OP_WRITE) ] = {
 833                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
 834                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
 835        },
 836        [ C(OP_PREFETCH) ] = {
 837                [ C(RESULT_ACCESS) ] = 0,
 838                [ C(RESULT_MISS)   ] = 0,
 839        },
 840 },
 841 [ C(DTLB) ] = {
 842        [ C(OP_READ) ] = {
 843                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
 844                [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
 845        },
 846        [ C(OP_WRITE) ] = {
 847                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
 848                [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
 849        },
 850        [ C(OP_PREFETCH) ] = {
 851                [ C(RESULT_ACCESS) ] = 0,
 852                [ C(RESULT_MISS)   ] = 0,
 853        },
 854 },
 855 [ C(ITLB) ] = {
 856        [ C(OP_READ) ] = {
 857                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
 858                [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
 859        },
 860        [ C(OP_WRITE) ] = {
 861                [ C(RESULT_ACCESS) ] = -1,
 862                [ C(RESULT_MISS)   ] = -1,
 863        },
 864        [ C(OP_PREFETCH) ] = {
 865                [ C(RESULT_ACCESS) ] = -1,
 866                [ C(RESULT_MISS)   ] = -1,
 867        },
 868 },
 869 [ C(BPU ) ] = {
 870        [ C(OP_READ) ] = {
 871                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
 872                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
 873        },
 874        [ C(OP_WRITE) ] = {
 875                [ C(RESULT_ACCESS) ] = -1,
 876                [ C(RESULT_MISS)   ] = -1,
 877        },
 878        [ C(OP_PREFETCH) ] = {
 879                [ C(RESULT_ACCESS) ] = -1,
 880                [ C(RESULT_MISS)   ] = -1,
 881        },
 882 },
 883};
 884
 885static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
 886{
 887        /* user explicitly requested branch sampling */
 888        if (has_branch_stack(event))
 889                return true;
 890
 891        /* implicit branch sampling to correct PEBS skid */
 892        if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
 893            x86_pmu.intel_cap.pebs_format < 2)
 894                return true;
 895
 896        return false;
 897}
 898
 899static void intel_pmu_disable_all(void)
 900{
 901        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 902
 903        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
 904
 905        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
 906                intel_pmu_disable_bts();
 907
 908        intel_pmu_pebs_disable_all();
 909        intel_pmu_lbr_disable_all();
 910}
 911
 912static void intel_pmu_enable_all(int added)
 913{
 914        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 915
 916        intel_pmu_pebs_enable_all();
 917        intel_pmu_lbr_enable_all();
 918        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
 919                        x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
 920
 921        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
 922                struct perf_event *event =
 923                        cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
 924
 925                if (WARN_ON_ONCE(!event))
 926                        return;
 927
 928                intel_pmu_enable_bts(event->hw.config);
 929        }
 930}
 931
 932/*
 933 * Workaround for:
 934 *   Intel Errata AAK100 (model 26)
 935 *   Intel Errata AAP53  (model 30)
 936 *   Intel Errata BD53   (model 44)
 937 *
 938 * The official story:
 939 *   These chips need to be 'reset' when adding counters by programming the
 940 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 941 *   in sequence on the same PMC or on different PMCs.
 942 *
 943 * In practise it appears some of these events do in fact count, and
 944 * we need to programm all 4 events.
 945 */
 946static void intel_pmu_nhm_workaround(void)
 947{
 948        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 949        static const unsigned long nhm_magic[4] = {
 950                0x4300B5,
 951                0x4300D2,
 952                0x4300B1,
 953                0x4300B1
 954        };
 955        struct perf_event *event;
 956        int i;
 957
 958        /*
 959         * The Errata requires below steps:
 960         * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
 961         * 2) Configure 4 PERFEVTSELx with the magic events and clear
 962         *    the corresponding PMCx;
 963         * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
 964         * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
 965         * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
 966         */
 967
 968        /*
 969         * The real steps we choose are a little different from above.
 970         * A) To reduce MSR operations, we don't run step 1) as they
 971         *    are already cleared before this function is called;
 972         * B) Call x86_perf_event_update to save PMCx before configuring
 973         *    PERFEVTSELx with magic number;
 974         * C) With step 5), we do clear only when the PERFEVTSELx is
 975         *    not used currently.
 976         * D) Call x86_perf_event_set_period to restore PMCx;
 977         */
 978
 979        /* We always operate 4 pairs of PERF Counters */
 980        for (i = 0; i < 4; i++) {
 981                event = cpuc->events[i];
 982                if (event)
 983                        x86_perf_event_update(event);
 984        }
 985
 986        for (i = 0; i < 4; i++) {
 987                wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
 988                wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
 989        }
 990
 991        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
 992        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
 993
 994        for (i = 0; i < 4; i++) {
 995                event = cpuc->events[i];
 996
 997                if (event) {
 998                        x86_perf_event_set_period(event);
 999                        __x86_pmu_enable_event(&event->hw,
1000                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1001                } else
1002                        wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1003        }
1004}
1005
1006static void intel_pmu_nhm_enable_all(int added)
1007{
1008        if (added)
1009                intel_pmu_nhm_workaround();
1010        intel_pmu_enable_all(added);
1011}
1012
1013static inline u64 intel_pmu_get_status(void)
1014{
1015        u64 status;
1016
1017        rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1018
1019        return status;
1020}
1021
1022static inline void intel_pmu_ack_status(u64 ack)
1023{
1024        wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1025}
1026
1027static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1028{
1029        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1030        u64 ctrl_val, mask;
1031
1032        mask = 0xfULL << (idx * 4);
1033
1034        rdmsrl(hwc->config_base, ctrl_val);
1035        ctrl_val &= ~mask;
1036        wrmsrl(hwc->config_base, ctrl_val);
1037}
1038
1039static void intel_pmu_disable_event(struct perf_event *event)
1040{
1041        struct hw_perf_event *hwc = &event->hw;
1042        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1043
1044        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1045                intel_pmu_disable_bts();
1046                intel_pmu_drain_bts_buffer();
1047                return;
1048        }
1049
1050        cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1051        cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1052
1053        /*
1054         * must disable before any actual event
1055         * because any event may be combined with LBR
1056         */
1057        if (intel_pmu_needs_lbr_smpl(event))
1058                intel_pmu_lbr_disable(event);
1059
1060        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1061                intel_pmu_disable_fixed(hwc);
1062                return;
1063        }
1064
1065        x86_pmu_disable_event(event);
1066
1067        if (unlikely(event->attr.precise_ip))
1068                intel_pmu_pebs_disable(event);
1069}
1070
1071static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1072{
1073        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1074        u64 ctrl_val, bits, mask;
1075
1076        /*
1077         * Enable IRQ generation (0x8),
1078         * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1079         * if requested:
1080         */
1081        bits = 0x8ULL;
1082        if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1083                bits |= 0x2;
1084        if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1085                bits |= 0x1;
1086
1087        /*
1088         * ANY bit is supported in v3 and up
1089         */
1090        if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1091                bits |= 0x4;
1092
1093        bits <<= (idx * 4);
1094        mask = 0xfULL << (idx * 4);
1095
1096        rdmsrl(hwc->config_base, ctrl_val);
1097        ctrl_val &= ~mask;
1098        ctrl_val |= bits;
1099        wrmsrl(hwc->config_base, ctrl_val);
1100}
1101
1102static void intel_pmu_enable_event(struct perf_event *event)
1103{
1104        struct hw_perf_event *hwc = &event->hw;
1105        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1106
1107        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1108                if (!__this_cpu_read(cpu_hw_events.enabled))
1109                        return;
1110
1111                intel_pmu_enable_bts(hwc->config);
1112                return;
1113        }
1114        /*
1115         * must enabled before any actual event
1116         * because any event may be combined with LBR
1117         */
1118        if (intel_pmu_needs_lbr_smpl(event))
1119                intel_pmu_lbr_enable(event);
1120
1121        if (event->attr.exclude_host)
1122                cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1123        if (event->attr.exclude_guest)
1124                cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1125
1126        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1127                intel_pmu_enable_fixed(hwc);
1128                return;
1129        }
1130
1131        if (unlikely(event->attr.precise_ip))
1132                intel_pmu_pebs_enable(event);
1133
1134        __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1135}
1136
1137/*
1138 * Save and restart an expired event. Called by NMI contexts,
1139 * so it has to be careful about preempting normal event ops:
1140 */
1141int intel_pmu_save_and_restart(struct perf_event *event)
1142{
1143        x86_perf_event_update(event);
1144        return x86_perf_event_set_period(event);
1145}
1146
1147static void intel_pmu_reset(void)
1148{
1149        struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1150        unsigned long flags;
1151        int idx;
1152
1153        if (!x86_pmu.num_counters)
1154                return;
1155
1156        local_irq_save(flags);
1157
1158        pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1159
1160        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1161                wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1162                wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1163        }
1164        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1165                wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1166
1167        if (ds)
1168                ds->bts_index = ds->bts_buffer_base;
1169
1170        local_irq_restore(flags);
1171}
1172
1173/*
1174 * This handler is triggered by the local APIC, so the APIC IRQ handling
1175 * rules apply:
1176 */
1177static int intel_pmu_handle_irq(struct pt_regs *regs)
1178{
1179        struct perf_sample_data data;
1180        struct cpu_hw_events *cpuc;
1181        int bit, loops;
1182        u64 status;
1183        int handled;
1184
1185        cpuc = &__get_cpu_var(cpu_hw_events);
1186
1187        /*
1188         * No known reason to not always do late ACK,
1189         * but just in case do it opt-in.
1190         */
1191        if (!x86_pmu.late_ack)
1192                apic_write(APIC_LVTPC, APIC_DM_NMI);
1193        intel_pmu_disable_all();
1194        handled = intel_pmu_drain_bts_buffer();
1195        status = intel_pmu_get_status();
1196        if (!status) {
1197                intel_pmu_enable_all(0);
1198                return handled;
1199        }
1200
1201        loops = 0;
1202again:
1203        intel_pmu_ack_status(status);
1204        if (++loops > 100) {
1205                static bool warned = false;
1206                if (!warned) {
1207                        WARN(1, "perfevents: irq loop stuck!\n");
1208                        perf_event_print_debug();
1209                        warned = true;
1210                }
1211                intel_pmu_reset();
1212                goto done;
1213        }
1214
1215        inc_irq_stat(apic_perf_irqs);
1216
1217        intel_pmu_lbr_read();
1218
1219        /*
1220         * PEBS overflow sets bit 62 in the global status register
1221         */
1222        if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1223                handled++;
1224                x86_pmu.drain_pebs(regs);
1225        }
1226
1227        for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1228                struct perf_event *event = cpuc->events[bit];
1229
1230                handled++;
1231
1232                if (!test_bit(bit, cpuc->active_mask))
1233                        continue;
1234
1235                if (!intel_pmu_save_and_restart(event))
1236                        continue;
1237
1238                perf_sample_data_init(&data, 0, event->hw.last_period);
1239
1240                if (has_branch_stack(event))
1241                        data.br_stack = &cpuc->lbr_stack;
1242
1243                if (perf_event_overflow(event, &data, regs))
1244                        x86_pmu_stop(event, 0);
1245        }
1246
1247        /*
1248         * Repeat if there is more work to be done:
1249         */
1250        status = intel_pmu_get_status();
1251        if (status)
1252                goto again;
1253
1254done:
1255        intel_pmu_enable_all(0);
1256        /*
1257         * Only unmask the NMI after the overflow counters
1258         * have been reset. This avoids spurious NMIs on
1259         * Haswell CPUs.
1260         */
1261        if (x86_pmu.late_ack)
1262                apic_write(APIC_LVTPC, APIC_DM_NMI);
1263        return handled;
1264}
1265
1266static struct event_constraint *
1267intel_bts_constraints(struct perf_event *event)
1268{
1269        struct hw_perf_event *hwc = &event->hw;
1270        unsigned int hw_event, bts_event;
1271
1272        if (event->attr.freq)
1273                return NULL;
1274
1275        hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1276        bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1277
1278        if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1279                return &bts_constraint;
1280
1281        return NULL;
1282}
1283
1284static int intel_alt_er(int idx)
1285{
1286        if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1287                return idx;
1288
1289        if (idx == EXTRA_REG_RSP_0)
1290                return EXTRA_REG_RSP_1;
1291
1292        if (idx == EXTRA_REG_RSP_1)
1293                return EXTRA_REG_RSP_0;
1294
1295        return idx;
1296}
1297
1298static void intel_fixup_er(struct perf_event *event, int idx)
1299{
1300        event->hw.extra_reg.idx = idx;
1301
1302        if (idx == EXTRA_REG_RSP_0) {
1303                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1304                event->hw.config |= 0x01b7;
1305                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1306        } else if (idx == EXTRA_REG_RSP_1) {
1307                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1308                event->hw.config |= 0x01bb;
1309                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1310        }
1311}
1312
1313/*
1314 * manage allocation of shared extra msr for certain events
1315 *
1316 * sharing can be:
1317 * per-cpu: to be shared between the various events on a single PMU
1318 * per-core: per-cpu + shared by HT threads
1319 */
1320static struct event_constraint *
1321__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1322                                   struct perf_event *event,
1323                                   struct hw_perf_event_extra *reg)
1324{
1325        struct event_constraint *c = &emptyconstraint;
1326        struct er_account *era;
1327        unsigned long flags;
1328        int idx = reg->idx;
1329
1330        /*
1331         * reg->alloc can be set due to existing state, so for fake cpuc we
1332         * need to ignore this, otherwise we might fail to allocate proper fake
1333         * state for this extra reg constraint. Also see the comment below.
1334         */
1335        if (reg->alloc && !cpuc->is_fake)
1336                return NULL; /* call x86_get_event_constraint() */
1337
1338again:
1339        era = &cpuc->shared_regs->regs[idx];
1340        /*
1341         * we use spin_lock_irqsave() to avoid lockdep issues when
1342         * passing a fake cpuc
1343         */
1344        raw_spin_lock_irqsave(&era->lock, flags);
1345
1346        if (!atomic_read(&era->ref) || era->config == reg->config) {
1347
1348                /*
1349                 * If its a fake cpuc -- as per validate_{group,event}() we
1350                 * shouldn't touch event state and we can avoid doing so
1351                 * since both will only call get_event_constraints() once
1352                 * on each event, this avoids the need for reg->alloc.
1353                 *
1354                 * Not doing the ER fixup will only result in era->reg being
1355                 * wrong, but since we won't actually try and program hardware
1356                 * this isn't a problem either.
1357                 */
1358                if (!cpuc->is_fake) {
1359                        if (idx != reg->idx)
1360                                intel_fixup_er(event, idx);
1361
1362                        /*
1363                         * x86_schedule_events() can call get_event_constraints()
1364                         * multiple times on events in the case of incremental
1365                         * scheduling(). reg->alloc ensures we only do the ER
1366                         * allocation once.
1367                         */
1368                        reg->alloc = 1;
1369                }
1370
1371                /* lock in msr value */
1372                era->config = reg->config;
1373                era->reg = reg->reg;
1374
1375                /* one more user */
1376                atomic_inc(&era->ref);
1377
1378                /*
1379                 * need to call x86_get_event_constraint()
1380                 * to check if associated event has constraints
1381                 */
1382                c = NULL;
1383        } else {
1384                idx = intel_alt_er(idx);
1385                if (idx != reg->idx) {
1386                        raw_spin_unlock_irqrestore(&era->lock, flags);
1387                        goto again;
1388                }
1389        }
1390        raw_spin_unlock_irqrestore(&era->lock, flags);
1391
1392        return c;
1393}
1394
1395static void
1396__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1397                                   struct hw_perf_event_extra *reg)
1398{
1399        struct er_account *era;
1400
1401        /*
1402         * Only put constraint if extra reg was actually allocated. Also takes
1403         * care of event which do not use an extra shared reg.
1404         *
1405         * Also, if this is a fake cpuc we shouldn't touch any event state
1406         * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1407         * either since it'll be thrown out.
1408         */
1409        if (!reg->alloc || cpuc->is_fake)
1410                return;
1411
1412        era = &cpuc->shared_regs->regs[reg->idx];
1413
1414        /* one fewer user */
1415        atomic_dec(&era->ref);
1416
1417        /* allocate again next time */
1418        reg->alloc = 0;
1419}
1420
1421static struct event_constraint *
1422intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1423                              struct perf_event *event)
1424{
1425        struct event_constraint *c = NULL, *d;
1426        struct hw_perf_event_extra *xreg, *breg;
1427
1428        xreg = &event->hw.extra_reg;
1429        if (xreg->idx != EXTRA_REG_NONE) {
1430                c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1431                if (c == &emptyconstraint)
1432                        return c;
1433        }
1434        breg = &event->hw.branch_reg;
1435        if (breg->idx != EXTRA_REG_NONE) {
1436                d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1437                if (d == &emptyconstraint) {
1438                        __intel_shared_reg_put_constraints(cpuc, xreg);
1439                        c = d;
1440                }
1441        }
1442        return c;
1443}
1444
1445struct event_constraint *
1446x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1447{
1448        struct event_constraint *c;
1449
1450        if (x86_pmu.event_constraints) {
1451                for_each_event_constraint(c, x86_pmu.event_constraints) {
1452                        if ((event->hw.config & c->cmask) == c->code) {
1453                                event->hw.flags |= c->flags;
1454                                return c;
1455                        }
1456                }
1457        }
1458
1459        return &unconstrained;
1460}
1461
1462static struct event_constraint *
1463intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1464{
1465        struct event_constraint *c;
1466
1467        c = intel_bts_constraints(event);
1468        if (c)
1469                return c;
1470
1471        c = intel_pebs_constraints(event);
1472        if (c)
1473                return c;
1474
1475        c = intel_shared_regs_constraints(cpuc, event);
1476        if (c)
1477                return c;
1478
1479        return x86_get_event_constraints(cpuc, event);
1480}
1481
1482static void
1483intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1484                                        struct perf_event *event)
1485{
1486        struct hw_perf_event_extra *reg;
1487
1488        reg = &event->hw.extra_reg;
1489        if (reg->idx != EXTRA_REG_NONE)
1490                __intel_shared_reg_put_constraints(cpuc, reg);
1491
1492        reg = &event->hw.branch_reg;
1493        if (reg->idx != EXTRA_REG_NONE)
1494                __intel_shared_reg_put_constraints(cpuc, reg);
1495}
1496
1497static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1498                                        struct perf_event *event)
1499{
1500        intel_put_shared_regs_event_constraints(cpuc, event);
1501}
1502
1503static void intel_pebs_aliases_core2(struct perf_event *event)
1504{
1505        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1506                /*
1507                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1508                 * (0x003c) so that we can use it with PEBS.
1509                 *
1510                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1511                 * PEBS capable. However we can use INST_RETIRED.ANY_P
1512                 * (0x00c0), which is a PEBS capable event, to get the same
1513                 * count.
1514                 *
1515                 * INST_RETIRED.ANY_P counts the number of cycles that retires
1516                 * CNTMASK instructions. By setting CNTMASK to a value (16)
1517                 * larger than the maximum number of instructions that can be
1518                 * retired per cycle (4) and then inverting the condition, we
1519                 * count all cycles that retire 16 or less instructions, which
1520                 * is every cycle.
1521                 *
1522                 * Thereby we gain a PEBS capable cycle counter.
1523                 */
1524                u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1525
1526                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1527                event->hw.config = alt_config;
1528        }
1529}
1530
1531static void intel_pebs_aliases_snb(struct perf_event *event)
1532{
1533        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1534                /*
1535                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1536                 * (0x003c) so that we can use it with PEBS.
1537                 *
1538                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1539                 * PEBS capable. However we can use UOPS_RETIRED.ALL
1540                 * (0x01c2), which is a PEBS capable event, to get the same
1541                 * count.
1542                 *
1543                 * UOPS_RETIRED.ALL counts the number of cycles that retires
1544                 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1545                 * larger than the maximum number of micro-ops that can be
1546                 * retired per cycle (4) and then inverting the condition, we
1547                 * count all cycles that retire 16 or less micro-ops, which
1548                 * is every cycle.
1549                 *
1550                 * Thereby we gain a PEBS capable cycle counter.
1551                 */
1552                u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1553
1554                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1555                event->hw.config = alt_config;
1556        }
1557}
1558
1559static int intel_pmu_hw_config(struct perf_event *event)
1560{
1561        int ret = x86_pmu_hw_config(event);
1562
1563        if (ret)
1564                return ret;
1565
1566        if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1567                x86_pmu.pebs_aliases(event);
1568
1569        if (intel_pmu_needs_lbr_smpl(event)) {
1570                ret = intel_pmu_setup_lbr_filter(event);
1571                if (ret)
1572                        return ret;
1573        }
1574
1575        if (event->attr.type != PERF_TYPE_RAW)
1576                return 0;
1577
1578        if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1579                return 0;
1580
1581        if (x86_pmu.version < 3)
1582                return -EINVAL;
1583
1584        if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1585                return -EACCES;
1586
1587        event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1588
1589        return 0;
1590}
1591
1592struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1593{
1594        if (x86_pmu.guest_get_msrs)
1595                return x86_pmu.guest_get_msrs(nr);
1596        *nr = 0;
1597        return NULL;
1598}
1599EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1600
1601static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1602{
1603        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1604        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1605
1606        arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1607        arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1608        arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1609        /*
1610         * If PMU counter has PEBS enabled it is not enough to disable counter
1611         * on a guest entry since PEBS memory write can overshoot guest entry
1612         * and corrupt guest memory. Disabling PEBS solves the problem.
1613         */
1614        arr[1].msr = MSR_IA32_PEBS_ENABLE;
1615        arr[1].host = cpuc->pebs_enabled;
1616        arr[1].guest = 0;
1617
1618        *nr = 2;
1619        return arr;
1620}
1621
1622static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1623{
1624        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1625        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1626        int idx;
1627
1628        for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1629                struct perf_event *event = cpuc->events[idx];
1630
1631                arr[idx].msr = x86_pmu_config_addr(idx);
1632                arr[idx].host = arr[idx].guest = 0;
1633
1634                if (!test_bit(idx, cpuc->active_mask))
1635                        continue;
1636
1637                arr[idx].host = arr[idx].guest =
1638                        event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1639
1640                if (event->attr.exclude_host)
1641                        arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1642                else if (event->attr.exclude_guest)
1643                        arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1644        }
1645
1646        *nr = x86_pmu.num_counters;
1647        return arr;
1648}
1649
1650static void core_pmu_enable_event(struct perf_event *event)
1651{
1652        if (!event->attr.exclude_host)
1653                x86_pmu_enable_event(event);
1654}
1655
1656static void core_pmu_enable_all(int added)
1657{
1658        struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1659        int idx;
1660
1661        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1662                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1663
1664                if (!test_bit(idx, cpuc->active_mask) ||
1665                                cpuc->events[idx]->attr.exclude_host)
1666                        continue;
1667
1668                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1669        }
1670}
1671
1672static int hsw_hw_config(struct perf_event *event)
1673{
1674        int ret = intel_pmu_hw_config(event);
1675
1676        if (ret)
1677                return ret;
1678        if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1679                return 0;
1680        event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1681
1682        /*
1683         * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1684         * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1685         * this combination.
1686         */
1687        if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1688             ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1689              event->attr.precise_ip > 0))
1690                return -EOPNOTSUPP;
1691
1692        return 0;
1693}
1694
1695static struct event_constraint counter2_constraint =
1696                        EVENT_CONSTRAINT(0, 0x4, 0);
1697
1698static struct event_constraint *
1699hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1700{
1701        struct event_constraint *c = intel_get_event_constraints(cpuc, event);
1702
1703        /* Handle special quirk on in_tx_checkpointed only in counter 2 */
1704        if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
1705                if (c->idxmsk64 & (1U << 2))
1706                        return &counter2_constraint;
1707                return &emptyconstraint;
1708        }
1709
1710        return c;
1711}
1712
1713PMU_FORMAT_ATTR(event,  "config:0-7"    );
1714PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1715PMU_FORMAT_ATTR(edge,   "config:18"     );
1716PMU_FORMAT_ATTR(pc,     "config:19"     );
1717PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1718PMU_FORMAT_ATTR(inv,    "config:23"     );
1719PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1720PMU_FORMAT_ATTR(in_tx,  "config:32");
1721PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1722
1723static struct attribute *intel_arch_formats_attr[] = {
1724        &format_attr_event.attr,
1725        &format_attr_umask.attr,
1726        &format_attr_edge.attr,
1727        &format_attr_pc.attr,
1728        &format_attr_inv.attr,
1729        &format_attr_cmask.attr,
1730        NULL,
1731};
1732
1733ssize_t intel_event_sysfs_show(char *page, u64 config)
1734{
1735        u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
1736
1737        return x86_event_sysfs_show(page, config, event);
1738}
1739
1740static __initconst const struct x86_pmu core_pmu = {
1741        .name                   = "core",
1742        .handle_irq             = x86_pmu_handle_irq,
1743        .disable_all            = x86_pmu_disable_all,
1744        .enable_all             = core_pmu_enable_all,
1745        .enable                 = core_pmu_enable_event,
1746        .disable                = x86_pmu_disable_event,
1747        .hw_config              = x86_pmu_hw_config,
1748        .schedule_events        = x86_schedule_events,
1749        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1750        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1751        .event_map              = intel_pmu_event_map,
1752        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1753        .apic                   = 1,
1754        /*
1755         * Intel PMCs cannot be accessed sanely above 32 bit width,
1756         * so we install an artificial 1<<31 period regardless of
1757         * the generic event period:
1758         */
1759        .max_period             = (1ULL << 31) - 1,
1760        .get_event_constraints  = intel_get_event_constraints,
1761        .put_event_constraints  = intel_put_event_constraints,
1762        .event_constraints      = intel_core_event_constraints,
1763        .guest_get_msrs         = core_guest_get_msrs,
1764        .format_attrs           = intel_arch_formats_attr,
1765        .events_sysfs_show      = intel_event_sysfs_show,
1766};
1767
1768struct intel_shared_regs *allocate_shared_regs(int cpu)
1769{
1770        struct intel_shared_regs *regs;
1771        int i;
1772
1773        regs = kzalloc_node(sizeof(struct intel_shared_regs),
1774                            GFP_KERNEL, cpu_to_node(cpu));
1775        if (regs) {
1776                /*
1777                 * initialize the locks to keep lockdep happy
1778                 */
1779                for (i = 0; i < EXTRA_REG_MAX; i++)
1780                        raw_spin_lock_init(&regs->regs[i].lock);
1781
1782                regs->core_id = -1;
1783        }
1784        return regs;
1785}
1786
1787static int intel_pmu_cpu_prepare(int cpu)
1788{
1789        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1790
1791        if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1792                return NOTIFY_OK;
1793
1794        cpuc->shared_regs = allocate_shared_regs(cpu);
1795        if (!cpuc->shared_regs)
1796                return NOTIFY_BAD;
1797
1798        return NOTIFY_OK;
1799}
1800
1801static void intel_pmu_cpu_starting(int cpu)
1802{
1803        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1804        int core_id = topology_core_id(cpu);
1805        int i;
1806
1807        init_debug_store_on_cpu(cpu);
1808        /*
1809         * Deal with CPUs that don't clear their LBRs on power-up.
1810         */
1811        intel_pmu_lbr_reset();
1812
1813        cpuc->lbr_sel = NULL;
1814
1815        if (!cpuc->shared_regs)
1816                return;
1817
1818        if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1819                for_each_cpu(i, topology_thread_cpumask(cpu)) {
1820                        struct intel_shared_regs *pc;
1821
1822                        pc = per_cpu(cpu_hw_events, i).shared_regs;
1823                        if (pc && pc->core_id == core_id) {
1824                                cpuc->kfree_on_online = cpuc->shared_regs;
1825                                cpuc->shared_regs = pc;
1826                                break;
1827                        }
1828                }
1829                cpuc->shared_regs->core_id = core_id;
1830                cpuc->shared_regs->refcnt++;
1831        }
1832
1833        if (x86_pmu.lbr_sel_map)
1834                cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1835}
1836
1837static void intel_pmu_cpu_dying(int cpu)
1838{
1839        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1840        struct intel_shared_regs *pc;
1841
1842        pc = cpuc->shared_regs;
1843        if (pc) {
1844                if (pc->core_id == -1 || --pc->refcnt == 0)
1845                        kfree(pc);
1846                cpuc->shared_regs = NULL;
1847        }
1848
1849        fini_debug_store_on_cpu(cpu);
1850}
1851
1852static void intel_pmu_flush_branch_stack(void)
1853{
1854        /*
1855         * Intel LBR does not tag entries with the
1856         * PID of the current task, then we need to
1857         * flush it on ctxsw
1858         * For now, we simply reset it
1859         */
1860        if (x86_pmu.lbr_nr)
1861                intel_pmu_lbr_reset();
1862}
1863
1864PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1865
1866PMU_FORMAT_ATTR(ldlat, "config1:0-15");
1867
1868static struct attribute *intel_arch3_formats_attr[] = {
1869        &format_attr_event.attr,
1870        &format_attr_umask.attr,
1871        &format_attr_edge.attr,
1872        &format_attr_pc.attr,
1873        &format_attr_any.attr,
1874        &format_attr_inv.attr,
1875        &format_attr_cmask.attr,
1876        &format_attr_in_tx.attr,
1877        &format_attr_in_tx_cp.attr,
1878
1879        &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1880        &format_attr_ldlat.attr, /* PEBS load latency */
1881        NULL,
1882};
1883
1884static __initconst const struct x86_pmu intel_pmu = {
1885        .name                   = "Intel",
1886        .handle_irq             = intel_pmu_handle_irq,
1887        .disable_all            = intel_pmu_disable_all,
1888        .enable_all             = intel_pmu_enable_all,
1889        .enable                 = intel_pmu_enable_event,
1890        .disable                = intel_pmu_disable_event,
1891        .hw_config              = intel_pmu_hw_config,
1892        .schedule_events        = x86_schedule_events,
1893        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1894        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1895        .event_map              = intel_pmu_event_map,
1896        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1897        .apic                   = 1,
1898        /*
1899         * Intel PMCs cannot be accessed sanely above 32 bit width,
1900         * so we install an artificial 1<<31 period regardless of
1901         * the generic event period:
1902         */
1903        .max_period             = (1ULL << 31) - 1,
1904        .get_event_constraints  = intel_get_event_constraints,
1905        .put_event_constraints  = intel_put_event_constraints,
1906        .pebs_aliases           = intel_pebs_aliases_core2,
1907
1908        .format_attrs           = intel_arch3_formats_attr,
1909        .events_sysfs_show      = intel_event_sysfs_show,
1910
1911        .cpu_prepare            = intel_pmu_cpu_prepare,
1912        .cpu_starting           = intel_pmu_cpu_starting,
1913        .cpu_dying              = intel_pmu_cpu_dying,
1914        .guest_get_msrs         = intel_guest_get_msrs,
1915        .flush_branch_stack     = intel_pmu_flush_branch_stack,
1916};
1917
1918static __init void intel_clovertown_quirk(void)
1919{
1920        /*
1921         * PEBS is unreliable due to:
1922         *
1923         *   AJ67  - PEBS may experience CPL leaks
1924         *   AJ68  - PEBS PMI may be delayed by one event
1925         *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1926         *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1927         *
1928         * AJ67 could be worked around by restricting the OS/USR flags.
1929         * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1930         *
1931         * AJ106 could possibly be worked around by not allowing LBR
1932         *       usage from PEBS, including the fixup.
1933         * AJ68  could possibly be worked around by always programming
1934         *       a pebs_event_reset[0] value and coping with the lost events.
1935         *
1936         * But taken together it might just make sense to not enable PEBS on
1937         * these chips.
1938         */
1939        pr_warn("PEBS disabled due to CPU errata\n");
1940        x86_pmu.pebs = 0;
1941        x86_pmu.pebs_constraints = NULL;
1942}
1943
1944static int intel_snb_pebs_broken(int cpu)
1945{
1946        u32 rev = UINT_MAX; /* default to broken for unknown models */
1947
1948        switch (cpu_data(cpu).x86_model) {
1949        case 42: /* SNB */
1950                rev = 0x28;
1951                break;
1952
1953        case 45: /* SNB-EP */
1954                switch (cpu_data(cpu).x86_mask) {
1955                case 6: rev = 0x618; break;
1956                case 7: rev = 0x70c; break;
1957                }
1958        }
1959
1960        return (cpu_data(cpu).microcode < rev);
1961}
1962
1963static void intel_snb_check_microcode(void)
1964{
1965        int pebs_broken = 0;
1966        int cpu;
1967
1968        get_online_cpus();
1969        for_each_online_cpu(cpu) {
1970                if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1971                        break;
1972        }
1973        put_online_cpus();
1974
1975        if (pebs_broken == x86_pmu.pebs_broken)
1976                return;
1977
1978        /*
1979         * Serialized by the microcode lock..
1980         */
1981        if (x86_pmu.pebs_broken) {
1982                pr_info("PEBS enabled due to microcode update\n");
1983                x86_pmu.pebs_broken = 0;
1984        } else {
1985                pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1986                x86_pmu.pebs_broken = 1;
1987        }
1988}
1989
1990static __init void intel_sandybridge_quirk(void)
1991{
1992        x86_pmu.check_microcode = intel_snb_check_microcode;
1993        intel_snb_check_microcode();
1994}
1995
1996static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1997        { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1998        { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1999        { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2000        { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2001        { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2002        { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2003        { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2004};
2005
2006static __init void intel_arch_events_quirk(void)
2007{
2008        int bit;
2009
2010        /* disable event that reported as not presend by cpuid */
2011        for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2012                intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2013                pr_warn("CPUID marked event: \'%s\' unavailable\n",
2014                        intel_arch_events_map[bit].name);
2015        }
2016}
2017
2018static __init void intel_nehalem_quirk(void)
2019{
2020        union cpuid10_ebx ebx;
2021
2022        ebx.full = x86_pmu.events_maskl;
2023        if (ebx.split.no_branch_misses_retired) {
2024                /*
2025                 * Erratum AAJ80 detected, we work it around by using
2026                 * the BR_MISP_EXEC.ANY event. This will over-count
2027                 * branch-misses, but it's still much better than the
2028                 * architectural event which is often completely bogus:
2029                 */
2030                intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2031                ebx.split.no_branch_misses_retired = 0;
2032                x86_pmu.events_maskl = ebx.full;
2033                pr_info("CPU erratum AAJ80 worked around\n");
2034        }
2035}
2036
2037EVENT_ATTR_STR(mem-loads,      mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
2038EVENT_ATTR_STR(mem-stores,     mem_st_hsw,     "event=0xd0,umask=0x82")
2039
2040static struct attribute *hsw_events_attrs[] = {
2041        EVENT_PTR(mem_ld_hsw),
2042        EVENT_PTR(mem_st_hsw),
2043        NULL
2044};
2045
2046__init int intel_pmu_init(void)
2047{
2048        union cpuid10_edx edx;
2049        union cpuid10_eax eax;
2050        union cpuid10_ebx ebx;
2051        struct event_constraint *c;
2052        unsigned int unused;
2053        int version;
2054
2055        if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2056                switch (boot_cpu_data.x86) {
2057                case 0x6:
2058                        return p6_pmu_init();
2059                case 0xb:
2060                        return knc_pmu_init();
2061                case 0xf:
2062                        return p4_pmu_init();
2063                }
2064                return -ENODEV;
2065        }
2066
2067        /*
2068         * Check whether the Architectural PerfMon supports
2069         * Branch Misses Retired hw_event or not.
2070         */
2071        cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2072        if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2073                return -ENODEV;
2074
2075        version = eax.split.version_id;
2076        if (version < 2)
2077                x86_pmu = core_pmu;
2078        else
2079                x86_pmu = intel_pmu;
2080
2081        x86_pmu.version                 = version;
2082        x86_pmu.num_counters            = eax.split.num_counters;
2083        x86_pmu.cntval_bits             = eax.split.bit_width;
2084        x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
2085
2086        x86_pmu.events_maskl            = ebx.full;
2087        x86_pmu.events_mask_len         = eax.split.mask_length;
2088
2089        x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2090
2091        /*
2092         * Quirk: v2 perfmon does not report fixed-purpose events, so
2093         * assume at least 3 events:
2094         */
2095        if (version > 1)
2096                x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2097
2098        /*
2099         * v2 and above have a perf capabilities MSR
2100         */
2101        if (version > 1) {
2102                u64 capabilities;
2103
2104                rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2105                x86_pmu.intel_cap.capabilities = capabilities;
2106        }
2107
2108        intel_ds_init();
2109
2110        x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2111
2112        /*
2113         * Install the hw-cache-events table:
2114         */
2115        switch (boot_cpu_data.x86_model) {
2116        case 14: /* 65 nm core solo/duo, "Yonah" */
2117                pr_cont("Core events, ");
2118                break;
2119
2120        case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2121                x86_add_quirk(intel_clovertown_quirk);
2122        case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2123        case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2124        case 29: /* six-core 45 nm xeon "Dunnington" */
2125                memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2126                       sizeof(hw_cache_event_ids));
2127
2128                intel_pmu_lbr_init_core();
2129
2130                x86_pmu.event_constraints = intel_core2_event_constraints;
2131                x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2132                pr_cont("Core2 events, ");
2133                break;
2134
2135        case 26: /* 45 nm nehalem, "Bloomfield" */
2136        case 30: /* 45 nm nehalem, "Lynnfield" */
2137        case 46: /* 45 nm nehalem-ex, "Beckton" */
2138                memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2139                       sizeof(hw_cache_event_ids));
2140                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2141                       sizeof(hw_cache_extra_regs));
2142
2143                intel_pmu_lbr_init_nhm();
2144
2145                x86_pmu.event_constraints = intel_nehalem_event_constraints;
2146                x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2147                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2148                x86_pmu.extra_regs = intel_nehalem_extra_regs;
2149
2150                x86_pmu.cpu_events = nhm_events_attrs;
2151
2152                /* UOPS_ISSUED.STALLED_CYCLES */
2153                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2154                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2155                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2156                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2157                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2158
2159                x86_add_quirk(intel_nehalem_quirk);
2160
2161                pr_cont("Nehalem events, ");
2162                break;
2163
2164        case 28: /* Atom */
2165        case 38: /* Lincroft */
2166        case 39: /* Penwell */
2167        case 53: /* Cloverview */
2168        case 54: /* Cedarview */
2169                memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2170                       sizeof(hw_cache_event_ids));
2171
2172                intel_pmu_lbr_init_atom();
2173
2174                x86_pmu.event_constraints = intel_gen_event_constraints;
2175                x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2176                pr_cont("Atom events, ");
2177                break;
2178
2179        case 37: /* 32 nm nehalem, "Clarkdale" */
2180        case 44: /* 32 nm nehalem, "Gulftown" */
2181        case 47: /* 32 nm Xeon E7 */
2182                memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2183                       sizeof(hw_cache_event_ids));
2184                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2185                       sizeof(hw_cache_extra_regs));
2186
2187                intel_pmu_lbr_init_nhm();
2188
2189                x86_pmu.event_constraints = intel_westmere_event_constraints;
2190                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2191                x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2192                x86_pmu.extra_regs = intel_westmere_extra_regs;
2193                x86_pmu.er_flags |= ERF_HAS_RSP_1;
2194
2195                x86_pmu.cpu_events = nhm_events_attrs;
2196
2197                /* UOPS_ISSUED.STALLED_CYCLES */
2198                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2199                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2200                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2201                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2202                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2203
2204                pr_cont("Westmere events, ");
2205                break;
2206
2207        case 42: /* SandyBridge */
2208        case 45: /* SandyBridge, "Romely-EP" */
2209                x86_add_quirk(intel_sandybridge_quirk);
2210                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2211                       sizeof(hw_cache_event_ids));
2212                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2213                       sizeof(hw_cache_extra_regs));
2214
2215                intel_pmu_lbr_init_snb();
2216
2217                x86_pmu.event_constraints = intel_snb_event_constraints;
2218                x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2219                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2220                if (boot_cpu_data.x86_model == 45)
2221                        x86_pmu.extra_regs = intel_snbep_extra_regs;
2222                else
2223                        x86_pmu.extra_regs = intel_snb_extra_regs;
2224                /* all extra regs are per-cpu when HT is on */
2225                x86_pmu.er_flags |= ERF_HAS_RSP_1;
2226                x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2227
2228                x86_pmu.cpu_events = snb_events_attrs;
2229
2230                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2231                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2232                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2233                /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2234                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2235                        X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2236
2237                pr_cont("SandyBridge events, ");
2238                break;
2239        case 58: /* IvyBridge */
2240        case 62: /* IvyBridge EP */
2241                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2242                       sizeof(hw_cache_event_ids));
2243                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2244                       sizeof(hw_cache_extra_regs));
2245
2246                intel_pmu_lbr_init_snb();
2247
2248                x86_pmu.event_constraints = intel_ivb_event_constraints;
2249                x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2250                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2251                if (boot_cpu_data.x86_model == 62)
2252                        x86_pmu.extra_regs = intel_snbep_extra_regs;
2253                else
2254                        x86_pmu.extra_regs = intel_snb_extra_regs;
2255                /* all extra regs are per-cpu when HT is on */
2256                x86_pmu.er_flags |= ERF_HAS_RSP_1;
2257                x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2258
2259                x86_pmu.cpu_events = snb_events_attrs;
2260
2261                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2262                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2263                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2264
2265                pr_cont("IvyBridge events, ");
2266                break;
2267
2268
2269        case 60: /* Haswell Client */
2270        case 70:
2271        case 71:
2272        case 63:
2273        case 69:
2274                x86_pmu.late_ack = true;
2275                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2276                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2277
2278                intel_pmu_lbr_init_snb();
2279
2280                x86_pmu.event_constraints = intel_hsw_event_constraints;
2281                x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2282                x86_pmu.extra_regs = intel_snb_extra_regs;
2283                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2284                /* all extra regs are per-cpu when HT is on */
2285                x86_pmu.er_flags |= ERF_HAS_RSP_1;
2286                x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2287
2288                x86_pmu.hw_config = hsw_hw_config;
2289                x86_pmu.get_event_constraints = hsw_get_event_constraints;
2290                x86_pmu.cpu_events = hsw_events_attrs;
2291                pr_cont("Haswell events, ");
2292                break;
2293
2294        default:
2295                switch (x86_pmu.version) {
2296                case 1:
2297                        x86_pmu.event_constraints = intel_v1_event_constraints;
2298                        pr_cont("generic architected perfmon v1, ");
2299                        break;
2300                default:
2301                        /*
2302                         * default constraints for v2 and up
2303                         */
2304                        x86_pmu.event_constraints = intel_gen_event_constraints;
2305                        pr_cont("generic architected perfmon, ");
2306                        break;
2307                }
2308        }
2309
2310        if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2311                WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2312                     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2313                x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2314        }
2315        x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2316
2317        if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2318                WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2319                     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2320                x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2321        }
2322
2323        x86_pmu.intel_ctrl |=
2324                ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2325
2326        if (x86_pmu.event_constraints) {
2327                /*
2328                 * event on fixed counter2 (REF_CYCLES) only works on this
2329                 * counter, so do not extend mask to generic counters
2330                 */
2331                for_each_event_constraint(c, x86_pmu.event_constraints) {
2332                        if (c->cmask != FIXED_EVENT_FLAGS
2333                            || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2334                                continue;
2335                        }
2336
2337                        c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2338                        c->weight += x86_pmu.num_counters;
2339                }
2340        }
2341
2342        /* Support full width counters using alternative MSR range */
2343        if (x86_pmu.intel_cap.full_width_write) {
2344                x86_pmu.max_period = x86_pmu.cntval_mask;
2345                x86_pmu.perfctr = MSR_IA32_PMC0;
2346                pr_cont("full-width counters, ");
2347        }
2348
2349        return 0;
2350}
2351