linux/arch/x86/kernel/hpet.c
<<
>>
Prefs
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
  18
  19#define HPET_MASK                       CLOCKSOURCE_MASK(32)
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC                   1000000L
  24
  25#define HPET_DEV_USED_BIT               2
  26#define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID                  0x8
  28#define HPET_DEV_FSB_CAP                0x1000
  29#define HPET_DEV_PERI_CAP               0x2000
  30
  31#define HPET_MIN_CYCLES                 128
  32#define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
  34/*
  35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  36 */
  37unsigned long                           hpet_address;
  38u8                                      hpet_blockid; /* OS timer block num */
  39u8                                      hpet_msi_disable;
  40
  41#ifdef CONFIG_PCI_MSI
  42static unsigned long                    hpet_num_timers;
  43#endif
  44static void __iomem                     *hpet_virt_address;
  45
  46struct hpet_dev {
  47        struct clock_event_device       evt;
  48        unsigned int                    num;
  49        int                             cpu;
  50        unsigned int                    irq;
  51        unsigned int                    flags;
  52        char                            name[10];
  53};
  54
  55inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
  56{
  57        return container_of(evtdev, struct hpet_dev, evt);
  58}
  59
  60inline unsigned int hpet_readl(unsigned int a)
  61{
  62        return readl(hpet_virt_address + a);
  63}
  64
  65static inline void hpet_writel(unsigned int d, unsigned int a)
  66{
  67        writel(d, hpet_virt_address + a);
  68}
  69
  70#ifdef CONFIG_X86_64
  71#include <asm/pgtable.h>
  72#endif
  73
  74static inline void hpet_set_mapping(void)
  75{
  76        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  77#ifdef CONFIG_X86_64
  78        __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  79#endif
  80}
  81
  82static inline void hpet_clear_mapping(void)
  83{
  84        iounmap(hpet_virt_address);
  85        hpet_virt_address = NULL;
  86}
  87
  88/*
  89 * HPET command line enable / disable
  90 */
  91static int boot_hpet_disable;
  92int hpet_force_user;
  93static int hpet_verbose;
  94
  95static int __init hpet_setup(char *str)
  96{
  97        while (str) {
  98                char *next = strchr(str, ',');
  99
 100                if (next)
 101                        *next++ = 0;
 102                if (!strncmp("disable", str, 7))
 103                        boot_hpet_disable = 1;
 104                if (!strncmp("force", str, 5))
 105                        hpet_force_user = 1;
 106                if (!strncmp("verbose", str, 7))
 107                        hpet_verbose = 1;
 108                str = next;
 109        }
 110        return 1;
 111}
 112__setup("hpet=", hpet_setup);
 113
 114static int __init disable_hpet(char *str)
 115{
 116        boot_hpet_disable = 1;
 117        return 1;
 118}
 119__setup("nohpet", disable_hpet);
 120
 121static inline int is_hpet_capable(void)
 122{
 123        return !boot_hpet_disable && hpet_address;
 124}
 125
 126/*
 127 * HPET timer interrupt enable / disable
 128 */
 129static int hpet_legacy_int_enabled;
 130
 131/**
 132 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 133 */
 134int is_hpet_enabled(void)
 135{
 136        return is_hpet_capable() && hpet_legacy_int_enabled;
 137}
 138EXPORT_SYMBOL_GPL(is_hpet_enabled);
 139
 140static void _hpet_print_config(const char *function, int line)
 141{
 142        u32 i, timers, l, h;
 143        printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 144        l = hpet_readl(HPET_ID);
 145        h = hpet_readl(HPET_PERIOD);
 146        timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 147        printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 148        l = hpet_readl(HPET_CFG);
 149        h = hpet_readl(HPET_STATUS);
 150        printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 151        l = hpet_readl(HPET_COUNTER);
 152        h = hpet_readl(HPET_COUNTER+4);
 153        printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 154
 155        for (i = 0; i < timers; i++) {
 156                l = hpet_readl(HPET_Tn_CFG(i));
 157                h = hpet_readl(HPET_Tn_CFG(i)+4);
 158                printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 159                       i, l, h);
 160                l = hpet_readl(HPET_Tn_CMP(i));
 161                h = hpet_readl(HPET_Tn_CMP(i)+4);
 162                printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 163                       i, l, h);
 164                l = hpet_readl(HPET_Tn_ROUTE(i));
 165                h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 166                printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 167                       i, l, h);
 168        }
 169}
 170
 171#define hpet_print_config()                                     \
 172do {                                                            \
 173        if (hpet_verbose)                                       \
 174                _hpet_print_config(__FUNCTION__, __LINE__);     \
 175} while (0)
 176
 177/*
 178 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 179 * timer 0 and timer 1 in case of RTC emulation.
 180 */
 181#ifdef CONFIG_HPET
 182
 183static void hpet_reserve_msi_timers(struct hpet_data *hd);
 184
 185static void hpet_reserve_platform_timers(unsigned int id)
 186{
 187        struct hpet __iomem *hpet = hpet_virt_address;
 188        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 189        unsigned int nrtimers, i;
 190        struct hpet_data hd;
 191
 192        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 193
 194        memset(&hd, 0, sizeof(hd));
 195        hd.hd_phys_address      = hpet_address;
 196        hd.hd_address           = hpet;
 197        hd.hd_nirqs             = nrtimers;
 198        hpet_reserve_timer(&hd, 0);
 199
 200#ifdef CONFIG_HPET_EMULATE_RTC
 201        hpet_reserve_timer(&hd, 1);
 202#endif
 203
 204        /*
 205         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 206         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 207         * don't bother configuring *any* comparator interrupts.
 208         */
 209        hd.hd_irq[0] = HPET_LEGACY_8254;
 210        hd.hd_irq[1] = HPET_LEGACY_RTC;
 211
 212        for (i = 2; i < nrtimers; timer++, i++) {
 213                hd.hd_irq[i] = (readl(&timer->hpet_config) &
 214                        Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 215        }
 216
 217        hpet_reserve_msi_timers(&hd);
 218
 219        hpet_alloc(&hd);
 220
 221}
 222#else
 223static void hpet_reserve_platform_timers(unsigned int id) { }
 224#endif
 225
 226/*
 227 * Common hpet info
 228 */
 229static unsigned long hpet_freq;
 230
 231static void hpet_legacy_set_mode(enum clock_event_mode mode,
 232                          struct clock_event_device *evt);
 233static int hpet_legacy_next_event(unsigned long delta,
 234                           struct clock_event_device *evt);
 235
 236/*
 237 * The hpet clock event device
 238 */
 239static struct clock_event_device hpet_clockevent = {
 240        .name           = "hpet",
 241        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 242        .set_mode       = hpet_legacy_set_mode,
 243        .set_next_event = hpet_legacy_next_event,
 244        .irq            = 0,
 245        .rating         = 50,
 246};
 247
 248static void hpet_stop_counter(void)
 249{
 250        unsigned long cfg = hpet_readl(HPET_CFG);
 251        cfg &= ~HPET_CFG_ENABLE;
 252        hpet_writel(cfg, HPET_CFG);
 253}
 254
 255static void hpet_reset_counter(void)
 256{
 257        hpet_writel(0, HPET_COUNTER);
 258        hpet_writel(0, HPET_COUNTER + 4);
 259}
 260
 261static void hpet_start_counter(void)
 262{
 263        unsigned int cfg = hpet_readl(HPET_CFG);
 264        cfg |= HPET_CFG_ENABLE;
 265        hpet_writel(cfg, HPET_CFG);
 266}
 267
 268static void hpet_restart_counter(void)
 269{
 270        hpet_stop_counter();
 271        hpet_reset_counter();
 272        hpet_start_counter();
 273}
 274
 275static void hpet_resume_device(void)
 276{
 277        force_hpet_resume();
 278}
 279
 280static void hpet_resume_counter(struct clocksource *cs)
 281{
 282        hpet_resume_device();
 283        hpet_restart_counter();
 284}
 285
 286static void hpet_enable_legacy_int(void)
 287{
 288        unsigned int cfg = hpet_readl(HPET_CFG);
 289
 290        cfg |= HPET_CFG_LEGACY;
 291        hpet_writel(cfg, HPET_CFG);
 292        hpet_legacy_int_enabled = 1;
 293}
 294
 295static void hpet_legacy_clockevent_register(void)
 296{
 297        /* Start HPET legacy interrupts */
 298        hpet_enable_legacy_int();
 299
 300        /*
 301         * Start hpet with the boot cpu mask and make it
 302         * global after the IO_APIC has been initialized.
 303         */
 304        hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 305        clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 306                                        HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 307        global_clock_event = &hpet_clockevent;
 308        printk(KERN_DEBUG "hpet clockevent registered\n");
 309}
 310
 311static int hpet_setup_msi_irq(unsigned int irq);
 312
 313static void hpet_set_mode(enum clock_event_mode mode,
 314                          struct clock_event_device *evt, int timer)
 315{
 316        unsigned int cfg, cmp, now;
 317        uint64_t delta;
 318
 319        switch (mode) {
 320        case CLOCK_EVT_MODE_PERIODIC:
 321                hpet_stop_counter();
 322                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 323                delta >>= evt->shift;
 324                now = hpet_readl(HPET_COUNTER);
 325                cmp = now + (unsigned int) delta;
 326                cfg = hpet_readl(HPET_Tn_CFG(timer));
 327                cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 328                       HPET_TN_SETVAL | HPET_TN_32BIT;
 329                hpet_writel(cfg, HPET_Tn_CFG(timer));
 330                hpet_writel(cmp, HPET_Tn_CMP(timer));
 331                udelay(1);
 332                /*
 333                 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 334                 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 335                 * bit is automatically cleared after the first write.
 336                 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 337                 * Publication # 24674)
 338                 */
 339                hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 340                hpet_start_counter();
 341                hpet_print_config();
 342                break;
 343
 344        case CLOCK_EVT_MODE_ONESHOT:
 345                cfg = hpet_readl(HPET_Tn_CFG(timer));
 346                cfg &= ~HPET_TN_PERIODIC;
 347                cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 348                hpet_writel(cfg, HPET_Tn_CFG(timer));
 349                break;
 350
 351        case CLOCK_EVT_MODE_UNUSED:
 352        case CLOCK_EVT_MODE_SHUTDOWN:
 353                cfg = hpet_readl(HPET_Tn_CFG(timer));
 354                cfg &= ~HPET_TN_ENABLE;
 355                hpet_writel(cfg, HPET_Tn_CFG(timer));
 356                break;
 357
 358        case CLOCK_EVT_MODE_RESUME:
 359                if (timer == 0) {
 360                        hpet_enable_legacy_int();
 361                } else {
 362                        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 363                        hpet_setup_msi_irq(hdev->irq);
 364                        disable_irq(hdev->irq);
 365                        irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 366                        enable_irq(hdev->irq);
 367                }
 368                hpet_print_config();
 369                break;
 370        }
 371}
 372
 373static int hpet_next_event(unsigned long delta,
 374                           struct clock_event_device *evt, int timer)
 375{
 376        u32 cnt;
 377        s32 res;
 378
 379        cnt = hpet_readl(HPET_COUNTER);
 380        cnt += (u32) delta;
 381        hpet_writel(cnt, HPET_Tn_CMP(timer));
 382
 383        /*
 384         * HPETs are a complete disaster. The compare register is
 385         * based on a equal comparison and neither provides a less
 386         * than or equal functionality (which would require to take
 387         * the wraparound into account) nor a simple count down event
 388         * mode. Further the write to the comparator register is
 389         * delayed internally up to two HPET clock cycles in certain
 390         * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 391         * longer delays. We worked around that by reading back the
 392         * compare register, but that required another workaround for
 393         * ICH9,10 chips where the first readout after write can
 394         * return the old stale value. We already had a minimum
 395         * programming delta of 5us enforced, but a NMI or SMI hitting
 396         * between the counter readout and the comparator write can
 397         * move us behind that point easily. Now instead of reading
 398         * the compare register back several times, we make the ETIME
 399         * decision based on the following: Return ETIME if the
 400         * counter value after the write is less than HPET_MIN_CYCLES
 401         * away from the event or if the counter is already ahead of
 402         * the event. The minimum programming delta for the generic
 403         * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 404         */
 405        res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 406
 407        return res < HPET_MIN_CYCLES ? -ETIME : 0;
 408}
 409
 410static void hpet_legacy_set_mode(enum clock_event_mode mode,
 411                        struct clock_event_device *evt)
 412{
 413        hpet_set_mode(mode, evt, 0);
 414}
 415
 416static int hpet_legacy_next_event(unsigned long delta,
 417                        struct clock_event_device *evt)
 418{
 419        return hpet_next_event(delta, evt, 0);
 420}
 421
 422/*
 423 * HPET MSI Support
 424 */
 425#ifdef CONFIG_PCI_MSI
 426
 427static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 428static struct hpet_dev  *hpet_devs;
 429
 430void hpet_msi_unmask(struct irq_data *data)
 431{
 432        struct hpet_dev *hdev = data->handler_data;
 433        unsigned int cfg;
 434
 435        /* unmask it */
 436        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 437        cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 438        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 439}
 440
 441void hpet_msi_mask(struct irq_data *data)
 442{
 443        struct hpet_dev *hdev = data->handler_data;
 444        unsigned int cfg;
 445
 446        /* mask it */
 447        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 448        cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 449        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 450}
 451
 452void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454        hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 455        hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 456}
 457
 458void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 459{
 460        msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 461        msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 462        msg->address_hi = 0;
 463}
 464
 465static void hpet_msi_set_mode(enum clock_event_mode mode,
 466                                struct clock_event_device *evt)
 467{
 468        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 469        hpet_set_mode(mode, evt, hdev->num);
 470}
 471
 472static int hpet_msi_next_event(unsigned long delta,
 473                                struct clock_event_device *evt)
 474{
 475        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 476        return hpet_next_event(delta, evt, hdev->num);
 477}
 478
 479static int hpet_setup_msi_irq(unsigned int irq)
 480{
 481        if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
 482                destroy_irq(irq);
 483                return -EINVAL;
 484        }
 485        return 0;
 486}
 487
 488static int hpet_assign_irq(struct hpet_dev *dev)
 489{
 490        unsigned int irq;
 491
 492        irq = create_irq_nr(0, -1);
 493        if (!irq)
 494                return -EINVAL;
 495
 496        irq_set_handler_data(irq, dev);
 497
 498        if (hpet_setup_msi_irq(irq))
 499                return -EINVAL;
 500
 501        dev->irq = irq;
 502        return 0;
 503}
 504
 505static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 506{
 507        struct hpet_dev *dev = (struct hpet_dev *)data;
 508        struct clock_event_device *hevt = &dev->evt;
 509
 510        if (!hevt->event_handler) {
 511                printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 512                                dev->num);
 513                return IRQ_HANDLED;
 514        }
 515
 516        hevt->event_handler(hevt);
 517        return IRQ_HANDLED;
 518}
 519
 520static int hpet_setup_irq(struct hpet_dev *dev)
 521{
 522
 523        if (request_irq(dev->irq, hpet_interrupt_handler,
 524                        IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 525                        dev->name, dev))
 526                return -1;
 527
 528        disable_irq(dev->irq);
 529        irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 530        enable_irq(dev->irq);
 531
 532        printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 533                         dev->name, dev->irq);
 534
 535        return 0;
 536}
 537
 538/* This should be called in specific @cpu */
 539static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 540{
 541        struct clock_event_device *evt = &hdev->evt;
 542
 543        WARN_ON(cpu != smp_processor_id());
 544        if (!(hdev->flags & HPET_DEV_VALID))
 545                return;
 546
 547        if (hpet_setup_msi_irq(hdev->irq))
 548                return;
 549
 550        hdev->cpu = cpu;
 551        per_cpu(cpu_hpet_dev, cpu) = hdev;
 552        evt->name = hdev->name;
 553        hpet_setup_irq(hdev);
 554        evt->irq = hdev->irq;
 555
 556        evt->rating = 110;
 557        evt->features = CLOCK_EVT_FEAT_ONESHOT;
 558        if (hdev->flags & HPET_DEV_PERI_CAP)
 559                evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 560
 561        evt->set_mode = hpet_msi_set_mode;
 562        evt->set_next_event = hpet_msi_next_event;
 563        evt->cpumask = cpumask_of(hdev->cpu);
 564
 565        clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 566                                        0x7FFFFFFF);
 567}
 568
 569#ifdef CONFIG_HPET
 570/* Reserve at least one timer for userspace (/dev/hpet) */
 571#define RESERVE_TIMERS 1
 572#else
 573#define RESERVE_TIMERS 0
 574#endif
 575
 576static void hpet_msi_capability_lookup(unsigned int start_timer)
 577{
 578        unsigned int id;
 579        unsigned int num_timers;
 580        unsigned int num_timers_used = 0;
 581        int i;
 582
 583        if (hpet_msi_disable)
 584                return;
 585
 586        if (boot_cpu_has(X86_FEATURE_ARAT))
 587                return;
 588        id = hpet_readl(HPET_ID);
 589
 590        num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 591        num_timers++; /* Value read out starts from 0 */
 592        hpet_print_config();
 593
 594        hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 595        if (!hpet_devs)
 596                return;
 597
 598        hpet_num_timers = num_timers;
 599
 600        for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 601                struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 602                unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 603
 604                /* Only consider HPET timer with MSI support */
 605                if (!(cfg & HPET_TN_FSB_CAP))
 606                        continue;
 607
 608                hdev->flags = 0;
 609                if (cfg & HPET_TN_PERIODIC_CAP)
 610                        hdev->flags |= HPET_DEV_PERI_CAP;
 611                hdev->num = i;
 612
 613                sprintf(hdev->name, "hpet%d", i);
 614                if (hpet_assign_irq(hdev))
 615                        continue;
 616
 617                hdev->flags |= HPET_DEV_FSB_CAP;
 618                hdev->flags |= HPET_DEV_VALID;
 619                num_timers_used++;
 620                if (num_timers_used == num_possible_cpus())
 621                        break;
 622        }
 623
 624        printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 625                num_timers, num_timers_used);
 626}
 627
 628#ifdef CONFIG_HPET
 629static void hpet_reserve_msi_timers(struct hpet_data *hd)
 630{
 631        int i;
 632
 633        if (!hpet_devs)
 634                return;
 635
 636        for (i = 0; i < hpet_num_timers; i++) {
 637                struct hpet_dev *hdev = &hpet_devs[i];
 638
 639                if (!(hdev->flags & HPET_DEV_VALID))
 640                        continue;
 641
 642                hd->hd_irq[hdev->num] = hdev->irq;
 643                hpet_reserve_timer(hd, hdev->num);
 644        }
 645}
 646#endif
 647
 648static struct hpet_dev *hpet_get_unused_timer(void)
 649{
 650        int i;
 651
 652        if (!hpet_devs)
 653                return NULL;
 654
 655        for (i = 0; i < hpet_num_timers; i++) {
 656                struct hpet_dev *hdev = &hpet_devs[i];
 657
 658                if (!(hdev->flags & HPET_DEV_VALID))
 659                        continue;
 660                if (test_and_set_bit(HPET_DEV_USED_BIT,
 661                        (unsigned long *)&hdev->flags))
 662                        continue;
 663                return hdev;
 664        }
 665        return NULL;
 666}
 667
 668struct hpet_work_struct {
 669        struct delayed_work work;
 670        struct completion complete;
 671};
 672
 673static void hpet_work(struct work_struct *w)
 674{
 675        struct hpet_dev *hdev;
 676        int cpu = smp_processor_id();
 677        struct hpet_work_struct *hpet_work;
 678
 679        hpet_work = container_of(w, struct hpet_work_struct, work.work);
 680
 681        hdev = hpet_get_unused_timer();
 682        if (hdev)
 683                init_one_hpet_msi_clockevent(hdev, cpu);
 684
 685        complete(&hpet_work->complete);
 686}
 687
 688static int hpet_cpuhp_notify(struct notifier_block *n,
 689                unsigned long action, void *hcpu)
 690{
 691        unsigned long cpu = (unsigned long)hcpu;
 692        struct hpet_work_struct work;
 693        struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 694
 695        switch (action & 0xf) {
 696        case CPU_ONLINE:
 697                INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 698                init_completion(&work.complete);
 699                /* FIXME: add schedule_work_on() */
 700                schedule_delayed_work_on(cpu, &work.work, 0);
 701                wait_for_completion(&work.complete);
 702                destroy_timer_on_stack(&work.work.timer);
 703                break;
 704        case CPU_DEAD:
 705                if (hdev) {
 706                        free_irq(hdev->irq, hdev);
 707                        hdev->flags &= ~HPET_DEV_USED;
 708                        per_cpu(cpu_hpet_dev, cpu) = NULL;
 709                }
 710                break;
 711        }
 712        return NOTIFY_OK;
 713}
 714#else
 715
 716static int hpet_setup_msi_irq(unsigned int irq)
 717{
 718        return 0;
 719}
 720static void hpet_msi_capability_lookup(unsigned int start_timer)
 721{
 722        return;
 723}
 724
 725#ifdef CONFIG_HPET
 726static void hpet_reserve_msi_timers(struct hpet_data *hd)
 727{
 728        return;
 729}
 730#endif
 731
 732static int hpet_cpuhp_notify(struct notifier_block *n,
 733                unsigned long action, void *hcpu)
 734{
 735        return NOTIFY_OK;
 736}
 737
 738#endif
 739
 740/*
 741 * Clock source related code
 742 */
 743static cycle_t read_hpet(struct clocksource *cs)
 744{
 745        return (cycle_t)hpet_readl(HPET_COUNTER);
 746}
 747
 748static struct clocksource clocksource_hpet = {
 749        .name           = "hpet",
 750        .rating         = 250,
 751        .read           = read_hpet,
 752        .mask           = HPET_MASK,
 753        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 754        .resume         = hpet_resume_counter,
 755#ifdef CONFIG_X86_64
 756        .archdata       = { .vclock_mode = VCLOCK_HPET },
 757#endif
 758};
 759
 760static int hpet_clocksource_register(void)
 761{
 762        u64 start, now;
 763        cycle_t t1;
 764
 765        /* Start the counter */
 766        hpet_restart_counter();
 767
 768        /* Verify whether hpet counter works */
 769        t1 = hpet_readl(HPET_COUNTER);
 770        rdtscll(start);
 771
 772        /*
 773         * We don't know the TSC frequency yet, but waiting for
 774         * 200000 TSC cycles is safe:
 775         * 4 GHz == 50us
 776         * 1 GHz == 200us
 777         */
 778        do {
 779                rep_nop();
 780                rdtscll(now);
 781        } while ((now - start) < 200000UL);
 782
 783        if (t1 == hpet_readl(HPET_COUNTER)) {
 784                printk(KERN_WARNING
 785                       "HPET counter not counting. HPET disabled\n");
 786                return -ENODEV;
 787        }
 788
 789        clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 790        return 0;
 791}
 792
 793static u32 *hpet_boot_cfg;
 794
 795/**
 796 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 797 */
 798int __init hpet_enable(void)
 799{
 800        u32 hpet_period, cfg, id;
 801        u64 freq;
 802        unsigned int i, last;
 803
 804        if (!is_hpet_capable())
 805                return 0;
 806
 807        hpet_set_mapping();
 808
 809        /*
 810         * Read the period and check for a sane value:
 811         */
 812        hpet_period = hpet_readl(HPET_PERIOD);
 813
 814        /*
 815         * AMD SB700 based systems with spread spectrum enabled use a
 816         * SMM based HPET emulation to provide proper frequency
 817         * setting. The SMM code is initialized with the first HPET
 818         * register access and takes some time to complete. During
 819         * this time the config register reads 0xffffffff. We check
 820         * for max. 1000 loops whether the config register reads a non
 821         * 0xffffffff value to make sure that HPET is up and running
 822         * before we go further. A counting loop is safe, as the HPET
 823         * access takes thousands of CPU cycles. On non SB700 based
 824         * machines this check is only done once and has no side
 825         * effects.
 826         */
 827        for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 828                if (i == 1000) {
 829                        printk(KERN_WARNING
 830                               "HPET config register value = 0xFFFFFFFF. "
 831                               "Disabling HPET\n");
 832                        goto out_nohpet;
 833                }
 834        }
 835
 836        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 837                goto out_nohpet;
 838
 839        /*
 840         * The period is a femto seconds value. Convert it to a
 841         * frequency.
 842         */
 843        freq = FSEC_PER_SEC;
 844        do_div(freq, hpet_period);
 845        hpet_freq = freq;
 846
 847        /*
 848         * Read the HPET ID register to retrieve the IRQ routing
 849         * information and the number of channels
 850         */
 851        id = hpet_readl(HPET_ID);
 852        hpet_print_config();
 853
 854        last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 855
 856#ifdef CONFIG_HPET_EMULATE_RTC
 857        /*
 858         * The legacy routing mode needs at least two channels, tick timer
 859         * and the rtc emulation channel.
 860         */
 861        if (!last)
 862                goto out_nohpet;
 863#endif
 864
 865        cfg = hpet_readl(HPET_CFG);
 866        hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 867                                GFP_KERNEL);
 868        if (hpet_boot_cfg)
 869                *hpet_boot_cfg = cfg;
 870        else
 871                pr_warn("HPET initial state will not be saved\n");
 872        cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 873        hpet_writel(cfg, HPET_CFG);
 874        if (cfg)
 875                pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 876                        cfg);
 877
 878        for (i = 0; i <= last; ++i) {
 879                cfg = hpet_readl(HPET_Tn_CFG(i));
 880                if (hpet_boot_cfg)
 881                        hpet_boot_cfg[i + 1] = cfg;
 882                cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 883                hpet_writel(cfg, HPET_Tn_CFG(i));
 884                cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 885                         | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 886                         | HPET_TN_FSB | HPET_TN_FSB_CAP);
 887                if (cfg)
 888                        pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 889                                cfg, i);
 890        }
 891        hpet_print_config();
 892
 893        if (hpet_clocksource_register())
 894                goto out_nohpet;
 895
 896        if (id & HPET_ID_LEGSUP) {
 897                hpet_legacy_clockevent_register();
 898                return 1;
 899        }
 900        return 0;
 901
 902out_nohpet:
 903        hpet_clear_mapping();
 904        hpet_address = 0;
 905        return 0;
 906}
 907
 908/*
 909 * Needs to be late, as the reserve_timer code calls kalloc !
 910 *
 911 * Not a problem on i386 as hpet_enable is called from late_time_init,
 912 * but on x86_64 it is necessary !
 913 */
 914static __init int hpet_late_init(void)
 915{
 916        int cpu;
 917
 918        if (boot_hpet_disable)
 919                return -ENODEV;
 920
 921        if (!hpet_address) {
 922                if (!force_hpet_address)
 923                        return -ENODEV;
 924
 925                hpet_address = force_hpet_address;
 926                hpet_enable();
 927        }
 928
 929        if (!hpet_virt_address)
 930                return -ENODEV;
 931
 932        if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 933                hpet_msi_capability_lookup(2);
 934        else
 935                hpet_msi_capability_lookup(0);
 936
 937        hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 938        hpet_print_config();
 939
 940        if (hpet_msi_disable)
 941                return 0;
 942
 943        if (boot_cpu_has(X86_FEATURE_ARAT))
 944                return 0;
 945
 946        for_each_online_cpu(cpu) {
 947                hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 948        }
 949
 950        /* This notifier should be called after workqueue is ready */
 951        hotcpu_notifier(hpet_cpuhp_notify, -20);
 952
 953        return 0;
 954}
 955fs_initcall(hpet_late_init);
 956
 957void hpet_disable(void)
 958{
 959        if (is_hpet_capable() && hpet_virt_address) {
 960                unsigned int cfg = hpet_readl(HPET_CFG), id, last;
 961
 962                if (hpet_boot_cfg)
 963                        cfg = *hpet_boot_cfg;
 964                else if (hpet_legacy_int_enabled) {
 965                        cfg &= ~HPET_CFG_LEGACY;
 966                        hpet_legacy_int_enabled = 0;
 967                }
 968                cfg &= ~HPET_CFG_ENABLE;
 969                hpet_writel(cfg, HPET_CFG);
 970
 971                if (!hpet_boot_cfg)
 972                        return;
 973
 974                id = hpet_readl(HPET_ID);
 975                last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 976
 977                for (id = 0; id <= last; ++id)
 978                        hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
 979
 980                if (*hpet_boot_cfg & HPET_CFG_ENABLE)
 981                        hpet_writel(*hpet_boot_cfg, HPET_CFG);
 982        }
 983}
 984
 985#ifdef CONFIG_HPET_EMULATE_RTC
 986
 987/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 988 * is enabled, we support RTC interrupt functionality in software.
 989 * RTC has 3 kinds of interrupts:
 990 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 991 *    is updated
 992 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 993 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 994 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 995 * (1) and (2) above are implemented using polling at a frequency of
 996 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 997 * overhead. (DEFAULT_RTC_INT_FREQ)
 998 * For (3), we use interrupts at 64Hz or user specified periodic
 999 * frequency, whichever is higher.
1000 */
1001#include <linux/mc146818rtc.h>
1002#include <linux/rtc.h>
1003#include <asm/rtc.h>
1004
1005#define DEFAULT_RTC_INT_FREQ    64
1006#define DEFAULT_RTC_SHIFT       6
1007#define RTC_NUM_INTS            1
1008
1009static unsigned long hpet_rtc_flags;
1010static int hpet_prev_update_sec;
1011static struct rtc_time hpet_alarm_time;
1012static unsigned long hpet_pie_count;
1013static u32 hpet_t1_cmp;
1014static u32 hpet_default_delta;
1015static u32 hpet_pie_delta;
1016static unsigned long hpet_pie_limit;
1017
1018static rtc_irq_handler irq_handler;
1019
1020/*
1021 * Check that the hpet counter c1 is ahead of the c2
1022 */
1023static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1024{
1025        return (s32)(c2 - c1) < 0;
1026}
1027
1028/*
1029 * Registers a IRQ handler.
1030 */
1031int hpet_register_irq_handler(rtc_irq_handler handler)
1032{
1033        if (!is_hpet_enabled())
1034                return -ENODEV;
1035        if (irq_handler)
1036                return -EBUSY;
1037
1038        irq_handler = handler;
1039
1040        return 0;
1041}
1042EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1043
1044/*
1045 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1046 * and does cleanup.
1047 */
1048void hpet_unregister_irq_handler(rtc_irq_handler handler)
1049{
1050        if (!is_hpet_enabled())
1051                return;
1052
1053        irq_handler = NULL;
1054        hpet_rtc_flags = 0;
1055}
1056EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1057
1058/*
1059 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060 * is not supported by all HPET implementations for timer 1.
1061 *
1062 * hpet_rtc_timer_init() is called when the rtc is initialized.
1063 */
1064int hpet_rtc_timer_init(void)
1065{
1066        unsigned int cfg, cnt, delta;
1067        unsigned long flags;
1068
1069        if (!is_hpet_enabled())
1070                return 0;
1071
1072        if (!hpet_default_delta) {
1073                uint64_t clc;
1074
1075                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1076                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1077                hpet_default_delta = clc;
1078        }
1079
1080        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1081                delta = hpet_default_delta;
1082        else
1083                delta = hpet_pie_delta;
1084
1085        local_irq_save(flags);
1086
1087        cnt = delta + hpet_readl(HPET_COUNTER);
1088        hpet_writel(cnt, HPET_T1_CMP);
1089        hpet_t1_cmp = cnt;
1090
1091        cfg = hpet_readl(HPET_T1_CFG);
1092        cfg &= ~HPET_TN_PERIODIC;
1093        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1094        hpet_writel(cfg, HPET_T1_CFG);
1095
1096        local_irq_restore(flags);
1097
1098        return 1;
1099}
1100EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1101
1102static void hpet_disable_rtc_channel(void)
1103{
1104        unsigned long cfg;
1105        cfg = hpet_readl(HPET_T1_CFG);
1106        cfg &= ~HPET_TN_ENABLE;
1107        hpet_writel(cfg, HPET_T1_CFG);
1108}
1109
1110/*
1111 * The functions below are called from rtc driver.
1112 * Return 0 if HPET is not being used.
1113 * Otherwise do the necessary changes and return 1.
1114 */
1115int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1116{
1117        if (!is_hpet_enabled())
1118                return 0;
1119
1120        hpet_rtc_flags &= ~bit_mask;
1121        if (unlikely(!hpet_rtc_flags))
1122                hpet_disable_rtc_channel();
1123
1124        return 1;
1125}
1126EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1127
1128int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1129{
1130        unsigned long oldbits = hpet_rtc_flags;
1131
1132        if (!is_hpet_enabled())
1133                return 0;
1134
1135        hpet_rtc_flags |= bit_mask;
1136
1137        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1138                hpet_prev_update_sec = -1;
1139
1140        if (!oldbits)
1141                hpet_rtc_timer_init();
1142
1143        return 1;
1144}
1145EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1146
1147int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1148                        unsigned char sec)
1149{
1150        if (!is_hpet_enabled())
1151                return 0;
1152
1153        hpet_alarm_time.tm_hour = hrs;
1154        hpet_alarm_time.tm_min = min;
1155        hpet_alarm_time.tm_sec = sec;
1156
1157        return 1;
1158}
1159EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1160
1161int hpet_set_periodic_freq(unsigned long freq)
1162{
1163        uint64_t clc;
1164
1165        if (!is_hpet_enabled())
1166                return 0;
1167
1168        if (freq <= DEFAULT_RTC_INT_FREQ)
1169                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1170        else {
1171                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1172                do_div(clc, freq);
1173                clc >>= hpet_clockevent.shift;
1174                hpet_pie_delta = clc;
1175                hpet_pie_limit = 0;
1176        }
1177        return 1;
1178}
1179EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1180
1181int hpet_rtc_dropped_irq(void)
1182{
1183        return is_hpet_enabled();
1184}
1185EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1186
1187static void hpet_rtc_timer_reinit(void)
1188{
1189        unsigned int delta;
1190        int lost_ints = -1;
1191
1192        if (unlikely(!hpet_rtc_flags))
1193                hpet_disable_rtc_channel();
1194
1195        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1196                delta = hpet_default_delta;
1197        else
1198                delta = hpet_pie_delta;
1199
1200        /*
1201         * Increment the comparator value until we are ahead of the
1202         * current count.
1203         */
1204        do {
1205                hpet_t1_cmp += delta;
1206                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1207                lost_ints++;
1208        } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1209
1210        if (lost_ints) {
1211                if (hpet_rtc_flags & RTC_PIE)
1212                        hpet_pie_count += lost_ints;
1213                if (printk_ratelimit())
1214                        printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1215                                lost_ints);
1216        }
1217}
1218
1219irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1220{
1221        struct rtc_time curr_time;
1222        unsigned long rtc_int_flag = 0;
1223
1224        hpet_rtc_timer_reinit();
1225        memset(&curr_time, 0, sizeof(struct rtc_time));
1226
1227        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1228                get_rtc_time(&curr_time);
1229
1230        if (hpet_rtc_flags & RTC_UIE &&
1231            curr_time.tm_sec != hpet_prev_update_sec) {
1232                if (hpet_prev_update_sec >= 0)
1233                        rtc_int_flag = RTC_UF;
1234                hpet_prev_update_sec = curr_time.tm_sec;
1235        }
1236
1237        if (hpet_rtc_flags & RTC_PIE &&
1238            ++hpet_pie_count >= hpet_pie_limit) {
1239                rtc_int_flag |= RTC_PF;
1240                hpet_pie_count = 0;
1241        }
1242
1243        if (hpet_rtc_flags & RTC_AIE &&
1244            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1245            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1246            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1247                        rtc_int_flag |= RTC_AF;
1248
1249        if (rtc_int_flag) {
1250                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1251                if (irq_handler)
1252                        irq_handler(rtc_int_flag, dev_id);
1253        }
1254        return IRQ_HANDLED;
1255}
1256EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1257#endif
1258