linux/arch/x86/kernel/uprobes.c
<<
>>
Prefs
   1/*
   2 * User-space Probes (UProbes) for x86
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2011
  19 * Authors:
  20 *      Srikar Dronamraju
  21 *      Jim Keniston
  22 */
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/uaccess.h>
  28
  29#include <linux/kdebug.h>
  30#include <asm/processor.h>
  31#include <asm/insn.h>
  32
  33/* Post-execution fixups. */
  34
  35/* No fixup needed */
  36#define UPROBE_FIX_NONE         0x0
  37
  38/* Adjust IP back to vicinity of actual insn */
  39#define UPROBE_FIX_IP           0x1
  40
  41/* Adjust the return address of a call insn */
  42#define UPROBE_FIX_CALL 0x2
  43
  44/* Instruction will modify TF, don't change it */
  45#define UPROBE_FIX_SETF 0x4
  46
  47#define UPROBE_FIX_RIP_AX       0x8000
  48#define UPROBE_FIX_RIP_CX       0x4000
  49
  50#define UPROBE_TRAP_NR          UINT_MAX
  51
  52/* Adaptations for mhiramat x86 decoder v14. */
  53#define OPCODE1(insn)           ((insn)->opcode.bytes[0])
  54#define OPCODE2(insn)           ((insn)->opcode.bytes[1])
  55#define OPCODE3(insn)           ((insn)->opcode.bytes[2])
  56#define MODRM_REG(insn)         X86_MODRM_REG(insn->modrm.value)
  57
  58#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  59        (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  60          (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  61          (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  62          (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  63         << (row % 32))
  64
  65/*
  66 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  67 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  68 * some versions of gcc to think only *(unsigned long*) is used.
  69 */
  70static volatile u32 good_insns_32[256 / 32] = {
  71        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  72        /*      ----------------------------------------------         */
  73        W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
  74        W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  75        W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
  76        W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
  77        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  78        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  79        W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  80        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  81        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  82        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  83        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
  84        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
  85        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
  86        W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
  87        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
  88        W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
  89        /*      ----------------------------------------------         */
  90        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  91};
  92
  93/* Using this for both 64-bit and 32-bit apps */
  94static volatile u32 good_2byte_insns[256 / 32] = {
  95        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  96        /*      ----------------------------------------------         */
  97        W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
  98        W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
  99        W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 100        W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
 101        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 102        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 103        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 104        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
 105        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 106        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 107        W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 108        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 109        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 110        W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 111        W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 112        W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)   /* f0 */
 113        /*      ----------------------------------------------         */
 114        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 115};
 116
 117#ifdef CONFIG_X86_64
 118/* Good-instruction tables for 64-bit apps */
 119static volatile u32 good_insns_64[256 / 32] = {
 120        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 121        /*      ----------------------------------------------         */
 122        W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
 123        W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 124        W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
 125        W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
 126        W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
 127        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 128        W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 129        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 130        W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 131        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 132        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 133        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 134        W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 135        W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 136        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 137        W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 138        /*      ----------------------------------------------         */
 139        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 140};
 141#endif
 142#undef W
 143
 144/*
 145 * opcodes we'll probably never support:
 146 *
 147 *  6c-6d, e4-e5, ec-ed - in
 148 *  6e-6f, e6-e7, ee-ef - out
 149 *  cc, cd - int3, int
 150 *  cf - iret
 151 *  d6 - illegal instruction
 152 *  f1 - int1/icebp
 153 *  f4 - hlt
 154 *  fa, fb - cli, sti
 155 *  0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
 156 *
 157 * invalid opcodes in 64-bit mode:
 158 *
 159 *  06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
 160 *  63 - we support this opcode in x86_64 but not in i386.
 161 *
 162 * opcodes we may need to refine support for:
 163 *
 164 *  0f - 2-byte instructions: For many of these instructions, the validity
 165 *  depends on the prefix and/or the reg field.  On such instructions, we
 166 *  just consider the opcode combination valid if it corresponds to any
 167 *  valid instruction.
 168 *
 169 *  8f - Group 1 - only reg = 0 is OK
 170 *  c6-c7 - Group 11 - only reg = 0 is OK
 171 *  d9-df - fpu insns with some illegal encodings
 172 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 173 *  certain floating-point instructions, such as addsd.
 174 *
 175 *  fe - Group 4 - only reg = 0 or 1 is OK
 176 *  ff - Group 5 - only reg = 0-6 is OK
 177 *
 178 * others -- Do we need to support these?
 179 *
 180 *  0f - (floating-point?) prefetch instructions
 181 *  07, 17, 1f - pop es, pop ss, pop ds
 182 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 183 *      but 64 and 65 (fs: and gs:) seem to be used, so we support them
 184 *  67 - addr16 prefix
 185 *  ce - into
 186 *  f0 - lock prefix
 187 */
 188
 189/*
 190 * TODO:
 191 * - Where necessary, examine the modrm byte and allow only valid instructions
 192 * in the different Groups and fpu instructions.
 193 */
 194
 195static bool is_prefix_bad(struct insn *insn)
 196{
 197        int i;
 198
 199        for (i = 0; i < insn->prefixes.nbytes; i++) {
 200                switch (insn->prefixes.bytes[i]) {
 201                case 0x26:      /* INAT_PFX_ES   */
 202                case 0x2E:      /* INAT_PFX_CS   */
 203                case 0x36:      /* INAT_PFX_DS   */
 204                case 0x3E:      /* INAT_PFX_SS   */
 205                case 0xF0:      /* INAT_PFX_LOCK */
 206                        return true;
 207                }
 208        }
 209        return false;
 210}
 211
 212static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
 213{
 214        insn_init(insn, auprobe->insn, false);
 215
 216        /* Skip good instruction prefixes; reject "bad" ones. */
 217        insn_get_opcode(insn);
 218        if (is_prefix_bad(insn))
 219                return -ENOTSUPP;
 220
 221        if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
 222                return 0;
 223
 224        if (insn->opcode.nbytes == 2) {
 225                if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 226                        return 0;
 227        }
 228
 229        return -ENOTSUPP;
 230}
 231
 232/*
 233 * Figure out which fixups arch_uprobe_post_xol() will need to perform, and
 234 * annotate arch_uprobe->fixups accordingly.  To start with,
 235 * arch_uprobe->fixups is either zero or it reflects rip-related fixups.
 236 */
 237static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
 238{
 239        bool fix_ip = true, fix_call = false;   /* defaults */
 240        int reg;
 241
 242        insn_get_opcode(insn);  /* should be a nop */
 243
 244        switch (OPCODE1(insn)) {
 245        case 0x9d:
 246                /* popf */
 247                auprobe->fixups |= UPROBE_FIX_SETF;
 248                break;
 249        case 0xc3:              /* ret/lret */
 250        case 0xcb:
 251        case 0xc2:
 252        case 0xca:
 253                /* ip is correct */
 254                fix_ip = false;
 255                break;
 256        case 0xe8:              /* call relative - Fix return addr */
 257                fix_call = true;
 258                break;
 259        case 0x9a:              /* call absolute - Fix return addr, not ip */
 260                fix_call = true;
 261                fix_ip = false;
 262                break;
 263        case 0xff:
 264                insn_get_modrm(insn);
 265                reg = MODRM_REG(insn);
 266                if (reg == 2 || reg == 3) {
 267                        /* call or lcall, indirect */
 268                        /* Fix return addr; ip is correct. */
 269                        fix_call = true;
 270                        fix_ip = false;
 271                } else if (reg == 4 || reg == 5) {
 272                        /* jmp or ljmp, indirect */
 273                        /* ip is correct. */
 274                        fix_ip = false;
 275                }
 276                break;
 277        case 0xea:              /* jmp absolute -- ip is correct */
 278                fix_ip = false;
 279                break;
 280        default:
 281                break;
 282        }
 283        if (fix_ip)
 284                auprobe->fixups |= UPROBE_FIX_IP;
 285        if (fix_call)
 286                auprobe->fixups |= UPROBE_FIX_CALL;
 287}
 288
 289#ifdef CONFIG_X86_64
 290/*
 291 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 292 * immediately.  Otherwise, rewrite the instruction so that it accesses
 293 * its memory operand indirectly through a scratch register.  Set
 294 * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
 295 * accordingly.  (The contents of the scratch register will be saved
 296 * before we single-step the modified instruction, and restored
 297 * afterward.)
 298 *
 299 * We do this because a rip-relative instruction can access only a
 300 * relatively small area (+/- 2 GB from the instruction), and the XOL
 301 * area typically lies beyond that area.  At least for instructions
 302 * that store to memory, we can't execute the original instruction
 303 * and "fix things up" later, because the misdirected store could be
 304 * disastrous.
 305 *
 306 * Some useful facts about rip-relative instructions:
 307 *
 308 *  - There's always a modrm byte.
 309 *  - There's never a SIB byte.
 310 *  - The displacement is always 4 bytes.
 311 */
 312static void
 313handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
 314{
 315        u8 *cursor;
 316        u8 reg;
 317
 318        if (mm->context.ia32_compat)
 319                return;
 320
 321        auprobe->rip_rela_target_address = 0x0;
 322        if (!insn_rip_relative(insn))
 323                return;
 324
 325        /*
 326         * insn_rip_relative() would have decoded rex_prefix, modrm.
 327         * Clear REX.b bit (extension of MODRM.rm field):
 328         * we want to encode rax/rcx, not r8/r9.
 329         */
 330        if (insn->rex_prefix.nbytes) {
 331                cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 332                *cursor &= 0xfe;        /* Clearing REX.B bit */
 333        }
 334
 335        /*
 336         * Point cursor at the modrm byte.  The next 4 bytes are the
 337         * displacement.  Beyond the displacement, for some instructions,
 338         * is the immediate operand.
 339         */
 340        cursor = auprobe->insn + insn_offset_modrm(insn);
 341        insn_get_length(insn);
 342
 343        /*
 344         * Convert from rip-relative addressing to indirect addressing
 345         * via a scratch register.  Change the r/m field from 0x5 (%rip)
 346         * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
 347         */
 348        reg = MODRM_REG(insn);
 349        if (reg == 0) {
 350                /*
 351                 * The register operand (if any) is either the A register
 352                 * (%rax, %eax, etc.) or (if the 0x4 bit is set in the
 353                 * REX prefix) %r8.  In any case, we know the C register
 354                 * is NOT the register operand, so we use %rcx (register
 355                 * #1) for the scratch register.
 356                 */
 357                auprobe->fixups = UPROBE_FIX_RIP_CX;
 358                /* Change modrm from 00 000 101 to 00 000 001. */
 359                *cursor = 0x1;
 360        } else {
 361                /* Use %rax (register #0) for the scratch register. */
 362                auprobe->fixups = UPROBE_FIX_RIP_AX;
 363                /* Change modrm from 00 xxx 101 to 00 xxx 000 */
 364                *cursor = (reg << 3);
 365        }
 366
 367        /* Target address = address of next instruction + (signed) offset */
 368        auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
 369
 370        /* Displacement field is gone; slide immediate field (if any) over. */
 371        if (insn->immediate.nbytes) {
 372                cursor++;
 373                memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
 374        }
 375        return;
 376}
 377
 378static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
 379{
 380        insn_init(insn, auprobe->insn, true);
 381
 382        /* Skip good instruction prefixes; reject "bad" ones. */
 383        insn_get_opcode(insn);
 384        if (is_prefix_bad(insn))
 385                return -ENOTSUPP;
 386
 387        if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
 388                return 0;
 389
 390        if (insn->opcode.nbytes == 2) {
 391                if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 392                        return 0;
 393        }
 394        return -ENOTSUPP;
 395}
 396
 397static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
 398{
 399        if (mm->context.ia32_compat)
 400                return validate_insn_32bits(auprobe, insn);
 401        return validate_insn_64bits(auprobe, insn);
 402}
 403#else /* 32-bit: */
 404static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
 405{
 406        /* No RIP-relative addressing on 32-bit */
 407}
 408
 409static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm,  struct insn *insn)
 410{
 411        return validate_insn_32bits(auprobe, insn);
 412}
 413#endif /* CONFIG_X86_64 */
 414
 415/**
 416 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 417 * @mm: the probed address space.
 418 * @arch_uprobe: the probepoint information.
 419 * @addr: virtual address at which to install the probepoint
 420 * Return 0 on success or a -ve number on error.
 421 */
 422int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 423{
 424        int ret;
 425        struct insn insn;
 426
 427        auprobe->fixups = 0;
 428        ret = validate_insn_bits(auprobe, mm, &insn);
 429        if (ret != 0)
 430                return ret;
 431
 432        handle_riprel_insn(auprobe, mm, &insn);
 433        prepare_fixups(auprobe, &insn);
 434
 435        return 0;
 436}
 437
 438#ifdef CONFIG_X86_64
 439/*
 440 * If we're emulating a rip-relative instruction, save the contents
 441 * of the scratch register and store the target address in that register.
 442 */
 443static void
 444pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
 445                                struct arch_uprobe_task *autask)
 446{
 447        if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
 448                autask->saved_scratch_register = regs->ax;
 449                regs->ax = current->utask->vaddr;
 450                regs->ax += auprobe->rip_rela_target_address;
 451        } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
 452                autask->saved_scratch_register = regs->cx;
 453                regs->cx = current->utask->vaddr;
 454                regs->cx += auprobe->rip_rela_target_address;
 455        }
 456}
 457#else
 458static void
 459pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
 460                                struct arch_uprobe_task *autask)
 461{
 462        /* No RIP-relative addressing on 32-bit */
 463}
 464#endif
 465
 466/*
 467 * arch_uprobe_pre_xol - prepare to execute out of line.
 468 * @auprobe: the probepoint information.
 469 * @regs: reflects the saved user state of current task.
 470 */
 471int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 472{
 473        struct arch_uprobe_task *autask;
 474
 475        autask = &current->utask->autask;
 476        autask->saved_trap_nr = current->thread.trap_nr;
 477        current->thread.trap_nr = UPROBE_TRAP_NR;
 478        regs->ip = current->utask->xol_vaddr;
 479        pre_xol_rip_insn(auprobe, regs, autask);
 480
 481        autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 482        regs->flags |= X86_EFLAGS_TF;
 483        if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 484                set_task_blockstep(current, false);
 485
 486        return 0;
 487}
 488
 489/*
 490 * This function is called by arch_uprobe_post_xol() to adjust the return
 491 * address pushed by a call instruction executed out of line.
 492 */
 493static int adjust_ret_addr(unsigned long sp, long correction)
 494{
 495        int rasize, ncopied;
 496        long ra = 0;
 497
 498        if (is_ia32_task())
 499                rasize = 4;
 500        else
 501                rasize = 8;
 502
 503        ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
 504        if (unlikely(ncopied))
 505                return -EFAULT;
 506
 507        ra += correction;
 508        ncopied = copy_to_user((void __user *)sp, &ra, rasize);
 509        if (unlikely(ncopied))
 510                return -EFAULT;
 511
 512        return 0;
 513}
 514
 515#ifdef CONFIG_X86_64
 516static bool is_riprel_insn(struct arch_uprobe *auprobe)
 517{
 518        return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
 519}
 520
 521static void
 522handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
 523{
 524        if (is_riprel_insn(auprobe)) {
 525                struct arch_uprobe_task *autask;
 526
 527                autask = &current->utask->autask;
 528                if (auprobe->fixups & UPROBE_FIX_RIP_AX)
 529                        regs->ax = autask->saved_scratch_register;
 530                else
 531                        regs->cx = autask->saved_scratch_register;
 532
 533                /*
 534                 * The original instruction includes a displacement, and so
 535                 * is 4 bytes longer than what we've just single-stepped.
 536                 * Fall through to handle stuff like "jmpq *...(%rip)" and
 537                 * "callq *...(%rip)".
 538                 */
 539                if (correction)
 540                        *correction += 4;
 541        }
 542}
 543#else
 544static void
 545handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
 546{
 547        /* No RIP-relative addressing on 32-bit */
 548}
 549#endif
 550
 551/*
 552 * If xol insn itself traps and generates a signal(Say,
 553 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 554 * instruction jumps back to its own address. It is assumed that anything
 555 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 556 *
 557 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 558 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 559 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 560 */
 561bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 562{
 563        if (t->thread.trap_nr != UPROBE_TRAP_NR)
 564                return true;
 565
 566        return false;
 567}
 568
 569/*
 570 * Called after single-stepping. To avoid the SMP problems that can
 571 * occur when we temporarily put back the original opcode to
 572 * single-step, we single-stepped a copy of the instruction.
 573 *
 574 * This function prepares to resume execution after the single-step.
 575 * We have to fix things up as follows:
 576 *
 577 * Typically, the new ip is relative to the copied instruction.  We need
 578 * to make it relative to the original instruction (FIX_IP).  Exceptions
 579 * are return instructions and absolute or indirect jump or call instructions.
 580 *
 581 * If the single-stepped instruction was a call, the return address that
 582 * is atop the stack is the address following the copied instruction.  We
 583 * need to make it the address following the original instruction (FIX_CALL).
 584 *
 585 * If the original instruction was a rip-relative instruction such as
 586 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 587 * instruction using a scratch register -- e.g., "movl %edx,(%rax)".
 588 * We need to restore the contents of the scratch register and adjust
 589 * the ip, keeping in mind that the instruction we executed is 4 bytes
 590 * shorter than the original instruction (since we squeezed out the offset
 591 * field).  (FIX_RIP_AX or FIX_RIP_CX)
 592 */
 593int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 594{
 595        struct uprobe_task *utask;
 596        long correction;
 597        int result = 0;
 598
 599        WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 600
 601        utask = current->utask;
 602        current->thread.trap_nr = utask->autask.saved_trap_nr;
 603        correction = (long)(utask->vaddr - utask->xol_vaddr);
 604        handle_riprel_post_xol(auprobe, regs, &correction);
 605        if (auprobe->fixups & UPROBE_FIX_IP)
 606                regs->ip += correction;
 607
 608        if (auprobe->fixups & UPROBE_FIX_CALL)
 609                result = adjust_ret_addr(regs->sp, correction);
 610
 611        /*
 612         * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 613         * so we can get an extra SIGTRAP if we do not clear TF. We need
 614         * to examine the opcode to make it right.
 615         */
 616        if (utask->autask.saved_tf)
 617                send_sig(SIGTRAP, current, 0);
 618        else if (!(auprobe->fixups & UPROBE_FIX_SETF))
 619                regs->flags &= ~X86_EFLAGS_TF;
 620
 621        return result;
 622}
 623
 624/* callback routine for handling exceptions. */
 625int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 626{
 627        struct die_args *args = data;
 628        struct pt_regs *regs = args->regs;
 629        int ret = NOTIFY_DONE;
 630
 631        /* We are only interested in userspace traps */
 632        if (regs && !user_mode_vm(regs))
 633                return NOTIFY_DONE;
 634
 635        switch (val) {
 636        case DIE_INT3:
 637                if (uprobe_pre_sstep_notifier(regs))
 638                        ret = NOTIFY_STOP;
 639
 640                break;
 641
 642        case DIE_DEBUG:
 643                if (uprobe_post_sstep_notifier(regs))
 644                        ret = NOTIFY_STOP;
 645
 646        default:
 647                break;
 648        }
 649
 650        return ret;
 651}
 652
 653/*
 654 * This function gets called when XOL instruction either gets trapped or
 655 * the thread has a fatal signal, so reset the instruction pointer to its
 656 * probed address.
 657 */
 658void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 659{
 660        struct uprobe_task *utask = current->utask;
 661
 662        current->thread.trap_nr = utask->autask.saved_trap_nr;
 663        handle_riprel_post_xol(auprobe, regs, NULL);
 664        instruction_pointer_set(regs, utask->vaddr);
 665
 666        /* clear TF if it was set by us in arch_uprobe_pre_xol() */
 667        if (!utask->autask.saved_tf)
 668                regs->flags &= ~X86_EFLAGS_TF;
 669}
 670
 671/*
 672 * Skip these instructions as per the currently known x86 ISA.
 673 * rep=0x66*; nop=0x90
 674 */
 675static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
 676{
 677        int i;
 678
 679        for (i = 0; i < MAX_UINSN_BYTES; i++) {
 680                if (auprobe->insn[i] == 0x66)
 681                        continue;
 682
 683                if (auprobe->insn[i] == 0x90) {
 684                        regs->ip += i + 1;
 685                        return true;
 686                }
 687
 688                break;
 689        }
 690        return false;
 691}
 692
 693bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
 694{
 695        bool ret = __skip_sstep(auprobe, regs);
 696        if (ret && (regs->flags & X86_EFLAGS_TF))
 697                send_sig(SIGTRAP, current, 0);
 698        return ret;
 699}
 700
 701unsigned long
 702arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
 703{
 704        int rasize, ncopied;
 705        unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
 706
 707        rasize = is_ia32_task() ? 4 : 8;
 708        ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize);
 709        if (unlikely(ncopied))
 710                return -1;
 711
 712        /* check whether address has been already hijacked */
 713        if (orig_ret_vaddr == trampoline_vaddr)
 714                return orig_ret_vaddr;
 715
 716        ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
 717        if (likely(!ncopied))
 718                return orig_ret_vaddr;
 719
 720        if (ncopied != rasize) {
 721                pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
 722                        "%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
 723
 724                force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
 725        }
 726
 727        return -1;
 728}
 729