linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30
  31#include <linux/clocksource.h>
  32#include <linux/interrupt.h>
  33#include <linux/kvm.h>
  34#include <linux/fs.h>
  35#include <linux/vmalloc.h>
  36#include <linux/module.h>
  37#include <linux/mman.h>
  38#include <linux/highmem.h>
  39#include <linux/iommu.h>
  40#include <linux/intel-iommu.h>
  41#include <linux/cpufreq.h>
  42#include <linux/user-return-notifier.h>
  43#include <linux/srcu.h>
  44#include <linux/slab.h>
  45#include <linux/perf_event.h>
  46#include <linux/uaccess.h>
  47#include <linux/hash.h>
  48#include <linux/pci.h>
  49#include <linux/timekeeper_internal.h>
  50#include <linux/pvclock_gtod.h>
  51#include <trace/events/kvm.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include "trace.h"
  55
  56#include <asm/debugreg.h>
  57#include <asm/msr.h>
  58#include <asm/desc.h>
  59#include <asm/mtrr.h>
  60#include <asm/mce.h>
  61#include <asm/i387.h>
  62#include <asm/fpu-internal.h> /* Ugh! */
  63#include <asm/xcr.h>
  64#include <asm/pvclock.h>
  65#include <asm/div64.h>
  66
  67#define MAX_IO_MSRS 256
  68#define KVM_MAX_MCE_BANKS 32
  69#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70
  71#define emul_to_vcpu(ctxt) \
  72        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  73
  74/* EFER defaults:
  75 * - enable syscall per default because its emulated by KVM
  76 * - enable LME and LMA per default on 64 bit KVM
  77 */
  78#ifdef CONFIG_X86_64
  79static
  80u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  81#else
  82static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  83#endif
  84
  85#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  86#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  87
  88static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  89static void process_nmi(struct kvm_vcpu *vcpu);
  90
  91struct kvm_x86_ops *kvm_x86_ops;
  92EXPORT_SYMBOL_GPL(kvm_x86_ops);
  93
  94static bool ignore_msrs = 0;
  95module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  96
  97bool kvm_has_tsc_control;
  98EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  99u32  kvm_max_guest_tsc_khz;
 100EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 101
 102/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 103static u32 tsc_tolerance_ppm = 250;
 104module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 105
 106#define KVM_NR_SHARED_MSRS 16
 107
 108struct kvm_shared_msrs_global {
 109        int nr;
 110        u32 msrs[KVM_NR_SHARED_MSRS];
 111};
 112
 113struct kvm_shared_msrs {
 114        struct user_return_notifier urn;
 115        bool registered;
 116        struct kvm_shared_msr_values {
 117                u64 host;
 118                u64 curr;
 119        } values[KVM_NR_SHARED_MSRS];
 120};
 121
 122static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 123static struct kvm_shared_msrs __percpu *shared_msrs;
 124
 125struct kvm_stats_debugfs_item debugfs_entries[] = {
 126        { "pf_fixed", VCPU_STAT(pf_fixed) },
 127        { "pf_guest", VCPU_STAT(pf_guest) },
 128        { "tlb_flush", VCPU_STAT(tlb_flush) },
 129        { "invlpg", VCPU_STAT(invlpg) },
 130        { "exits", VCPU_STAT(exits) },
 131        { "io_exits", VCPU_STAT(io_exits) },
 132        { "mmio_exits", VCPU_STAT(mmio_exits) },
 133        { "signal_exits", VCPU_STAT(signal_exits) },
 134        { "irq_window", VCPU_STAT(irq_window_exits) },
 135        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 136        { "halt_exits", VCPU_STAT(halt_exits) },
 137        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 138        { "hypercalls", VCPU_STAT(hypercalls) },
 139        { "request_irq", VCPU_STAT(request_irq_exits) },
 140        { "irq_exits", VCPU_STAT(irq_exits) },
 141        { "host_state_reload", VCPU_STAT(host_state_reload) },
 142        { "efer_reload", VCPU_STAT(efer_reload) },
 143        { "fpu_reload", VCPU_STAT(fpu_reload) },
 144        { "insn_emulation", VCPU_STAT(insn_emulation) },
 145        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 146        { "irq_injections", VCPU_STAT(irq_injections) },
 147        { "nmi_injections", VCPU_STAT(nmi_injections) },
 148        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 149        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 150        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 151        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 152        { "mmu_flooded", VM_STAT(mmu_flooded) },
 153        { "mmu_recycled", VM_STAT(mmu_recycled) },
 154        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 155        { "mmu_unsync", VM_STAT(mmu_unsync) },
 156        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 157        { "largepages", VM_STAT(lpages) },
 158        { NULL }
 159};
 160
 161u64 __read_mostly host_xcr0;
 162
 163static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 164
 165static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 166{
 167        int i;
 168        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 169                vcpu->arch.apf.gfns[i] = ~0;
 170}
 171
 172static void kvm_on_user_return(struct user_return_notifier *urn)
 173{
 174        unsigned slot;
 175        struct kvm_shared_msrs *locals
 176                = container_of(urn, struct kvm_shared_msrs, urn);
 177        struct kvm_shared_msr_values *values;
 178
 179        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 180                values = &locals->values[slot];
 181                if (values->host != values->curr) {
 182                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 183                        values->curr = values->host;
 184                }
 185        }
 186        locals->registered = false;
 187        user_return_notifier_unregister(urn);
 188}
 189
 190static void shared_msr_update(unsigned slot, u32 msr)
 191{
 192        u64 value;
 193        unsigned int cpu = smp_processor_id();
 194        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 195
 196        /* only read, and nobody should modify it at this time,
 197         * so don't need lock */
 198        if (slot >= shared_msrs_global.nr) {
 199                printk(KERN_ERR "kvm: invalid MSR slot!");
 200                return;
 201        }
 202        rdmsrl_safe(msr, &value);
 203        smsr->values[slot].host = value;
 204        smsr->values[slot].curr = value;
 205}
 206
 207void kvm_define_shared_msr(unsigned slot, u32 msr)
 208{
 209        if (slot >= shared_msrs_global.nr)
 210                shared_msrs_global.nr = slot + 1;
 211        shared_msrs_global.msrs[slot] = msr;
 212        /* we need ensured the shared_msr_global have been updated */
 213        smp_wmb();
 214}
 215EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 216
 217static void kvm_shared_msr_cpu_online(void)
 218{
 219        unsigned i;
 220
 221        for (i = 0; i < shared_msrs_global.nr; ++i)
 222                shared_msr_update(i, shared_msrs_global.msrs[i]);
 223}
 224
 225void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 226{
 227        unsigned int cpu = smp_processor_id();
 228        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 229
 230        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 231                return;
 232        smsr->values[slot].curr = value;
 233        wrmsrl(shared_msrs_global.msrs[slot], value);
 234        if (!smsr->registered) {
 235                smsr->urn.on_user_return = kvm_on_user_return;
 236                user_return_notifier_register(&smsr->urn);
 237                smsr->registered = true;
 238        }
 239}
 240EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 241
 242static void drop_user_return_notifiers(void *ignore)
 243{
 244        unsigned int cpu = smp_processor_id();
 245        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 246
 247        if (smsr->registered)
 248                kvm_on_user_return(&smsr->urn);
 249}
 250
 251u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 252{
 253        return vcpu->arch.apic_base;
 254}
 255EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 256
 257void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 258{
 259        /* TODO: reserve bits check */
 260        kvm_lapic_set_base(vcpu, data);
 261}
 262EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 263
 264asmlinkage void kvm_spurious_fault(void)
 265{
 266        /* Fault while not rebooting.  We want the trace. */
 267        BUG();
 268}
 269EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 270
 271#define EXCPT_BENIGN            0
 272#define EXCPT_CONTRIBUTORY      1
 273#define EXCPT_PF                2
 274
 275static int exception_class(int vector)
 276{
 277        switch (vector) {
 278        case PF_VECTOR:
 279                return EXCPT_PF;
 280        case DE_VECTOR:
 281        case TS_VECTOR:
 282        case NP_VECTOR:
 283        case SS_VECTOR:
 284        case GP_VECTOR:
 285                return EXCPT_CONTRIBUTORY;
 286        default:
 287                break;
 288        }
 289        return EXCPT_BENIGN;
 290}
 291
 292static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 293                unsigned nr, bool has_error, u32 error_code,
 294                bool reinject)
 295{
 296        u32 prev_nr;
 297        int class1, class2;
 298
 299        kvm_make_request(KVM_REQ_EVENT, vcpu);
 300
 301        if (!vcpu->arch.exception.pending) {
 302        queue:
 303                vcpu->arch.exception.pending = true;
 304                vcpu->arch.exception.has_error_code = has_error;
 305                vcpu->arch.exception.nr = nr;
 306                vcpu->arch.exception.error_code = error_code;
 307                vcpu->arch.exception.reinject = reinject;
 308                return;
 309        }
 310
 311        /* to check exception */
 312        prev_nr = vcpu->arch.exception.nr;
 313        if (prev_nr == DF_VECTOR) {
 314                /* triple fault -> shutdown */
 315                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 316                return;
 317        }
 318        class1 = exception_class(prev_nr);
 319        class2 = exception_class(nr);
 320        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 321                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 322                /* generate double fault per SDM Table 5-5 */
 323                vcpu->arch.exception.pending = true;
 324                vcpu->arch.exception.has_error_code = true;
 325                vcpu->arch.exception.nr = DF_VECTOR;
 326                vcpu->arch.exception.error_code = 0;
 327        } else
 328                /* replace previous exception with a new one in a hope
 329                   that instruction re-execution will regenerate lost
 330                   exception */
 331                goto queue;
 332}
 333
 334void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 335{
 336        kvm_multiple_exception(vcpu, nr, false, 0, false);
 337}
 338EXPORT_SYMBOL_GPL(kvm_queue_exception);
 339
 340void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 341{
 342        kvm_multiple_exception(vcpu, nr, false, 0, true);
 343}
 344EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 345
 346void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 347{
 348        if (err)
 349                kvm_inject_gp(vcpu, 0);
 350        else
 351                kvm_x86_ops->skip_emulated_instruction(vcpu);
 352}
 353EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 354
 355void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 356{
 357        ++vcpu->stat.pf_guest;
 358        vcpu->arch.cr2 = fault->address;
 359        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 360}
 361EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 362
 363void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 364{
 365        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 366                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 367        else
 368                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 369}
 370
 371void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 372{
 373        atomic_inc(&vcpu->arch.nmi_queued);
 374        kvm_make_request(KVM_REQ_NMI, vcpu);
 375}
 376EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 377
 378void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 379{
 380        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 381}
 382EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 383
 384void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 385{
 386        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 387}
 388EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 389
 390/*
 391 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 392 * a #GP and return false.
 393 */
 394bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 395{
 396        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 397                return true;
 398        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 399        return false;
 400}
 401EXPORT_SYMBOL_GPL(kvm_require_cpl);
 402
 403/*
 404 * This function will be used to read from the physical memory of the currently
 405 * running guest. The difference to kvm_read_guest_page is that this function
 406 * can read from guest physical or from the guest's guest physical memory.
 407 */
 408int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 409                            gfn_t ngfn, void *data, int offset, int len,
 410                            u32 access)
 411{
 412        gfn_t real_gfn;
 413        gpa_t ngpa;
 414
 415        ngpa     = gfn_to_gpa(ngfn);
 416        real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
 417        if (real_gfn == UNMAPPED_GVA)
 418                return -EFAULT;
 419
 420        real_gfn = gpa_to_gfn(real_gfn);
 421
 422        return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
 423}
 424EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 425
 426int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 427                               void *data, int offset, int len, u32 access)
 428{
 429        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 430                                       data, offset, len, access);
 431}
 432
 433/*
 434 * Load the pae pdptrs.  Return true is they are all valid.
 435 */
 436int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 437{
 438        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 439        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 440        int i;
 441        int ret;
 442        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 443
 444        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 445                                      offset * sizeof(u64), sizeof(pdpte),
 446                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 447        if (ret < 0) {
 448                ret = 0;
 449                goto out;
 450        }
 451        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 452                if (is_present_gpte(pdpte[i]) &&
 453                    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 454                        ret = 0;
 455                        goto out;
 456                }
 457        }
 458        ret = 1;
 459
 460        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 461        __set_bit(VCPU_EXREG_PDPTR,
 462                  (unsigned long *)&vcpu->arch.regs_avail);
 463        __set_bit(VCPU_EXREG_PDPTR,
 464                  (unsigned long *)&vcpu->arch.regs_dirty);
 465out:
 466
 467        return ret;
 468}
 469EXPORT_SYMBOL_GPL(load_pdptrs);
 470
 471static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 472{
 473        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 474        bool changed = true;
 475        int offset;
 476        gfn_t gfn;
 477        int r;
 478
 479        if (is_long_mode(vcpu) || !is_pae(vcpu))
 480                return false;
 481
 482        if (!test_bit(VCPU_EXREG_PDPTR,
 483                      (unsigned long *)&vcpu->arch.regs_avail))
 484                return true;
 485
 486        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 487        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 488        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 489                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 490        if (r < 0)
 491                goto out;
 492        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 493out:
 494
 495        return changed;
 496}
 497
 498int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 499{
 500        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 501        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
 502                                    X86_CR0_CD | X86_CR0_NW;
 503
 504        cr0 |= X86_CR0_ET;
 505
 506#ifdef CONFIG_X86_64
 507        if (cr0 & 0xffffffff00000000UL)
 508                return 1;
 509#endif
 510
 511        cr0 &= ~CR0_RESERVED_BITS;
 512
 513        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 514                return 1;
 515
 516        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 517                return 1;
 518
 519        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 520#ifdef CONFIG_X86_64
 521                if ((vcpu->arch.efer & EFER_LME)) {
 522                        int cs_db, cs_l;
 523
 524                        if (!is_pae(vcpu))
 525                                return 1;
 526                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 527                        if (cs_l)
 528                                return 1;
 529                } else
 530#endif
 531                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 532                                                 kvm_read_cr3(vcpu)))
 533                        return 1;
 534        }
 535
 536        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 537                return 1;
 538
 539        kvm_x86_ops->set_cr0(vcpu, cr0);
 540
 541        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 542                kvm_clear_async_pf_completion_queue(vcpu);
 543                kvm_async_pf_hash_reset(vcpu);
 544        }
 545
 546        if ((cr0 ^ old_cr0) & update_bits)
 547                kvm_mmu_reset_context(vcpu);
 548        return 0;
 549}
 550EXPORT_SYMBOL_GPL(kvm_set_cr0);
 551
 552void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 553{
 554        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 555}
 556EXPORT_SYMBOL_GPL(kvm_lmsw);
 557
 558static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 559{
 560        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 561                        !vcpu->guest_xcr0_loaded) {
 562                /* kvm_set_xcr() also depends on this */
 563                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 564                vcpu->guest_xcr0_loaded = 1;
 565        }
 566}
 567
 568static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 569{
 570        if (vcpu->guest_xcr0_loaded) {
 571                if (vcpu->arch.xcr0 != host_xcr0)
 572                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 573                vcpu->guest_xcr0_loaded = 0;
 574        }
 575}
 576
 577int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 578{
 579        u64 xcr0;
 580
 581        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 582        if (index != XCR_XFEATURE_ENABLED_MASK)
 583                return 1;
 584        xcr0 = xcr;
 585        if (!(xcr0 & XSTATE_FP))
 586                return 1;
 587        if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
 588                return 1;
 589        if (xcr0 & ~host_xcr0)
 590                return 1;
 591        kvm_put_guest_xcr0(vcpu);
 592        vcpu->arch.xcr0 = xcr0;
 593        return 0;
 594}
 595
 596int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 597{
 598        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 599            __kvm_set_xcr(vcpu, index, xcr)) {
 600                kvm_inject_gp(vcpu, 0);
 601                return 1;
 602        }
 603        return 0;
 604}
 605EXPORT_SYMBOL_GPL(kvm_set_xcr);
 606
 607int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 608{
 609        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 610        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
 611                                   X86_CR4_PAE | X86_CR4_SMEP;
 612        if (cr4 & CR4_RESERVED_BITS)
 613                return 1;
 614
 615        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 616                return 1;
 617
 618        if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 619                return 1;
 620
 621        if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
 622                return 1;
 623
 624        if (is_long_mode(vcpu)) {
 625                if (!(cr4 & X86_CR4_PAE))
 626                        return 1;
 627        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 628                   && ((cr4 ^ old_cr4) & pdptr_bits)
 629                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 630                                   kvm_read_cr3(vcpu)))
 631                return 1;
 632
 633        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 634                if (!guest_cpuid_has_pcid(vcpu))
 635                        return 1;
 636
 637                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 638                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 639                        return 1;
 640        }
 641
 642        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 643                return 1;
 644
 645        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 646            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 647                kvm_mmu_reset_context(vcpu);
 648
 649        if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
 650                kvm_update_cpuid(vcpu);
 651
 652        return 0;
 653}
 654EXPORT_SYMBOL_GPL(kvm_set_cr4);
 655
 656int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 657{
 658        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 659                kvm_mmu_sync_roots(vcpu);
 660                kvm_mmu_flush_tlb(vcpu);
 661                return 0;
 662        }
 663
 664        if (is_long_mode(vcpu)) {
 665                if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
 666                        if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
 667                                return 1;
 668                } else
 669                        if (cr3 & CR3_L_MODE_RESERVED_BITS)
 670                                return 1;
 671        } else {
 672                if (is_pae(vcpu)) {
 673                        if (cr3 & CR3_PAE_RESERVED_BITS)
 674                                return 1;
 675                        if (is_paging(vcpu) &&
 676                            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 677                                return 1;
 678                }
 679                /*
 680                 * We don't check reserved bits in nonpae mode, because
 681                 * this isn't enforced, and VMware depends on this.
 682                 */
 683        }
 684
 685        /*
 686         * Does the new cr3 value map to physical memory? (Note, we
 687         * catch an invalid cr3 even in real-mode, because it would
 688         * cause trouble later on when we turn on paging anyway.)
 689         *
 690         * A real CPU would silently accept an invalid cr3 and would
 691         * attempt to use it - with largely undefined (and often hard
 692         * to debug) behavior on the guest side.
 693         */
 694        if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 695                return 1;
 696        vcpu->arch.cr3 = cr3;
 697        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 698        vcpu->arch.mmu.new_cr3(vcpu);
 699        return 0;
 700}
 701EXPORT_SYMBOL_GPL(kvm_set_cr3);
 702
 703int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 704{
 705        if (cr8 & CR8_RESERVED_BITS)
 706                return 1;
 707        if (irqchip_in_kernel(vcpu->kvm))
 708                kvm_lapic_set_tpr(vcpu, cr8);
 709        else
 710                vcpu->arch.cr8 = cr8;
 711        return 0;
 712}
 713EXPORT_SYMBOL_GPL(kvm_set_cr8);
 714
 715unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 716{
 717        if (irqchip_in_kernel(vcpu->kvm))
 718                return kvm_lapic_get_cr8(vcpu);
 719        else
 720                return vcpu->arch.cr8;
 721}
 722EXPORT_SYMBOL_GPL(kvm_get_cr8);
 723
 724static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 725{
 726        unsigned long dr7;
 727
 728        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 729                dr7 = vcpu->arch.guest_debug_dr7;
 730        else
 731                dr7 = vcpu->arch.dr7;
 732        kvm_x86_ops->set_dr7(vcpu, dr7);
 733        vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
 734}
 735
 736static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 737{
 738        switch (dr) {
 739        case 0 ... 3:
 740                vcpu->arch.db[dr] = val;
 741                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 742                        vcpu->arch.eff_db[dr] = val;
 743                break;
 744        case 4:
 745                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 746                        return 1; /* #UD */
 747                /* fall through */
 748        case 6:
 749                if (val & 0xffffffff00000000ULL)
 750                        return -1; /* #GP */
 751                vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
 752                break;
 753        case 5:
 754                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 755                        return 1; /* #UD */
 756                /* fall through */
 757        default: /* 7 */
 758                if (val & 0xffffffff00000000ULL)
 759                        return -1; /* #GP */
 760                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 761                kvm_update_dr7(vcpu);
 762                break;
 763        }
 764
 765        return 0;
 766}
 767
 768int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 769{
 770        int res;
 771
 772        res = __kvm_set_dr(vcpu, dr, val);
 773        if (res > 0)
 774                kvm_queue_exception(vcpu, UD_VECTOR);
 775        else if (res < 0)
 776                kvm_inject_gp(vcpu, 0);
 777
 778        return res;
 779}
 780EXPORT_SYMBOL_GPL(kvm_set_dr);
 781
 782static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 783{
 784        switch (dr) {
 785        case 0 ... 3:
 786                *val = vcpu->arch.db[dr];
 787                break;
 788        case 4:
 789                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 790                        return 1;
 791                /* fall through */
 792        case 6:
 793                *val = vcpu->arch.dr6;
 794                break;
 795        case 5:
 796                if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 797                        return 1;
 798                /* fall through */
 799        default: /* 7 */
 800                *val = vcpu->arch.dr7;
 801                break;
 802        }
 803
 804        return 0;
 805}
 806
 807int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 808{
 809        if (_kvm_get_dr(vcpu, dr, val)) {
 810                kvm_queue_exception(vcpu, UD_VECTOR);
 811                return 1;
 812        }
 813        return 0;
 814}
 815EXPORT_SYMBOL_GPL(kvm_get_dr);
 816
 817bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 818{
 819        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 820        u64 data;
 821        int err;
 822
 823        err = kvm_pmu_read_pmc(vcpu, ecx, &data);
 824        if (err)
 825                return err;
 826        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 827        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 828        return err;
 829}
 830EXPORT_SYMBOL_GPL(kvm_rdpmc);
 831
 832/*
 833 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 834 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 835 *
 836 * This list is modified at module load time to reflect the
 837 * capabilities of the host cpu. This capabilities test skips MSRs that are
 838 * kvm-specific. Those are put in the beginning of the list.
 839 */
 840
 841#define KVM_SAVE_MSRS_BEGIN     10
 842static u32 msrs_to_save[] = {
 843        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 844        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 845        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 846        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 847        MSR_KVM_PV_EOI_EN,
 848        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 849        MSR_STAR,
 850#ifdef CONFIG_X86_64
 851        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 852#endif
 853        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 854};
 855
 856static unsigned num_msrs_to_save;
 857
 858static const u32 emulated_msrs[] = {
 859        MSR_IA32_TSC_ADJUST,
 860        MSR_IA32_TSCDEADLINE,
 861        MSR_IA32_MISC_ENABLE,
 862        MSR_IA32_MCG_STATUS,
 863        MSR_IA32_MCG_CTL,
 864};
 865
 866bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 867{
 868        if (efer & efer_reserved_bits)
 869                return false;
 870
 871        if (efer & EFER_FFXSR) {
 872                struct kvm_cpuid_entry2 *feat;
 873
 874                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 875                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
 876                        return false;
 877        }
 878
 879        if (efer & EFER_SVME) {
 880                struct kvm_cpuid_entry2 *feat;
 881
 882                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 883                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
 884                        return false;
 885        }
 886
 887        return true;
 888}
 889EXPORT_SYMBOL_GPL(kvm_valid_efer);
 890
 891static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
 892{
 893        u64 old_efer = vcpu->arch.efer;
 894
 895        if (!kvm_valid_efer(vcpu, efer))
 896                return 1;
 897
 898        if (is_paging(vcpu)
 899            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 900                return 1;
 901
 902        efer &= ~EFER_LMA;
 903        efer |= vcpu->arch.efer & EFER_LMA;
 904
 905        kvm_x86_ops->set_efer(vcpu, efer);
 906
 907        /* Update reserved bits */
 908        if ((efer ^ old_efer) & EFER_NX)
 909                kvm_mmu_reset_context(vcpu);
 910
 911        return 0;
 912}
 913
 914void kvm_enable_efer_bits(u64 mask)
 915{
 916       efer_reserved_bits &= ~mask;
 917}
 918EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 919
 920
 921/*
 922 * Writes msr value into into the appropriate "register".
 923 * Returns 0 on success, non-0 otherwise.
 924 * Assumes vcpu_load() was already called.
 925 */
 926int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
 927{
 928        return kvm_x86_ops->set_msr(vcpu, msr);
 929}
 930
 931/*
 932 * Adapt set_msr() to msr_io()'s calling convention
 933 */
 934static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 935{
 936        struct msr_data msr;
 937
 938        msr.data = *data;
 939        msr.index = index;
 940        msr.host_initiated = true;
 941        return kvm_set_msr(vcpu, &msr);
 942}
 943
 944#ifdef CONFIG_X86_64
 945struct pvclock_gtod_data {
 946        seqcount_t      seq;
 947
 948        struct { /* extract of a clocksource struct */
 949                int vclock_mode;
 950                cycle_t cycle_last;
 951                cycle_t mask;
 952                u32     mult;
 953                u32     shift;
 954        } clock;
 955
 956        /* open coded 'struct timespec' */
 957        u64             monotonic_time_snsec;
 958        time_t          monotonic_time_sec;
 959};
 960
 961static struct pvclock_gtod_data pvclock_gtod_data;
 962
 963static void update_pvclock_gtod(struct timekeeper *tk)
 964{
 965        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
 966
 967        write_seqcount_begin(&vdata->seq);
 968
 969        /* copy pvclock gtod data */
 970        vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
 971        vdata->clock.cycle_last         = tk->clock->cycle_last;
 972        vdata->clock.mask               = tk->clock->mask;
 973        vdata->clock.mult               = tk->mult;
 974        vdata->clock.shift              = tk->shift;
 975
 976        vdata->monotonic_time_sec       = tk->xtime_sec
 977                                        + tk->wall_to_monotonic.tv_sec;
 978        vdata->monotonic_time_snsec     = tk->xtime_nsec
 979                                        + (tk->wall_to_monotonic.tv_nsec
 980                                                << tk->shift);
 981        while (vdata->monotonic_time_snsec >=
 982                                        (((u64)NSEC_PER_SEC) << tk->shift)) {
 983                vdata->monotonic_time_snsec -=
 984                                        ((u64)NSEC_PER_SEC) << tk->shift;
 985                vdata->monotonic_time_sec++;
 986        }
 987
 988        write_seqcount_end(&vdata->seq);
 989}
 990#endif
 991
 992
 993static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 994{
 995        int version;
 996        int r;
 997        struct pvclock_wall_clock wc;
 998        struct timespec boot;
 999
1000        if (!wall_clock)
1001                return;
1002
1003        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004        if (r)
1005                return;
1006
1007        if (version & 1)
1008                ++version;  /* first time write, random junk */
1009
1010        ++version;
1011
1012        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013
1014        /*
1015         * The guest calculates current wall clock time by adding
1016         * system time (updated by kvm_guest_time_update below) to the
1017         * wall clock specified here.  guest system time equals host
1018         * system time for us, thus we must fill in host boot time here.
1019         */
1020        getboottime(&boot);
1021
1022        if (kvm->arch.kvmclock_offset) {
1023                struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024                boot = timespec_sub(boot, ts);
1025        }
1026        wc.sec = boot.tv_sec;
1027        wc.nsec = boot.tv_nsec;
1028        wc.version = version;
1029
1030        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031
1032        version++;
1033        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034}
1035
1036static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037{
1038        uint32_t quotient, remainder;
1039
1040        /* Don't try to replace with do_div(), this one calculates
1041         * "(dividend << 32) / divisor" */
1042        __asm__ ( "divl %4"
1043                  : "=a" (quotient), "=d" (remainder)
1044                  : "0" (0), "1" (dividend), "r" (divisor) );
1045        return quotient;
1046}
1047
1048static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049                               s8 *pshift, u32 *pmultiplier)
1050{
1051        uint64_t scaled64;
1052        int32_t  shift = 0;
1053        uint64_t tps64;
1054        uint32_t tps32;
1055
1056        tps64 = base_khz * 1000LL;
1057        scaled64 = scaled_khz * 1000LL;
1058        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059                tps64 >>= 1;
1060                shift--;
1061        }
1062
1063        tps32 = (uint32_t)tps64;
1064        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066                        scaled64 >>= 1;
1067                else
1068                        tps32 <<= 1;
1069                shift++;
1070        }
1071
1072        *pshift = shift;
1073        *pmultiplier = div_frac(scaled64, tps32);
1074
1075        pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076                 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077}
1078
1079static inline u64 get_kernel_ns(void)
1080{
1081        struct timespec ts;
1082
1083        WARN_ON(preemptible());
1084        ktime_get_ts(&ts);
1085        monotonic_to_bootbased(&ts);
1086        return timespec_to_ns(&ts);
1087}
1088
1089#ifdef CONFIG_X86_64
1090static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091#endif
1092
1093static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094unsigned long max_tsc_khz;
1095
1096static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097{
1098        return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099                                   vcpu->arch.virtual_tsc_shift);
1100}
1101
1102static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103{
1104        u64 v = (u64)khz * (1000000 + ppm);
1105        do_div(v, 1000000);
1106        return v;
1107}
1108
1109static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110{
1111        u32 thresh_lo, thresh_hi;
1112        int use_scaling = 0;
1113
1114        /* tsc_khz can be zero if TSC calibration fails */
1115        if (this_tsc_khz == 0)
1116                return;
1117
1118        /* Compute a scale to convert nanoseconds in TSC cycles */
1119        kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120                           &vcpu->arch.virtual_tsc_shift,
1121                           &vcpu->arch.virtual_tsc_mult);
1122        vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123
1124        /*
1125         * Compute the variation in TSC rate which is acceptable
1126         * within the range of tolerance and decide if the
1127         * rate being applied is within that bounds of the hardware
1128         * rate.  If so, no scaling or compensation need be done.
1129         */
1130        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132        if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134                use_scaling = 1;
1135        }
1136        kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137}
1138
1139static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140{
1141        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142                                      vcpu->arch.virtual_tsc_mult,
1143                                      vcpu->arch.virtual_tsc_shift);
1144        tsc += vcpu->arch.this_tsc_write;
1145        return tsc;
1146}
1147
1148void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149{
1150#ifdef CONFIG_X86_64
1151        bool vcpus_matched;
1152        bool do_request = false;
1153        struct kvm_arch *ka = &vcpu->kvm->arch;
1154        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155
1156        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157                         atomic_read(&vcpu->kvm->online_vcpus));
1158
1159        if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160                if (!ka->use_master_clock)
1161                        do_request = 1;
1162
1163        if (!vcpus_matched && ka->use_master_clock)
1164                        do_request = 1;
1165
1166        if (do_request)
1167                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168
1169        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170                            atomic_read(&vcpu->kvm->online_vcpus),
1171                            ka->use_master_clock, gtod->clock.vclock_mode);
1172#endif
1173}
1174
1175static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176{
1177        u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179}
1180
1181void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182{
1183        struct kvm *kvm = vcpu->kvm;
1184        u64 offset, ns, elapsed;
1185        unsigned long flags;
1186        s64 usdiff;
1187        bool matched;
1188        u64 data = msr->data;
1189
1190        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192        ns = get_kernel_ns();
1193        elapsed = ns - kvm->arch.last_tsc_nsec;
1194
1195        if (vcpu->arch.virtual_tsc_khz) {
1196                int faulted = 0;
1197
1198                /* n.b - signed multiplication and division required */
1199                usdiff = data - kvm->arch.last_tsc_write;
1200#ifdef CONFIG_X86_64
1201                usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1202#else
1203                /* do_div() only does unsigned */
1204                asm("1: idivl %[divisor]\n"
1205                    "2: xor %%edx, %%edx\n"
1206                    "   movl $0, %[faulted]\n"
1207                    "3:\n"
1208                    ".section .fixup,\"ax\"\n"
1209                    "4: movl $1, %[faulted]\n"
1210                    "   jmp  3b\n"
1211                    ".previous\n"
1212
1213                _ASM_EXTABLE(1b, 4b)
1214
1215                : "=A"(usdiff), [faulted] "=r" (faulted)
1216                : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1217
1218#endif
1219                do_div(elapsed, 1000);
1220                usdiff -= elapsed;
1221                if (usdiff < 0)
1222                        usdiff = -usdiff;
1223
1224                /* idivl overflow => difference is larger than USEC_PER_SEC */
1225                if (faulted)
1226                        usdiff = USEC_PER_SEC;
1227        } else
1228                usdiff = USEC_PER_SEC; /* disable TSC match window below */
1229
1230        /*
1231         * Special case: TSC write with a small delta (1 second) of virtual
1232         * cycle time against real time is interpreted as an attempt to
1233         * synchronize the CPU.
1234         *
1235         * For a reliable TSC, we can match TSC offsets, and for an unstable
1236         * TSC, we add elapsed time in this computation.  We could let the
1237         * compensation code attempt to catch up if we fall behind, but
1238         * it's better to try to match offsets from the beginning.
1239         */
1240        if (usdiff < USEC_PER_SEC &&
1241            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1242                if (!check_tsc_unstable()) {
1243                        offset = kvm->arch.cur_tsc_offset;
1244                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1245                } else {
1246                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1247                        data += delta;
1248                        offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1249                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1250                }
1251                matched = true;
1252        } else {
1253                /*
1254                 * We split periods of matched TSC writes into generations.
1255                 * For each generation, we track the original measured
1256                 * nanosecond time, offset, and write, so if TSCs are in
1257                 * sync, we can match exact offset, and if not, we can match
1258                 * exact software computation in compute_guest_tsc()
1259                 *
1260                 * These values are tracked in kvm->arch.cur_xxx variables.
1261                 */
1262                kvm->arch.cur_tsc_generation++;
1263                kvm->arch.cur_tsc_nsec = ns;
1264                kvm->arch.cur_tsc_write = data;
1265                kvm->arch.cur_tsc_offset = offset;
1266                matched = false;
1267                pr_debug("kvm: new tsc generation %u, clock %llu\n",
1268                         kvm->arch.cur_tsc_generation, data);
1269        }
1270
1271        /*
1272         * We also track th most recent recorded KHZ, write and time to
1273         * allow the matching interval to be extended at each write.
1274         */
1275        kvm->arch.last_tsc_nsec = ns;
1276        kvm->arch.last_tsc_write = data;
1277        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1278
1279        /* Reset of TSC must disable overshoot protection below */
1280        vcpu->arch.hv_clock.tsc_timestamp = 0;
1281        vcpu->arch.last_guest_tsc = data;
1282
1283        /* Keep track of which generation this VCPU has synchronized to */
1284        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1285        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1286        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1287
1288        if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1289                update_ia32_tsc_adjust_msr(vcpu, offset);
1290        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1291        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1292
1293        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1294        if (matched)
1295                kvm->arch.nr_vcpus_matched_tsc++;
1296        else
1297                kvm->arch.nr_vcpus_matched_tsc = 0;
1298
1299        kvm_track_tsc_matching(vcpu);
1300        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1301}
1302
1303EXPORT_SYMBOL_GPL(kvm_write_tsc);
1304
1305#ifdef CONFIG_X86_64
1306
1307static cycle_t read_tsc(void)
1308{
1309        cycle_t ret;
1310        u64 last;
1311
1312        /*
1313         * Empirically, a fence (of type that depends on the CPU)
1314         * before rdtsc is enough to ensure that rdtsc is ordered
1315         * with respect to loads.  The various CPU manuals are unclear
1316         * as to whether rdtsc can be reordered with later loads,
1317         * but no one has ever seen it happen.
1318         */
1319        rdtsc_barrier();
1320        ret = (cycle_t)vget_cycles();
1321
1322        last = pvclock_gtod_data.clock.cycle_last;
1323
1324        if (likely(ret >= last))
1325                return ret;
1326
1327        /*
1328         * GCC likes to generate cmov here, but this branch is extremely
1329         * predictable (it's just a funciton of time and the likely is
1330         * very likely) and there's a data dependence, so force GCC
1331         * to generate a branch instead.  I don't barrier() because
1332         * we don't actually need a barrier, and if this function
1333         * ever gets inlined it will generate worse code.
1334         */
1335        asm volatile ("");
1336        return last;
1337}
1338
1339static inline u64 vgettsc(cycle_t *cycle_now)
1340{
1341        long v;
1342        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343
1344        *cycle_now = read_tsc();
1345
1346        v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1347        return v * gtod->clock.mult;
1348}
1349
1350static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1351{
1352        unsigned long seq;
1353        u64 ns;
1354        int mode;
1355        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1356
1357        ts->tv_nsec = 0;
1358        do {
1359                seq = read_seqcount_begin(&gtod->seq);
1360                mode = gtod->clock.vclock_mode;
1361                ts->tv_sec = gtod->monotonic_time_sec;
1362                ns = gtod->monotonic_time_snsec;
1363                ns += vgettsc(cycle_now);
1364                ns >>= gtod->clock.shift;
1365        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1366        timespec_add_ns(ts, ns);
1367
1368        return mode;
1369}
1370
1371/* returns true if host is using tsc clocksource */
1372static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1373{
1374        struct timespec ts;
1375
1376        /* checked again under seqlock below */
1377        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1378                return false;
1379
1380        if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1381                return false;
1382
1383        monotonic_to_bootbased(&ts);
1384        *kernel_ns = timespec_to_ns(&ts);
1385
1386        return true;
1387}
1388#endif
1389
1390/*
1391 *
1392 * Assuming a stable TSC across physical CPUS, and a stable TSC
1393 * across virtual CPUs, the following condition is possible.
1394 * Each numbered line represents an event visible to both
1395 * CPUs at the next numbered event.
1396 *
1397 * "timespecX" represents host monotonic time. "tscX" represents
1398 * RDTSC value.
1399 *
1400 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1401 *
1402 * 1.  read timespec0,tsc0
1403 * 2.                                   | timespec1 = timespec0 + N
1404 *                                      | tsc1 = tsc0 + M
1405 * 3. transition to guest               | transition to guest
1406 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1407 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1408 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1409 *
1410 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1411 *
1412 *      - ret0 < ret1
1413 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1414 *              ...
1415 *      - 0 < N - M => M < N
1416 *
1417 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1418 * always the case (the difference between two distinct xtime instances
1419 * might be smaller then the difference between corresponding TSC reads,
1420 * when updating guest vcpus pvclock areas).
1421 *
1422 * To avoid that problem, do not allow visibility of distinct
1423 * system_timestamp/tsc_timestamp values simultaneously: use a master
1424 * copy of host monotonic time values. Update that master copy
1425 * in lockstep.
1426 *
1427 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1428 *
1429 */
1430
1431static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1432{
1433#ifdef CONFIG_X86_64
1434        struct kvm_arch *ka = &kvm->arch;
1435        int vclock_mode;
1436        bool host_tsc_clocksource, vcpus_matched;
1437
1438        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1439                        atomic_read(&kvm->online_vcpus));
1440
1441        /*
1442         * If the host uses TSC clock, then passthrough TSC as stable
1443         * to the guest.
1444         */
1445        host_tsc_clocksource = kvm_get_time_and_clockread(
1446                                        &ka->master_kernel_ns,
1447                                        &ka->master_cycle_now);
1448
1449        ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1450
1451        if (ka->use_master_clock)
1452                atomic_set(&kvm_guest_has_master_clock, 1);
1453
1454        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1455        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1456                                        vcpus_matched);
1457#endif
1458}
1459
1460static int kvm_guest_time_update(struct kvm_vcpu *v)
1461{
1462        unsigned long flags, this_tsc_khz;
1463        struct kvm_vcpu_arch *vcpu = &v->arch;
1464        struct kvm_arch *ka = &v->kvm->arch;
1465        s64 kernel_ns, max_kernel_ns;
1466        u64 tsc_timestamp, host_tsc;
1467        struct pvclock_vcpu_time_info guest_hv_clock;
1468        u8 pvclock_flags;
1469        bool use_master_clock;
1470
1471        kernel_ns = 0;
1472        host_tsc = 0;
1473
1474        /*
1475         * If the host uses TSC clock, then passthrough TSC as stable
1476         * to the guest.
1477         */
1478        spin_lock(&ka->pvclock_gtod_sync_lock);
1479        use_master_clock = ka->use_master_clock;
1480        if (use_master_clock) {
1481                host_tsc = ka->master_cycle_now;
1482                kernel_ns = ka->master_kernel_ns;
1483        }
1484        spin_unlock(&ka->pvclock_gtod_sync_lock);
1485
1486        /* Keep irq disabled to prevent changes to the clock */
1487        local_irq_save(flags);
1488        this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1489        if (unlikely(this_tsc_khz == 0)) {
1490                local_irq_restore(flags);
1491                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1492                return 1;
1493        }
1494        if (!use_master_clock) {
1495                host_tsc = native_read_tsc();
1496                kernel_ns = get_kernel_ns();
1497        }
1498
1499        tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1500
1501        /*
1502         * We may have to catch up the TSC to match elapsed wall clock
1503         * time for two reasons, even if kvmclock is used.
1504         *   1) CPU could have been running below the maximum TSC rate
1505         *   2) Broken TSC compensation resets the base at each VCPU
1506         *      entry to avoid unknown leaps of TSC even when running
1507         *      again on the same CPU.  This may cause apparent elapsed
1508         *      time to disappear, and the guest to stand still or run
1509         *      very slowly.
1510         */
1511        if (vcpu->tsc_catchup) {
1512                u64 tsc = compute_guest_tsc(v, kernel_ns);
1513                if (tsc > tsc_timestamp) {
1514                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1515                        tsc_timestamp = tsc;
1516                }
1517        }
1518
1519        local_irq_restore(flags);
1520
1521        if (!vcpu->pv_time_enabled)
1522                return 0;
1523
1524        /*
1525         * Time as measured by the TSC may go backwards when resetting the base
1526         * tsc_timestamp.  The reason for this is that the TSC resolution is
1527         * higher than the resolution of the other clock scales.  Thus, many
1528         * possible measurments of the TSC correspond to one measurement of any
1529         * other clock, and so a spread of values is possible.  This is not a
1530         * problem for the computation of the nanosecond clock; with TSC rates
1531         * around 1GHZ, there can only be a few cycles which correspond to one
1532         * nanosecond value, and any path through this code will inevitably
1533         * take longer than that.  However, with the kernel_ns value itself,
1534         * the precision may be much lower, down to HZ granularity.  If the
1535         * first sampling of TSC against kernel_ns ends in the low part of the
1536         * range, and the second in the high end of the range, we can get:
1537         *
1538         * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1539         *
1540         * As the sampling errors potentially range in the thousands of cycles,
1541         * it is possible such a time value has already been observed by the
1542         * guest.  To protect against this, we must compute the system time as
1543         * observed by the guest and ensure the new system time is greater.
1544         */
1545        max_kernel_ns = 0;
1546        if (vcpu->hv_clock.tsc_timestamp) {
1547                max_kernel_ns = vcpu->last_guest_tsc -
1548                                vcpu->hv_clock.tsc_timestamp;
1549                max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1550                                    vcpu->hv_clock.tsc_to_system_mul,
1551                                    vcpu->hv_clock.tsc_shift);
1552                max_kernel_ns += vcpu->last_kernel_ns;
1553        }
1554
1555        if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1556                kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1557                                   &vcpu->hv_clock.tsc_shift,
1558                                   &vcpu->hv_clock.tsc_to_system_mul);
1559                vcpu->hw_tsc_khz = this_tsc_khz;
1560        }
1561
1562        /* with a master <monotonic time, tsc value> tuple,
1563         * pvclock clock reads always increase at the (scaled) rate
1564         * of guest TSC - no need to deal with sampling errors.
1565         */
1566        if (!use_master_clock) {
1567                if (max_kernel_ns > kernel_ns)
1568                        kernel_ns = max_kernel_ns;
1569        }
1570        /* With all the info we got, fill in the values */
1571        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1572        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1573        vcpu->last_kernel_ns = kernel_ns;
1574        vcpu->last_guest_tsc = tsc_timestamp;
1575
1576        /*
1577         * The interface expects us to write an even number signaling that the
1578         * update is finished. Since the guest won't see the intermediate
1579         * state, we just increase by 2 at the end.
1580         */
1581        vcpu->hv_clock.version += 2;
1582
1583        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1584                &guest_hv_clock, sizeof(guest_hv_clock))))
1585                return 0;
1586
1587        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1588        pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1589
1590        if (vcpu->pvclock_set_guest_stopped_request) {
1591                pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1592                vcpu->pvclock_set_guest_stopped_request = false;
1593        }
1594
1595        /* If the host uses TSC clocksource, then it is stable */
1596        if (use_master_clock)
1597                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1598
1599        vcpu->hv_clock.flags = pvclock_flags;
1600
1601        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1602                                &vcpu->hv_clock,
1603                                sizeof(vcpu->hv_clock));
1604        return 0;
1605}
1606
1607/*
1608 * kvmclock updates which are isolated to a given vcpu, such as
1609 * vcpu->cpu migration, should not allow system_timestamp from
1610 * the rest of the vcpus to remain static. Otherwise ntp frequency
1611 * correction applies to one vcpu's system_timestamp but not
1612 * the others.
1613 *
1614 * So in those cases, request a kvmclock update for all vcpus.
1615 * The worst case for a remote vcpu to update its kvmclock
1616 * is then bounded by maximum nohz sleep latency.
1617 */
1618
1619static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1620{
1621        int i;
1622        struct kvm *kvm = v->kvm;
1623        struct kvm_vcpu *vcpu;
1624
1625        kvm_for_each_vcpu(i, vcpu, kvm) {
1626                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1627                kvm_vcpu_kick(vcpu);
1628        }
1629}
1630
1631static bool msr_mtrr_valid(unsigned msr)
1632{
1633        switch (msr) {
1634        case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1635        case MSR_MTRRfix64K_00000:
1636        case MSR_MTRRfix16K_80000:
1637        case MSR_MTRRfix16K_A0000:
1638        case MSR_MTRRfix4K_C0000:
1639        case MSR_MTRRfix4K_C8000:
1640        case MSR_MTRRfix4K_D0000:
1641        case MSR_MTRRfix4K_D8000:
1642        case MSR_MTRRfix4K_E0000:
1643        case MSR_MTRRfix4K_E8000:
1644        case MSR_MTRRfix4K_F0000:
1645        case MSR_MTRRfix4K_F8000:
1646        case MSR_MTRRdefType:
1647        case MSR_IA32_CR_PAT:
1648                return true;
1649        case 0x2f8:
1650                return true;
1651        }
1652        return false;
1653}
1654
1655static bool valid_pat_type(unsigned t)
1656{
1657        return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1658}
1659
1660static bool valid_mtrr_type(unsigned t)
1661{
1662        return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1663}
1664
1665static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1666{
1667        int i;
1668
1669        if (!msr_mtrr_valid(msr))
1670                return false;
1671
1672        if (msr == MSR_IA32_CR_PAT) {
1673                for (i = 0; i < 8; i++)
1674                        if (!valid_pat_type((data >> (i * 8)) & 0xff))
1675                                return false;
1676                return true;
1677        } else if (msr == MSR_MTRRdefType) {
1678                if (data & ~0xcff)
1679                        return false;
1680                return valid_mtrr_type(data & 0xff);
1681        } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1682                for (i = 0; i < 8 ; i++)
1683                        if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1684                                return false;
1685                return true;
1686        }
1687
1688        /* variable MTRRs */
1689        return valid_mtrr_type(data & 0xff);
1690}
1691
1692static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1693{
1694        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1695
1696        if (!mtrr_valid(vcpu, msr, data))
1697                return 1;
1698
1699        if (msr == MSR_MTRRdefType) {
1700                vcpu->arch.mtrr_state.def_type = data;
1701                vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1702        } else if (msr == MSR_MTRRfix64K_00000)
1703                p[0] = data;
1704        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1705                p[1 + msr - MSR_MTRRfix16K_80000] = data;
1706        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1707                p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1708        else if (msr == MSR_IA32_CR_PAT)
1709                vcpu->arch.pat = data;
1710        else {  /* Variable MTRRs */
1711                int idx, is_mtrr_mask;
1712                u64 *pt;
1713
1714                idx = (msr - 0x200) / 2;
1715                is_mtrr_mask = msr - 0x200 - 2 * idx;
1716                if (!is_mtrr_mask)
1717                        pt =
1718                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1719                else
1720                        pt =
1721                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1722                *pt = data;
1723        }
1724
1725        kvm_mmu_reset_context(vcpu);
1726        return 0;
1727}
1728
1729static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1730{
1731        u64 mcg_cap = vcpu->arch.mcg_cap;
1732        unsigned bank_num = mcg_cap & 0xff;
1733
1734        switch (msr) {
1735        case MSR_IA32_MCG_STATUS:
1736                vcpu->arch.mcg_status = data;
1737                break;
1738        case MSR_IA32_MCG_CTL:
1739                if (!(mcg_cap & MCG_CTL_P))
1740                        return 1;
1741                if (data != 0 && data != ~(u64)0)
1742                        return -1;
1743                vcpu->arch.mcg_ctl = data;
1744                break;
1745        default:
1746                if (msr >= MSR_IA32_MC0_CTL &&
1747                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1748                        u32 offset = msr - MSR_IA32_MC0_CTL;
1749                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1750                         * some Linux kernels though clear bit 10 in bank 4 to
1751                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1752                         * this to avoid an uncatched #GP in the guest
1753                         */
1754                        if ((offset & 0x3) == 0 &&
1755                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1756                                return -1;
1757                        vcpu->arch.mce_banks[offset] = data;
1758                        break;
1759                }
1760                return 1;
1761        }
1762        return 0;
1763}
1764
1765static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1766{
1767        struct kvm *kvm = vcpu->kvm;
1768        int lm = is_long_mode(vcpu);
1769        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1770                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1771        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1772                : kvm->arch.xen_hvm_config.blob_size_32;
1773        u32 page_num = data & ~PAGE_MASK;
1774        u64 page_addr = data & PAGE_MASK;
1775        u8 *page;
1776        int r;
1777
1778        r = -E2BIG;
1779        if (page_num >= blob_size)
1780                goto out;
1781        r = -ENOMEM;
1782        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1783        if (IS_ERR(page)) {
1784                r = PTR_ERR(page);
1785                goto out;
1786        }
1787        if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1788                goto out_free;
1789        r = 0;
1790out_free:
1791        kfree(page);
1792out:
1793        return r;
1794}
1795
1796static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1797{
1798        return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1799}
1800
1801static bool kvm_hv_msr_partition_wide(u32 msr)
1802{
1803        bool r = false;
1804        switch (msr) {
1805        case HV_X64_MSR_GUEST_OS_ID:
1806        case HV_X64_MSR_HYPERCALL:
1807                r = true;
1808                break;
1809        }
1810
1811        return r;
1812}
1813
1814static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1815{
1816        struct kvm *kvm = vcpu->kvm;
1817
1818        switch (msr) {
1819        case HV_X64_MSR_GUEST_OS_ID:
1820                kvm->arch.hv_guest_os_id = data;
1821                /* setting guest os id to zero disables hypercall page */
1822                if (!kvm->arch.hv_guest_os_id)
1823                        kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1824                break;
1825        case HV_X64_MSR_HYPERCALL: {
1826                u64 gfn;
1827                unsigned long addr;
1828                u8 instructions[4];
1829
1830                /* if guest os id is not set hypercall should remain disabled */
1831                if (!kvm->arch.hv_guest_os_id)
1832                        break;
1833                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1834                        kvm->arch.hv_hypercall = data;
1835                        break;
1836                }
1837                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1838                addr = gfn_to_hva(kvm, gfn);
1839                if (kvm_is_error_hva(addr))
1840                        return 1;
1841                kvm_x86_ops->patch_hypercall(vcpu, instructions);
1842                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1843                if (__copy_to_user((void __user *)addr, instructions, 4))
1844                        return 1;
1845                kvm->arch.hv_hypercall = data;
1846                break;
1847        }
1848        default:
1849                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1850                            "data 0x%llx\n", msr, data);
1851                return 1;
1852        }
1853        return 0;
1854}
1855
1856static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1857{
1858        switch (msr) {
1859        case HV_X64_MSR_APIC_ASSIST_PAGE: {
1860                unsigned long addr;
1861
1862                if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1863                        vcpu->arch.hv_vapic = data;
1864                        break;
1865                }
1866                addr = gfn_to_hva(vcpu->kvm, data >>
1867                                  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1868                if (kvm_is_error_hva(addr))
1869                        return 1;
1870                if (__clear_user((void __user *)addr, PAGE_SIZE))
1871                        return 1;
1872                vcpu->arch.hv_vapic = data;
1873                break;
1874        }
1875        case HV_X64_MSR_EOI:
1876                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1877        case HV_X64_MSR_ICR:
1878                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1879        case HV_X64_MSR_TPR:
1880                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1881        default:
1882                vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1883                            "data 0x%llx\n", msr, data);
1884                return 1;
1885        }
1886
1887        return 0;
1888}
1889
1890static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1891{
1892        gpa_t gpa = data & ~0x3f;
1893
1894        /* Bits 2:5 are reserved, Should be zero */
1895        if (data & 0x3c)
1896                return 1;
1897
1898        vcpu->arch.apf.msr_val = data;
1899
1900        if (!(data & KVM_ASYNC_PF_ENABLED)) {
1901                kvm_clear_async_pf_completion_queue(vcpu);
1902                kvm_async_pf_hash_reset(vcpu);
1903                return 0;
1904        }
1905
1906        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1907                                        sizeof(u32)))
1908                return 1;
1909
1910        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1911        kvm_async_pf_wakeup_all(vcpu);
1912        return 0;
1913}
1914
1915static void kvmclock_reset(struct kvm_vcpu *vcpu)
1916{
1917        vcpu->arch.pv_time_enabled = false;
1918}
1919
1920static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1921{
1922        u64 delta;
1923
1924        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1925                return;
1926
1927        delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1928        vcpu->arch.st.last_steal = current->sched_info.run_delay;
1929        vcpu->arch.st.accum_steal = delta;
1930}
1931
1932static void record_steal_time(struct kvm_vcpu *vcpu)
1933{
1934        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1935                return;
1936
1937        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1938                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1939                return;
1940
1941        vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1942        vcpu->arch.st.steal.version += 2;
1943        vcpu->arch.st.accum_steal = 0;
1944
1945        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1946                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1947}
1948
1949int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1950{
1951        bool pr = false;
1952        u32 msr = msr_info->index;
1953        u64 data = msr_info->data;
1954
1955        switch (msr) {
1956        case MSR_AMD64_NB_CFG:
1957        case MSR_IA32_UCODE_REV:
1958        case MSR_IA32_UCODE_WRITE:
1959        case MSR_VM_HSAVE_PA:
1960        case MSR_AMD64_PATCH_LOADER:
1961        case MSR_AMD64_BU_CFG2:
1962                break;
1963
1964        case MSR_EFER:
1965                return set_efer(vcpu, data);
1966        case MSR_K7_HWCR:
1967                data &= ~(u64)0x40;     /* ignore flush filter disable */
1968                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1969                data &= ~(u64)0x8;      /* ignore TLB cache disable */
1970                if (data != 0) {
1971                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1972                                    data);
1973                        return 1;
1974                }
1975                break;
1976        case MSR_FAM10H_MMIO_CONF_BASE:
1977                if (data != 0) {
1978                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1979                                    "0x%llx\n", data);
1980                        return 1;
1981                }
1982                break;
1983        case MSR_IA32_DEBUGCTLMSR:
1984                if (!data) {
1985                        /* We support the non-activated case already */
1986                        break;
1987                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1988                        /* Values other than LBR and BTF are vendor-specific,
1989                           thus reserved and should throw a #GP */
1990                        return 1;
1991                }
1992                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1993                            __func__, data);
1994                break;
1995        case 0x200 ... 0x2ff:
1996                return set_msr_mtrr(vcpu, msr, data);
1997        case MSR_IA32_APICBASE:
1998                kvm_set_apic_base(vcpu, data);
1999                break;
2000        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2001                return kvm_x2apic_msr_write(vcpu, msr, data);
2002        case MSR_IA32_TSCDEADLINE:
2003                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2004                break;
2005        case MSR_IA32_TSC_ADJUST:
2006                if (guest_cpuid_has_tsc_adjust(vcpu)) {
2007                        if (!msr_info->host_initiated) {
2008                                u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2009                                kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2010                        }
2011                        vcpu->arch.ia32_tsc_adjust_msr = data;
2012                }
2013                break;
2014        case MSR_IA32_MISC_ENABLE:
2015                vcpu->arch.ia32_misc_enable_msr = data;
2016                break;
2017        case MSR_KVM_WALL_CLOCK_NEW:
2018        case MSR_KVM_WALL_CLOCK:
2019                vcpu->kvm->arch.wall_clock = data;
2020                kvm_write_wall_clock(vcpu->kvm, data);
2021                break;
2022        case MSR_KVM_SYSTEM_TIME_NEW:
2023        case MSR_KVM_SYSTEM_TIME: {
2024                u64 gpa_offset;
2025                kvmclock_reset(vcpu);
2026
2027                vcpu->arch.time = data;
2028                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2029
2030                /* we verify if the enable bit is set... */
2031                if (!(data & 1))
2032                        break;
2033
2034                gpa_offset = data & ~(PAGE_MASK | 1);
2035
2036                if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2037                     &vcpu->arch.pv_time, data & ~1ULL,
2038                     sizeof(struct pvclock_vcpu_time_info)))
2039                        vcpu->arch.pv_time_enabled = false;
2040                else
2041                        vcpu->arch.pv_time_enabled = true;
2042
2043                break;
2044        }
2045        case MSR_KVM_ASYNC_PF_EN:
2046                if (kvm_pv_enable_async_pf(vcpu, data))
2047                        return 1;
2048                break;
2049        case MSR_KVM_STEAL_TIME:
2050
2051                if (unlikely(!sched_info_on()))
2052                        return 1;
2053
2054                if (data & KVM_STEAL_RESERVED_MASK)
2055                        return 1;
2056
2057                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2058                                                data & KVM_STEAL_VALID_BITS,
2059                                                sizeof(struct kvm_steal_time)))
2060                        return 1;
2061
2062                vcpu->arch.st.msr_val = data;
2063
2064                if (!(data & KVM_MSR_ENABLED))
2065                        break;
2066
2067                vcpu->arch.st.last_steal = current->sched_info.run_delay;
2068
2069                preempt_disable();
2070                accumulate_steal_time(vcpu);
2071                preempt_enable();
2072
2073                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2074
2075                break;
2076        case MSR_KVM_PV_EOI_EN:
2077                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2078                        return 1;
2079                break;
2080
2081        case MSR_IA32_MCG_CTL:
2082        case MSR_IA32_MCG_STATUS:
2083        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2084                return set_msr_mce(vcpu, msr, data);
2085
2086        /* Performance counters are not protected by a CPUID bit,
2087         * so we should check all of them in the generic path for the sake of
2088         * cross vendor migration.
2089         * Writing a zero into the event select MSRs disables them,
2090         * which we perfectly emulate ;-). Any other value should be at least
2091         * reported, some guests depend on them.
2092         */
2093        case MSR_K7_EVNTSEL0:
2094        case MSR_K7_EVNTSEL1:
2095        case MSR_K7_EVNTSEL2:
2096        case MSR_K7_EVNTSEL3:
2097                if (data != 0)
2098                        vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2099                                    "0x%x data 0x%llx\n", msr, data);
2100                break;
2101        /* at least RHEL 4 unconditionally writes to the perfctr registers,
2102         * so we ignore writes to make it happy.
2103         */
2104        case MSR_K7_PERFCTR0:
2105        case MSR_K7_PERFCTR1:
2106        case MSR_K7_PERFCTR2:
2107        case MSR_K7_PERFCTR3:
2108                vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2109                            "0x%x data 0x%llx\n", msr, data);
2110                break;
2111        case MSR_P6_PERFCTR0:
2112        case MSR_P6_PERFCTR1:
2113                pr = true;
2114        case MSR_P6_EVNTSEL0:
2115        case MSR_P6_EVNTSEL1:
2116                if (kvm_pmu_msr(vcpu, msr))
2117                        return kvm_pmu_set_msr(vcpu, msr_info);
2118
2119                if (pr || data != 0)
2120                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2121                                    "0x%x data 0x%llx\n", msr, data);
2122                break;
2123        case MSR_K7_CLK_CTL:
2124                /*
2125                 * Ignore all writes to this no longer documented MSR.
2126                 * Writes are only relevant for old K7 processors,
2127                 * all pre-dating SVM, but a recommended workaround from
2128                 * AMD for these chips. It is possible to specify the
2129                 * affected processor models on the command line, hence
2130                 * the need to ignore the workaround.
2131                 */
2132                break;
2133        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2134                if (kvm_hv_msr_partition_wide(msr)) {
2135                        int r;
2136                        mutex_lock(&vcpu->kvm->lock);
2137                        r = set_msr_hyperv_pw(vcpu, msr, data);
2138                        mutex_unlock(&vcpu->kvm->lock);
2139                        return r;
2140                } else
2141                        return set_msr_hyperv(vcpu, msr, data);
2142                break;
2143        case MSR_IA32_BBL_CR_CTL3:
2144                /* Drop writes to this legacy MSR -- see rdmsr
2145                 * counterpart for further detail.
2146                 */
2147                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2148                break;
2149        case MSR_AMD64_OSVW_ID_LENGTH:
2150                if (!guest_cpuid_has_osvw(vcpu))
2151                        return 1;
2152                vcpu->arch.osvw.length = data;
2153                break;
2154        case MSR_AMD64_OSVW_STATUS:
2155                if (!guest_cpuid_has_osvw(vcpu))
2156                        return 1;
2157                vcpu->arch.osvw.status = data;
2158                break;
2159        default:
2160                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2161                        return xen_hvm_config(vcpu, data);
2162                if (kvm_pmu_msr(vcpu, msr))
2163                        return kvm_pmu_set_msr(vcpu, msr_info);
2164                if (!ignore_msrs) {
2165                        vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2166                                    msr, data);
2167                        return 1;
2168                } else {
2169                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2170                                    msr, data);
2171                        break;
2172                }
2173        }
2174        return 0;
2175}
2176EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2177
2178
2179/*
2180 * Reads an msr value (of 'msr_index') into 'pdata'.
2181 * Returns 0 on success, non-0 otherwise.
2182 * Assumes vcpu_load() was already called.
2183 */
2184int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2185{
2186        return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2187}
2188
2189static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2190{
2191        u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2192
2193        if (!msr_mtrr_valid(msr))
2194                return 1;
2195
2196        if (msr == MSR_MTRRdefType)
2197                *pdata = vcpu->arch.mtrr_state.def_type +
2198                         (vcpu->arch.mtrr_state.enabled << 10);
2199        else if (msr == MSR_MTRRfix64K_00000)
2200                *pdata = p[0];
2201        else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2202                *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2203        else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2204                *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2205        else if (msr == MSR_IA32_CR_PAT)
2206                *pdata = vcpu->arch.pat;
2207        else {  /* Variable MTRRs */
2208                int idx, is_mtrr_mask;
2209                u64 *pt;
2210
2211                idx = (msr - 0x200) / 2;
2212                is_mtrr_mask = msr - 0x200 - 2 * idx;
2213                if (!is_mtrr_mask)
2214                        pt =
2215                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2216                else
2217                        pt =
2218                          (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2219                *pdata = *pt;
2220        }
2221
2222        return 0;
2223}
2224
2225static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2226{
2227        u64 data;
2228        u64 mcg_cap = vcpu->arch.mcg_cap;
2229        unsigned bank_num = mcg_cap & 0xff;
2230
2231        switch (msr) {
2232        case MSR_IA32_P5_MC_ADDR:
2233        case MSR_IA32_P5_MC_TYPE:
2234                data = 0;
2235                break;
2236        case MSR_IA32_MCG_CAP:
2237                data = vcpu->arch.mcg_cap;
2238                break;
2239        case MSR_IA32_MCG_CTL:
2240                if (!(mcg_cap & MCG_CTL_P))
2241                        return 1;
2242                data = vcpu->arch.mcg_ctl;
2243                break;
2244        case MSR_IA32_MCG_STATUS:
2245                data = vcpu->arch.mcg_status;
2246                break;
2247        default:
2248                if (msr >= MSR_IA32_MC0_CTL &&
2249                    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2250                        u32 offset = msr - MSR_IA32_MC0_CTL;
2251                        data = vcpu->arch.mce_banks[offset];
2252                        break;
2253                }
2254                return 1;
2255        }
2256        *pdata = data;
2257        return 0;
2258}
2259
2260static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2261{
2262        u64 data = 0;
2263        struct kvm *kvm = vcpu->kvm;
2264
2265        switch (msr) {
2266        case HV_X64_MSR_GUEST_OS_ID:
2267                data = kvm->arch.hv_guest_os_id;
2268                break;
2269        case HV_X64_MSR_HYPERCALL:
2270                data = kvm->arch.hv_hypercall;
2271                break;
2272        default:
2273                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2274                return 1;
2275        }
2276
2277        *pdata = data;
2278        return 0;
2279}
2280
2281static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2282{
2283        u64 data = 0;
2284
2285        switch (msr) {
2286        case HV_X64_MSR_VP_INDEX: {
2287                int r;
2288                struct kvm_vcpu *v;
2289                kvm_for_each_vcpu(r, v, vcpu->kvm)
2290                        if (v == vcpu)
2291                                data = r;
2292                break;
2293        }
2294        case HV_X64_MSR_EOI:
2295                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2296        case HV_X64_MSR_ICR:
2297                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2298        case HV_X64_MSR_TPR:
2299                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2300        case HV_X64_MSR_APIC_ASSIST_PAGE:
2301                data = vcpu->arch.hv_vapic;
2302                break;
2303        default:
2304                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2305                return 1;
2306        }
2307        *pdata = data;
2308        return 0;
2309}
2310
2311int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2312{
2313        u64 data;
2314
2315        switch (msr) {
2316        case MSR_IA32_PLATFORM_ID:
2317        case MSR_IA32_EBL_CR_POWERON:
2318        case MSR_IA32_DEBUGCTLMSR:
2319        case MSR_IA32_LASTBRANCHFROMIP:
2320        case MSR_IA32_LASTBRANCHTOIP:
2321        case MSR_IA32_LASTINTFROMIP:
2322        case MSR_IA32_LASTINTTOIP:
2323        case MSR_K8_SYSCFG:
2324        case MSR_K7_HWCR:
2325        case MSR_VM_HSAVE_PA:
2326        case MSR_K7_EVNTSEL0:
2327        case MSR_K7_PERFCTR0:
2328        case MSR_K8_INT_PENDING_MSG:
2329        case MSR_AMD64_NB_CFG:
2330        case MSR_FAM10H_MMIO_CONF_BASE:
2331        case MSR_AMD64_BU_CFG2:
2332                data = 0;
2333                break;
2334        case MSR_P6_PERFCTR0:
2335        case MSR_P6_PERFCTR1:
2336        case MSR_P6_EVNTSEL0:
2337        case MSR_P6_EVNTSEL1:
2338                if (kvm_pmu_msr(vcpu, msr))
2339                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2340                data = 0;
2341                break;
2342        case MSR_IA32_UCODE_REV:
2343                data = 0x100000000ULL;
2344                break;
2345        case MSR_MTRRcap:
2346                data = 0x500 | KVM_NR_VAR_MTRR;
2347                break;
2348        case 0x200 ... 0x2ff:
2349                return get_msr_mtrr(vcpu, msr, pdata);
2350        case 0xcd: /* fsb frequency */
2351                data = 3;
2352                break;
2353                /*
2354                 * MSR_EBC_FREQUENCY_ID
2355                 * Conservative value valid for even the basic CPU models.
2356                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2357                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2358                 * and 266MHz for model 3, or 4. Set Core Clock
2359                 * Frequency to System Bus Frequency Ratio to 1 (bits
2360                 * 31:24) even though these are only valid for CPU
2361                 * models > 2, however guests may end up dividing or
2362                 * multiplying by zero otherwise.
2363                 */
2364        case MSR_EBC_FREQUENCY_ID:
2365                data = 1 << 24;
2366                break;
2367        case MSR_IA32_APICBASE:
2368                data = kvm_get_apic_base(vcpu);
2369                break;
2370        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2371                return kvm_x2apic_msr_read(vcpu, msr, pdata);
2372                break;
2373        case MSR_IA32_TSCDEADLINE:
2374                data = kvm_get_lapic_tscdeadline_msr(vcpu);
2375                break;
2376        case MSR_IA32_TSC_ADJUST:
2377                data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2378                break;
2379        case MSR_IA32_MISC_ENABLE:
2380                data = vcpu->arch.ia32_misc_enable_msr;
2381                break;
2382        case MSR_IA32_PERF_STATUS:
2383                /* TSC increment by tick */
2384                data = 1000ULL;
2385                /* CPU multiplier */
2386                data |= (((uint64_t)4ULL) << 40);
2387                break;
2388        case MSR_EFER:
2389                data = vcpu->arch.efer;
2390                break;
2391        case MSR_KVM_WALL_CLOCK:
2392        case MSR_KVM_WALL_CLOCK_NEW:
2393                data = vcpu->kvm->arch.wall_clock;
2394                break;
2395        case MSR_KVM_SYSTEM_TIME:
2396        case MSR_KVM_SYSTEM_TIME_NEW:
2397                data = vcpu->arch.time;
2398                break;
2399        case MSR_KVM_ASYNC_PF_EN:
2400                data = vcpu->arch.apf.msr_val;
2401                break;
2402        case MSR_KVM_STEAL_TIME:
2403                data = vcpu->arch.st.msr_val;
2404                break;
2405        case MSR_KVM_PV_EOI_EN:
2406                data = vcpu->arch.pv_eoi.msr_val;
2407                break;
2408        case MSR_IA32_P5_MC_ADDR:
2409        case MSR_IA32_P5_MC_TYPE:
2410        case MSR_IA32_MCG_CAP:
2411        case MSR_IA32_MCG_CTL:
2412        case MSR_IA32_MCG_STATUS:
2413        case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2414                return get_msr_mce(vcpu, msr, pdata);
2415        case MSR_K7_CLK_CTL:
2416                /*
2417                 * Provide expected ramp-up count for K7. All other
2418                 * are set to zero, indicating minimum divisors for
2419                 * every field.
2420                 *
2421                 * This prevents guest kernels on AMD host with CPU
2422                 * type 6, model 8 and higher from exploding due to
2423                 * the rdmsr failing.
2424                 */
2425                data = 0x20000000;
2426                break;
2427        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2428                if (kvm_hv_msr_partition_wide(msr)) {
2429                        int r;
2430                        mutex_lock(&vcpu->kvm->lock);
2431                        r = get_msr_hyperv_pw(vcpu, msr, pdata);
2432                        mutex_unlock(&vcpu->kvm->lock);
2433                        return r;
2434                } else
2435                        return get_msr_hyperv(vcpu, msr, pdata);
2436                break;
2437        case MSR_IA32_BBL_CR_CTL3:
2438                /* This legacy MSR exists but isn't fully documented in current
2439                 * silicon.  It is however accessed by winxp in very narrow
2440                 * scenarios where it sets bit #19, itself documented as
2441                 * a "reserved" bit.  Best effort attempt to source coherent
2442                 * read data here should the balance of the register be
2443                 * interpreted by the guest:
2444                 *
2445                 * L2 cache control register 3: 64GB range, 256KB size,
2446                 * enabled, latency 0x1, configured
2447                 */
2448                data = 0xbe702111;
2449                break;
2450        case MSR_AMD64_OSVW_ID_LENGTH:
2451                if (!guest_cpuid_has_osvw(vcpu))
2452                        return 1;
2453                data = vcpu->arch.osvw.length;
2454                break;
2455        case MSR_AMD64_OSVW_STATUS:
2456                if (!guest_cpuid_has_osvw(vcpu))
2457                        return 1;
2458                data = vcpu->arch.osvw.status;
2459                break;
2460        default:
2461                if (kvm_pmu_msr(vcpu, msr))
2462                        return kvm_pmu_get_msr(vcpu, msr, pdata);
2463                if (!ignore_msrs) {
2464                        vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2465                        return 1;
2466                } else {
2467                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2468                        data = 0;
2469                }
2470                break;
2471        }
2472        *pdata = data;
2473        return 0;
2474}
2475EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2476
2477/*
2478 * Read or write a bunch of msrs. All parameters are kernel addresses.
2479 *
2480 * @return number of msrs set successfully.
2481 */
2482static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2483                    struct kvm_msr_entry *entries,
2484                    int (*do_msr)(struct kvm_vcpu *vcpu,
2485                                  unsigned index, u64 *data))
2486{
2487        int i, idx;
2488
2489        idx = srcu_read_lock(&vcpu->kvm->srcu);
2490        for (i = 0; i < msrs->nmsrs; ++i)
2491                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2492                        break;
2493        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2494
2495        return i;
2496}
2497
2498/*
2499 * Read or write a bunch of msrs. Parameters are user addresses.
2500 *
2501 * @return number of msrs set successfully.
2502 */
2503static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2504                  int (*do_msr)(struct kvm_vcpu *vcpu,
2505                                unsigned index, u64 *data),
2506                  int writeback)
2507{
2508        struct kvm_msrs msrs;
2509        struct kvm_msr_entry *entries;
2510        int r, n;
2511        unsigned size;
2512
2513        r = -EFAULT;
2514        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2515                goto out;
2516
2517        r = -E2BIG;
2518        if (msrs.nmsrs >= MAX_IO_MSRS)
2519                goto out;
2520
2521        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2522        entries = memdup_user(user_msrs->entries, size);
2523        if (IS_ERR(entries)) {
2524                r = PTR_ERR(entries);
2525                goto out;
2526        }
2527
2528        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2529        if (r < 0)
2530                goto out_free;
2531
2532        r = -EFAULT;
2533        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2534                goto out_free;
2535
2536        r = n;
2537
2538out_free:
2539        kfree(entries);
2540out:
2541        return r;
2542}
2543
2544int kvm_dev_ioctl_check_extension(long ext)
2545{
2546        int r;
2547
2548        switch (ext) {
2549        case KVM_CAP_IRQCHIP:
2550        case KVM_CAP_HLT:
2551        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2552        case KVM_CAP_SET_TSS_ADDR:
2553        case KVM_CAP_EXT_CPUID:
2554        case KVM_CAP_CLOCKSOURCE:
2555        case KVM_CAP_PIT:
2556        case KVM_CAP_NOP_IO_DELAY:
2557        case KVM_CAP_MP_STATE:
2558        case KVM_CAP_SYNC_MMU:
2559        case KVM_CAP_USER_NMI:
2560        case KVM_CAP_REINJECT_CONTROL:
2561        case KVM_CAP_IRQ_INJECT_STATUS:
2562        case KVM_CAP_IRQFD:
2563        case KVM_CAP_IOEVENTFD:
2564        case KVM_CAP_PIT2:
2565        case KVM_CAP_PIT_STATE2:
2566        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2567        case KVM_CAP_XEN_HVM:
2568        case KVM_CAP_ADJUST_CLOCK:
2569        case KVM_CAP_VCPU_EVENTS:
2570        case KVM_CAP_HYPERV:
2571        case KVM_CAP_HYPERV_VAPIC:
2572        case KVM_CAP_HYPERV_SPIN:
2573        case KVM_CAP_PCI_SEGMENT:
2574        case KVM_CAP_DEBUGREGS:
2575        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2576        case KVM_CAP_XSAVE:
2577        case KVM_CAP_ASYNC_PF:
2578        case KVM_CAP_GET_TSC_KHZ:
2579        case KVM_CAP_KVMCLOCK_CTRL:
2580        case KVM_CAP_READONLY_MEM:
2581#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2582        case KVM_CAP_ASSIGN_DEV_IRQ:
2583        case KVM_CAP_PCI_2_3:
2584#endif
2585                r = 1;
2586                break;
2587        case KVM_CAP_COALESCED_MMIO:
2588                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589                break;
2590        case KVM_CAP_VAPIC:
2591                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592                break;
2593        case KVM_CAP_NR_VCPUS:
2594                r = KVM_SOFT_MAX_VCPUS;
2595                break;
2596        case KVM_CAP_MAX_VCPUS:
2597                r = KVM_MAX_VCPUS;
2598                break;
2599        case KVM_CAP_NR_MEMSLOTS:
2600                r = KVM_USER_MEM_SLOTS;
2601                break;
2602        case KVM_CAP_PV_MMU:    /* obsolete */
2603                r = 0;
2604                break;
2605#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606        case KVM_CAP_IOMMU:
2607                r = iommu_present(&pci_bus_type);
2608                break;
2609#endif
2610        case KVM_CAP_MCE:
2611                r = KVM_MAX_MCE_BANKS;
2612                break;
2613        case KVM_CAP_XCRS:
2614                r = cpu_has_xsave;
2615                break;
2616        case KVM_CAP_TSC_CONTROL:
2617                r = kvm_has_tsc_control;
2618                break;
2619        case KVM_CAP_TSC_DEADLINE_TIMER:
2620                r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2621                break;
2622        default:
2623                r = 0;
2624                break;
2625        }
2626        return r;
2627
2628}
2629
2630long kvm_arch_dev_ioctl(struct file *filp,
2631                        unsigned int ioctl, unsigned long arg)
2632{
2633        void __user *argp = (void __user *)arg;
2634        long r;
2635
2636        switch (ioctl) {
2637        case KVM_GET_MSR_INDEX_LIST: {
2638                struct kvm_msr_list __user *user_msr_list = argp;
2639                struct kvm_msr_list msr_list;
2640                unsigned n;
2641
2642                r = -EFAULT;
2643                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2644                        goto out;
2645                n = msr_list.nmsrs;
2646                msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2647                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2648                        goto out;
2649                r = -E2BIG;
2650                if (n < msr_list.nmsrs)
2651                        goto out;
2652                r = -EFAULT;
2653                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2654                                 num_msrs_to_save * sizeof(u32)))
2655                        goto out;
2656                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2657                                 &emulated_msrs,
2658                                 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2659                        goto out;
2660                r = 0;
2661                break;
2662        }
2663        case KVM_GET_SUPPORTED_CPUID: {
2664                struct kvm_cpuid2 __user *cpuid_arg = argp;
2665                struct kvm_cpuid2 cpuid;
2666
2667                r = -EFAULT;
2668                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2669                        goto out;
2670                r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2671                                                      cpuid_arg->entries);
2672                if (r)
2673                        goto out;
2674
2675                r = -EFAULT;
2676                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2677                        goto out;
2678                r = 0;
2679                break;
2680        }
2681        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2682                u64 mce_cap;
2683
2684                mce_cap = KVM_MCE_CAP_SUPPORTED;
2685                r = -EFAULT;
2686                if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2687                        goto out;
2688                r = 0;
2689                break;
2690        }
2691        default:
2692                r = -EINVAL;
2693        }
2694out:
2695        return r;
2696}
2697
2698static void wbinvd_ipi(void *garbage)
2699{
2700        wbinvd();
2701}
2702
2703static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2704{
2705        return vcpu->kvm->arch.iommu_domain &&
2706                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2707}
2708
2709void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2710{
2711        /* Address WBINVD may be executed by guest */
2712        if (need_emulate_wbinvd(vcpu)) {
2713                if (kvm_x86_ops->has_wbinvd_exit())
2714                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2715                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2716                        smp_call_function_single(vcpu->cpu,
2717                                        wbinvd_ipi, NULL, 1);
2718        }
2719
2720        kvm_x86_ops->vcpu_load(vcpu, cpu);
2721
2722        /* Apply any externally detected TSC adjustments (due to suspend) */
2723        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2724                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2725                vcpu->arch.tsc_offset_adjustment = 0;
2726                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2727        }
2728
2729        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2730                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2731                                native_read_tsc() - vcpu->arch.last_host_tsc;
2732                if (tsc_delta < 0)
2733                        mark_tsc_unstable("KVM discovered backwards TSC");
2734                if (check_tsc_unstable()) {
2735                        u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2736                                                vcpu->arch.last_guest_tsc);
2737                        kvm_x86_ops->write_tsc_offset(vcpu, offset);
2738                        vcpu->arch.tsc_catchup = 1;
2739                }
2740                /*
2741                 * On a host with synchronized TSC, there is no need to update
2742                 * kvmclock on vcpu->cpu migration
2743                 */
2744                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2745                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2746                if (vcpu->cpu != cpu)
2747                        kvm_migrate_timers(vcpu);
2748                vcpu->cpu = cpu;
2749        }
2750
2751        accumulate_steal_time(vcpu);
2752        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2753}
2754
2755void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2756{
2757        kvm_x86_ops->vcpu_put(vcpu);
2758        kvm_put_guest_fpu(vcpu);
2759        vcpu->arch.last_host_tsc = native_read_tsc();
2760}
2761
2762static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2763                                    struct kvm_lapic_state *s)
2764{
2765        kvm_x86_ops->sync_pir_to_irr(vcpu);
2766        memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2767
2768        return 0;
2769}
2770
2771static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2772                                    struct kvm_lapic_state *s)
2773{
2774        kvm_apic_post_state_restore(vcpu, s);
2775        update_cr8_intercept(vcpu);
2776
2777        return 0;
2778}
2779
2780static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2781                                    struct kvm_interrupt *irq)
2782{
2783        if (irq->irq >= KVM_NR_INTERRUPTS)
2784                return -EINVAL;
2785        if (irqchip_in_kernel(vcpu->kvm))
2786                return -ENXIO;
2787
2788        kvm_queue_interrupt(vcpu, irq->irq, false);
2789        kvm_make_request(KVM_REQ_EVENT, vcpu);
2790
2791        return 0;
2792}
2793
2794static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2795{
2796        kvm_inject_nmi(vcpu);
2797
2798        return 0;
2799}
2800
2801static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2802                                           struct kvm_tpr_access_ctl *tac)
2803{
2804        if (tac->flags)
2805                return -EINVAL;
2806        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2807        return 0;
2808}
2809
2810static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2811                                        u64 mcg_cap)
2812{
2813        int r;
2814        unsigned bank_num = mcg_cap & 0xff, bank;
2815
2816        r = -EINVAL;
2817        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2818                goto out;
2819        if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2820                goto out;
2821        r = 0;
2822        vcpu->arch.mcg_cap = mcg_cap;
2823        /* Init IA32_MCG_CTL to all 1s */
2824        if (mcg_cap & MCG_CTL_P)
2825                vcpu->arch.mcg_ctl = ~(u64)0;
2826        /* Init IA32_MCi_CTL to all 1s */
2827        for (bank = 0; bank < bank_num; bank++)
2828                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2829out:
2830        return r;
2831}
2832
2833static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2834                                      struct kvm_x86_mce *mce)
2835{
2836        u64 mcg_cap = vcpu->arch.mcg_cap;
2837        unsigned bank_num = mcg_cap & 0xff;
2838        u64 *banks = vcpu->arch.mce_banks;
2839
2840        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2841                return -EINVAL;
2842        /*
2843         * if IA32_MCG_CTL is not all 1s, the uncorrected error
2844         * reporting is disabled
2845         */
2846        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2847            vcpu->arch.mcg_ctl != ~(u64)0)
2848                return 0;
2849        banks += 4 * mce->bank;
2850        /*
2851         * if IA32_MCi_CTL is not all 1s, the uncorrected error
2852         * reporting is disabled for the bank
2853         */
2854        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2855                return 0;
2856        if (mce->status & MCI_STATUS_UC) {
2857                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2858                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2859                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2860                        return 0;
2861                }
2862                if (banks[1] & MCI_STATUS_VAL)
2863                        mce->status |= MCI_STATUS_OVER;
2864                banks[2] = mce->addr;
2865                banks[3] = mce->misc;
2866                vcpu->arch.mcg_status = mce->mcg_status;
2867                banks[1] = mce->status;
2868                kvm_queue_exception(vcpu, MC_VECTOR);
2869        } else if (!(banks[1] & MCI_STATUS_VAL)
2870                   || !(banks[1] & MCI_STATUS_UC)) {
2871                if (banks[1] & MCI_STATUS_VAL)
2872                        mce->status |= MCI_STATUS_OVER;
2873                banks[2] = mce->addr;
2874                banks[3] = mce->misc;
2875                banks[1] = mce->status;
2876        } else
2877                banks[1] |= MCI_STATUS_OVER;
2878        return 0;
2879}
2880
2881static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2882                                               struct kvm_vcpu_events *events)
2883{
2884        process_nmi(vcpu);
2885        events->exception.injected =
2886                vcpu->arch.exception.pending &&
2887                !kvm_exception_is_soft(vcpu->arch.exception.nr);
2888        events->exception.nr = vcpu->arch.exception.nr;
2889        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2890        events->exception.pad = 0;
2891        events->exception.error_code = vcpu->arch.exception.error_code;
2892
2893        events->interrupt.injected =
2894                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2895        events->interrupt.nr = vcpu->arch.interrupt.nr;
2896        events->interrupt.soft = 0;
2897        events->interrupt.shadow =
2898                kvm_x86_ops->get_interrupt_shadow(vcpu,
2899                        KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2900
2901        events->nmi.injected = vcpu->arch.nmi_injected;
2902        events->nmi.pending = vcpu->arch.nmi_pending != 0;
2903        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2904        events->nmi.pad = 0;
2905
2906        events->sipi_vector = 0; /* never valid when reporting to user space */
2907
2908        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2909                         | KVM_VCPUEVENT_VALID_SHADOW);
2910        memset(&events->reserved, 0, sizeof(events->reserved));
2911}
2912
2913static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2914                                              struct kvm_vcpu_events *events)
2915{
2916        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2917                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2918                              | KVM_VCPUEVENT_VALID_SHADOW))
2919                return -EINVAL;
2920
2921        process_nmi(vcpu);
2922        vcpu->arch.exception.pending = events->exception.injected;
2923        vcpu->arch.exception.nr = events->exception.nr;
2924        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2925        vcpu->arch.exception.error_code = events->exception.error_code;
2926
2927        vcpu->arch.interrupt.pending = events->interrupt.injected;
2928        vcpu->arch.interrupt.nr = events->interrupt.nr;
2929        vcpu->arch.interrupt.soft = events->interrupt.soft;
2930        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2931                kvm_x86_ops->set_interrupt_shadow(vcpu,
2932                                                  events->interrupt.shadow);
2933
2934        vcpu->arch.nmi_injected = events->nmi.injected;
2935        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2936                vcpu->arch.nmi_pending = events->nmi.pending;
2937        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2938
2939        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2940            kvm_vcpu_has_lapic(vcpu))
2941                vcpu->arch.apic->sipi_vector = events->sipi_vector;
2942
2943        kvm_make_request(KVM_REQ_EVENT, vcpu);
2944
2945        return 0;
2946}
2947
2948static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2949                                             struct kvm_debugregs *dbgregs)
2950{
2951        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2952        dbgregs->dr6 = vcpu->arch.dr6;
2953        dbgregs->dr7 = vcpu->arch.dr7;
2954        dbgregs->flags = 0;
2955        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2956}
2957
2958static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2959                                            struct kvm_debugregs *dbgregs)
2960{
2961        if (dbgregs->flags)
2962                return -EINVAL;
2963
2964        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2965        vcpu->arch.dr6 = dbgregs->dr6;
2966        vcpu->arch.dr7 = dbgregs->dr7;
2967
2968        return 0;
2969}
2970
2971static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2972                                         struct kvm_xsave *guest_xsave)
2973{
2974        if (cpu_has_xsave)
2975                memcpy(guest_xsave->region,
2976                        &vcpu->arch.guest_fpu.state->xsave,
2977                        xstate_size);
2978        else {
2979                memcpy(guest_xsave->region,
2980                        &vcpu->arch.guest_fpu.state->fxsave,
2981                        sizeof(struct i387_fxsave_struct));
2982                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2983                        XSTATE_FPSSE;
2984        }
2985}
2986
2987static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2988                                        struct kvm_xsave *guest_xsave)
2989{
2990        u64 xstate_bv =
2991                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2992
2993        if (cpu_has_xsave)
2994                memcpy(&vcpu->arch.guest_fpu.state->xsave,
2995                        guest_xsave->region, xstate_size);
2996        else {
2997                if (xstate_bv & ~XSTATE_FPSSE)
2998                        return -EINVAL;
2999                memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3000                        guest_xsave->region, sizeof(struct i387_fxsave_struct));
3001        }
3002        return 0;
3003}
3004
3005static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3006                                        struct kvm_xcrs *guest_xcrs)
3007{
3008        if (!cpu_has_xsave) {
3009                guest_xcrs->nr_xcrs = 0;
3010                return;
3011        }
3012
3013        guest_xcrs->nr_xcrs = 1;
3014        guest_xcrs->flags = 0;
3015        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3016        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3017}
3018
3019static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3020                                       struct kvm_xcrs *guest_xcrs)
3021{
3022        int i, r = 0;
3023
3024        if (!cpu_has_xsave)
3025                return -EINVAL;
3026
3027        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3028                return -EINVAL;
3029
3030        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3031                /* Only support XCR0 currently */
3032                if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3033                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3034                                guest_xcrs->xcrs[0].value);
3035                        break;
3036                }
3037        if (r)
3038                r = -EINVAL;
3039        return r;
3040}
3041
3042/*
3043 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3044 * stopped by the hypervisor.  This function will be called from the host only.
3045 * EINVAL is returned when the host attempts to set the flag for a guest that
3046 * does not support pv clocks.
3047 */
3048static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3049{
3050        if (!vcpu->arch.pv_time_enabled)
3051                return -EINVAL;
3052        vcpu->arch.pvclock_set_guest_stopped_request = true;
3053        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3054        return 0;
3055}
3056
3057long kvm_arch_vcpu_ioctl(struct file *filp,
3058                         unsigned int ioctl, unsigned long arg)
3059{
3060        struct kvm_vcpu *vcpu = filp->private_data;
3061        void __user *argp = (void __user *)arg;
3062        int r;
3063        union {
3064                struct kvm_lapic_state *lapic;
3065                struct kvm_xsave *xsave;
3066                struct kvm_xcrs *xcrs;
3067                void *buffer;
3068        } u;
3069
3070        u.buffer = NULL;
3071        switch (ioctl) {
3072        case KVM_GET_LAPIC: {
3073                r = -EINVAL;
3074                if (!vcpu->arch.apic)
3075                        goto out;
3076                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3077
3078                r = -ENOMEM;
3079                if (!u.lapic)
3080                        goto out;
3081                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3082                if (r)
3083                        goto out;
3084                r = -EFAULT;
3085                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3086                        goto out;
3087                r = 0;
3088                break;
3089        }
3090        case KVM_SET_LAPIC: {
3091                r = -EINVAL;
3092                if (!vcpu->arch.apic)
3093                        goto out;
3094                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3095                if (IS_ERR(u.lapic))
3096                        return PTR_ERR(u.lapic);
3097
3098                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3099                break;
3100        }
3101        case KVM_INTERRUPT: {
3102                struct kvm_interrupt irq;
3103
3104                r = -EFAULT;
3105                if (copy_from_user(&irq, argp, sizeof irq))
3106                        goto out;
3107                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3108                break;
3109        }
3110        case KVM_NMI: {
3111                r = kvm_vcpu_ioctl_nmi(vcpu);
3112                break;
3113        }
3114        case KVM_SET_CPUID: {
3115                struct kvm_cpuid __user *cpuid_arg = argp;
3116                struct kvm_cpuid cpuid;
3117
3118                r = -EFAULT;
3119                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3120                        goto out;
3121                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3122                break;
3123        }
3124        case KVM_SET_CPUID2: {
3125                struct kvm_cpuid2 __user *cpuid_arg = argp;
3126                struct kvm_cpuid2 cpuid;
3127
3128                r = -EFAULT;
3129                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3130                        goto out;
3131                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3132                                              cpuid_arg->entries);
3133                break;
3134        }
3135        case KVM_GET_CPUID2: {
3136                struct kvm_cpuid2 __user *cpuid_arg = argp;
3137                struct kvm_cpuid2 cpuid;
3138
3139                r = -EFAULT;
3140                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3141                        goto out;
3142                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3143                                              cpuid_arg->entries);
3144                if (r)
3145                        goto out;
3146                r = -EFAULT;
3147                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3148                        goto out;
3149                r = 0;
3150                break;
3151        }
3152        case KVM_GET_MSRS:
3153                r = msr_io(vcpu, argp, kvm_get_msr, 1);
3154                break;
3155        case KVM_SET_MSRS:
3156                r = msr_io(vcpu, argp, do_set_msr, 0);
3157                break;
3158        case KVM_TPR_ACCESS_REPORTING: {
3159                struct kvm_tpr_access_ctl tac;
3160
3161                r = -EFAULT;
3162                if (copy_from_user(&tac, argp, sizeof tac))
3163                        goto out;
3164                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3165                if (r)
3166                        goto out;
3167                r = -EFAULT;
3168                if (copy_to_user(argp, &tac, sizeof tac))
3169                        goto out;
3170                r = 0;
3171                break;
3172        };
3173        case KVM_SET_VAPIC_ADDR: {
3174                struct kvm_vapic_addr va;
3175
3176                r = -EINVAL;
3177                if (!irqchip_in_kernel(vcpu->kvm))
3178                        goto out;
3179                r = -EFAULT;
3180                if (copy_from_user(&va, argp, sizeof va))
3181                        goto out;
3182                r = 0;
3183                kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3184                break;
3185        }
3186        case KVM_X86_SETUP_MCE: {
3187                u64 mcg_cap;
3188
3189                r = -EFAULT;
3190                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3191                        goto out;
3192                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3193                break;
3194        }
3195        case KVM_X86_SET_MCE: {
3196                struct kvm_x86_mce mce;
3197
3198                r = -EFAULT;
3199                if (copy_from_user(&mce, argp, sizeof mce))
3200                        goto out;
3201                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3202                break;
3203        }
3204        case KVM_GET_VCPU_EVENTS: {
3205                struct kvm_vcpu_events events;
3206
3207                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3208
3209                r = -EFAULT;
3210                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3211                        break;
3212                r = 0;
3213                break;
3214        }
3215        case KVM_SET_VCPU_EVENTS: {
3216                struct kvm_vcpu_events events;
3217
3218                r = -EFAULT;
3219                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3220                        break;
3221
3222                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3223                break;
3224        }
3225        case KVM_GET_DEBUGREGS: {
3226                struct kvm_debugregs dbgregs;
3227
3228                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3229
3230                r = -EFAULT;
3231                if (copy_to_user(argp, &dbgregs,
3232                                 sizeof(struct kvm_debugregs)))
3233                        break;
3234                r = 0;
3235                break;
3236        }
3237        case KVM_SET_DEBUGREGS: {
3238                struct kvm_debugregs dbgregs;
3239
3240                r = -EFAULT;
3241                if (copy_from_user(&dbgregs, argp,
3242                                   sizeof(struct kvm_debugregs)))
3243                        break;
3244
3245                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3246                break;
3247        }
3248        case KVM_GET_XSAVE: {
3249                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3250                r = -ENOMEM;
3251                if (!u.xsave)
3252                        break;
3253
3254                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3255
3256                r = -EFAULT;
3257                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3258                        break;
3259                r = 0;
3260                break;
3261        }
3262        case KVM_SET_XSAVE: {
3263                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3264                if (IS_ERR(u.xsave))
3265                        return PTR_ERR(u.xsave);
3266
3267                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3268                break;
3269        }
3270        case KVM_GET_XCRS: {
3271                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3272                r = -ENOMEM;
3273                if (!u.xcrs)
3274                        break;
3275
3276                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3277
3278                r = -EFAULT;
3279                if (copy_to_user(argp, u.xcrs,
3280                                 sizeof(struct kvm_xcrs)))
3281                        break;
3282                r = 0;
3283                break;
3284        }
3285        case KVM_SET_XCRS: {
3286                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3287                if (IS_ERR(u.xcrs))
3288                        return PTR_ERR(u.xcrs);
3289
3290                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3291                break;
3292        }
3293        case KVM_SET_TSC_KHZ: {
3294                u32 user_tsc_khz;
3295
3296                r = -EINVAL;
3297                user_tsc_khz = (u32)arg;
3298
3299                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3300                        goto out;
3301
3302                if (user_tsc_khz == 0)
3303                        user_tsc_khz = tsc_khz;
3304
3305                kvm_set_tsc_khz(vcpu, user_tsc_khz);
3306
3307                r = 0;
3308                goto out;
3309        }
3310        case KVM_GET_TSC_KHZ: {
3311                r = vcpu->arch.virtual_tsc_khz;
3312                goto out;
3313        }
3314        case KVM_KVMCLOCK_CTRL: {
3315                r = kvm_set_guest_paused(vcpu);
3316                goto out;
3317        }
3318        default:
3319                r = -EINVAL;
3320        }
3321out:
3322        kfree(u.buffer);
3323        return r;
3324}
3325
3326int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3327{
3328        return VM_FAULT_SIGBUS;
3329}
3330
3331static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3332{
3333        int ret;
3334
3335        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3336                return -EINVAL;
3337        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3338        return ret;
3339}
3340
3341static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3342                                              u64 ident_addr)
3343{
3344        kvm->arch.ept_identity_map_addr = ident_addr;
3345        return 0;
3346}
3347
3348static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3349                                          u32 kvm_nr_mmu_pages)
3350{
3351        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3352                return -EINVAL;
3353
3354        mutex_lock(&kvm->slots_lock);
3355
3356        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3357        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3358
3359        mutex_unlock(&kvm->slots_lock);
3360        return 0;
3361}
3362
3363static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3364{
3365        return kvm->arch.n_max_mmu_pages;
3366}
3367
3368static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3369{
3370        int r;
3371
3372        r = 0;
3373        switch (chip->chip_id) {
3374        case KVM_IRQCHIP_PIC_MASTER:
3375                memcpy(&chip->chip.pic,
3376                        &pic_irqchip(kvm)->pics[0],
3377                        sizeof(struct kvm_pic_state));
3378                break;
3379        case KVM_IRQCHIP_PIC_SLAVE:
3380                memcpy(&chip->chip.pic,
3381                        &pic_irqchip(kvm)->pics[1],
3382                        sizeof(struct kvm_pic_state));
3383                break;
3384        case KVM_IRQCHIP_IOAPIC:
3385                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3386                break;
3387        default:
3388                r = -EINVAL;
3389                break;
3390        }
3391        return r;
3392}
3393
3394static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3395{
3396        int r;
3397
3398        r = 0;
3399        switch (chip->chip_id) {
3400        case KVM_IRQCHIP_PIC_MASTER:
3401                spin_lock(&pic_irqchip(kvm)->lock);
3402                memcpy(&pic_irqchip(kvm)->pics[0],
3403                        &chip->chip.pic,
3404                        sizeof(struct kvm_pic_state));
3405                spin_unlock(&pic_irqchip(kvm)->lock);
3406                break;
3407        case KVM_IRQCHIP_PIC_SLAVE:
3408                spin_lock(&pic_irqchip(kvm)->lock);
3409                memcpy(&pic_irqchip(kvm)->pics[1],
3410                        &chip->chip.pic,
3411                        sizeof(struct kvm_pic_state));
3412                spin_unlock(&pic_irqchip(kvm)->lock);
3413                break;
3414        case KVM_IRQCHIP_IOAPIC:
3415                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3416                break;
3417        default:
3418                r = -EINVAL;
3419                break;
3420        }
3421        kvm_pic_update_irq(pic_irqchip(kvm));
3422        return r;
3423}
3424
3425static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3426{
3427        int r = 0;
3428
3429        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3430        memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3431        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432        return r;
3433}
3434
3435static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3436{
3437        int r = 0;
3438
3439        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3440        memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3441        kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3442        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443        return r;
3444}
3445
3446static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3447{
3448        int r = 0;
3449
3450        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3451        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3452                sizeof(ps->channels));
3453        ps->flags = kvm->arch.vpit->pit_state.flags;
3454        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3455        memset(&ps->reserved, 0, sizeof(ps->reserved));
3456        return r;
3457}
3458
3459static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460{
3461        int r = 0, start = 0;
3462        u32 prev_legacy, cur_legacy;
3463        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464        prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3465        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466        if (!prev_legacy && cur_legacy)
3467                start = 1;
3468        memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3469               sizeof(kvm->arch.vpit->pit_state.channels));
3470        kvm->arch.vpit->pit_state.flags = ps->flags;
3471        kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3472        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3473        return r;
3474}
3475
3476static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3477                                 struct kvm_reinject_control *control)
3478{
3479        if (!kvm->arch.vpit)
3480                return -ENXIO;
3481        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3482        kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3483        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3484        return 0;
3485}
3486
3487/**
3488 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3489 * @kvm: kvm instance
3490 * @log: slot id and address to which we copy the log
3491 *
3492 * We need to keep it in mind that VCPU threads can write to the bitmap
3493 * concurrently.  So, to avoid losing data, we keep the following order for
3494 * each bit:
3495 *
3496 *   1. Take a snapshot of the bit and clear it if needed.
3497 *   2. Write protect the corresponding page.
3498 *   3. Flush TLB's if needed.
3499 *   4. Copy the snapshot to the userspace.
3500 *
3501 * Between 2 and 3, the guest may write to the page using the remaining TLB
3502 * entry.  This is not a problem because the page will be reported dirty at
3503 * step 4 using the snapshot taken before and step 3 ensures that successive
3504 * writes will be logged for the next call.
3505 */
3506int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3507{
3508        int r;
3509        struct kvm_memory_slot *memslot;
3510        unsigned long n, i;
3511        unsigned long *dirty_bitmap;
3512        unsigned long *dirty_bitmap_buffer;
3513        bool is_dirty = false;
3514
3515        mutex_lock(&kvm->slots_lock);
3516
3517        r = -EINVAL;
3518        if (log->slot >= KVM_USER_MEM_SLOTS)
3519                goto out;
3520
3521        memslot = id_to_memslot(kvm->memslots, log->slot);
3522
3523        dirty_bitmap = memslot->dirty_bitmap;
3524        r = -ENOENT;
3525        if (!dirty_bitmap)
3526                goto out;
3527
3528        n = kvm_dirty_bitmap_bytes(memslot);
3529
3530        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3531        memset(dirty_bitmap_buffer, 0, n);
3532
3533        spin_lock(&kvm->mmu_lock);
3534
3535        for (i = 0; i < n / sizeof(long); i++) {
3536                unsigned long mask;
3537                gfn_t offset;
3538
3539                if (!dirty_bitmap[i])
3540                        continue;
3541
3542                is_dirty = true;
3543
3544                mask = xchg(&dirty_bitmap[i], 0);
3545                dirty_bitmap_buffer[i] = mask;
3546
3547                offset = i * BITS_PER_LONG;
3548                kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3549        }
3550        if (is_dirty)
3551                kvm_flush_remote_tlbs(kvm);
3552
3553        spin_unlock(&kvm->mmu_lock);
3554
3555        r = -EFAULT;
3556        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3557                goto out;
3558
3559        r = 0;
3560out:
3561        mutex_unlock(&kvm->slots_lock);
3562        return r;
3563}
3564
3565int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3566                        bool line_status)
3567{
3568        if (!irqchip_in_kernel(kvm))
3569                return -ENXIO;
3570
3571        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3572                                        irq_event->irq, irq_event->level,
3573                                        line_status);
3574        return 0;
3575}
3576
3577long kvm_arch_vm_ioctl(struct file *filp,
3578                       unsigned int ioctl, unsigned long arg)
3579{
3580        struct kvm *kvm = filp->private_data;
3581        void __user *argp = (void __user *)arg;
3582        int r = -ENOTTY;
3583        /*
3584         * This union makes it completely explicit to gcc-3.x
3585         * that these two variables' stack usage should be
3586         * combined, not added together.
3587         */
3588        union {
3589                struct kvm_pit_state ps;
3590                struct kvm_pit_state2 ps2;
3591                struct kvm_pit_config pit_config;
3592        } u;
3593
3594        switch (ioctl) {
3595        case KVM_SET_TSS_ADDR:
3596                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3597                break;
3598        case KVM_SET_IDENTITY_MAP_ADDR: {
3599                u64 ident_addr;
3600
3601                r = -EFAULT;
3602                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3603                        goto out;
3604                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3605                break;
3606        }
3607        case KVM_SET_NR_MMU_PAGES:
3608                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3609                break;
3610        case KVM_GET_NR_MMU_PAGES:
3611                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3612                break;
3613        case KVM_CREATE_IRQCHIP: {
3614                struct kvm_pic *vpic;
3615
3616                mutex_lock(&kvm->lock);
3617                r = -EEXIST;
3618                if (kvm->arch.vpic)
3619                        goto create_irqchip_unlock;
3620                r = -EINVAL;
3621                if (atomic_read(&kvm->online_vcpus))
3622                        goto create_irqchip_unlock;
3623                r = -ENOMEM;
3624                vpic = kvm_create_pic(kvm);
3625                if (vpic) {
3626                        r = kvm_ioapic_init(kvm);
3627                        if (r) {
3628                                mutex_lock(&kvm->slots_lock);
3629                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3630                                                          &vpic->dev_master);
3631                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3632                                                          &vpic->dev_slave);
3633                                kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3634                                                          &vpic->dev_eclr);
3635                                mutex_unlock(&kvm->slots_lock);
3636                                kfree(vpic);
3637                                goto create_irqchip_unlock;
3638                        }
3639                } else
3640                        goto create_irqchip_unlock;
3641                smp_wmb();
3642                kvm->arch.vpic = vpic;
3643                smp_wmb();
3644                r = kvm_setup_default_irq_routing(kvm);
3645                if (r) {
3646                        mutex_lock(&kvm->slots_lock);
3647                        mutex_lock(&kvm->irq_lock);
3648                        kvm_ioapic_destroy(kvm);
3649                        kvm_destroy_pic(kvm);
3650                        mutex_unlock(&kvm->irq_lock);
3651                        mutex_unlock(&kvm->slots_lock);
3652                }
3653        create_irqchip_unlock:
3654                mutex_unlock(&kvm->lock);
3655                break;
3656        }
3657        case KVM_CREATE_PIT:
3658                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3659                goto create_pit;
3660        case KVM_CREATE_PIT2:
3661                r = -EFAULT;
3662                if (copy_from_user(&u.pit_config, argp,
3663                                   sizeof(struct kvm_pit_config)))
3664                        goto out;
3665        create_pit:
3666                mutex_lock(&kvm->slots_lock);
3667                r = -EEXIST;
3668                if (kvm->arch.vpit)
3669                        goto create_pit_unlock;
3670                r = -ENOMEM;
3671                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3672                if (kvm->arch.vpit)
3673                        r = 0;
3674        create_pit_unlock:
3675                mutex_unlock(&kvm->slots_lock);
3676                break;
3677        case KVM_GET_IRQCHIP: {
3678                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3679                struct kvm_irqchip *chip;
3680
3681                chip = memdup_user(argp, sizeof(*chip));
3682                if (IS_ERR(chip)) {
3683                        r = PTR_ERR(chip);
3684                        goto out;
3685                }
3686
3687                r = -ENXIO;
3688                if (!irqchip_in_kernel(kvm))
3689                        goto get_irqchip_out;
3690                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3691                if (r)
3692                        goto get_irqchip_out;
3693                r = -EFAULT;
3694                if (copy_to_user(argp, chip, sizeof *chip))
3695                        goto get_irqchip_out;
3696                r = 0;
3697        get_irqchip_out:
3698                kfree(chip);
3699                break;
3700        }
3701        case KVM_SET_IRQCHIP: {
3702                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3703                struct kvm_irqchip *chip;
3704
3705                chip = memdup_user(argp, sizeof(*chip));
3706                if (IS_ERR(chip)) {
3707                        r = PTR_ERR(chip);
3708                        goto out;
3709                }
3710
3711                r = -ENXIO;
3712                if (!irqchip_in_kernel(kvm))
3713                        goto set_irqchip_out;
3714                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3715                if (r)
3716                        goto set_irqchip_out;
3717                r = 0;
3718        set_irqchip_out:
3719                kfree(chip);
3720                break;
3721        }
3722        case KVM_GET_PIT: {
3723                r = -EFAULT;
3724                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3725                        goto out;
3726                r = -ENXIO;
3727                if (!kvm->arch.vpit)
3728                        goto out;
3729                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3730                if (r)
3731                        goto out;
3732                r = -EFAULT;
3733                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3734                        goto out;
3735                r = 0;
3736                break;
3737        }
3738        case KVM_SET_PIT: {
3739                r = -EFAULT;
3740                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3741                        goto out;
3742                r = -ENXIO;
3743                if (!kvm->arch.vpit)
3744                        goto out;
3745                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3746                break;
3747        }
3748        case KVM_GET_PIT2: {
3749                r = -ENXIO;
3750                if (!kvm->arch.vpit)
3751                        goto out;
3752                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3753                if (r)
3754                        goto out;
3755                r = -EFAULT;
3756                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3757                        goto out;
3758                r = 0;
3759                break;
3760        }
3761        case KVM_SET_PIT2: {
3762                r = -EFAULT;
3763                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3764                        goto out;
3765                r = -ENXIO;
3766                if (!kvm->arch.vpit)
3767                        goto out;
3768                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3769                break;
3770        }
3771        case KVM_REINJECT_CONTROL: {
3772                struct kvm_reinject_control control;
3773                r =  -EFAULT;
3774                if (copy_from_user(&control, argp, sizeof(control)))
3775                        goto out;
3776                r = kvm_vm_ioctl_reinject(kvm, &control);
3777                break;
3778        }
3779        case KVM_XEN_HVM_CONFIG: {
3780                r = -EFAULT;
3781                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3782                                   sizeof(struct kvm_xen_hvm_config)))
3783                        goto out;
3784                r = -EINVAL;
3785                if (kvm->arch.xen_hvm_config.flags)
3786                        goto out;
3787                r = 0;
3788                break;
3789        }
3790        case KVM_SET_CLOCK: {
3791                struct kvm_clock_data user_ns;
3792                u64 now_ns;
3793                s64 delta;
3794
3795                r = -EFAULT;
3796                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3797                        goto out;
3798
3799                r = -EINVAL;
3800                if (user_ns.flags)
3801                        goto out;
3802
3803                r = 0;
3804                local_irq_disable();
3805                now_ns = get_kernel_ns();
3806                delta = user_ns.clock - now_ns;
3807                local_irq_enable();
3808                kvm->arch.kvmclock_offset = delta;
3809                break;
3810        }
3811        case KVM_GET_CLOCK: {
3812                struct kvm_clock_data user_ns;
3813                u64 now_ns;
3814
3815                local_irq_disable();
3816                now_ns = get_kernel_ns();
3817                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3818                local_irq_enable();
3819                user_ns.flags = 0;
3820                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3821
3822                r = -EFAULT;
3823                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3824                        goto out;
3825                r = 0;
3826                break;
3827        }
3828
3829        default:
3830                ;
3831        }
3832out:
3833        return r;
3834}
3835
3836static void kvm_init_msr_list(void)
3837{
3838        u32 dummy[2];
3839        unsigned i, j;
3840
3841        /* skip the first msrs in the list. KVM-specific */
3842        for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3843                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3844                        continue;
3845                if (j < i)
3846                        msrs_to_save[j] = msrs_to_save[i];
3847                j++;
3848        }
3849        num_msrs_to_save = j;
3850}
3851
3852static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3853                           const void *v)
3854{
3855        int handled = 0;
3856        int n;
3857
3858        do {
3859                n = min(len, 8);
3860                if (!(vcpu->arch.apic &&
3861                      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3862                    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3863                        break;
3864                handled += n;
3865                addr += n;
3866                len -= n;
3867                v += n;
3868        } while (len);
3869
3870        return handled;
3871}
3872
3873static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3874{
3875        int handled = 0;
3876        int n;
3877
3878        do {
3879                n = min(len, 8);
3880                if (!(vcpu->arch.apic &&
3881                      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3882                    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3883                        break;
3884                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3885                handled += n;
3886                addr += n;
3887                len -= n;
3888                v += n;
3889        } while (len);
3890
3891        return handled;
3892}
3893
3894static void kvm_set_segment(struct kvm_vcpu *vcpu,
3895                        struct kvm_segment *var, int seg)
3896{
3897        kvm_x86_ops->set_segment(vcpu, var, seg);
3898}
3899
3900void kvm_get_segment(struct kvm_vcpu *vcpu,
3901                     struct kvm_segment *var, int seg)
3902{
3903        kvm_x86_ops->get_segment(vcpu, var, seg);
3904}
3905
3906gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3907{
3908        gpa_t t_gpa;
3909        struct x86_exception exception;
3910
3911        BUG_ON(!mmu_is_nested(vcpu));
3912
3913        /* NPT walks are always user-walks */
3914        access |= PFERR_USER_MASK;
3915        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3916
3917        return t_gpa;
3918}
3919
3920gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3921                              struct x86_exception *exception)
3922{
3923        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3924        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3925}
3926
3927 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3928                                struct x86_exception *exception)
3929{
3930        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3931        access |= PFERR_FETCH_MASK;
3932        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3933}
3934
3935gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3936                               struct x86_exception *exception)
3937{
3938        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3939        access |= PFERR_WRITE_MASK;
3940        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3941}
3942
3943/* uses this to access any guest's mapped memory without checking CPL */
3944gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3945                                struct x86_exception *exception)
3946{
3947        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3948}
3949
3950static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3951                                      struct kvm_vcpu *vcpu, u32 access,
3952                                      struct x86_exception *exception)
3953{
3954        void *data = val;
3955        int r = X86EMUL_CONTINUE;
3956
3957        while (bytes) {
3958                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3959                                                            exception);
3960                unsigned offset = addr & (PAGE_SIZE-1);
3961                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3962                int ret;
3963
3964                if (gpa == UNMAPPED_GVA)
3965                        return X86EMUL_PROPAGATE_FAULT;
3966                ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3967                if (ret < 0) {
3968                        r = X86EMUL_IO_NEEDED;
3969                        goto out;
3970                }
3971
3972                bytes -= toread;
3973                data += toread;
3974                addr += toread;
3975        }
3976out:
3977        return r;
3978}
3979
3980/* used for instruction fetching */
3981static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3982                                gva_t addr, void *val, unsigned int bytes,
3983                                struct x86_exception *exception)
3984{
3985        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3986        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3987
3988        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3989                                          access | PFERR_FETCH_MASK,
3990                                          exception);
3991}
3992
3993int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3994                               gva_t addr, void *val, unsigned int bytes,
3995                               struct x86_exception *exception)
3996{
3997        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3998        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3999
4000        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4001                                          exception);
4002}
4003EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4004
4005static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4006                                      gva_t addr, void *val, unsigned int bytes,
4007                                      struct x86_exception *exception)
4008{
4009        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4011}
4012
4013int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4014                                       gva_t addr, void *val,
4015                                       unsigned int bytes,
4016                                       struct x86_exception *exception)
4017{
4018        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4019        void *data = val;
4020        int r = X86EMUL_CONTINUE;
4021
4022        while (bytes) {
4023                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4024                                                             PFERR_WRITE_MASK,
4025                                                             exception);
4026                unsigned offset = addr & (PAGE_SIZE-1);
4027                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4028                int ret;
4029
4030                if (gpa == UNMAPPED_GVA)
4031                        return X86EMUL_PROPAGATE_FAULT;
4032                ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4033                if (ret < 0) {
4034                        r = X86EMUL_IO_NEEDED;
4035                        goto out;
4036                }
4037
4038                bytes -= towrite;
4039                data += towrite;
4040                addr += towrite;
4041        }
4042out:
4043        return r;
4044}
4045EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4046
4047static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4048                                gpa_t *gpa, struct x86_exception *exception,
4049                                bool write)
4050{
4051        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4052                | (write ? PFERR_WRITE_MASK : 0);
4053
4054        if (vcpu_match_mmio_gva(vcpu, gva)
4055            && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4056                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4057                                        (gva & (PAGE_SIZE - 1));
4058                trace_vcpu_match_mmio(gva, *gpa, write, false);
4059                return 1;
4060        }
4061
4062        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4063
4064        if (*gpa == UNMAPPED_GVA)
4065                return -1;
4066
4067        /* For APIC access vmexit */
4068        if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4069                return 1;
4070
4071        if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4072                trace_vcpu_match_mmio(gva, *gpa, write, true);
4073                return 1;
4074        }
4075
4076        return 0;
4077}
4078
4079int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4080                        const void *val, int bytes)
4081{
4082        int ret;
4083
4084        ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4085        if (ret < 0)
4086                return 0;
4087        kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4088        return 1;
4089}
4090
4091struct read_write_emulator_ops {
4092        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4093                                  int bytes);
4094        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4095                                  void *val, int bytes);
4096        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4097                               int bytes, void *val);
4098        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4099                                    void *val, int bytes);
4100        bool write;
4101};
4102
4103static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4104{
4105        if (vcpu->mmio_read_completed) {
4106                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4107                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4108                vcpu->mmio_read_completed = 0;
4109                return 1;
4110        }
4111
4112        return 0;
4113}
4114
4115static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4116                        void *val, int bytes)
4117{
4118        return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4119}
4120
4121static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4122                         void *val, int bytes)
4123{
4124        return emulator_write_phys(vcpu, gpa, val, bytes);
4125}
4126
4127static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4128{
4129        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4130        return vcpu_mmio_write(vcpu, gpa, bytes, val);
4131}
4132
4133static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4134                          void *val, int bytes)
4135{
4136        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4137        return X86EMUL_IO_NEEDED;
4138}
4139
4140static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4141                           void *val, int bytes)
4142{
4143        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4144
4145        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4146        return X86EMUL_CONTINUE;
4147}
4148
4149static const struct read_write_emulator_ops read_emultor = {
4150        .read_write_prepare = read_prepare,
4151        .read_write_emulate = read_emulate,
4152        .read_write_mmio = vcpu_mmio_read,
4153        .read_write_exit_mmio = read_exit_mmio,
4154};
4155
4156static const struct read_write_emulator_ops write_emultor = {
4157        .read_write_emulate = write_emulate,
4158        .read_write_mmio = write_mmio,
4159        .read_write_exit_mmio = write_exit_mmio,
4160        .write = true,
4161};
4162
4163static int emulator_read_write_onepage(unsigned long addr, void *val,
4164                                       unsigned int bytes,
4165                                       struct x86_exception *exception,
4166                                       struct kvm_vcpu *vcpu,
4167                                       const struct read_write_emulator_ops *ops)
4168{
4169        gpa_t gpa;
4170        int handled, ret;
4171        bool write = ops->write;
4172        struct kvm_mmio_fragment *frag;
4173
4174        ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4175
4176        if (ret < 0)
4177                return X86EMUL_PROPAGATE_FAULT;
4178
4179        /* For APIC access vmexit */
4180        if (ret)
4181                goto mmio;
4182
4183        if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4184                return X86EMUL_CONTINUE;
4185
4186mmio:
4187        /*
4188         * Is this MMIO handled locally?
4189         */
4190        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4191        if (handled == bytes)
4192                return X86EMUL_CONTINUE;
4193
4194        gpa += handled;
4195        bytes -= handled;
4196        val += handled;
4197
4198        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4199        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4200        frag->gpa = gpa;
4201        frag->data = val;
4202        frag->len = bytes;
4203        return X86EMUL_CONTINUE;
4204}
4205
4206int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4207                        void *val, unsigned int bytes,
4208                        struct x86_exception *exception,
4209                        const struct read_write_emulator_ops *ops)
4210{
4211        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4212        gpa_t gpa;
4213        int rc;
4214
4215        if (ops->read_write_prepare &&
4216                  ops->read_write_prepare(vcpu, val, bytes))
4217                return X86EMUL_CONTINUE;
4218
4219        vcpu->mmio_nr_fragments = 0;
4220
4221        /* Crossing a page boundary? */
4222        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4223                int now;
4224
4225                now = -addr & ~PAGE_MASK;
4226                rc = emulator_read_write_onepage(addr, val, now, exception,
4227                                                 vcpu, ops);
4228
4229                if (rc != X86EMUL_CONTINUE)
4230                        return rc;
4231                addr += now;
4232                val += now;
4233                bytes -= now;
4234        }
4235
4236        rc = emulator_read_write_onepage(addr, val, bytes, exception,
4237                                         vcpu, ops);
4238        if (rc != X86EMUL_CONTINUE)
4239                return rc;
4240
4241        if (!vcpu->mmio_nr_fragments)
4242                return rc;
4243
4244        gpa = vcpu->mmio_fragments[0].gpa;
4245
4246        vcpu->mmio_needed = 1;
4247        vcpu->mmio_cur_fragment = 0;
4248
4249        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4250        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4251        vcpu->run->exit_reason = KVM_EXIT_MMIO;
4252        vcpu->run->mmio.phys_addr = gpa;
4253
4254        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4255}
4256
4257static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4258                                  unsigned long addr,
4259                                  void *val,
4260                                  unsigned int bytes,
4261                                  struct x86_exception *exception)
4262{
4263        return emulator_read_write(ctxt, addr, val, bytes,
4264                                   exception, &read_emultor);
4265}
4266
4267int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4268                            unsigned long addr,
4269                            const void *val,
4270                            unsigned int bytes,
4271                            struct x86_exception *exception)
4272{
4273        return emulator_read_write(ctxt, addr, (void *)val, bytes,
4274                                   exception, &write_emultor);
4275}
4276
4277#define CMPXCHG_TYPE(t, ptr, old, new) \
4278        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4279
4280#ifdef CONFIG_X86_64
4281#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4282#else
4283#  define CMPXCHG64(ptr, old, new) \
4284        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4285#endif
4286
4287static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4288                                     unsigned long addr,
4289                                     const void *old,
4290                                     const void *new,
4291                                     unsigned int bytes,
4292                                     struct x86_exception *exception)
4293{
4294        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4295        gpa_t gpa;
4296        struct page *page;
4297        char *kaddr;
4298        bool exchanged;
4299
4300        /* guests cmpxchg8b have to be emulated atomically */
4301        if (bytes > 8 || (bytes & (bytes - 1)))
4302                goto emul_write;
4303
4304        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4305
4306        if (gpa == UNMAPPED_GVA ||
4307            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4308                goto emul_write;
4309
4310        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4311                goto emul_write;
4312
4313        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4314        if (is_error_page(page))
4315                goto emul_write;
4316
4317        kaddr = kmap_atomic(page);
4318        kaddr += offset_in_page(gpa);
4319        switch (bytes) {
4320        case 1:
4321                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4322                break;
4323        case 2:
4324                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4325                break;
4326        case 4:
4327                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4328                break;
4329        case 8:
4330                exchanged = CMPXCHG64(kaddr, old, new);
4331                break;
4332        default:
4333                BUG();
4334        }
4335        kunmap_atomic(kaddr);
4336        kvm_release_page_dirty(page);
4337
4338        if (!exchanged)
4339                return X86EMUL_CMPXCHG_FAILED;
4340
4341        kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4342
4343        return X86EMUL_CONTINUE;
4344
4345emul_write:
4346        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4347
4348        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4349}
4350
4351static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4352{
4353        /* TODO: String I/O for in kernel device */
4354        int r;
4355
4356        if (vcpu->arch.pio.in)
4357                r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4358                                    vcpu->arch.pio.size, pd);
4359        else
4360                r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4361                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
4362                                     pd);
4363        return r;
4364}
4365
4366static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4367                               unsigned short port, void *val,
4368                               unsigned int count, bool in)
4369{
4370        trace_kvm_pio(!in, port, size, count);
4371
4372        vcpu->arch.pio.port = port;
4373        vcpu->arch.pio.in = in;
4374        vcpu->arch.pio.count  = count;
4375        vcpu->arch.pio.size = size;
4376
4377        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4378                vcpu->arch.pio.count = 0;
4379                return 1;
4380        }
4381
4382        vcpu->run->exit_reason = KVM_EXIT_IO;
4383        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4384        vcpu->run->io.size = size;
4385        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4386        vcpu->run->io.count = count;
4387        vcpu->run->io.port = port;
4388
4389        return 0;
4390}
4391
4392static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4393                                    int size, unsigned short port, void *val,
4394                                    unsigned int count)
4395{
4396        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4397        int ret;
4398
4399        if (vcpu->arch.pio.count)
4400                goto data_avail;
4401
4402        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4403        if (ret) {
4404data_avail:
4405                memcpy(val, vcpu->arch.pio_data, size * count);
4406                vcpu->arch.pio.count = 0;
4407                return 1;
4408        }
4409
4410        return 0;
4411}
4412
4413static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4414                                     int size, unsigned short port,
4415                                     const void *val, unsigned int count)
4416{
4417        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418
4419        memcpy(vcpu->arch.pio_data, val, size * count);
4420        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4421}
4422
4423static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4424{
4425        return kvm_x86_ops->get_segment_base(vcpu, seg);
4426}
4427
4428static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4429{
4430        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4431}
4432
4433int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4434{
4435        if (!need_emulate_wbinvd(vcpu))
4436                return X86EMUL_CONTINUE;
4437
4438        if (kvm_x86_ops->has_wbinvd_exit()) {
4439                int cpu = get_cpu();
4440
4441                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4442                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4443                                wbinvd_ipi, NULL, 1);
4444                put_cpu();
4445                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4446        } else
4447                wbinvd();
4448        return X86EMUL_CONTINUE;
4449}
4450EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4451
4452static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4453{
4454        kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4455}
4456
4457int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4458{
4459        return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4460}
4461
4462int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4463{
4464
4465        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4466}
4467
4468static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4469{
4470        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4471}
4472
4473static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4474{
4475        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476        unsigned long value;
4477
4478        switch (cr) {
4479        case 0:
4480                value = kvm_read_cr0(vcpu);
4481                break;
4482        case 2:
4483                value = vcpu->arch.cr2;
4484                break;
4485        case 3:
4486                value = kvm_read_cr3(vcpu);
4487                break;
4488        case 4:
4489                value = kvm_read_cr4(vcpu);
4490                break;
4491        case 8:
4492                value = kvm_get_cr8(vcpu);
4493                break;
4494        default:
4495                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4496                return 0;
4497        }
4498
4499        return value;
4500}
4501
4502static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4503{
4504        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505        int res = 0;
4506
4507        switch (cr) {
4508        case 0:
4509                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4510                break;
4511        case 2:
4512                vcpu->arch.cr2 = val;
4513                break;
4514        case 3:
4515                res = kvm_set_cr3(vcpu, val);
4516                break;
4517        case 4:
4518                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4519                break;
4520        case 8:
4521                res = kvm_set_cr8(vcpu, val);
4522                break;
4523        default:
4524                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4525                res = -1;
4526        }
4527
4528        return res;
4529}
4530
4531static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4532{
4533        kvm_set_rflags(emul_to_vcpu(ctxt), val);
4534}
4535
4536static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4537{
4538        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4539}
4540
4541static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4542{
4543        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4544}
4545
4546static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4547{
4548        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4549}
4550
4551static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4552{
4553        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4554}
4555
4556static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4557{
4558        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4559}
4560
4561static unsigned long emulator_get_cached_segment_base(
4562        struct x86_emulate_ctxt *ctxt, int seg)
4563{
4564        return get_segment_base(emul_to_vcpu(ctxt), seg);
4565}
4566
4567static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4568                                 struct desc_struct *desc, u32 *base3,
4569                                 int seg)
4570{
4571        struct kvm_segment var;
4572
4573        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4574        *selector = var.selector;
4575
4576        if (var.unusable) {
4577                memset(desc, 0, sizeof(*desc));
4578                return false;
4579        }
4580
4581        if (var.g)
4582                var.limit >>= 12;
4583        set_desc_limit(desc, var.limit);
4584        set_desc_base(desc, (unsigned long)var.base);
4585#ifdef CONFIG_X86_64
4586        if (base3)
4587                *base3 = var.base >> 32;
4588#endif
4589        desc->type = var.type;
4590        desc->s = var.s;
4591        desc->dpl = var.dpl;
4592        desc->p = var.present;
4593        desc->avl = var.avl;
4594        desc->l = var.l;
4595        desc->d = var.db;
4596        desc->g = var.g;
4597
4598        return true;
4599}
4600
4601static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4602                                 struct desc_struct *desc, u32 base3,
4603                                 int seg)
4604{
4605        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606        struct kvm_segment var;
4607
4608        var.selector = selector;
4609        var.base = get_desc_base(desc);
4610#ifdef CONFIG_X86_64
4611        var.base |= ((u64)base3) << 32;
4612#endif
4613        var.limit = get_desc_limit(desc);
4614        if (desc->g)
4615                var.limit = (var.limit << 12) | 0xfff;
4616        var.type = desc->type;
4617        var.present = desc->p;
4618        var.dpl = desc->dpl;
4619        var.db = desc->d;
4620        var.s = desc->s;
4621        var.l = desc->l;
4622        var.g = desc->g;
4623        var.avl = desc->avl;
4624        var.present = desc->p;
4625        var.unusable = !var.present;
4626        var.padding = 0;
4627
4628        kvm_set_segment(vcpu, &var, seg);
4629        return;
4630}
4631
4632static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4633                            u32 msr_index, u64 *pdata)
4634{
4635        return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4636}
4637
4638static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4639                            u32 msr_index, u64 data)
4640{
4641        struct msr_data msr;
4642
4643        msr.data = data;
4644        msr.index = msr_index;
4645        msr.host_initiated = false;
4646        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4647}
4648
4649static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4650                             u32 pmc, u64 *pdata)
4651{
4652        return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4653}
4654
4655static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4656{
4657        emul_to_vcpu(ctxt)->arch.halt_request = 1;
4658}
4659
4660static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4661{
4662        preempt_disable();
4663        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4664        /*
4665         * CR0.TS may reference the host fpu state, not the guest fpu state,
4666         * so it may be clear at this point.
4667         */
4668        clts();
4669}
4670
4671static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4672{
4673        preempt_enable();
4674}
4675
4676static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4677                              struct x86_instruction_info *info,
4678                              enum x86_intercept_stage stage)
4679{
4680        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4681}
4682
4683static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4684                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4685{
4686        kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4687}
4688
4689static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4690{
4691        return kvm_register_read(emul_to_vcpu(ctxt), reg);
4692}
4693
4694static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4695{
4696        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4697}
4698
4699static const struct x86_emulate_ops emulate_ops = {
4700        .read_gpr            = emulator_read_gpr,
4701        .write_gpr           = emulator_write_gpr,
4702        .read_std            = kvm_read_guest_virt_system,
4703        .write_std           = kvm_write_guest_virt_system,
4704        .fetch               = kvm_fetch_guest_virt,
4705        .read_emulated       = emulator_read_emulated,
4706        .write_emulated      = emulator_write_emulated,
4707        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4708        .invlpg              = emulator_invlpg,
4709        .pio_in_emulated     = emulator_pio_in_emulated,
4710        .pio_out_emulated    = emulator_pio_out_emulated,
4711        .get_segment         = emulator_get_segment,
4712        .set_segment         = emulator_set_segment,
4713        .get_cached_segment_base = emulator_get_cached_segment_base,
4714        .get_gdt             = emulator_get_gdt,
4715        .get_idt             = emulator_get_idt,
4716        .set_gdt             = emulator_set_gdt,
4717        .set_idt             = emulator_set_idt,
4718        .get_cr              = emulator_get_cr,
4719        .set_cr              = emulator_set_cr,
4720        .set_rflags          = emulator_set_rflags,
4721        .cpl                 = emulator_get_cpl,
4722        .get_dr              = emulator_get_dr,
4723        .set_dr              = emulator_set_dr,
4724        .set_msr             = emulator_set_msr,
4725        .get_msr             = emulator_get_msr,
4726        .read_pmc            = emulator_read_pmc,
4727        .halt                = emulator_halt,
4728        .wbinvd              = emulator_wbinvd,
4729        .fix_hypercall       = emulator_fix_hypercall,
4730        .get_fpu             = emulator_get_fpu,
4731        .put_fpu             = emulator_put_fpu,
4732        .intercept           = emulator_intercept,
4733        .get_cpuid           = emulator_get_cpuid,
4734};
4735
4736static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4737{
4738        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4739        /*
4740         * an sti; sti; sequence only disable interrupts for the first
4741         * instruction. So, if the last instruction, be it emulated or
4742         * not, left the system with the INT_STI flag enabled, it
4743         * means that the last instruction is an sti. We should not
4744         * leave the flag on in this case. The same goes for mov ss
4745         */
4746        if (!(int_shadow & mask))
4747                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4748}
4749
4750static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4751{
4752        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4753        if (ctxt->exception.vector == PF_VECTOR)
4754                kvm_propagate_fault(vcpu, &ctxt->exception);
4755        else if (ctxt->exception.error_code_valid)
4756                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4757                                      ctxt->exception.error_code);
4758        else
4759                kvm_queue_exception(vcpu, ctxt->exception.vector);
4760}
4761
4762static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4763{
4764        memset(&ctxt->twobyte, 0,
4765               (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4766
4767        ctxt->fetch.start = 0;
4768        ctxt->fetch.end = 0;
4769        ctxt->io_read.pos = 0;
4770        ctxt->io_read.end = 0;
4771        ctxt->mem_read.pos = 0;
4772        ctxt->mem_read.end = 0;
4773}
4774
4775static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4776{
4777        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4778        int cs_db, cs_l;
4779
4780        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4781
4782        ctxt->eflags = kvm_get_rflags(vcpu);
4783        ctxt->eip = kvm_rip_read(vcpu);
4784        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4785                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4786                     cs_l                               ? X86EMUL_MODE_PROT64 :
4787                     cs_db                              ? X86EMUL_MODE_PROT32 :
4788                                                          X86EMUL_MODE_PROT16;
4789        ctxt->guest_mode = is_guest_mode(vcpu);
4790
4791        init_decode_cache(ctxt);
4792        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4793}
4794
4795int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4796{
4797        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4798        int ret;
4799
4800        init_emulate_ctxt(vcpu);
4801
4802        ctxt->op_bytes = 2;
4803        ctxt->ad_bytes = 2;
4804        ctxt->_eip = ctxt->eip + inc_eip;
4805        ret = emulate_int_real(ctxt, irq);
4806
4807        if (ret != X86EMUL_CONTINUE)
4808                return EMULATE_FAIL;
4809
4810        ctxt->eip = ctxt->_eip;
4811        kvm_rip_write(vcpu, ctxt->eip);
4812        kvm_set_rflags(vcpu, ctxt->eflags);
4813
4814        if (irq == NMI_VECTOR)
4815                vcpu->arch.nmi_pending = 0;
4816        else
4817                vcpu->arch.interrupt.pending = false;
4818
4819        return EMULATE_DONE;
4820}
4821EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4822
4823static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4824{
4825        int r = EMULATE_DONE;
4826
4827        ++vcpu->stat.insn_emulation_fail;
4828        trace_kvm_emulate_insn_failed(vcpu);
4829        if (!is_guest_mode(vcpu)) {
4830                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4831                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4832                vcpu->run->internal.ndata = 0;
4833                r = EMULATE_FAIL;
4834        }
4835        kvm_queue_exception(vcpu, UD_VECTOR);
4836
4837        return r;
4838}
4839
4840static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4841                                  bool write_fault_to_shadow_pgtable,
4842                                  int emulation_type)
4843{
4844        gpa_t gpa = cr2;
4845        pfn_t pfn;
4846
4847        if (emulation_type & EMULTYPE_NO_REEXECUTE)
4848                return false;
4849
4850        if (!vcpu->arch.mmu.direct_map) {
4851                /*
4852                 * Write permission should be allowed since only
4853                 * write access need to be emulated.
4854                 */
4855                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4856
4857                /*
4858                 * If the mapping is invalid in guest, let cpu retry
4859                 * it to generate fault.
4860                 */
4861                if (gpa == UNMAPPED_GVA)
4862                        return true;
4863        }
4864
4865        /*
4866         * Do not retry the unhandleable instruction if it faults on the
4867         * readonly host memory, otherwise it will goto a infinite loop:
4868         * retry instruction -> write #PF -> emulation fail -> retry
4869         * instruction -> ...
4870         */
4871        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4872
4873        /*
4874         * If the instruction failed on the error pfn, it can not be fixed,
4875         * report the error to userspace.
4876         */
4877        if (is_error_noslot_pfn(pfn))
4878                return false;
4879
4880        kvm_release_pfn_clean(pfn);
4881
4882        /* The instructions are well-emulated on direct mmu. */
4883        if (vcpu->arch.mmu.direct_map) {
4884                unsigned int indirect_shadow_pages;
4885
4886                spin_lock(&vcpu->kvm->mmu_lock);
4887                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4888                spin_unlock(&vcpu->kvm->mmu_lock);
4889
4890                if (indirect_shadow_pages)
4891                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4892
4893                return true;
4894        }
4895
4896        /*
4897         * if emulation was due to access to shadowed page table
4898         * and it failed try to unshadow page and re-enter the
4899         * guest to let CPU execute the instruction.
4900         */
4901        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4902
4903        /*
4904         * If the access faults on its page table, it can not
4905         * be fixed by unprotecting shadow page and it should
4906         * be reported to userspace.
4907         */
4908        return !write_fault_to_shadow_pgtable;
4909}
4910
4911static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4912                              unsigned long cr2,  int emulation_type)
4913{
4914        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4916
4917        last_retry_eip = vcpu->arch.last_retry_eip;
4918        last_retry_addr = vcpu->arch.last_retry_addr;
4919
4920        /*
4921         * If the emulation is caused by #PF and it is non-page_table
4922         * writing instruction, it means the VM-EXIT is caused by shadow
4923         * page protected, we can zap the shadow page and retry this
4924         * instruction directly.
4925         *
4926         * Note: if the guest uses a non-page-table modifying instruction
4927         * on the PDE that points to the instruction, then we will unmap
4928         * the instruction and go to an infinite loop. So, we cache the
4929         * last retried eip and the last fault address, if we meet the eip
4930         * and the address again, we can break out of the potential infinite
4931         * loop.
4932         */
4933        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4934
4935        if (!(emulation_type & EMULTYPE_RETRY))
4936                return false;
4937
4938        if (x86_page_table_writing_insn(ctxt))
4939                return false;
4940
4941        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4942                return false;
4943
4944        vcpu->arch.last_retry_eip = ctxt->eip;
4945        vcpu->arch.last_retry_addr = cr2;
4946
4947        if (!vcpu->arch.mmu.direct_map)
4948                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4949
4950        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4951
4952        return true;
4953}
4954
4955static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4956static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4957
4958int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4959                            unsigned long cr2,
4960                            int emulation_type,
4961                            void *insn,
4962                            int insn_len)
4963{
4964        int r;
4965        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4966        bool writeback = true;
4967        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4968
4969        /*
4970         * Clear write_fault_to_shadow_pgtable here to ensure it is
4971         * never reused.
4972         */
4973        vcpu->arch.write_fault_to_shadow_pgtable = false;
4974        kvm_clear_exception_queue(vcpu);
4975
4976        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4977                init_emulate_ctxt(vcpu);
4978                ctxt->interruptibility = 0;
4979                ctxt->have_exception = false;
4980                ctxt->perm_ok = false;
4981
4982                ctxt->only_vendor_specific_insn
4983                        = emulation_type & EMULTYPE_TRAP_UD;
4984
4985                r = x86_decode_insn(ctxt, insn, insn_len);
4986
4987                trace_kvm_emulate_insn_start(vcpu);
4988                ++vcpu->stat.insn_emulation;
4989                if (r != EMULATION_OK)  {
4990                        if (emulation_type & EMULTYPE_TRAP_UD)
4991                                return EMULATE_FAIL;
4992                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4993                                                emulation_type))
4994                                return EMULATE_DONE;
4995                        if (emulation_type & EMULTYPE_SKIP)
4996                                return EMULATE_FAIL;
4997                        return handle_emulation_failure(vcpu);
4998                }
4999        }
5000
5001        if (emulation_type & EMULTYPE_SKIP) {
5002                kvm_rip_write(vcpu, ctxt->_eip);
5003                return EMULATE_DONE;
5004        }
5005
5006        if (retry_instruction(ctxt, cr2, emulation_type))
5007                return EMULATE_DONE;
5008
5009        /* this is needed for vmware backdoor interface to work since it
5010           changes registers values  during IO operation */
5011        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5012                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5013                emulator_invalidate_register_cache(ctxt);
5014        }
5015
5016restart:
5017        r = x86_emulate_insn(ctxt);
5018
5019        if (r == EMULATION_INTERCEPTED)
5020                return EMULATE_DONE;
5021
5022        if (r == EMULATION_FAILED) {
5023                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5024                                        emulation_type))
5025                        return EMULATE_DONE;
5026
5027                return handle_emulation_failure(vcpu);
5028        }
5029
5030        if (ctxt->have_exception) {
5031                inject_emulated_exception(vcpu);
5032                r = EMULATE_DONE;
5033        } else if (vcpu->arch.pio.count) {
5034                if (!vcpu->arch.pio.in)
5035                        vcpu->arch.pio.count = 0;
5036                else {
5037                        writeback = false;
5038                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
5039                }
5040                r = EMULATE_DO_MMIO;
5041        } else if (vcpu->mmio_needed) {
5042                if (!vcpu->mmio_is_write)
5043                        writeback = false;
5044                r = EMULATE_DO_MMIO;
5045                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5046        } else if (r == EMULATION_RESTART)
5047                goto restart;
5048        else
5049                r = EMULATE_DONE;
5050
5051        if (writeback) {
5052                toggle_interruptibility(vcpu, ctxt->interruptibility);
5053                kvm_set_rflags(vcpu, ctxt->eflags);
5054                kvm_make_request(KVM_REQ_EVENT, vcpu);
5055                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5056                kvm_rip_write(vcpu, ctxt->eip);
5057        } else
5058                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5059
5060        return r;
5061}
5062EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5063
5064int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5065{
5066        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5067        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5068                                            size, port, &val, 1);
5069        /* do not return to emulator after return from userspace */
5070        vcpu->arch.pio.count = 0;
5071        return ret;
5072}
5073EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5074
5075static void tsc_bad(void *info)
5076{
5077        __this_cpu_write(cpu_tsc_khz, 0);
5078}
5079
5080static void tsc_khz_changed(void *data)
5081{
5082        struct cpufreq_freqs *freq = data;
5083        unsigned long khz = 0;
5084
5085        if (data)
5086                khz = freq->new;
5087        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5088                khz = cpufreq_quick_get(raw_smp_processor_id());
5089        if (!khz)
5090                khz = tsc_khz;
5091        __this_cpu_write(cpu_tsc_khz, khz);
5092}
5093
5094static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5095                                     void *data)
5096{
5097        struct cpufreq_freqs *freq = data;
5098        struct kvm *kvm;
5099        struct kvm_vcpu *vcpu;
5100        int i, send_ipi = 0;
5101
5102        /*
5103         * We allow guests to temporarily run on slowing clocks,
5104         * provided we notify them after, or to run on accelerating
5105         * clocks, provided we notify them before.  Thus time never
5106         * goes backwards.
5107         *
5108         * However, we have a problem.  We can't atomically update
5109         * the frequency of a given CPU from this function; it is
5110         * merely a notifier, which can be called from any CPU.
5111         * Changing the TSC frequency at arbitrary points in time
5112         * requires a recomputation of local variables related to
5113         * the TSC for each VCPU.  We must flag these local variables
5114         * to be updated and be sure the update takes place with the
5115         * new frequency before any guests proceed.
5116         *
5117         * Unfortunately, the combination of hotplug CPU and frequency
5118         * change creates an intractable locking scenario; the order
5119         * of when these callouts happen is undefined with respect to
5120         * CPU hotplug, and they can race with each other.  As such,
5121         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5122         * undefined; you can actually have a CPU frequency change take
5123         * place in between the computation of X and the setting of the
5124         * variable.  To protect against this problem, all updates of
5125         * the per_cpu tsc_khz variable are done in an interrupt
5126         * protected IPI, and all callers wishing to update the value
5127         * must wait for a synchronous IPI to complete (which is trivial
5128         * if the caller is on the CPU already).  This establishes the
5129         * necessary total order on variable updates.
5130         *
5131         * Note that because a guest time update may take place
5132         * anytime after the setting of the VCPU's request bit, the
5133         * correct TSC value must be set before the request.  However,
5134         * to ensure the update actually makes it to any guest which
5135         * starts running in hardware virtualization between the set
5136         * and the acquisition of the spinlock, we must also ping the
5137         * CPU after setting the request bit.
5138         *
5139         */
5140
5141        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5142                return 0;
5143        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5144                return 0;
5145
5146        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5147
5148        raw_spin_lock(&kvm_lock);
5149        list_for_each_entry(kvm, &vm_list, vm_list) {
5150                kvm_for_each_vcpu(i, vcpu, kvm) {
5151                        if (vcpu->cpu != freq->cpu)
5152                                continue;
5153                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5154                        if (vcpu->cpu != smp_processor_id())
5155                                send_ipi = 1;
5156                }
5157        }
5158        raw_spin_unlock(&kvm_lock);
5159
5160        if (freq->old < freq->new && send_ipi) {
5161                /*
5162                 * We upscale the frequency.  Must make the guest
5163                 * doesn't see old kvmclock values while running with
5164                 * the new frequency, otherwise we risk the guest sees
5165                 * time go backwards.
5166                 *
5167                 * In case we update the frequency for another cpu
5168                 * (which might be in guest context) send an interrupt
5169                 * to kick the cpu out of guest context.  Next time
5170                 * guest context is entered kvmclock will be updated,
5171                 * so the guest will not see stale values.
5172                 */
5173                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5174        }
5175        return 0;
5176}
5177
5178static struct notifier_block kvmclock_cpufreq_notifier_block = {
5179        .notifier_call  = kvmclock_cpufreq_notifier
5180};
5181
5182static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5183                                        unsigned long action, void *hcpu)
5184{
5185        unsigned int cpu = (unsigned long)hcpu;
5186
5187        switch (action) {
5188                case CPU_ONLINE:
5189                case CPU_DOWN_FAILED:
5190                        smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5191                        break;
5192                case CPU_DOWN_PREPARE:
5193                        smp_call_function_single(cpu, tsc_bad, NULL, 1);
5194                        break;
5195        }
5196        return NOTIFY_OK;
5197}
5198
5199static struct notifier_block kvmclock_cpu_notifier_block = {
5200        .notifier_call  = kvmclock_cpu_notifier,
5201        .priority = -INT_MAX
5202};
5203
5204static void kvm_timer_init(void)
5205{
5206        int cpu;
5207
5208        max_tsc_khz = tsc_khz;
5209        register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5210        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5211#ifdef CONFIG_CPU_FREQ
5212                struct cpufreq_policy policy;
5213                memset(&policy, 0, sizeof(policy));
5214                cpu = get_cpu();
5215                cpufreq_get_policy(&policy, cpu);
5216                if (policy.cpuinfo.max_freq)
5217                        max_tsc_khz = policy.cpuinfo.max_freq;
5218                put_cpu();
5219#endif
5220                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5221                                          CPUFREQ_TRANSITION_NOTIFIER);
5222        }
5223        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5224        for_each_online_cpu(cpu)
5225                smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5226}
5227
5228static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5229
5230int kvm_is_in_guest(void)
5231{
5232        return __this_cpu_read(current_vcpu) != NULL;
5233}
5234
5235static int kvm_is_user_mode(void)
5236{
5237        int user_mode = 3;
5238
5239        if (__this_cpu_read(current_vcpu))
5240                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5241
5242        return user_mode != 0;
5243}
5244
5245static unsigned long kvm_get_guest_ip(void)
5246{
5247        unsigned long ip = 0;
5248
5249        if (__this_cpu_read(current_vcpu))
5250                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5251
5252        return ip;
5253}
5254
5255static struct perf_guest_info_callbacks kvm_guest_cbs = {
5256        .is_in_guest            = kvm_is_in_guest,
5257        .is_user_mode           = kvm_is_user_mode,
5258        .get_guest_ip           = kvm_get_guest_ip,
5259};
5260
5261void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5262{
5263        __this_cpu_write(current_vcpu, vcpu);
5264}
5265EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5266
5267void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5268{
5269        __this_cpu_write(current_vcpu, NULL);
5270}
5271EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5272
5273static void kvm_set_mmio_spte_mask(void)
5274{
5275        u64 mask;
5276        int maxphyaddr = boot_cpu_data.x86_phys_bits;
5277
5278        /*
5279         * Set the reserved bits and the present bit of an paging-structure
5280         * entry to generate page fault with PFER.RSV = 1.
5281         */
5282         /* Mask the reserved physical address bits. */
5283        mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5284
5285        /* Bit 62 is always reserved for 32bit host. */
5286        mask |= 0x3ull << 62;
5287
5288        /* Set the present bit. */
5289        mask |= 1ull;
5290
5291#ifdef CONFIG_X86_64
5292        /*
5293         * If reserved bit is not supported, clear the present bit to disable
5294         * mmio page fault.
5295         */
5296        if (maxphyaddr == 52)
5297                mask &= ~1ull;
5298#endif
5299
5300        kvm_mmu_set_mmio_spte_mask(mask);
5301}
5302
5303#ifdef CONFIG_X86_64
5304static void pvclock_gtod_update_fn(struct work_struct *work)
5305{
5306        struct kvm *kvm;
5307
5308        struct kvm_vcpu *vcpu;
5309        int i;
5310
5311        raw_spin_lock(&kvm_lock);
5312        list_for_each_entry(kvm, &vm_list, vm_list)
5313                kvm_for_each_vcpu(i, vcpu, kvm)
5314                        set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5315        atomic_set(&kvm_guest_has_master_clock, 0);
5316        raw_spin_unlock(&kvm_lock);
5317}
5318
5319static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5320
5321/*
5322 * Notification about pvclock gtod data update.
5323 */
5324static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5325                               void *priv)
5326{
5327        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5328        struct timekeeper *tk = priv;
5329
5330        update_pvclock_gtod(tk);
5331
5332        /* disable master clock if host does not trust, or does not
5333         * use, TSC clocksource
5334         */
5335        if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5336            atomic_read(&kvm_guest_has_master_clock) != 0)
5337                queue_work(system_long_wq, &pvclock_gtod_work);
5338
5339        return 0;
5340}
5341
5342static struct notifier_block pvclock_gtod_notifier = {
5343        .notifier_call = pvclock_gtod_notify,
5344};
5345#endif
5346
5347int kvm_arch_init(void *opaque)
5348{
5349        int r;
5350        struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5351
5352        if (kvm_x86_ops) {
5353                printk(KERN_ERR "kvm: already loaded the other module\n");
5354                r = -EEXIST;
5355                goto out;
5356        }
5357
5358        if (!ops->cpu_has_kvm_support()) {
5359                printk(KERN_ERR "kvm: no hardware support\n");
5360                r = -EOPNOTSUPP;
5361                goto out;
5362        }
5363        if (ops->disabled_by_bios()) {
5364                printk(KERN_ERR "kvm: disabled by bios\n");
5365                r = -EOPNOTSUPP;
5366                goto out;
5367        }
5368
5369        r = -ENOMEM;
5370        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5371        if (!shared_msrs) {
5372                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5373                goto out;
5374        }
5375
5376        r = kvm_mmu_module_init();
5377        if (r)
5378                goto out_free_percpu;
5379
5380        kvm_set_mmio_spte_mask();
5381        kvm_init_msr_list();
5382
5383        kvm_x86_ops = ops;
5384        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5385                        PT_DIRTY_MASK, PT64_NX_MASK, 0);
5386
5387        kvm_timer_init();
5388
5389        perf_register_guest_info_callbacks(&kvm_guest_cbs);
5390
5391        if (cpu_has_xsave)
5392                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5393
5394        kvm_lapic_init();
5395#ifdef CONFIG_X86_64
5396        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5397#endif
5398
5399        return 0;
5400
5401out_free_percpu:
5402        free_percpu(shared_msrs);
5403out:
5404        return r;
5405}
5406
5407void kvm_arch_exit(void)
5408{
5409        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5410
5411        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5412                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5413                                            CPUFREQ_TRANSITION_NOTIFIER);
5414        unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5415#ifdef CONFIG_X86_64
5416        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5417#endif
5418        kvm_x86_ops = NULL;
5419        kvm_mmu_module_exit();
5420        free_percpu(shared_msrs);
5421}
5422
5423int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5424{
5425        ++vcpu->stat.halt_exits;
5426        if (irqchip_in_kernel(vcpu->kvm)) {
5427                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5428                return 1;
5429        } else {
5430                vcpu->run->exit_reason = KVM_EXIT_HLT;
5431                return 0;
5432        }
5433}
5434EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5435
5436int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5437{
5438        u64 param, ingpa, outgpa, ret;
5439        uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5440        bool fast, longmode;
5441        int cs_db, cs_l;
5442
5443        /*
5444         * hypercall generates UD from non zero cpl and real mode
5445         * per HYPER-V spec
5446         */
5447        if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5448                kvm_queue_exception(vcpu, UD_VECTOR);
5449                return 0;
5450        }
5451
5452        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5453        longmode = is_long_mode(vcpu) && cs_l == 1;
5454
5455        if (!longmode) {
5456                param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5457                        (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5458                ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5459                        (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5460                outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5461                        (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5462        }
5463#ifdef CONFIG_X86_64
5464        else {
5465                param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5466                ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5467                outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5468        }
5469#endif
5470
5471        code = param & 0xffff;
5472        fast = (param >> 16) & 0x1;
5473        rep_cnt = (param >> 32) & 0xfff;
5474        rep_idx = (param >> 48) & 0xfff;
5475
5476        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5477
5478        switch (code) {
5479        case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5480                kvm_vcpu_on_spin(vcpu);
5481                break;
5482        default:
5483                res = HV_STATUS_INVALID_HYPERCALL_CODE;
5484                break;
5485        }
5486
5487        ret = res | (((u64)rep_done & 0xfff) << 32);
5488        if (longmode) {
5489                kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5490        } else {
5491                kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5492                kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5493        }
5494
5495        return 1;
5496}
5497
5498int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5499{
5500        unsigned long nr, a0, a1, a2, a3, ret;
5501        int r = 1;
5502
5503        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5504                return kvm_hv_hypercall(vcpu);
5505
5506        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5507        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5508        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5509        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5510        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5511
5512        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5513
5514        if (!is_long_mode(vcpu)) {
5515                nr &= 0xFFFFFFFF;
5516                a0 &= 0xFFFFFFFF;
5517                a1 &= 0xFFFFFFFF;
5518                a2 &= 0xFFFFFFFF;
5519                a3 &= 0xFFFFFFFF;
5520        }
5521
5522        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5523                ret = -KVM_EPERM;
5524                goto out;
5525        }
5526
5527        switch (nr) {
5528        case KVM_HC_VAPIC_POLL_IRQ:
5529                ret = 0;
5530                break;
5531        default:
5532                ret = -KVM_ENOSYS;
5533                break;
5534        }
5535out:
5536        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5537        ++vcpu->stat.hypercalls;
5538        return r;
5539}
5540EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5541
5542static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5543{
5544        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5545        char instruction[3];
5546        unsigned long rip = kvm_rip_read(vcpu);
5547
5548        kvm_x86_ops->patch_hypercall(vcpu, instruction);
5549
5550        return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5551}
5552
5553/*
5554 * Check if userspace requested an interrupt window, and that the
5555 * interrupt window is open.
5556 *
5557 * No need to exit to userspace if we already have an interrupt queued.
5558 */
5559static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5560{
5561        return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5562                vcpu->run->request_interrupt_window &&
5563                kvm_arch_interrupt_allowed(vcpu));
5564}
5565
5566static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5567{
5568        struct kvm_run *kvm_run = vcpu->run;
5569
5570        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5571        kvm_run->cr8 = kvm_get_cr8(vcpu);
5572        kvm_run->apic_base = kvm_get_apic_base(vcpu);
5573        if (irqchip_in_kernel(vcpu->kvm))
5574                kvm_run->ready_for_interrupt_injection = 1;
5575        else
5576                kvm_run->ready_for_interrupt_injection =
5577                        kvm_arch_interrupt_allowed(vcpu) &&
5578                        !kvm_cpu_has_interrupt(vcpu) &&
5579                        !kvm_event_needs_reinjection(vcpu);
5580}
5581
5582static int vapic_enter(struct kvm_vcpu *vcpu)
5583{
5584        struct kvm_lapic *apic = vcpu->arch.apic;
5585        struct page *page;
5586
5587        if (!apic || !apic->vapic_addr)
5588                return 0;
5589
5590        page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5591        if (is_error_page(page))
5592                return -EFAULT;
5593
5594        vcpu->arch.apic->vapic_page = page;
5595        return 0;
5596}
5597
5598static void vapic_exit(struct kvm_vcpu *vcpu)
5599{
5600        struct kvm_lapic *apic = vcpu->arch.apic;
5601        int idx;
5602
5603        if (!apic || !apic->vapic_addr)
5604                return;
5605
5606        idx = srcu_read_lock(&vcpu->kvm->srcu);
5607        kvm_release_page_dirty(apic->vapic_page);
5608        mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5609        srcu_read_unlock(&vcpu->kvm->srcu, idx);
5610}
5611
5612static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5613{
5614        int max_irr, tpr;
5615
5616        if (!kvm_x86_ops->update_cr8_intercept)
5617                return;
5618
5619        if (!vcpu->arch.apic)
5620                return;
5621
5622        if (!vcpu->arch.apic->vapic_addr)
5623                max_irr = kvm_lapic_find_highest_irr(vcpu);
5624        else
5625                max_irr = -1;
5626
5627        if (max_irr != -1)
5628                max_irr >>= 4;
5629
5630        tpr = kvm_lapic_get_cr8(vcpu);
5631
5632        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5633}
5634
5635static void inject_pending_event(struct kvm_vcpu *vcpu)
5636{
5637        /* try to reinject previous events if any */
5638        if (vcpu->arch.exception.pending) {
5639                trace_kvm_inj_exception(vcpu->arch.exception.nr,
5640                                        vcpu->arch.exception.has_error_code,
5641                                        vcpu->arch.exception.error_code);
5642                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5643                                          vcpu->arch.exception.has_error_code,
5644                                          vcpu->arch.exception.error_code,
5645                                          vcpu->arch.exception.reinject);
5646                return;
5647        }
5648
5649        if (vcpu->arch.nmi_injected) {
5650                kvm_x86_ops->set_nmi(vcpu);
5651                return;
5652        }
5653
5654        if (vcpu->arch.interrupt.pending) {
5655                kvm_x86_ops->set_irq(vcpu);
5656                return;
5657        }
5658
5659        /* try to inject new event if pending */
5660        if (vcpu->arch.nmi_pending) {
5661                if (kvm_x86_ops->nmi_allowed(vcpu)) {
5662                        --vcpu->arch.nmi_pending;
5663                        vcpu->arch.nmi_injected = true;
5664                        kvm_x86_ops->set_nmi(vcpu);
5665                }
5666        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5667                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5668                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5669                                            false);
5670                        kvm_x86_ops->set_irq(vcpu);
5671                }
5672        }
5673}
5674
5675static void process_nmi(struct kvm_vcpu *vcpu)
5676{
5677        unsigned limit = 2;
5678
5679        /*
5680         * x86 is limited to one NMI running, and one NMI pending after it.
5681         * If an NMI is already in progress, limit further NMIs to just one.
5682         * Otherwise, allow two (and we'll inject the first one immediately).
5683         */
5684        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5685                limit = 1;
5686
5687        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5688        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5689        kvm_make_request(KVM_REQ_EVENT, vcpu);
5690}
5691
5692static void kvm_gen_update_masterclock(struct kvm *kvm)
5693{
5694#ifdef CONFIG_X86_64
5695        int i;
5696        struct kvm_vcpu *vcpu;
5697        struct kvm_arch *ka = &kvm->arch;
5698
5699        spin_lock(&ka->pvclock_gtod_sync_lock);
5700        kvm_make_mclock_inprogress_request(kvm);
5701        /* no guest entries from this point */
5702        pvclock_update_vm_gtod_copy(kvm);
5703
5704        kvm_for_each_vcpu(i, vcpu, kvm)
5705                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5706
5707        /* guest entries allowed */
5708        kvm_for_each_vcpu(i, vcpu, kvm)
5709                clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5710
5711        spin_unlock(&ka->pvclock_gtod_sync_lock);
5712#endif
5713}
5714
5715static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5716{
5717        u64 eoi_exit_bitmap[4];
5718        u32 tmr[8];
5719
5720        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5721                return;
5722
5723        memset(eoi_exit_bitmap, 0, 32);
5724        memset(tmr, 0, 32);
5725
5726        kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5727        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5728        kvm_apic_update_tmr(vcpu, tmr);
5729}
5730
5731static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5732{
5733        int r;
5734        bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5735                vcpu->run->request_interrupt_window;
5736        bool req_immediate_exit = false;
5737
5738        if (vcpu->requests) {
5739                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5740                        kvm_mmu_unload(vcpu);
5741                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5742                        __kvm_migrate_timers(vcpu);
5743                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5744                        kvm_gen_update_masterclock(vcpu->kvm);
5745                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5746                        kvm_gen_kvmclock_update(vcpu);
5747                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5748                        r = kvm_guest_time_update(vcpu);
5749                        if (unlikely(r))
5750                                goto out;
5751                }
5752                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5753                        kvm_mmu_sync_roots(vcpu);
5754                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5755                        kvm_x86_ops->tlb_flush(vcpu);
5756                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5757                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5758                        r = 0;
5759                        goto out;
5760                }
5761                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5762                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5763                        r = 0;
5764                        goto out;
5765                }
5766                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5767                        vcpu->fpu_active = 0;
5768                        kvm_x86_ops->fpu_deactivate(vcpu);
5769                }
5770                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5771                        /* Page is swapped out. Do synthetic halt */
5772                        vcpu->arch.apf.halted = true;
5773                        r = 1;
5774                        goto out;
5775                }
5776                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5777                        record_steal_time(vcpu);
5778                if (kvm_check_request(KVM_REQ_NMI, vcpu))
5779                        process_nmi(vcpu);
5780                if (kvm_check_request(KVM_REQ_PMU, vcpu))
5781                        kvm_handle_pmu_event(vcpu);
5782                if (kvm_check_request(KVM_REQ_PMI, vcpu))
5783                        kvm_deliver_pmi(vcpu);
5784                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5785                        vcpu_scan_ioapic(vcpu);
5786        }
5787
5788        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5789                kvm_apic_accept_events(vcpu);
5790                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5791                        r = 1;
5792                        goto out;
5793                }
5794
5795                inject_pending_event(vcpu);
5796
5797                /* enable NMI/IRQ window open exits if needed */
5798                if (vcpu->arch.nmi_pending)
5799                        req_immediate_exit =
5800                                kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5801                else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5802                        req_immediate_exit =
5803                                kvm_x86_ops->enable_irq_window(vcpu) != 0;
5804
5805                if (kvm_lapic_enabled(vcpu)) {
5806                        /*
5807                         * Update architecture specific hints for APIC
5808                         * virtual interrupt delivery.
5809                         */
5810                        if (kvm_x86_ops->hwapic_irr_update)
5811                                kvm_x86_ops->hwapic_irr_update(vcpu,
5812                                        kvm_lapic_find_highest_irr(vcpu));
5813                        update_cr8_intercept(vcpu);
5814                        kvm_lapic_sync_to_vapic(vcpu);
5815                }
5816        }
5817
5818        r = kvm_mmu_reload(vcpu);
5819        if (unlikely(r)) {
5820                goto cancel_injection;
5821        }
5822
5823        preempt_disable();
5824
5825        kvm_x86_ops->prepare_guest_switch(vcpu);
5826        if (vcpu->fpu_active)
5827                kvm_load_guest_fpu(vcpu);
5828        kvm_load_guest_xcr0(vcpu);
5829
5830        vcpu->mode = IN_GUEST_MODE;
5831
5832        /* We should set ->mode before check ->requests,
5833         * see the comment in make_all_cpus_request.
5834         */
5835        smp_mb();
5836
5837        local_irq_disable();
5838
5839        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5840            || need_resched() || signal_pending(current)) {
5841                vcpu->mode = OUTSIDE_GUEST_MODE;
5842                smp_wmb();
5843                local_irq_enable();
5844                preempt_enable();
5845                r = 1;
5846                goto cancel_injection;
5847        }
5848
5849        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5850
5851        if (req_immediate_exit)
5852                smp_send_reschedule(vcpu->cpu);
5853
5854        kvm_guest_enter();
5855
5856        if (unlikely(vcpu->arch.switch_db_regs)) {
5857                set_debugreg(0, 7);
5858                set_debugreg(vcpu->arch.eff_db[0], 0);
5859                set_debugreg(vcpu->arch.eff_db[1], 1);
5860                set_debugreg(vcpu->arch.eff_db[2], 2);
5861                set_debugreg(vcpu->arch.eff_db[3], 3);
5862        }
5863
5864        trace_kvm_entry(vcpu->vcpu_id);
5865        kvm_x86_ops->run(vcpu);
5866
5867        /*
5868         * If the guest has used debug registers, at least dr7
5869         * will be disabled while returning to the host.
5870         * If we don't have active breakpoints in the host, we don't
5871         * care about the messed up debug address registers. But if
5872         * we have some of them active, restore the old state.
5873         */
5874        if (hw_breakpoint_active())
5875                hw_breakpoint_restore();
5876
5877        vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5878                                                           native_read_tsc());
5879
5880        vcpu->mode = OUTSIDE_GUEST_MODE;
5881        smp_wmb();
5882
5883        /* Interrupt is enabled by handle_external_intr() */
5884        kvm_x86_ops->handle_external_intr(vcpu);
5885
5886        ++vcpu->stat.exits;
5887
5888        /*
5889         * We must have an instruction between local_irq_enable() and
5890         * kvm_guest_exit(), so the timer interrupt isn't delayed by
5891         * the interrupt shadow.  The stat.exits increment will do nicely.
5892         * But we need to prevent reordering, hence this barrier():
5893         */
5894        barrier();
5895
5896        kvm_guest_exit();
5897
5898        preempt_enable();
5899
5900        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5901
5902        /*
5903         * Profile KVM exit RIPs:
5904         */
5905        if (unlikely(prof_on == KVM_PROFILING)) {
5906                unsigned long rip = kvm_rip_read(vcpu);
5907                profile_hit(KVM_PROFILING, (void *)rip);
5908        }
5909
5910        if (unlikely(vcpu->arch.tsc_always_catchup))
5911                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5912
5913        if (vcpu->arch.apic_attention)
5914                kvm_lapic_sync_from_vapic(vcpu);
5915
5916        r = kvm_x86_ops->handle_exit(vcpu);
5917        return r;
5918
5919cancel_injection:
5920        kvm_x86_ops->cancel_injection(vcpu);
5921        if (unlikely(vcpu->arch.apic_attention))
5922                kvm_lapic_sync_from_vapic(vcpu);
5923out:
5924        return r;
5925}
5926
5927
5928static int __vcpu_run(struct kvm_vcpu *vcpu)
5929{
5930        int r;
5931        struct kvm *kvm = vcpu->kvm;
5932
5933        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5934        r = vapic_enter(vcpu);
5935        if (r) {
5936                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5937                return r;
5938        }
5939
5940        r = 1;
5941        while (r > 0) {
5942                if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5943                    !vcpu->arch.apf.halted)
5944                        r = vcpu_enter_guest(vcpu);
5945                else {
5946                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5947                        kvm_vcpu_block(vcpu);
5948                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5949                        if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5950                                kvm_apic_accept_events(vcpu);
5951                                switch(vcpu->arch.mp_state) {
5952                                case KVM_MP_STATE_HALTED:
5953                                        vcpu->arch.mp_state =
5954                                                KVM_MP_STATE_RUNNABLE;
5955                                case KVM_MP_STATE_RUNNABLE:
5956                                        vcpu->arch.apf.halted = false;
5957                                        break;
5958                                case KVM_MP_STATE_INIT_RECEIVED:
5959                                        break;
5960                                default:
5961                                        r = -EINTR;
5962                                        break;
5963                                }
5964                        }
5965                }
5966
5967                if (r <= 0)
5968                        break;
5969
5970                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5971                if (kvm_cpu_has_pending_timer(vcpu))
5972                        kvm_inject_pending_timer_irqs(vcpu);
5973
5974                if (dm_request_for_irq_injection(vcpu)) {
5975                        r = -EINTR;
5976                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5977                        ++vcpu->stat.request_irq_exits;
5978                }
5979
5980                kvm_check_async_pf_completion(vcpu);
5981
5982                if (signal_pending(current)) {
5983                        r = -EINTR;
5984                        vcpu->run->exit_reason = KVM_EXIT_INTR;
5985                        ++vcpu->stat.signal_exits;
5986                }
5987                if (need_resched()) {
5988                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5989                        kvm_resched(vcpu);
5990                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5991                }
5992        }
5993
5994        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5995
5996        vapic_exit(vcpu);
5997
5998        return r;
5999}
6000
6001static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6002{
6003        int r;
6004        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6005        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6006        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6007        if (r != EMULATE_DONE)
6008                return 0;
6009        return 1;
6010}
6011
6012static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6013{
6014        BUG_ON(!vcpu->arch.pio.count);
6015
6016        return complete_emulated_io(vcpu);
6017}
6018
6019/*
6020 * Implements the following, as a state machine:
6021 *
6022 * read:
6023 *   for each fragment
6024 *     for each mmio piece in the fragment
6025 *       write gpa, len
6026 *       exit
6027 *       copy data
6028 *   execute insn
6029 *
6030 * write:
6031 *   for each fragment
6032 *     for each mmio piece in the fragment
6033 *       write gpa, len
6034 *       copy data
6035 *       exit
6036 */
6037static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6038{
6039        struct kvm_run *run = vcpu->run;
6040        struct kvm_mmio_fragment *frag;
6041        unsigned len;
6042
6043        BUG_ON(!vcpu->mmio_needed);
6044
6045        /* Complete previous fragment */
6046        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6047        len = min(8u, frag->len);
6048        if (!vcpu->mmio_is_write)
6049                memcpy(frag->data, run->mmio.data, len);
6050
6051        if (frag->len <= 8) {
6052                /* Switch to the next fragment. */
6053                frag++;
6054                vcpu->mmio_cur_fragment++;
6055        } else {
6056                /* Go forward to the next mmio piece. */
6057                frag->data += len;
6058                frag->gpa += len;
6059                frag->len -= len;
6060        }
6061
6062        if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6063                vcpu->mmio_needed = 0;
6064                if (vcpu->mmio_is_write)
6065                        return 1;
6066                vcpu->mmio_read_completed = 1;
6067                return complete_emulated_io(vcpu);
6068        }
6069
6070        run->exit_reason = KVM_EXIT_MMIO;
6071        run->mmio.phys_addr = frag->gpa;
6072        if (vcpu->mmio_is_write)
6073                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6074        run->mmio.len = min(8u, frag->len);
6075        run->mmio.is_write = vcpu->mmio_is_write;
6076        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6077        return 0;
6078}
6079
6080
6081int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6082{
6083        int r;
6084        sigset_t sigsaved;
6085
6086        if (!tsk_used_math(current) && init_fpu(current))
6087                return -ENOMEM;
6088
6089        if (vcpu->sigset_active)
6090                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6091
6092        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6093                kvm_vcpu_block(vcpu);
6094                kvm_apic_accept_events(vcpu);
6095                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6096                r = -EAGAIN;
6097                goto out;
6098        }
6099
6100        /* re-sync apic's tpr */
6101        if (!irqchip_in_kernel(vcpu->kvm)) {
6102                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6103                        r = -EINVAL;
6104                        goto out;
6105                }
6106        }
6107
6108        if (unlikely(vcpu->arch.complete_userspace_io)) {
6109                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6110                vcpu->arch.complete_userspace_io = NULL;
6111                r = cui(vcpu);
6112                if (r <= 0)
6113                        goto out;
6114        } else
6115                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6116
6117        r = __vcpu_run(vcpu);
6118
6119out:
6120        post_kvm_run_save(vcpu);
6121        if (vcpu->sigset_active)
6122                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6123
6124        return r;
6125}
6126
6127int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6128{
6129        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6130                /*
6131                 * We are here if userspace calls get_regs() in the middle of
6132                 * instruction emulation. Registers state needs to be copied
6133                 * back from emulation context to vcpu. Userspace shouldn't do
6134                 * that usually, but some bad designed PV devices (vmware
6135                 * backdoor interface) need this to work
6136                 */
6137                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6138                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6139        }
6140        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6141        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6142        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6143        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6144        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6145        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6146        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6147        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6148#ifdef CONFIG_X86_64
6149        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6150        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6151        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6152        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6153        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6154        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6155        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6156        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6157#endif
6158
6159        regs->rip = kvm_rip_read(vcpu);
6160        regs->rflags = kvm_get_rflags(vcpu);
6161
6162        return 0;
6163}
6164
6165int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6166{
6167        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6168        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6169
6170        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6171        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6172        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6173        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6174        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6175        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6176        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6177        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6178#ifdef CONFIG_X86_64
6179        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6180        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6181        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6182        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6183        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6184        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6185        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6186        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6187#endif
6188
6189        kvm_rip_write(vcpu, regs->rip);
6190        kvm_set_rflags(vcpu, regs->rflags);
6191
6192        vcpu->arch.exception.pending = false;
6193
6194        kvm_make_request(KVM_REQ_EVENT, vcpu);
6195
6196        return 0;
6197}
6198
6199void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6200{
6201        struct kvm_segment cs;
6202
6203        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6204        *db = cs.db;
6205        *l = cs.l;
6206}
6207EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6208
6209int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6210                                  struct kvm_sregs *sregs)
6211{
6212        struct desc_ptr dt;
6213
6214        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6215        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6216        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6217        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6218        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6219        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6220
6221        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6222        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6223
6224        kvm_x86_ops->get_idt(vcpu, &dt);
6225        sregs->idt.limit = dt.size;
6226        sregs->idt.base = dt.address;
6227        kvm_x86_ops->get_gdt(vcpu, &dt);
6228        sregs->gdt.limit = dt.size;
6229        sregs->gdt.base = dt.address;
6230
6231        sregs->cr0 = kvm_read_cr0(vcpu);
6232        sregs->cr2 = vcpu->arch.cr2;
6233        sregs->cr3 = kvm_read_cr3(vcpu);
6234        sregs->cr4 = kvm_read_cr4(vcpu);
6235        sregs->cr8 = kvm_get_cr8(vcpu);
6236        sregs->efer = vcpu->arch.efer;
6237        sregs->apic_base = kvm_get_apic_base(vcpu);
6238
6239        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6240
6241        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6242                set_bit(vcpu->arch.interrupt.nr,
6243                        (unsigned long *)sregs->interrupt_bitmap);
6244
6245        return 0;
6246}
6247
6248int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6249                                    struct kvm_mp_state *mp_state)
6250{
6251        kvm_apic_accept_events(vcpu);
6252        mp_state->mp_state = vcpu->arch.mp_state;
6253        return 0;
6254}
6255
6256int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6257                                    struct kvm_mp_state *mp_state)
6258{
6259        if (!kvm_vcpu_has_lapic(vcpu) &&
6260            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6261                return -EINVAL;
6262
6263        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6264                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6265                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6266        } else
6267                vcpu->arch.mp_state = mp_state->mp_state;
6268        kvm_make_request(KVM_REQ_EVENT, vcpu);
6269        return 0;
6270}
6271
6272int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6273                    int reason, bool has_error_code, u32 error_code)
6274{
6275        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6276        int ret;
6277
6278        init_emulate_ctxt(vcpu);
6279
6280        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6281                                   has_error_code, error_code);
6282
6283        if (ret)
6284                return EMULATE_FAIL;
6285
6286        kvm_rip_write(vcpu, ctxt->eip);
6287        kvm_set_rflags(vcpu, ctxt->eflags);
6288        kvm_make_request(KVM_REQ_EVENT, vcpu);
6289        return EMULATE_DONE;
6290}
6291EXPORT_SYMBOL_GPL(kvm_task_switch);
6292
6293int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6294                                  struct kvm_sregs *sregs)
6295{
6296        int mmu_reset_needed = 0;
6297        int pending_vec, max_bits, idx;
6298        struct desc_ptr dt;
6299
6300        if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6301                return -EINVAL;
6302
6303        dt.size = sregs->idt.limit;
6304        dt.address = sregs->idt.base;
6305        kvm_x86_ops->set_idt(vcpu, &dt);
6306        dt.size = sregs->gdt.limit;
6307        dt.address = sregs->gdt.base;
6308        kvm_x86_ops->set_gdt(vcpu, &dt);
6309
6310        vcpu->arch.cr2 = sregs->cr2;
6311        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6312        vcpu->arch.cr3 = sregs->cr3;
6313        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6314
6315        kvm_set_cr8(vcpu, sregs->cr8);
6316
6317        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6318        kvm_x86_ops->set_efer(vcpu, sregs->efer);
6319        kvm_set_apic_base(vcpu, sregs->apic_base);
6320
6321        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6322        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6323        vcpu->arch.cr0 = sregs->cr0;
6324
6325        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6326        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6327        if (sregs->cr4 & X86_CR4_OSXSAVE)
6328                kvm_update_cpuid(vcpu);
6329
6330        idx = srcu_read_lock(&vcpu->kvm->srcu);
6331        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6332                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6333                mmu_reset_needed = 1;
6334        }
6335        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6336
6337        if (mmu_reset_needed)
6338                kvm_mmu_reset_context(vcpu);
6339
6340        max_bits = KVM_NR_INTERRUPTS;
6341        pending_vec = find_first_bit(
6342                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6343        if (pending_vec < max_bits) {
6344                kvm_queue_interrupt(vcpu, pending_vec, false);
6345                pr_debug("Set back pending irq %d\n", pending_vec);
6346        }
6347
6348        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6349        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6350        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6351        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6352        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6353        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6354
6355        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6356        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6357
6358        update_cr8_intercept(vcpu);
6359
6360        /* Older userspace won't unhalt the vcpu on reset. */
6361        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6362            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6363            !is_protmode(vcpu))
6364                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6365
6366        kvm_make_request(KVM_REQ_EVENT, vcpu);
6367
6368        return 0;
6369}
6370
6371int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6372                                        struct kvm_guest_debug *dbg)
6373{
6374        unsigned long rflags;
6375        int i, r;
6376
6377        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6378                r = -EBUSY;
6379                if (vcpu->arch.exception.pending)
6380                        goto out;
6381                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6382                        kvm_queue_exception(vcpu, DB_VECTOR);
6383                else
6384                        kvm_queue_exception(vcpu, BP_VECTOR);
6385        }
6386
6387        /*
6388         * Read rflags as long as potentially injected trace flags are still
6389         * filtered out.
6390         */
6391        rflags = kvm_get_rflags(vcpu);
6392
6393        vcpu->guest_debug = dbg->control;
6394        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6395                vcpu->guest_debug = 0;
6396
6397        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6398                for (i = 0; i < KVM_NR_DB_REGS; ++i)
6399                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6400                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6401        } else {
6402                for (i = 0; i < KVM_NR_DB_REGS; i++)
6403                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6404        }
6405        kvm_update_dr7(vcpu);
6406
6407        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6408                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6409                        get_segment_base(vcpu, VCPU_SREG_CS);
6410
6411        /*
6412         * Trigger an rflags update that will inject or remove the trace
6413         * flags.
6414         */
6415        kvm_set_rflags(vcpu, rflags);
6416
6417        kvm_x86_ops->update_db_bp_intercept(vcpu);
6418
6419        r = 0;
6420
6421out:
6422
6423        return r;
6424}
6425
6426/*
6427 * Translate a guest virtual address to a guest physical address.
6428 */
6429int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6430                                    struct kvm_translation *tr)
6431{
6432        unsigned long vaddr = tr->linear_address;
6433        gpa_t gpa;
6434        int idx;
6435
6436        idx = srcu_read_lock(&vcpu->kvm->srcu);
6437        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6438        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6439        tr->physical_address = gpa;
6440        tr->valid = gpa != UNMAPPED_GVA;
6441        tr->writeable = 1;
6442        tr->usermode = 0;
6443
6444        return 0;
6445}
6446
6447int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6448{
6449        struct i387_fxsave_struct *fxsave =
6450                        &vcpu->arch.guest_fpu.state->fxsave;
6451
6452        memcpy(fpu->fpr, fxsave->st_space, 128);
6453        fpu->fcw = fxsave->cwd;
6454        fpu->fsw = fxsave->swd;
6455        fpu->ftwx = fxsave->twd;
6456        fpu->last_opcode = fxsave->fop;
6457        fpu->last_ip = fxsave->rip;
6458        fpu->last_dp = fxsave->rdp;
6459        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6460
6461        return 0;
6462}
6463
6464int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6465{
6466        struct i387_fxsave_struct *fxsave =
6467                        &vcpu->arch.guest_fpu.state->fxsave;
6468
6469        memcpy(fxsave->st_space, fpu->fpr, 128);
6470        fxsave->cwd = fpu->fcw;
6471        fxsave->swd = fpu->fsw;
6472        fxsave->twd = fpu->ftwx;
6473        fxsave->fop = fpu->last_opcode;
6474        fxsave->rip = fpu->last_ip;
6475        fxsave->rdp = fpu->last_dp;
6476        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6477
6478        return 0;
6479}
6480
6481int fx_init(struct kvm_vcpu *vcpu)
6482{
6483        int err;
6484
6485        err = fpu_alloc(&vcpu->arch.guest_fpu);
6486        if (err)
6487                return err;
6488
6489        fpu_finit(&vcpu->arch.guest_fpu);
6490
6491        /*
6492         * Ensure guest xcr0 is valid for loading
6493         */
6494        vcpu->arch.xcr0 = XSTATE_FP;
6495
6496        vcpu->arch.cr0 |= X86_CR0_ET;
6497
6498        return 0;
6499}
6500EXPORT_SYMBOL_GPL(fx_init);
6501
6502static void fx_free(struct kvm_vcpu *vcpu)
6503{
6504        fpu_free(&vcpu->arch.guest_fpu);
6505}
6506
6507void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6508{
6509        if (vcpu->guest_fpu_loaded)
6510                return;
6511
6512        /*
6513         * Restore all possible states in the guest,
6514         * and assume host would use all available bits.
6515         * Guest xcr0 would be loaded later.
6516         */
6517        kvm_put_guest_xcr0(vcpu);
6518        vcpu->guest_fpu_loaded = 1;
6519        __kernel_fpu_begin();
6520        fpu_restore_checking(&vcpu->arch.guest_fpu);
6521        trace_kvm_fpu(1);
6522}
6523
6524void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6525{
6526        kvm_put_guest_xcr0(vcpu);
6527
6528        if (!vcpu->guest_fpu_loaded)
6529                return;
6530
6531        vcpu->guest_fpu_loaded = 0;
6532        fpu_save_init(&vcpu->arch.guest_fpu);
6533        __kernel_fpu_end();
6534        ++vcpu->stat.fpu_reload;
6535        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6536        trace_kvm_fpu(0);
6537}
6538
6539void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6540{
6541        kvmclock_reset(vcpu);
6542
6543        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6544        fx_free(vcpu);
6545        kvm_x86_ops->vcpu_free(vcpu);
6546}
6547
6548struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6549                                                unsigned int id)
6550{
6551        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6552                printk_once(KERN_WARNING
6553                "kvm: SMP vm created on host with unstable TSC; "
6554                "guest TSC will not be reliable\n");
6555        return kvm_x86_ops->vcpu_create(kvm, id);
6556}
6557
6558int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6559{
6560        int r;
6561
6562        vcpu->arch.mtrr_state.have_fixed = 1;
6563        r = vcpu_load(vcpu);
6564        if (r)
6565                return r;
6566        kvm_vcpu_reset(vcpu);
6567        r = kvm_mmu_setup(vcpu);
6568        vcpu_put(vcpu);
6569
6570        return r;
6571}
6572
6573int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6574{
6575        int r;
6576        struct msr_data msr;
6577
6578        r = vcpu_load(vcpu);
6579        if (r)
6580                return r;
6581        msr.data = 0x0;
6582        msr.index = MSR_IA32_TSC;
6583        msr.host_initiated = true;
6584        kvm_write_tsc(vcpu, &msr);
6585        vcpu_put(vcpu);
6586
6587        return r;
6588}
6589
6590void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6591{
6592        int r;
6593        vcpu->arch.apf.msr_val = 0;
6594
6595        r = vcpu_load(vcpu);
6596        BUG_ON(r);
6597        kvm_mmu_unload(vcpu);
6598        vcpu_put(vcpu);
6599
6600        fx_free(vcpu);
6601        kvm_x86_ops->vcpu_free(vcpu);
6602}
6603
6604void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6605{
6606        atomic_set(&vcpu->arch.nmi_queued, 0);
6607        vcpu->arch.nmi_pending = 0;
6608        vcpu->arch.nmi_injected = false;
6609
6610        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6611        vcpu->arch.dr6 = DR6_FIXED_1;
6612        vcpu->arch.dr7 = DR7_FIXED_1;
6613        kvm_update_dr7(vcpu);
6614
6615        kvm_make_request(KVM_REQ_EVENT, vcpu);
6616        vcpu->arch.apf.msr_val = 0;
6617        vcpu->arch.st.msr_val = 0;
6618
6619        kvmclock_reset(vcpu);
6620
6621        kvm_clear_async_pf_completion_queue(vcpu);
6622        kvm_async_pf_hash_reset(vcpu);
6623        vcpu->arch.apf.halted = false;
6624
6625        kvm_pmu_reset(vcpu);
6626
6627        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6628        vcpu->arch.regs_avail = ~0;
6629        vcpu->arch.regs_dirty = ~0;
6630
6631        kvm_x86_ops->vcpu_reset(vcpu);
6632}
6633
6634void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6635{
6636        struct kvm_segment cs;
6637
6638        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6639        cs.selector = vector << 8;
6640        cs.base = vector << 12;
6641        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6642        kvm_rip_write(vcpu, 0);
6643}
6644
6645int kvm_arch_hardware_enable(void *garbage)
6646{
6647        struct kvm *kvm;
6648        struct kvm_vcpu *vcpu;
6649        int i;
6650        int ret;
6651        u64 local_tsc;
6652        u64 max_tsc = 0;
6653        bool stable, backwards_tsc = false;
6654
6655        kvm_shared_msr_cpu_online();
6656        ret = kvm_x86_ops->hardware_enable(garbage);
6657        if (ret != 0)
6658                return ret;
6659
6660        local_tsc = native_read_tsc();
6661        stable = !check_tsc_unstable();
6662        list_for_each_entry(kvm, &vm_list, vm_list) {
6663                kvm_for_each_vcpu(i, vcpu, kvm) {
6664                        if (!stable && vcpu->cpu == smp_processor_id())
6665                                set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6666                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6667                                backwards_tsc = true;
6668                                if (vcpu->arch.last_host_tsc > max_tsc)
6669                                        max_tsc = vcpu->arch.last_host_tsc;
6670                        }
6671                }
6672        }
6673
6674        /*
6675         * Sometimes, even reliable TSCs go backwards.  This happens on
6676         * platforms that reset TSC during suspend or hibernate actions, but
6677         * maintain synchronization.  We must compensate.  Fortunately, we can
6678         * detect that condition here, which happens early in CPU bringup,
6679         * before any KVM threads can be running.  Unfortunately, we can't
6680         * bring the TSCs fully up to date with real time, as we aren't yet far
6681         * enough into CPU bringup that we know how much real time has actually
6682         * elapsed; our helper function, get_kernel_ns() will be using boot
6683         * variables that haven't been updated yet.
6684         *
6685         * So we simply find the maximum observed TSC above, then record the
6686         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6687         * the adjustment will be applied.  Note that we accumulate
6688         * adjustments, in case multiple suspend cycles happen before some VCPU
6689         * gets a chance to run again.  In the event that no KVM threads get a
6690         * chance to run, we will miss the entire elapsed period, as we'll have
6691         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6692         * loose cycle time.  This isn't too big a deal, since the loss will be
6693         * uniform across all VCPUs (not to mention the scenario is extremely
6694         * unlikely). It is possible that a second hibernate recovery happens
6695         * much faster than a first, causing the observed TSC here to be
6696         * smaller; this would require additional padding adjustment, which is
6697         * why we set last_host_tsc to the local tsc observed here.
6698         *
6699         * N.B. - this code below runs only on platforms with reliable TSC,
6700         * as that is the only way backwards_tsc is set above.  Also note
6701         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6702         * have the same delta_cyc adjustment applied if backwards_tsc
6703         * is detected.  Note further, this adjustment is only done once,
6704         * as we reset last_host_tsc on all VCPUs to stop this from being
6705         * called multiple times (one for each physical CPU bringup).
6706         *
6707         * Platforms with unreliable TSCs don't have to deal with this, they
6708         * will be compensated by the logic in vcpu_load, which sets the TSC to
6709         * catchup mode.  This will catchup all VCPUs to real time, but cannot
6710         * guarantee that they stay in perfect synchronization.
6711         */
6712        if (backwards_tsc) {
6713                u64 delta_cyc = max_tsc - local_tsc;
6714                list_for_each_entry(kvm, &vm_list, vm_list) {
6715                        kvm_for_each_vcpu(i, vcpu, kvm) {
6716                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
6717                                vcpu->arch.last_host_tsc = local_tsc;
6718                                set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6719                                        &vcpu->requests);
6720                        }
6721
6722                        /*
6723                         * We have to disable TSC offset matching.. if you were
6724                         * booting a VM while issuing an S4 host suspend....
6725                         * you may have some problem.  Solving this issue is
6726                         * left as an exercise to the reader.
6727                         */
6728                        kvm->arch.last_tsc_nsec = 0;
6729                        kvm->arch.last_tsc_write = 0;
6730                }
6731
6732        }
6733        return 0;
6734}
6735
6736void kvm_arch_hardware_disable(void *garbage)
6737{
6738        kvm_x86_ops->hardware_disable(garbage);
6739        drop_user_return_notifiers(garbage);
6740}
6741
6742int kvm_arch_hardware_setup(void)
6743{
6744        return kvm_x86_ops->hardware_setup();
6745}
6746
6747void kvm_arch_hardware_unsetup(void)
6748{
6749        kvm_x86_ops->hardware_unsetup();
6750}
6751
6752void kvm_arch_check_processor_compat(void *rtn)
6753{
6754        kvm_x86_ops->check_processor_compatibility(rtn);
6755}
6756
6757bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6758{
6759        return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6760}
6761
6762struct static_key kvm_no_apic_vcpu __read_mostly;
6763
6764int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6765{
6766        struct page *page;
6767        struct kvm *kvm;
6768        int r;
6769
6770        BUG_ON(vcpu->kvm == NULL);
6771        kvm = vcpu->kvm;
6772
6773        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6774        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6775                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6776        else
6777                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6778
6779        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6780        if (!page) {
6781                r = -ENOMEM;
6782                goto fail;
6783        }
6784        vcpu->arch.pio_data = page_address(page);
6785
6786        kvm_set_tsc_khz(vcpu, max_tsc_khz);
6787
6788        r = kvm_mmu_create(vcpu);
6789        if (r < 0)
6790                goto fail_free_pio_data;
6791
6792        if (irqchip_in_kernel(kvm)) {
6793                r = kvm_create_lapic(vcpu);
6794                if (r < 0)
6795                        goto fail_mmu_destroy;
6796        } else
6797                static_key_slow_inc(&kvm_no_apic_vcpu);
6798
6799        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6800                                       GFP_KERNEL);
6801        if (!vcpu->arch.mce_banks) {
6802                r = -ENOMEM;
6803                goto fail_free_lapic;
6804        }
6805        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6806
6807        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6808                r = -ENOMEM;
6809                goto fail_free_mce_banks;
6810        }
6811
6812        r = fx_init(vcpu);
6813        if (r)
6814                goto fail_free_wbinvd_dirty_mask;
6815
6816        vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6817        vcpu->arch.pv_time_enabled = false;
6818        kvm_async_pf_hash_reset(vcpu);
6819        kvm_pmu_init(vcpu);
6820
6821        return 0;
6822fail_free_wbinvd_dirty_mask:
6823        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6824fail_free_mce_banks:
6825        kfree(vcpu->arch.mce_banks);
6826fail_free_lapic:
6827        kvm_free_lapic(vcpu);
6828fail_mmu_destroy:
6829        kvm_mmu_destroy(vcpu);
6830fail_free_pio_data:
6831        free_page((unsigned long)vcpu->arch.pio_data);
6832fail:
6833        return r;
6834}
6835
6836void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6837{
6838        int idx;
6839
6840        kvm_pmu_destroy(vcpu);
6841        kfree(vcpu->arch.mce_banks);
6842        kvm_free_lapic(vcpu);
6843        idx = srcu_read_lock(&vcpu->kvm->srcu);
6844        kvm_mmu_destroy(vcpu);
6845        srcu_read_unlock(&vcpu->kvm->srcu, idx);
6846        free_page((unsigned long)vcpu->arch.pio_data);
6847        if (!irqchip_in_kernel(vcpu->kvm))
6848                static_key_slow_dec(&kvm_no_apic_vcpu);
6849}
6850
6851int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6852{
6853        if (type)
6854                return -EINVAL;
6855
6856        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6857        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6858        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6859
6860        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6861        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6862        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6863        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6864                &kvm->arch.irq_sources_bitmap);
6865
6866        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6867        mutex_init(&kvm->arch.apic_map_lock);
6868        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6869
6870        pvclock_update_vm_gtod_copy(kvm);
6871
6872        return 0;
6873}
6874
6875static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6876{
6877        int r;
6878        r = vcpu_load(vcpu);
6879        BUG_ON(r);
6880        kvm_mmu_unload(vcpu);
6881        vcpu_put(vcpu);
6882}
6883
6884static void kvm_free_vcpus(struct kvm *kvm)
6885{
6886        unsigned int i;
6887        struct kvm_vcpu *vcpu;
6888
6889        /*
6890         * Unpin any mmu pages first.
6891         */
6892        kvm_for_each_vcpu(i, vcpu, kvm) {
6893                kvm_clear_async_pf_completion_queue(vcpu);
6894                kvm_unload_vcpu_mmu(vcpu);
6895        }
6896        kvm_for_each_vcpu(i, vcpu, kvm)
6897                kvm_arch_vcpu_free(vcpu);
6898
6899        mutex_lock(&kvm->lock);
6900        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6901                kvm->vcpus[i] = NULL;
6902
6903        atomic_set(&kvm->online_vcpus, 0);
6904        mutex_unlock(&kvm->lock);
6905}
6906
6907void kvm_arch_sync_events(struct kvm *kvm)
6908{
6909        kvm_free_all_assigned_devices(kvm);
6910        kvm_free_pit(kvm);
6911}
6912
6913void kvm_arch_destroy_vm(struct kvm *kvm)
6914{
6915        if (current->mm == kvm->mm) {
6916                /*
6917                 * Free memory regions allocated on behalf of userspace,
6918                 * unless the the memory map has changed due to process exit
6919                 * or fd copying.
6920                 */
6921                struct kvm_userspace_memory_region mem;
6922                memset(&mem, 0, sizeof(mem));
6923                mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6924                kvm_set_memory_region(kvm, &mem);
6925
6926                mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6927                kvm_set_memory_region(kvm, &mem);
6928
6929                mem.slot = TSS_PRIVATE_MEMSLOT;
6930                kvm_set_memory_region(kvm, &mem);
6931        }
6932        kvm_iommu_unmap_guest(kvm);
6933        kfree(kvm->arch.vpic);
6934        kfree(kvm->arch.vioapic);
6935        kvm_free_vcpus(kvm);
6936        if (kvm->arch.apic_access_page)
6937                put_page(kvm->arch.apic_access_page);
6938        if (kvm->arch.ept_identity_pagetable)
6939                put_page(kvm->arch.ept_identity_pagetable);
6940        kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6941}
6942
6943void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6944                           struct kvm_memory_slot *dont)
6945{
6946        int i;
6947
6948        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6949                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6950                        kvm_kvfree(free->arch.rmap[i]);
6951                        free->arch.rmap[i] = NULL;
6952                }
6953                if (i == 0)
6954                        continue;
6955
6956                if (!dont || free->arch.lpage_info[i - 1] !=
6957                             dont->arch.lpage_info[i - 1]) {
6958                        kvm_kvfree(free->arch.lpage_info[i - 1]);
6959                        free->arch.lpage_info[i - 1] = NULL;
6960                }
6961        }
6962}
6963
6964int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6965{
6966        int i;
6967
6968        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969                unsigned long ugfn;
6970                int lpages;
6971                int level = i + 1;
6972
6973                lpages = gfn_to_index(slot->base_gfn + npages - 1,
6974                                      slot->base_gfn, level) + 1;
6975
6976                slot->arch.rmap[i] =
6977                        kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6978                if (!slot->arch.rmap[i])
6979                        goto out_free;
6980                if (i == 0)
6981                        continue;
6982
6983                slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6984                                        sizeof(*slot->arch.lpage_info[i - 1]));
6985                if (!slot->arch.lpage_info[i - 1])
6986                        goto out_free;
6987
6988                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6989                        slot->arch.lpage_info[i - 1][0].write_count = 1;
6990                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6991                        slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6992                ugfn = slot->userspace_addr >> PAGE_SHIFT;
6993                /*
6994                 * If the gfn and userspace address are not aligned wrt each
6995                 * other, or if explicitly asked to, disable large page
6996                 * support for this slot
6997                 */
6998                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6999                    !kvm_largepages_enabled()) {
7000                        unsigned long j;
7001
7002                        for (j = 0; j < lpages; ++j)
7003                                slot->arch.lpage_info[i - 1][j].write_count = 1;
7004                }
7005        }
7006
7007        return 0;
7008
7009out_free:
7010        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7011                kvm_kvfree(slot->arch.rmap[i]);
7012                slot->arch.rmap[i] = NULL;
7013                if (i == 0)
7014                        continue;
7015
7016                kvm_kvfree(slot->arch.lpage_info[i - 1]);
7017                slot->arch.lpage_info[i - 1] = NULL;
7018        }
7019        return -ENOMEM;
7020}
7021
7022int kvm_arch_prepare_memory_region(struct kvm *kvm,
7023                                struct kvm_memory_slot *memslot,
7024                                struct kvm_userspace_memory_region *mem,
7025                                enum kvm_mr_change change)
7026{
7027        /*
7028         * Only private memory slots need to be mapped here since
7029         * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7030         */
7031        if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7032                unsigned long userspace_addr;
7033
7034                /*
7035                 * MAP_SHARED to prevent internal slot pages from being moved
7036                 * by fork()/COW.
7037                 */
7038                userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7039                                         PROT_READ | PROT_WRITE,
7040                                         MAP_SHARED | MAP_ANONYMOUS, 0);
7041
7042                if (IS_ERR((void *)userspace_addr))
7043                        return PTR_ERR((void *)userspace_addr);
7044
7045                memslot->userspace_addr = userspace_addr;
7046        }
7047
7048        return 0;
7049}
7050
7051void kvm_arch_commit_memory_region(struct kvm *kvm,
7052                                struct kvm_userspace_memory_region *mem,
7053                                const struct kvm_memory_slot *old,
7054                                enum kvm_mr_change change)
7055{
7056
7057        int nr_mmu_pages = 0;
7058
7059        if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7060                int ret;
7061
7062                ret = vm_munmap(old->userspace_addr,
7063                                old->npages * PAGE_SIZE);
7064                if (ret < 0)
7065                        printk(KERN_WARNING
7066                               "kvm_vm_ioctl_set_memory_region: "
7067                               "failed to munmap memory\n");
7068        }
7069
7070        if (!kvm->arch.n_requested_mmu_pages)
7071                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7072
7073        if (nr_mmu_pages)
7074                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7075        /*
7076         * Write protect all pages for dirty logging.
7077         * Existing largepage mappings are destroyed here and new ones will
7078         * not be created until the end of the logging.
7079         */
7080        if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7081                kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7082        /*
7083         * If memory slot is created, or moved, we need to clear all
7084         * mmio sptes.
7085         */
7086        kvm_mmu_invalidate_mmio_sptes(kvm);
7087}
7088
7089void kvm_arch_flush_shadow_all(struct kvm *kvm)
7090{
7091        kvm_mmu_invalidate_zap_all_pages(kvm);
7092}
7093
7094void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7095                                   struct kvm_memory_slot *slot)
7096{
7097        kvm_mmu_invalidate_zap_all_pages(kvm);
7098}
7099
7100int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7101{
7102        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7103                !vcpu->arch.apf.halted)
7104                || !list_empty_careful(&vcpu->async_pf.done)
7105                || kvm_apic_has_events(vcpu)
7106                || atomic_read(&vcpu->arch.nmi_queued) ||
7107                (kvm_arch_interrupt_allowed(vcpu) &&
7108                 kvm_cpu_has_interrupt(vcpu));
7109}
7110
7111int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7112{
7113        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7114}
7115
7116int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7117{
7118        return kvm_x86_ops->interrupt_allowed(vcpu);
7119}
7120
7121bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7122{
7123        unsigned long current_rip = kvm_rip_read(vcpu) +
7124                get_segment_base(vcpu, VCPU_SREG_CS);
7125
7126        return current_rip == linear_rip;
7127}
7128EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7129
7130unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7131{
7132        unsigned long rflags;
7133
7134        rflags = kvm_x86_ops->get_rflags(vcpu);
7135        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7136                rflags &= ~X86_EFLAGS_TF;
7137        return rflags;
7138}
7139EXPORT_SYMBOL_GPL(kvm_get_rflags);
7140
7141void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7142{
7143        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7144            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7145                rflags |= X86_EFLAGS_TF;
7146        kvm_x86_ops->set_rflags(vcpu, rflags);
7147        kvm_make_request(KVM_REQ_EVENT, vcpu);
7148}
7149EXPORT_SYMBOL_GPL(kvm_set_rflags);
7150
7151void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7152{
7153        int r;
7154
7155        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7156              is_error_page(work->page))
7157                return;
7158
7159        r = kvm_mmu_reload(vcpu);
7160        if (unlikely(r))
7161                return;
7162
7163        if (!vcpu->arch.mmu.direct_map &&
7164              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7165                return;
7166
7167        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7168}
7169
7170static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7171{
7172        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7173}
7174
7175static inline u32 kvm_async_pf_next_probe(u32 key)
7176{
7177        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7178}
7179
7180static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7181{
7182        u32 key = kvm_async_pf_hash_fn(gfn);
7183
7184        while (vcpu->arch.apf.gfns[key] != ~0)
7185                key = kvm_async_pf_next_probe(key);
7186
7187        vcpu->arch.apf.gfns[key] = gfn;
7188}
7189
7190static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7191{
7192        int i;
7193        u32 key = kvm_async_pf_hash_fn(gfn);
7194
7195        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7196                     (vcpu->arch.apf.gfns[key] != gfn &&
7197                      vcpu->arch.apf.gfns[key] != ~0); i++)
7198                key = kvm_async_pf_next_probe(key);
7199
7200        return key;
7201}
7202
7203bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7204{
7205        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7206}
7207
7208static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7209{
7210        u32 i, j, k;
7211
7212        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7213        while (true) {
7214                vcpu->arch.apf.gfns[i] = ~0;
7215                do {
7216                        j = kvm_async_pf_next_probe(j);
7217                        if (vcpu->arch.apf.gfns[j] == ~0)
7218                                return;
7219                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7220                        /*
7221                         * k lies cyclically in ]i,j]
7222                         * |    i.k.j |
7223                         * |....j i.k.| or  |.k..j i...|
7224                         */
7225                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7226                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7227                i = j;
7228        }
7229}
7230
7231static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7232{
7233
7234        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7235                                      sizeof(val));
7236}
7237
7238void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7239                                     struct kvm_async_pf *work)
7240{
7241        struct x86_exception fault;
7242
7243        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7244        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7245
7246        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7247            (vcpu->arch.apf.send_user_only &&
7248             kvm_x86_ops->get_cpl(vcpu) == 0))
7249                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7250        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7251                fault.vector = PF_VECTOR;
7252                fault.error_code_valid = true;
7253                fault.error_code = 0;
7254                fault.nested_page_fault = false;
7255                fault.address = work->arch.token;
7256                kvm_inject_page_fault(vcpu, &fault);
7257        }
7258}
7259
7260void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7261                                 struct kvm_async_pf *work)
7262{
7263        struct x86_exception fault;
7264
7265        trace_kvm_async_pf_ready(work->arch.token, work->gva);
7266        if (is_error_page(work->page))
7267                work->arch.token = ~0; /* broadcast wakeup */
7268        else
7269                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7270
7271        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7272            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7273                fault.vector = PF_VECTOR;
7274                fault.error_code_valid = true;
7275                fault.error_code = 0;
7276                fault.nested_page_fault = false;
7277                fault.address = work->arch.token;
7278                kvm_inject_page_fault(vcpu, &fault);
7279        }
7280        vcpu->arch.apf.halted = false;
7281        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7282}
7283
7284bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7285{
7286        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7287                return true;
7288        else
7289                return !kvm_event_needs_reinjection(vcpu) &&
7290                        kvm_x86_ops->interrupt_allowed(vcpu);
7291}
7292
7293EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7294EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7295EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7296EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7297EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7298EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7299EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7300EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7301EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7302EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7303EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7304EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7305EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7306