linux/arch/x86/xen/mmu.c
<<
>>
Prefs
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50#include <linux/crash_dump.h>
  51
  52#include <trace/events/xen.h>
  53
  54#include <asm/pgtable.h>
  55#include <asm/tlbflush.h>
  56#include <asm/fixmap.h>
  57#include <asm/mmu_context.h>
  58#include <asm/setup.h>
  59#include <asm/paravirt.h>
  60#include <asm/e820.h>
  61#include <asm/linkage.h>
  62#include <asm/page.h>
  63#include <asm/init.h>
  64#include <asm/pat.h>
  65#include <asm/smp.h>
  66
  67#include <asm/xen/hypercall.h>
  68#include <asm/xen/hypervisor.h>
  69
  70#include <xen/xen.h>
  71#include <xen/page.h>
  72#include <xen/interface/xen.h>
  73#include <xen/interface/hvm/hvm_op.h>
  74#include <xen/interface/version.h>
  75#include <xen/interface/memory.h>
  76#include <xen/hvc-console.h>
  77
  78#include "multicalls.h"
  79#include "mmu.h"
  80#include "debugfs.h"
  81
  82/*
  83 * Protects atomic reservation decrease/increase against concurrent increases.
  84 * Also protects non-atomic updates of current_pages and balloon lists.
  85 */
  86DEFINE_SPINLOCK(xen_reservation_lock);
  87
  88#ifdef CONFIG_X86_32
  89/*
  90 * Identity map, in addition to plain kernel map.  This needs to be
  91 * large enough to allocate page table pages to allocate the rest.
  92 * Each page can map 2MB.
  93 */
  94#define LEVEL1_IDENT_ENTRIES    (PTRS_PER_PTE * 4)
  95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  96#endif
  97#ifdef CONFIG_X86_64
  98/* l3 pud for userspace vsyscall mapping */
  99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 100#endif /* CONFIG_X86_64 */
 101
 102/*
 103 * Note about cr3 (pagetable base) values:
 104 *
 105 * xen_cr3 contains the current logical cr3 value; it contains the
 106 * last set cr3.  This may not be the current effective cr3, because
 107 * its update may be being lazily deferred.  However, a vcpu looking
 108 * at its own cr3 can use this value knowing that it everything will
 109 * be self-consistent.
 110 *
 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 112 * hypercall to set the vcpu cr3 is complete (so it may be a little
 113 * out of date, but it will never be set early).  If one vcpu is
 114 * looking at another vcpu's cr3 value, it should use this variable.
 115 */
 116DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 117DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 118
 119
 120/*
 121 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 122 * redzone above it, so round it up to a PGD boundary.
 123 */
 124#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 125
 126unsigned long arbitrary_virt_to_mfn(void *vaddr)
 127{
 128        xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 129
 130        return PFN_DOWN(maddr.maddr);
 131}
 132
 133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 134{
 135        unsigned long address = (unsigned long)vaddr;
 136        unsigned int level;
 137        pte_t *pte;
 138        unsigned offset;
 139
 140        /*
 141         * if the PFN is in the linear mapped vaddr range, we can just use
 142         * the (quick) virt_to_machine() p2m lookup
 143         */
 144        if (virt_addr_valid(vaddr))
 145                return virt_to_machine(vaddr);
 146
 147        /* otherwise we have to do a (slower) full page-table walk */
 148
 149        pte = lookup_address(address, &level);
 150        BUG_ON(pte == NULL);
 151        offset = address & ~PAGE_MASK;
 152        return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 153}
 154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 155
 156void make_lowmem_page_readonly(void *vaddr)
 157{
 158        pte_t *pte, ptev;
 159        unsigned long address = (unsigned long)vaddr;
 160        unsigned int level;
 161
 162        pte = lookup_address(address, &level);
 163        if (pte == NULL)
 164                return;         /* vaddr missing */
 165
 166        ptev = pte_wrprotect(*pte);
 167
 168        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 169                BUG();
 170}
 171
 172void make_lowmem_page_readwrite(void *vaddr)
 173{
 174        pte_t *pte, ptev;
 175        unsigned long address = (unsigned long)vaddr;
 176        unsigned int level;
 177
 178        pte = lookup_address(address, &level);
 179        if (pte == NULL)
 180                return;         /* vaddr missing */
 181
 182        ptev = pte_mkwrite(*pte);
 183
 184        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 185                BUG();
 186}
 187
 188
 189static bool xen_page_pinned(void *ptr)
 190{
 191        struct page *page = virt_to_page(ptr);
 192
 193        return PagePinned(page);
 194}
 195
 196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 197{
 198        struct multicall_space mcs;
 199        struct mmu_update *u;
 200
 201        trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 202
 203        mcs = xen_mc_entry(sizeof(*u));
 204        u = mcs.args;
 205
 206        /* ptep might be kmapped when using 32-bit HIGHPTE */
 207        u->ptr = virt_to_machine(ptep).maddr;
 208        u->val = pte_val_ma(pteval);
 209
 210        MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 211
 212        xen_mc_issue(PARAVIRT_LAZY_MMU);
 213}
 214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 215
 216static void xen_extend_mmu_update(const struct mmu_update *update)
 217{
 218        struct multicall_space mcs;
 219        struct mmu_update *u;
 220
 221        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 222
 223        if (mcs.mc != NULL) {
 224                mcs.mc->args[1]++;
 225        } else {
 226                mcs = __xen_mc_entry(sizeof(*u));
 227                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 228        }
 229
 230        u = mcs.args;
 231        *u = *update;
 232}
 233
 234static void xen_extend_mmuext_op(const struct mmuext_op *op)
 235{
 236        struct multicall_space mcs;
 237        struct mmuext_op *u;
 238
 239        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 240
 241        if (mcs.mc != NULL) {
 242                mcs.mc->args[1]++;
 243        } else {
 244                mcs = __xen_mc_entry(sizeof(*u));
 245                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 246        }
 247
 248        u = mcs.args;
 249        *u = *op;
 250}
 251
 252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 253{
 254        struct mmu_update u;
 255
 256        preempt_disable();
 257
 258        xen_mc_batch();
 259
 260        /* ptr may be ioremapped for 64-bit pagetable setup */
 261        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 262        u.val = pmd_val_ma(val);
 263        xen_extend_mmu_update(&u);
 264
 265        xen_mc_issue(PARAVIRT_LAZY_MMU);
 266
 267        preempt_enable();
 268}
 269
 270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 271{
 272        trace_xen_mmu_set_pmd(ptr, val);
 273
 274        /* If page is not pinned, we can just update the entry
 275           directly */
 276        if (!xen_page_pinned(ptr)) {
 277                *ptr = val;
 278                return;
 279        }
 280
 281        xen_set_pmd_hyper(ptr, val);
 282}
 283
 284/*
 285 * Associate a virtual page frame with a given physical page frame
 286 * and protection flags for that frame.
 287 */
 288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 289{
 290        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 291}
 292
 293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 294{
 295        struct mmu_update u;
 296
 297        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 298                return false;
 299
 300        xen_mc_batch();
 301
 302        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 303        u.val = pte_val_ma(pteval);
 304        xen_extend_mmu_update(&u);
 305
 306        xen_mc_issue(PARAVIRT_LAZY_MMU);
 307
 308        return true;
 309}
 310
 311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 312{
 313        if (!xen_batched_set_pte(ptep, pteval)) {
 314                /*
 315                 * Could call native_set_pte() here and trap and
 316                 * emulate the PTE write but with 32-bit guests this
 317                 * needs two traps (one for each of the two 32-bit
 318                 * words in the PTE) so do one hypercall directly
 319                 * instead.
 320                 */
 321                struct mmu_update u;
 322
 323                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 324                u.val = pte_val_ma(pteval);
 325                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 326        }
 327}
 328
 329static void xen_set_pte(pte_t *ptep, pte_t pteval)
 330{
 331        trace_xen_mmu_set_pte(ptep, pteval);
 332        __xen_set_pte(ptep, pteval);
 333}
 334
 335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 336                    pte_t *ptep, pte_t pteval)
 337{
 338        trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 339        __xen_set_pte(ptep, pteval);
 340}
 341
 342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 343                                 unsigned long addr, pte_t *ptep)
 344{
 345        /* Just return the pte as-is.  We preserve the bits on commit */
 346        trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 347        return *ptep;
 348}
 349
 350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 351                                 pte_t *ptep, pte_t pte)
 352{
 353        struct mmu_update u;
 354
 355        trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 356        xen_mc_batch();
 357
 358        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 359        u.val = pte_val_ma(pte);
 360        xen_extend_mmu_update(&u);
 361
 362        xen_mc_issue(PARAVIRT_LAZY_MMU);
 363}
 364
 365/* Assume pteval_t is equivalent to all the other *val_t types. */
 366static pteval_t pte_mfn_to_pfn(pteval_t val)
 367{
 368        if (val & _PAGE_PRESENT) {
 369                unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 370                unsigned long pfn = mfn_to_pfn(mfn);
 371
 372                pteval_t flags = val & PTE_FLAGS_MASK;
 373                if (unlikely(pfn == ~0))
 374                        val = flags & ~_PAGE_PRESENT;
 375                else
 376                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 377        }
 378
 379        return val;
 380}
 381
 382static pteval_t pte_pfn_to_mfn(pteval_t val)
 383{
 384        if (val & _PAGE_PRESENT) {
 385                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 386                pteval_t flags = val & PTE_FLAGS_MASK;
 387                unsigned long mfn;
 388
 389                if (!xen_feature(XENFEAT_auto_translated_physmap))
 390                        mfn = get_phys_to_machine(pfn);
 391                else
 392                        mfn = pfn;
 393                /*
 394                 * If there's no mfn for the pfn, then just create an
 395                 * empty non-present pte.  Unfortunately this loses
 396                 * information about the original pfn, so
 397                 * pte_mfn_to_pfn is asymmetric.
 398                 */
 399                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 400                        mfn = 0;
 401                        flags = 0;
 402                } else {
 403                        /*
 404                         * Paramount to do this test _after_ the
 405                         * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
 406                         * IDENTITY_FRAME_BIT resolves to true.
 407                         */
 408                        mfn &= ~FOREIGN_FRAME_BIT;
 409                        if (mfn & IDENTITY_FRAME_BIT) {
 410                                mfn &= ~IDENTITY_FRAME_BIT;
 411                                flags |= _PAGE_IOMAP;
 412                        }
 413                }
 414                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 415        }
 416
 417        return val;
 418}
 419
 420static pteval_t iomap_pte(pteval_t val)
 421{
 422        if (val & _PAGE_PRESENT) {
 423                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 424                pteval_t flags = val & PTE_FLAGS_MASK;
 425
 426                /* We assume the pte frame number is a MFN, so
 427                   just use it as-is. */
 428                val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 429        }
 430
 431        return val;
 432}
 433
 434static pteval_t xen_pte_val(pte_t pte)
 435{
 436        pteval_t pteval = pte.pte;
 437#if 0
 438        /* If this is a WC pte, convert back from Xen WC to Linux WC */
 439        if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 440                WARN_ON(!pat_enabled);
 441                pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 442        }
 443#endif
 444        if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 445                return pteval;
 446
 447        return pte_mfn_to_pfn(pteval);
 448}
 449PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 450
 451static pgdval_t xen_pgd_val(pgd_t pgd)
 452{
 453        return pte_mfn_to_pfn(pgd.pgd);
 454}
 455PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 456
 457/*
 458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 459 * are reserved for now, to correspond to the Intel-reserved PAT
 460 * types.
 461 *
 462 * We expect Linux's PAT set as follows:
 463 *
 464 * Idx  PTE flags        Linux    Xen    Default
 465 * 0                     WB       WB     WB
 466 * 1            PWT      WC       WT     WT
 467 * 2        PCD          UC-      UC-    UC-
 468 * 3        PCD PWT      UC       UC     UC
 469 * 4    PAT              WB       WC     WB
 470 * 5    PAT     PWT      WC       WP     WT
 471 * 6    PAT PCD          UC-      UC     UC-
 472 * 7    PAT PCD PWT      UC       UC     UC
 473 */
 474
 475void xen_set_pat(u64 pat)
 476{
 477        /* We expect Linux to use a PAT setting of
 478         * UC UC- WC WB (ignoring the PAT flag) */
 479        WARN_ON(pat != 0x0007010600070106ull);
 480}
 481
 482static pte_t xen_make_pte(pteval_t pte)
 483{
 484        phys_addr_t addr = (pte & PTE_PFN_MASK);
 485#if 0
 486        /* If Linux is trying to set a WC pte, then map to the Xen WC.
 487         * If _PAGE_PAT is set, then it probably means it is really
 488         * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 489         * things work out OK...
 490         *
 491         * (We should never see kernel mappings with _PAGE_PSE set,
 492         * but we could see hugetlbfs mappings, I think.).
 493         */
 494        if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 495                if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 496                        pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 497        }
 498#endif
 499        /*
 500         * Unprivileged domains are allowed to do IOMAPpings for
 501         * PCI passthrough, but not map ISA space.  The ISA
 502         * mappings are just dummy local mappings to keep other
 503         * parts of the kernel happy.
 504         */
 505        if (unlikely(pte & _PAGE_IOMAP) &&
 506            (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 507                pte = iomap_pte(pte);
 508        } else {
 509                pte &= ~_PAGE_IOMAP;
 510                pte = pte_pfn_to_mfn(pte);
 511        }
 512
 513        return native_make_pte(pte);
 514}
 515PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 516
 517static pgd_t xen_make_pgd(pgdval_t pgd)
 518{
 519        pgd = pte_pfn_to_mfn(pgd);
 520        return native_make_pgd(pgd);
 521}
 522PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 523
 524static pmdval_t xen_pmd_val(pmd_t pmd)
 525{
 526        return pte_mfn_to_pfn(pmd.pmd);
 527}
 528PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 529
 530static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 531{
 532        struct mmu_update u;
 533
 534        preempt_disable();
 535
 536        xen_mc_batch();
 537
 538        /* ptr may be ioremapped for 64-bit pagetable setup */
 539        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 540        u.val = pud_val_ma(val);
 541        xen_extend_mmu_update(&u);
 542
 543        xen_mc_issue(PARAVIRT_LAZY_MMU);
 544
 545        preempt_enable();
 546}
 547
 548static void xen_set_pud(pud_t *ptr, pud_t val)
 549{
 550        trace_xen_mmu_set_pud(ptr, val);
 551
 552        /* If page is not pinned, we can just update the entry
 553           directly */
 554        if (!xen_page_pinned(ptr)) {
 555                *ptr = val;
 556                return;
 557        }
 558
 559        xen_set_pud_hyper(ptr, val);
 560}
 561
 562#ifdef CONFIG_X86_PAE
 563static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 564{
 565        trace_xen_mmu_set_pte_atomic(ptep, pte);
 566        set_64bit((u64 *)ptep, native_pte_val(pte));
 567}
 568
 569static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 570{
 571        trace_xen_mmu_pte_clear(mm, addr, ptep);
 572        if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 573                native_pte_clear(mm, addr, ptep);
 574}
 575
 576static void xen_pmd_clear(pmd_t *pmdp)
 577{
 578        trace_xen_mmu_pmd_clear(pmdp);
 579        set_pmd(pmdp, __pmd(0));
 580}
 581#endif  /* CONFIG_X86_PAE */
 582
 583static pmd_t xen_make_pmd(pmdval_t pmd)
 584{
 585        pmd = pte_pfn_to_mfn(pmd);
 586        return native_make_pmd(pmd);
 587}
 588PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 589
 590#if PAGETABLE_LEVELS == 4
 591static pudval_t xen_pud_val(pud_t pud)
 592{
 593        return pte_mfn_to_pfn(pud.pud);
 594}
 595PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 596
 597static pud_t xen_make_pud(pudval_t pud)
 598{
 599        pud = pte_pfn_to_mfn(pud);
 600
 601        return native_make_pud(pud);
 602}
 603PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 604
 605static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 606{
 607        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 608        unsigned offset = pgd - pgd_page;
 609        pgd_t *user_ptr = NULL;
 610
 611        if (offset < pgd_index(USER_LIMIT)) {
 612                struct page *page = virt_to_page(pgd_page);
 613                user_ptr = (pgd_t *)page->private;
 614                if (user_ptr)
 615                        user_ptr += offset;
 616        }
 617
 618        return user_ptr;
 619}
 620
 621static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 622{
 623        struct mmu_update u;
 624
 625        u.ptr = virt_to_machine(ptr).maddr;
 626        u.val = pgd_val_ma(val);
 627        xen_extend_mmu_update(&u);
 628}
 629
 630/*
 631 * Raw hypercall-based set_pgd, intended for in early boot before
 632 * there's a page structure.  This implies:
 633 *  1. The only existing pagetable is the kernel's
 634 *  2. It is always pinned
 635 *  3. It has no user pagetable attached to it
 636 */
 637static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 638{
 639        preempt_disable();
 640
 641        xen_mc_batch();
 642
 643        __xen_set_pgd_hyper(ptr, val);
 644
 645        xen_mc_issue(PARAVIRT_LAZY_MMU);
 646
 647        preempt_enable();
 648}
 649
 650static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 651{
 652        pgd_t *user_ptr = xen_get_user_pgd(ptr);
 653
 654        trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 655
 656        /* If page is not pinned, we can just update the entry
 657           directly */
 658        if (!xen_page_pinned(ptr)) {
 659                *ptr = val;
 660                if (user_ptr) {
 661                        WARN_ON(xen_page_pinned(user_ptr));
 662                        *user_ptr = val;
 663                }
 664                return;
 665        }
 666
 667        /* If it's pinned, then we can at least batch the kernel and
 668           user updates together. */
 669        xen_mc_batch();
 670
 671        __xen_set_pgd_hyper(ptr, val);
 672        if (user_ptr)
 673                __xen_set_pgd_hyper(user_ptr, val);
 674
 675        xen_mc_issue(PARAVIRT_LAZY_MMU);
 676}
 677#endif  /* PAGETABLE_LEVELS == 4 */
 678
 679/*
 680 * (Yet another) pagetable walker.  This one is intended for pinning a
 681 * pagetable.  This means that it walks a pagetable and calls the
 682 * callback function on each page it finds making up the page table,
 683 * at every level.  It walks the entire pagetable, but it only bothers
 684 * pinning pte pages which are below limit.  In the normal case this
 685 * will be STACK_TOP_MAX, but at boot we need to pin up to
 686 * FIXADDR_TOP.
 687 *
 688 * For 32-bit the important bit is that we don't pin beyond there,
 689 * because then we start getting into Xen's ptes.
 690 *
 691 * For 64-bit, we must skip the Xen hole in the middle of the address
 692 * space, just after the big x86-64 virtual hole.
 693 */
 694static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 695                          int (*func)(struct mm_struct *mm, struct page *,
 696                                      enum pt_level),
 697                          unsigned long limit)
 698{
 699        int flush = 0;
 700        unsigned hole_low, hole_high;
 701        unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 702        unsigned pgdidx, pudidx, pmdidx;
 703
 704        /* The limit is the last byte to be touched */
 705        limit--;
 706        BUG_ON(limit >= FIXADDR_TOP);
 707
 708        if (xen_feature(XENFEAT_auto_translated_physmap))
 709                return 0;
 710
 711        /*
 712         * 64-bit has a great big hole in the middle of the address
 713         * space, which contains the Xen mappings.  On 32-bit these
 714         * will end up making a zero-sized hole and so is a no-op.
 715         */
 716        hole_low = pgd_index(USER_LIMIT);
 717        hole_high = pgd_index(PAGE_OFFSET);
 718
 719        pgdidx_limit = pgd_index(limit);
 720#if PTRS_PER_PUD > 1
 721        pudidx_limit = pud_index(limit);
 722#else
 723        pudidx_limit = 0;
 724#endif
 725#if PTRS_PER_PMD > 1
 726        pmdidx_limit = pmd_index(limit);
 727#else
 728        pmdidx_limit = 0;
 729#endif
 730
 731        for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 732                pud_t *pud;
 733
 734                if (pgdidx >= hole_low && pgdidx < hole_high)
 735                        continue;
 736
 737                if (!pgd_val(pgd[pgdidx]))
 738                        continue;
 739
 740                pud = pud_offset(&pgd[pgdidx], 0);
 741
 742                if (PTRS_PER_PUD > 1) /* not folded */
 743                        flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 744
 745                for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 746                        pmd_t *pmd;
 747
 748                        if (pgdidx == pgdidx_limit &&
 749                            pudidx > pudidx_limit)
 750                                goto out;
 751
 752                        if (pud_none(pud[pudidx]))
 753                                continue;
 754
 755                        pmd = pmd_offset(&pud[pudidx], 0);
 756
 757                        if (PTRS_PER_PMD > 1) /* not folded */
 758                                flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 759
 760                        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 761                                struct page *pte;
 762
 763                                if (pgdidx == pgdidx_limit &&
 764                                    pudidx == pudidx_limit &&
 765                                    pmdidx > pmdidx_limit)
 766                                        goto out;
 767
 768                                if (pmd_none(pmd[pmdidx]))
 769                                        continue;
 770
 771                                pte = pmd_page(pmd[pmdidx]);
 772                                flush |= (*func)(mm, pte, PT_PTE);
 773                        }
 774                }
 775        }
 776
 777out:
 778        /* Do the top level last, so that the callbacks can use it as
 779           a cue to do final things like tlb flushes. */
 780        flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 781
 782        return flush;
 783}
 784
 785static int xen_pgd_walk(struct mm_struct *mm,
 786                        int (*func)(struct mm_struct *mm, struct page *,
 787                                    enum pt_level),
 788                        unsigned long limit)
 789{
 790        return __xen_pgd_walk(mm, mm->pgd, func, limit);
 791}
 792
 793/* If we're using split pte locks, then take the page's lock and
 794   return a pointer to it.  Otherwise return NULL. */
 795static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 796{
 797        spinlock_t *ptl = NULL;
 798
 799#if USE_SPLIT_PTLOCKS
 800        ptl = __pte_lockptr(page);
 801        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 802#endif
 803
 804        return ptl;
 805}
 806
 807static void xen_pte_unlock(void *v)
 808{
 809        spinlock_t *ptl = v;
 810        spin_unlock(ptl);
 811}
 812
 813static void xen_do_pin(unsigned level, unsigned long pfn)
 814{
 815        struct mmuext_op op;
 816
 817        op.cmd = level;
 818        op.arg1.mfn = pfn_to_mfn(pfn);
 819
 820        xen_extend_mmuext_op(&op);
 821}
 822
 823static int xen_pin_page(struct mm_struct *mm, struct page *page,
 824                        enum pt_level level)
 825{
 826        unsigned pgfl = TestSetPagePinned(page);
 827        int flush;
 828
 829        if (pgfl)
 830                flush = 0;              /* already pinned */
 831        else if (PageHighMem(page))
 832                /* kmaps need flushing if we found an unpinned
 833                   highpage */
 834                flush = 1;
 835        else {
 836                void *pt = lowmem_page_address(page);
 837                unsigned long pfn = page_to_pfn(page);
 838                struct multicall_space mcs = __xen_mc_entry(0);
 839                spinlock_t *ptl;
 840
 841                flush = 0;
 842
 843                /*
 844                 * We need to hold the pagetable lock between the time
 845                 * we make the pagetable RO and when we actually pin
 846                 * it.  If we don't, then other users may come in and
 847                 * attempt to update the pagetable by writing it,
 848                 * which will fail because the memory is RO but not
 849                 * pinned, so Xen won't do the trap'n'emulate.
 850                 *
 851                 * If we're using split pte locks, we can't hold the
 852                 * entire pagetable's worth of locks during the
 853                 * traverse, because we may wrap the preempt count (8
 854                 * bits).  The solution is to mark RO and pin each PTE
 855                 * page while holding the lock.  This means the number
 856                 * of locks we end up holding is never more than a
 857                 * batch size (~32 entries, at present).
 858                 *
 859                 * If we're not using split pte locks, we needn't pin
 860                 * the PTE pages independently, because we're
 861                 * protected by the overall pagetable lock.
 862                 */
 863                ptl = NULL;
 864                if (level == PT_PTE)
 865                        ptl = xen_pte_lock(page, mm);
 866
 867                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 868                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 869                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 870
 871                if (ptl) {
 872                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 873
 874                        /* Queue a deferred unlock for when this batch
 875                           is completed. */
 876                        xen_mc_callback(xen_pte_unlock, ptl);
 877                }
 878        }
 879
 880        return flush;
 881}
 882
 883/* This is called just after a mm has been created, but it has not
 884   been used yet.  We need to make sure that its pagetable is all
 885   read-only, and can be pinned. */
 886static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 887{
 888        trace_xen_mmu_pgd_pin(mm, pgd);
 889
 890        xen_mc_batch();
 891
 892        if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 893                /* re-enable interrupts for flushing */
 894                xen_mc_issue(0);
 895
 896                kmap_flush_unused();
 897
 898                xen_mc_batch();
 899        }
 900
 901#ifdef CONFIG_X86_64
 902        {
 903                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 904
 905                xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 906
 907                if (user_pgd) {
 908                        xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 909                        xen_do_pin(MMUEXT_PIN_L4_TABLE,
 910                                   PFN_DOWN(__pa(user_pgd)));
 911                }
 912        }
 913#else /* CONFIG_X86_32 */
 914#ifdef CONFIG_X86_PAE
 915        /* Need to make sure unshared kernel PMD is pinnable */
 916        xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 917                     PT_PMD);
 918#endif
 919        xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 920#endif /* CONFIG_X86_64 */
 921        xen_mc_issue(0);
 922}
 923
 924static void xen_pgd_pin(struct mm_struct *mm)
 925{
 926        __xen_pgd_pin(mm, mm->pgd);
 927}
 928
 929/*
 930 * On save, we need to pin all pagetables to make sure they get their
 931 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 932 * them (unpinned pgds are not currently in use, probably because the
 933 * process is under construction or destruction).
 934 *
 935 * Expected to be called in stop_machine() ("equivalent to taking
 936 * every spinlock in the system"), so the locking doesn't really
 937 * matter all that much.
 938 */
 939void xen_mm_pin_all(void)
 940{
 941        struct page *page;
 942
 943        spin_lock(&pgd_lock);
 944
 945        list_for_each_entry(page, &pgd_list, lru) {
 946                if (!PagePinned(page)) {
 947                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 948                        SetPageSavePinned(page);
 949                }
 950        }
 951
 952        spin_unlock(&pgd_lock);
 953}
 954
 955/*
 956 * The init_mm pagetable is really pinned as soon as its created, but
 957 * that's before we have page structures to store the bits.  So do all
 958 * the book-keeping now.
 959 */
 960static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 961                                  enum pt_level level)
 962{
 963        SetPagePinned(page);
 964        return 0;
 965}
 966
 967static void __init xen_mark_init_mm_pinned(void)
 968{
 969        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 970}
 971
 972static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 973                          enum pt_level level)
 974{
 975        unsigned pgfl = TestClearPagePinned(page);
 976
 977        if (pgfl && !PageHighMem(page)) {
 978                void *pt = lowmem_page_address(page);
 979                unsigned long pfn = page_to_pfn(page);
 980                spinlock_t *ptl = NULL;
 981                struct multicall_space mcs;
 982
 983                /*
 984                 * Do the converse to pin_page.  If we're using split
 985                 * pte locks, we must be holding the lock for while
 986                 * the pte page is unpinned but still RO to prevent
 987                 * concurrent updates from seeing it in this
 988                 * partially-pinned state.
 989                 */
 990                if (level == PT_PTE) {
 991                        ptl = xen_pte_lock(page, mm);
 992
 993                        if (ptl)
 994                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 995                }
 996
 997                mcs = __xen_mc_entry(0);
 998
 999                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000                                        pfn_pte(pfn, PAGE_KERNEL),
1001                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003                if (ptl) {
1004                        /* unlock when batch completed */
1005                        xen_mc_callback(xen_pte_unlock, ptl);
1006                }
1007        }
1008
1009        return 0;               /* never need to flush on unpin */
1010}
1011
1012/* Release a pagetables pages back as normal RW */
1013static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014{
1015        trace_xen_mmu_pgd_unpin(mm, pgd);
1016
1017        xen_mc_batch();
1018
1019        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020
1021#ifdef CONFIG_X86_64
1022        {
1023                pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024
1025                if (user_pgd) {
1026                        xen_do_pin(MMUEXT_UNPIN_TABLE,
1027                                   PFN_DOWN(__pa(user_pgd)));
1028                        xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029                }
1030        }
1031#endif
1032
1033#ifdef CONFIG_X86_PAE
1034        /* Need to make sure unshared kernel PMD is unpinned */
1035        xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036                       PT_PMD);
1037#endif
1038
1039        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040
1041        xen_mc_issue(0);
1042}
1043
1044static void xen_pgd_unpin(struct mm_struct *mm)
1045{
1046        __xen_pgd_unpin(mm, mm->pgd);
1047}
1048
1049/*
1050 * On resume, undo any pinning done at save, so that the rest of the
1051 * kernel doesn't see any unexpected pinned pagetables.
1052 */
1053void xen_mm_unpin_all(void)
1054{
1055        struct page *page;
1056
1057        spin_lock(&pgd_lock);
1058
1059        list_for_each_entry(page, &pgd_list, lru) {
1060                if (PageSavePinned(page)) {
1061                        BUG_ON(!PagePinned(page));
1062                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063                        ClearPageSavePinned(page);
1064                }
1065        }
1066
1067        spin_unlock(&pgd_lock);
1068}
1069
1070static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071{
1072        spin_lock(&next->page_table_lock);
1073        xen_pgd_pin(next);
1074        spin_unlock(&next->page_table_lock);
1075}
1076
1077static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078{
1079        spin_lock(&mm->page_table_lock);
1080        xen_pgd_pin(mm);
1081        spin_unlock(&mm->page_table_lock);
1082}
1083
1084
1085#ifdef CONFIG_SMP
1086/* Another cpu may still have their %cr3 pointing at the pagetable, so
1087   we need to repoint it somewhere else before we can unpin it. */
1088static void drop_other_mm_ref(void *info)
1089{
1090        struct mm_struct *mm = info;
1091        struct mm_struct *active_mm;
1092
1093        active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094
1095        if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096                leave_mm(smp_processor_id());
1097
1098        /* If this cpu still has a stale cr3 reference, then make sure
1099           it has been flushed. */
1100        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101                load_cr3(swapper_pg_dir);
1102}
1103
1104static void xen_drop_mm_ref(struct mm_struct *mm)
1105{
1106        cpumask_var_t mask;
1107        unsigned cpu;
1108
1109        if (current->active_mm == mm) {
1110                if (current->mm == mm)
1111                        load_cr3(swapper_pg_dir);
1112                else
1113                        leave_mm(smp_processor_id());
1114        }
1115
1116        /* Get the "official" set of cpus referring to our pagetable. */
1117        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118                for_each_online_cpu(cpu) {
1119                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121                                continue;
1122                        smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123                }
1124                return;
1125        }
1126        cpumask_copy(mask, mm_cpumask(mm));
1127
1128        /* It's possible that a vcpu may have a stale reference to our
1129           cr3, because its in lazy mode, and it hasn't yet flushed
1130           its set of pending hypercalls yet.  In this case, we can
1131           look at its actual current cr3 value, and force it to flush
1132           if needed. */
1133        for_each_online_cpu(cpu) {
1134                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135                        cpumask_set_cpu(cpu, mask);
1136        }
1137
1138        if (!cpumask_empty(mask))
1139                smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140        free_cpumask_var(mask);
1141}
1142#else
1143static void xen_drop_mm_ref(struct mm_struct *mm)
1144{
1145        if (current->active_mm == mm)
1146                load_cr3(swapper_pg_dir);
1147}
1148#endif
1149
1150/*
1151 * While a process runs, Xen pins its pagetables, which means that the
1152 * hypervisor forces it to be read-only, and it controls all updates
1153 * to it.  This means that all pagetable updates have to go via the
1154 * hypervisor, which is moderately expensive.
1155 *
1156 * Since we're pulling the pagetable down, we switch to use init_mm,
1157 * unpin old process pagetable and mark it all read-write, which
1158 * allows further operations on it to be simple memory accesses.
1159 *
1160 * The only subtle point is that another CPU may be still using the
1161 * pagetable because of lazy tlb flushing.  This means we need need to
1162 * switch all CPUs off this pagetable before we can unpin it.
1163 */
1164static void xen_exit_mmap(struct mm_struct *mm)
1165{
1166        get_cpu();              /* make sure we don't move around */
1167        xen_drop_mm_ref(mm);
1168        put_cpu();
1169
1170        spin_lock(&mm->page_table_lock);
1171
1172        /* pgd may not be pinned in the error exit path of execve */
1173        if (xen_page_pinned(mm->pgd))
1174                xen_pgd_unpin(mm);
1175
1176        spin_unlock(&mm->page_table_lock);
1177}
1178
1179static void xen_post_allocator_init(void);
1180
1181#ifdef CONFIG_X86_64
1182static void __init xen_cleanhighmap(unsigned long vaddr,
1183                                    unsigned long vaddr_end)
1184{
1185        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1186        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1187
1188        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1189         * We include the PMD passed in on _both_ boundaries. */
1190        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1191                        pmd++, vaddr += PMD_SIZE) {
1192                if (pmd_none(*pmd))
1193                        continue;
1194                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1195                        set_pmd(pmd, __pmd(0));
1196        }
1197        /* In case we did something silly, we should crash in this function
1198         * instead of somewhere later and be confusing. */
1199        xen_mc_flush();
1200}
1201#endif
1202static void __init xen_pagetable_init(void)
1203{
1204#ifdef CONFIG_X86_64
1205        unsigned long size;
1206        unsigned long addr;
1207#endif
1208        paging_init();
1209        xen_setup_shared_info();
1210#ifdef CONFIG_X86_64
1211        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1212                unsigned long new_mfn_list;
1213
1214                size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1215
1216                /* On 32-bit, we get zero so this never gets executed. */
1217                new_mfn_list = xen_revector_p2m_tree();
1218                if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1219                        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1220                        memset((void *)xen_start_info->mfn_list, 0xff, size);
1221
1222                        /* We should be in __ka space. */
1223                        BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1224                        addr = xen_start_info->mfn_list;
1225                        /* We roundup to the PMD, which means that if anybody at this stage is
1226                         * using the __ka address of xen_start_info or xen_start_info->shared_info
1227                         * they are in going to crash. Fortunatly we have already revectored
1228                         * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1229                        size = roundup(size, PMD_SIZE);
1230                        xen_cleanhighmap(addr, addr + size);
1231
1232                        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1233                        memblock_free(__pa(xen_start_info->mfn_list), size);
1234                        /* And revector! Bye bye old array */
1235                        xen_start_info->mfn_list = new_mfn_list;
1236                } else
1237                        goto skip;
1238        }
1239        /* At this stage, cleanup_highmap has already cleaned __ka space
1240         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1241         * the ramdisk). We continue on, erasing PMD entries that point to page
1242         * tables - do note that they are accessible at this stage via __va.
1243         * For good measure we also round up to the PMD - which means that if
1244         * anybody is using __ka address to the initial boot-stack - and try
1245         * to use it - they are going to crash. The xen_start_info has been
1246         * taken care of already in xen_setup_kernel_pagetable. */
1247        addr = xen_start_info->pt_base;
1248        size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1249
1250        xen_cleanhighmap(addr, addr + size);
1251        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1252#ifdef DEBUG
1253        /* This is superflous and is not neccessary, but you know what
1254         * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1255         * anything at this stage. */
1256        xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1257#endif
1258skip:
1259#endif
1260        xen_post_allocator_init();
1261}
1262static void xen_write_cr2(unsigned long cr2)
1263{
1264        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1265}
1266
1267static unsigned long xen_read_cr2(void)
1268{
1269        return this_cpu_read(xen_vcpu)->arch.cr2;
1270}
1271
1272unsigned long xen_read_cr2_direct(void)
1273{
1274        return this_cpu_read(xen_vcpu_info.arch.cr2);
1275}
1276
1277void xen_flush_tlb_all(void)
1278{
1279        struct mmuext_op *op;
1280        struct multicall_space mcs;
1281
1282        trace_xen_mmu_flush_tlb_all(0);
1283
1284        preempt_disable();
1285
1286        mcs = xen_mc_entry(sizeof(*op));
1287
1288        op = mcs.args;
1289        op->cmd = MMUEXT_TLB_FLUSH_ALL;
1290        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1291
1292        xen_mc_issue(PARAVIRT_LAZY_MMU);
1293
1294        preempt_enable();
1295}
1296static void xen_flush_tlb(void)
1297{
1298        struct mmuext_op *op;
1299        struct multicall_space mcs;
1300
1301        trace_xen_mmu_flush_tlb(0);
1302
1303        preempt_disable();
1304
1305        mcs = xen_mc_entry(sizeof(*op));
1306
1307        op = mcs.args;
1308        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1309        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1310
1311        xen_mc_issue(PARAVIRT_LAZY_MMU);
1312
1313        preempt_enable();
1314}
1315
1316static void xen_flush_tlb_single(unsigned long addr)
1317{
1318        struct mmuext_op *op;
1319        struct multicall_space mcs;
1320
1321        trace_xen_mmu_flush_tlb_single(addr);
1322
1323        preempt_disable();
1324
1325        mcs = xen_mc_entry(sizeof(*op));
1326        op = mcs.args;
1327        op->cmd = MMUEXT_INVLPG_LOCAL;
1328        op->arg1.linear_addr = addr & PAGE_MASK;
1329        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1330
1331        xen_mc_issue(PARAVIRT_LAZY_MMU);
1332
1333        preempt_enable();
1334}
1335
1336static void xen_flush_tlb_others(const struct cpumask *cpus,
1337                                 struct mm_struct *mm, unsigned long start,
1338                                 unsigned long end)
1339{
1340        struct {
1341                struct mmuext_op op;
1342#ifdef CONFIG_SMP
1343                DECLARE_BITMAP(mask, num_processors);
1344#else
1345                DECLARE_BITMAP(mask, NR_CPUS);
1346#endif
1347        } *args;
1348        struct multicall_space mcs;
1349
1350        trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1351
1352        if (cpumask_empty(cpus))
1353                return;         /* nothing to do */
1354
1355        mcs = xen_mc_entry(sizeof(*args));
1356        args = mcs.args;
1357        args->op.arg2.vcpumask = to_cpumask(args->mask);
1358
1359        /* Remove us, and any offline CPUS. */
1360        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1361        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1362
1363        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1364        if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1365                args->op.cmd = MMUEXT_INVLPG_MULTI;
1366                args->op.arg1.linear_addr = start;
1367        }
1368
1369        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1370
1371        xen_mc_issue(PARAVIRT_LAZY_MMU);
1372}
1373
1374static unsigned long xen_read_cr3(void)
1375{
1376        return this_cpu_read(xen_cr3);
1377}
1378
1379static void set_current_cr3(void *v)
1380{
1381        this_cpu_write(xen_current_cr3, (unsigned long)v);
1382}
1383
1384static void __xen_write_cr3(bool kernel, unsigned long cr3)
1385{
1386        struct mmuext_op op;
1387        unsigned long mfn;
1388
1389        trace_xen_mmu_write_cr3(kernel, cr3);
1390
1391        if (cr3)
1392                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1393        else
1394                mfn = 0;
1395
1396        WARN_ON(mfn == 0 && kernel);
1397
1398        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1399        op.arg1.mfn = mfn;
1400
1401        xen_extend_mmuext_op(&op);
1402
1403        if (kernel) {
1404                this_cpu_write(xen_cr3, cr3);
1405
1406                /* Update xen_current_cr3 once the batch has actually
1407                   been submitted. */
1408                xen_mc_callback(set_current_cr3, (void *)cr3);
1409        }
1410}
1411static void xen_write_cr3(unsigned long cr3)
1412{
1413        BUG_ON(preemptible());
1414
1415        xen_mc_batch();  /* disables interrupts */
1416
1417        /* Update while interrupts are disabled, so its atomic with
1418           respect to ipis */
1419        this_cpu_write(xen_cr3, cr3);
1420
1421        __xen_write_cr3(true, cr3);
1422
1423#ifdef CONFIG_X86_64
1424        {
1425                pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1426                if (user_pgd)
1427                        __xen_write_cr3(false, __pa(user_pgd));
1428                else
1429                        __xen_write_cr3(false, 0);
1430        }
1431#endif
1432
1433        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1434}
1435
1436#ifdef CONFIG_X86_64
1437/*
1438 * At the start of the day - when Xen launches a guest, it has already
1439 * built pagetables for the guest. We diligently look over them
1440 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1441 * init_level4_pgt and its friends. Then when we are happy we load
1442 * the new init_level4_pgt - and continue on.
1443 *
1444 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1445 * up the rest of the pagetables. When it has completed it loads the cr3.
1446 * N.B. that baremetal would start at 'start_kernel' (and the early
1447 * #PF handler would create bootstrap pagetables) - so we are running
1448 * with the same assumptions as what to do when write_cr3 is executed
1449 * at this point.
1450 *
1451 * Since there are no user-page tables at all, we have two variants
1452 * of xen_write_cr3 - the early bootup (this one), and the late one
1453 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1454 * the Linux kernel and user-space are both in ring 3 while the
1455 * hypervisor is in ring 0.
1456 */
1457static void __init xen_write_cr3_init(unsigned long cr3)
1458{
1459        BUG_ON(preemptible());
1460
1461        xen_mc_batch();  /* disables interrupts */
1462
1463        /* Update while interrupts are disabled, so its atomic with
1464           respect to ipis */
1465        this_cpu_write(xen_cr3, cr3);
1466
1467        __xen_write_cr3(true, cr3);
1468
1469        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1470}
1471#endif
1472
1473static int xen_pgd_alloc(struct mm_struct *mm)
1474{
1475        pgd_t *pgd = mm->pgd;
1476        int ret = 0;
1477
1478        BUG_ON(PagePinned(virt_to_page(pgd)));
1479
1480#ifdef CONFIG_X86_64
1481        {
1482                struct page *page = virt_to_page(pgd);
1483                pgd_t *user_pgd;
1484
1485                BUG_ON(page->private != 0);
1486
1487                ret = -ENOMEM;
1488
1489                user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1490                page->private = (unsigned long)user_pgd;
1491
1492                if (user_pgd != NULL) {
1493                        user_pgd[pgd_index(VSYSCALL_START)] =
1494                                __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1495                        ret = 0;
1496                }
1497
1498                BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1499        }
1500#endif
1501
1502        return ret;
1503}
1504
1505static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1506{
1507#ifdef CONFIG_X86_64
1508        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1509
1510        if (user_pgd)
1511                free_page((unsigned long)user_pgd);
1512#endif
1513}
1514
1515#ifdef CONFIG_X86_32
1516static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1517{
1518        /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1519        if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1520                pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1521                               pte_val_ma(pte));
1522
1523        return pte;
1524}
1525#else /* CONFIG_X86_64 */
1526static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1527{
1528        return pte;
1529}
1530#endif /* CONFIG_X86_64 */
1531
1532/*
1533 * Init-time set_pte while constructing initial pagetables, which
1534 * doesn't allow RO page table pages to be remapped RW.
1535 *
1536 * If there is no MFN for this PFN then this page is initially
1537 * ballooned out so clear the PTE (as in decrease_reservation() in
1538 * drivers/xen/balloon.c).
1539 *
1540 * Many of these PTE updates are done on unpinned and writable pages
1541 * and doing a hypercall for these is unnecessary and expensive.  At
1542 * this point it is not possible to tell if a page is pinned or not,
1543 * so always write the PTE directly and rely on Xen trapping and
1544 * emulating any updates as necessary.
1545 */
1546static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1547{
1548        if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1549                pte = mask_rw_pte(ptep, pte);
1550        else
1551                pte = __pte_ma(0);
1552
1553        native_set_pte(ptep, pte);
1554}
1555
1556static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1557{
1558        struct mmuext_op op;
1559        op.cmd = cmd;
1560        op.arg1.mfn = pfn_to_mfn(pfn);
1561        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1562                BUG();
1563}
1564
1565/* Early in boot, while setting up the initial pagetable, assume
1566   everything is pinned. */
1567static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1568{
1569#ifdef CONFIG_FLATMEM
1570        BUG_ON(mem_map);        /* should only be used early */
1571#endif
1572        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1573        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1574}
1575
1576/* Used for pmd and pud */
1577static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1578{
1579#ifdef CONFIG_FLATMEM
1580        BUG_ON(mem_map);        /* should only be used early */
1581#endif
1582        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1583}
1584
1585/* Early release_pte assumes that all pts are pinned, since there's
1586   only init_mm and anything attached to that is pinned. */
1587static void __init xen_release_pte_init(unsigned long pfn)
1588{
1589        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1590        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1591}
1592
1593static void __init xen_release_pmd_init(unsigned long pfn)
1594{
1595        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1596}
1597
1598static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1599{
1600        struct multicall_space mcs;
1601        struct mmuext_op *op;
1602
1603        mcs = __xen_mc_entry(sizeof(*op));
1604        op = mcs.args;
1605        op->cmd = cmd;
1606        op->arg1.mfn = pfn_to_mfn(pfn);
1607
1608        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1609}
1610
1611static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1612{
1613        struct multicall_space mcs;
1614        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1615
1616        mcs = __xen_mc_entry(0);
1617        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1618                                pfn_pte(pfn, prot), 0);
1619}
1620
1621/* This needs to make sure the new pte page is pinned iff its being
1622   attached to a pinned pagetable. */
1623static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1624                                    unsigned level)
1625{
1626        bool pinned = PagePinned(virt_to_page(mm->pgd));
1627
1628        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1629
1630        if (pinned) {
1631                struct page *page = pfn_to_page(pfn);
1632
1633                SetPagePinned(page);
1634
1635                if (!PageHighMem(page)) {
1636                        xen_mc_batch();
1637
1638                        __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1639
1640                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1641                                __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1642
1643                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1644                } else {
1645                        /* make sure there are no stray mappings of
1646                           this page */
1647                        kmap_flush_unused();
1648                }
1649        }
1650}
1651
1652static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1653{
1654        xen_alloc_ptpage(mm, pfn, PT_PTE);
1655}
1656
1657static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1658{
1659        xen_alloc_ptpage(mm, pfn, PT_PMD);
1660}
1661
1662/* This should never happen until we're OK to use struct page */
1663static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1664{
1665        struct page *page = pfn_to_page(pfn);
1666        bool pinned = PagePinned(page);
1667
1668        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1669
1670        if (pinned) {
1671                if (!PageHighMem(page)) {
1672                        xen_mc_batch();
1673
1674                        if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1675                                __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1676
1677                        __set_pfn_prot(pfn, PAGE_KERNEL);
1678
1679                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1680                }
1681                ClearPagePinned(page);
1682        }
1683}
1684
1685static void xen_release_pte(unsigned long pfn)
1686{
1687        xen_release_ptpage(pfn, PT_PTE);
1688}
1689
1690static void xen_release_pmd(unsigned long pfn)
1691{
1692        xen_release_ptpage(pfn, PT_PMD);
1693}
1694
1695#if PAGETABLE_LEVELS == 4
1696static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1697{
1698        xen_alloc_ptpage(mm, pfn, PT_PUD);
1699}
1700
1701static void xen_release_pud(unsigned long pfn)
1702{
1703        xen_release_ptpage(pfn, PT_PUD);
1704}
1705#endif
1706
1707void __init xen_reserve_top(void)
1708{
1709#ifdef CONFIG_X86_32
1710        unsigned long top = HYPERVISOR_VIRT_START;
1711        struct xen_platform_parameters pp;
1712
1713        if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1714                top = pp.virt_start;
1715
1716        reserve_top_address(-top);
1717#endif  /* CONFIG_X86_32 */
1718}
1719
1720/*
1721 * Like __va(), but returns address in the kernel mapping (which is
1722 * all we have until the physical memory mapping has been set up.
1723 */
1724static void *__ka(phys_addr_t paddr)
1725{
1726#ifdef CONFIG_X86_64
1727        return (void *)(paddr + __START_KERNEL_map);
1728#else
1729        return __va(paddr);
1730#endif
1731}
1732
1733/* Convert a machine address to physical address */
1734static unsigned long m2p(phys_addr_t maddr)
1735{
1736        phys_addr_t paddr;
1737
1738        maddr &= PTE_PFN_MASK;
1739        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1740
1741        return paddr;
1742}
1743
1744/* Convert a machine address to kernel virtual */
1745static void *m2v(phys_addr_t maddr)
1746{
1747        return __ka(m2p(maddr));
1748}
1749
1750/* Set the page permissions on an identity-mapped pages */
1751static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1752{
1753        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1754        pte_t pte = pfn_pte(pfn, prot);
1755
1756        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1757                BUG();
1758}
1759static void set_page_prot(void *addr, pgprot_t prot)
1760{
1761        return set_page_prot_flags(addr, prot, UVMF_NONE);
1762}
1763#ifdef CONFIG_X86_32
1764static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1765{
1766        unsigned pmdidx, pteidx;
1767        unsigned ident_pte;
1768        unsigned long pfn;
1769
1770        level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1771                                      PAGE_SIZE);
1772
1773        ident_pte = 0;
1774        pfn = 0;
1775        for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1776                pte_t *pte_page;
1777
1778                /* Reuse or allocate a page of ptes */
1779                if (pmd_present(pmd[pmdidx]))
1780                        pte_page = m2v(pmd[pmdidx].pmd);
1781                else {
1782                        /* Check for free pte pages */
1783                        if (ident_pte == LEVEL1_IDENT_ENTRIES)
1784                                break;
1785
1786                        pte_page = &level1_ident_pgt[ident_pte];
1787                        ident_pte += PTRS_PER_PTE;
1788
1789                        pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1790                }
1791
1792                /* Install mappings */
1793                for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1794                        pte_t pte;
1795
1796#ifdef CONFIG_X86_32
1797                        if (pfn > max_pfn_mapped)
1798                                max_pfn_mapped = pfn;
1799#endif
1800
1801                        if (!pte_none(pte_page[pteidx]))
1802                                continue;
1803
1804                        pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1805                        pte_page[pteidx] = pte;
1806                }
1807        }
1808
1809        for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1810                set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1811
1812        set_page_prot(pmd, PAGE_KERNEL_RO);
1813}
1814#endif
1815void __init xen_setup_machphys_mapping(void)
1816{
1817        struct xen_machphys_mapping mapping;
1818
1819        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1820                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1821                machine_to_phys_nr = mapping.max_mfn + 1;
1822        } else {
1823                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1824        }
1825#ifdef CONFIG_X86_32
1826        WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1827                < machine_to_phys_mapping);
1828#endif
1829}
1830
1831#ifdef CONFIG_X86_64
1832static void convert_pfn_mfn(void *v)
1833{
1834        pte_t *pte = v;
1835        int i;
1836
1837        /* All levels are converted the same way, so just treat them
1838           as ptes. */
1839        for (i = 0; i < PTRS_PER_PTE; i++)
1840                pte[i] = xen_make_pte(pte[i].pte);
1841}
1842static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1843                                 unsigned long addr)
1844{
1845        if (*pt_base == PFN_DOWN(__pa(addr))) {
1846                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1847                clear_page((void *)addr);
1848                (*pt_base)++;
1849        }
1850        if (*pt_end == PFN_DOWN(__pa(addr))) {
1851                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1852                clear_page((void *)addr);
1853                (*pt_end)--;
1854        }
1855}
1856/*
1857 * Set up the initial kernel pagetable.
1858 *
1859 * We can construct this by grafting the Xen provided pagetable into
1860 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1861 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1862 * means that only the kernel has a physical mapping to start with -
1863 * but that's enough to get __va working.  We need to fill in the rest
1864 * of the physical mapping once some sort of allocator has been set
1865 * up.
1866 */
1867void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1868{
1869        pud_t *l3;
1870        pmd_t *l2;
1871        unsigned long addr[3];
1872        unsigned long pt_base, pt_end;
1873        unsigned i;
1874
1875        /* max_pfn_mapped is the last pfn mapped in the initial memory
1876         * mappings. Considering that on Xen after the kernel mappings we
1877         * have the mappings of some pages that don't exist in pfn space, we
1878         * set max_pfn_mapped to the last real pfn mapped. */
1879        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1880
1881        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1882        pt_end = pt_base + xen_start_info->nr_pt_frames;
1883
1884        /* Zap identity mapping */
1885        init_level4_pgt[0] = __pgd(0);
1886
1887        /* Pre-constructed entries are in pfn, so convert to mfn */
1888        /* L4[272] -> level3_ident_pgt
1889         * L4[511] -> level3_kernel_pgt */
1890        convert_pfn_mfn(init_level4_pgt);
1891
1892        /* L3_i[0] -> level2_ident_pgt */
1893        convert_pfn_mfn(level3_ident_pgt);
1894        /* L3_k[510] -> level2_kernel_pgt
1895         * L3_i[511] -> level2_fixmap_pgt */
1896        convert_pfn_mfn(level3_kernel_pgt);
1897
1898        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1899        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1900        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1901
1902        addr[0] = (unsigned long)pgd;
1903        addr[1] = (unsigned long)l3;
1904        addr[2] = (unsigned long)l2;
1905        /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1906         * Both L4[272][0] and L4[511][511] have entries that point to the same
1907         * L2 (PMD) tables. Meaning that if you modify it in __va space
1908         * it will be also modified in the __ka space! (But if you just
1909         * modify the PMD table to point to other PTE's or none, then you
1910         * are OK - which is what cleanup_highmap does) */
1911        copy_page(level2_ident_pgt, l2);
1912        /* Graft it onto L4[511][511] */
1913        copy_page(level2_kernel_pgt, l2);
1914
1915        /* Get [511][510] and graft that in level2_fixmap_pgt */
1916        l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1917        l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1918        copy_page(level2_fixmap_pgt, l2);
1919        /* Note that we don't do anything with level1_fixmap_pgt which
1920         * we don't need. */
1921
1922        /* Make pagetable pieces RO */
1923        set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1924        set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1925        set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1926        set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1927        set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1928        set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1929        set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1930
1931        /* Pin down new L4 */
1932        pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1933                          PFN_DOWN(__pa_symbol(init_level4_pgt)));
1934
1935        /* Unpin Xen-provided one */
1936        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1937
1938        /*
1939         * At this stage there can be no user pgd, and no page
1940         * structure to attach it to, so make sure we just set kernel
1941         * pgd.
1942         */
1943        xen_mc_batch();
1944        __xen_write_cr3(true, __pa(init_level4_pgt));
1945        xen_mc_issue(PARAVIRT_LAZY_CPU);
1946
1947        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1948         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1949         * the initial domain. For guests using the toolstack, they are in:
1950         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1951         * rip out the [L4] (pgd), but for guests we shave off three pages.
1952         */
1953        for (i = 0; i < ARRAY_SIZE(addr); i++)
1954                check_pt_base(&pt_base, &pt_end, addr[i]);
1955
1956        /* Our (by three pages) smaller Xen pagetable that we are using */
1957        memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1958        /* Revector the xen_start_info */
1959        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1960}
1961#else   /* !CONFIG_X86_64 */
1962static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1963static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1964
1965static void __init xen_write_cr3_init(unsigned long cr3)
1966{
1967        unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1968
1969        BUG_ON(read_cr3() != __pa(initial_page_table));
1970        BUG_ON(cr3 != __pa(swapper_pg_dir));
1971
1972        /*
1973         * We are switching to swapper_pg_dir for the first time (from
1974         * initial_page_table) and therefore need to mark that page
1975         * read-only and then pin it.
1976         *
1977         * Xen disallows sharing of kernel PMDs for PAE
1978         * guests. Therefore we must copy the kernel PMD from
1979         * initial_page_table into a new kernel PMD to be used in
1980         * swapper_pg_dir.
1981         */
1982        swapper_kernel_pmd =
1983                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1984        copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1985        swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1986                __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1987        set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1988
1989        set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1990        xen_write_cr3(cr3);
1991        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1992
1993        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1994                          PFN_DOWN(__pa(initial_page_table)));
1995        set_page_prot(initial_page_table, PAGE_KERNEL);
1996        set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1997
1998        pv_mmu_ops.write_cr3 = &xen_write_cr3;
1999}
2000
2001void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2002{
2003        pmd_t *kernel_pmd;
2004
2005        initial_kernel_pmd =
2006                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2007
2008        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
2009                                  xen_start_info->nr_pt_frames * PAGE_SIZE +
2010                                  512*1024);
2011
2012        kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2013        copy_page(initial_kernel_pmd, kernel_pmd);
2014
2015        xen_map_identity_early(initial_kernel_pmd, max_pfn);
2016
2017        copy_page(initial_page_table, pgd);
2018        initial_page_table[KERNEL_PGD_BOUNDARY] =
2019                __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2020
2021        set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2022        set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2023        set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2024
2025        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2026
2027        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2028                          PFN_DOWN(__pa(initial_page_table)));
2029        xen_write_cr3(__pa(initial_page_table));
2030
2031        memblock_reserve(__pa(xen_start_info->pt_base),
2032                         xen_start_info->nr_pt_frames * PAGE_SIZE);
2033}
2034#endif  /* CONFIG_X86_64 */
2035
2036static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2037
2038static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2039{
2040        pte_t pte;
2041
2042        phys >>= PAGE_SHIFT;
2043
2044        switch (idx) {
2045        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2046        case FIX_RO_IDT:
2047#ifdef CONFIG_X86_32
2048        case FIX_WP_TEST:
2049        case FIX_VDSO:
2050# ifdef CONFIG_HIGHMEM
2051        case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2052# endif
2053#else
2054        case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2055        case VVAR_PAGE:
2056#endif
2057        case FIX_TEXT_POKE0:
2058        case FIX_TEXT_POKE1:
2059                /* All local page mappings */
2060                pte = pfn_pte(phys, prot);
2061                break;
2062
2063#ifdef CONFIG_X86_LOCAL_APIC
2064        case FIX_APIC_BASE:     /* maps dummy local APIC */
2065                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2066                break;
2067#endif
2068
2069#ifdef CONFIG_X86_IO_APIC
2070        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2071                /*
2072                 * We just don't map the IO APIC - all access is via
2073                 * hypercalls.  Keep the address in the pte for reference.
2074                 */
2075                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2076                break;
2077#endif
2078
2079        case FIX_PARAVIRT_BOOTMAP:
2080                /* This is an MFN, but it isn't an IO mapping from the
2081                   IO domain */
2082                pte = mfn_pte(phys, prot);
2083                break;
2084
2085        default:
2086                /* By default, set_fixmap is used for hardware mappings */
2087                pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2088                break;
2089        }
2090
2091        __native_set_fixmap(idx, pte);
2092
2093#ifdef CONFIG_X86_64
2094        /* Replicate changes to map the vsyscall page into the user
2095           pagetable vsyscall mapping. */
2096        if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2097            idx == VVAR_PAGE) {
2098                unsigned long vaddr = __fix_to_virt(idx);
2099                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2100        }
2101#endif
2102}
2103
2104static void __init xen_post_allocator_init(void)
2105{
2106        pv_mmu_ops.set_pte = xen_set_pte;
2107        pv_mmu_ops.set_pmd = xen_set_pmd;
2108        pv_mmu_ops.set_pud = xen_set_pud;
2109#if PAGETABLE_LEVELS == 4
2110        pv_mmu_ops.set_pgd = xen_set_pgd;
2111#endif
2112
2113        /* This will work as long as patching hasn't happened yet
2114           (which it hasn't) */
2115        pv_mmu_ops.alloc_pte = xen_alloc_pte;
2116        pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2117        pv_mmu_ops.release_pte = xen_release_pte;
2118        pv_mmu_ops.release_pmd = xen_release_pmd;
2119#if PAGETABLE_LEVELS == 4
2120        pv_mmu_ops.alloc_pud = xen_alloc_pud;
2121        pv_mmu_ops.release_pud = xen_release_pud;
2122#endif
2123
2124#ifdef CONFIG_X86_64
2125        pv_mmu_ops.write_cr3 = &xen_write_cr3;
2126        SetPagePinned(virt_to_page(level3_user_vsyscall));
2127#endif
2128        xen_mark_init_mm_pinned();
2129}
2130
2131static void xen_leave_lazy_mmu(void)
2132{
2133        preempt_disable();
2134        xen_mc_flush();
2135        paravirt_leave_lazy_mmu();
2136        preempt_enable();
2137}
2138
2139static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2140        .read_cr2 = xen_read_cr2,
2141        .write_cr2 = xen_write_cr2,
2142
2143        .read_cr3 = xen_read_cr3,
2144        .write_cr3 = xen_write_cr3_init,
2145
2146        .flush_tlb_user = xen_flush_tlb,
2147        .flush_tlb_kernel = xen_flush_tlb,
2148        .flush_tlb_single = xen_flush_tlb_single,
2149        .flush_tlb_others = xen_flush_tlb_others,
2150
2151        .pte_update = paravirt_nop,
2152        .pte_update_defer = paravirt_nop,
2153
2154        .pgd_alloc = xen_pgd_alloc,
2155        .pgd_free = xen_pgd_free,
2156
2157        .alloc_pte = xen_alloc_pte_init,
2158        .release_pte = xen_release_pte_init,
2159        .alloc_pmd = xen_alloc_pmd_init,
2160        .release_pmd = xen_release_pmd_init,
2161
2162        .set_pte = xen_set_pte_init,
2163        .set_pte_at = xen_set_pte_at,
2164        .set_pmd = xen_set_pmd_hyper,
2165
2166        .ptep_modify_prot_start = __ptep_modify_prot_start,
2167        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2168
2169        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2170        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2171
2172        .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2173        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2174
2175#ifdef CONFIG_X86_PAE
2176        .set_pte_atomic = xen_set_pte_atomic,
2177        .pte_clear = xen_pte_clear,
2178        .pmd_clear = xen_pmd_clear,
2179#endif  /* CONFIG_X86_PAE */
2180        .set_pud = xen_set_pud_hyper,
2181
2182        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2183        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2184
2185#if PAGETABLE_LEVELS == 4
2186        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2187        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2188        .set_pgd = xen_set_pgd_hyper,
2189
2190        .alloc_pud = xen_alloc_pmd_init,
2191        .release_pud = xen_release_pmd_init,
2192#endif  /* PAGETABLE_LEVELS == 4 */
2193
2194        .activate_mm = xen_activate_mm,
2195        .dup_mmap = xen_dup_mmap,
2196        .exit_mmap = xen_exit_mmap,
2197
2198        .lazy_mode = {
2199                .enter = paravirt_enter_lazy_mmu,
2200                .leave = xen_leave_lazy_mmu,
2201                .flush = paravirt_flush_lazy_mmu,
2202        },
2203
2204        .set_fixmap = xen_set_fixmap,
2205};
2206
2207void __init xen_init_mmu_ops(void)
2208{
2209        x86_init.paging.pagetable_init = xen_pagetable_init;
2210        pv_mmu_ops = xen_mmu_ops;
2211
2212        memset(dummy_mapping, 0xff, PAGE_SIZE);
2213}
2214
2215/* Protected by xen_reservation_lock. */
2216#define MAX_CONTIG_ORDER 9 /* 2MB */
2217static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2218
2219#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2220static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2221                                unsigned long *in_frames,
2222                                unsigned long *out_frames)
2223{
2224        int i;
2225        struct multicall_space mcs;
2226
2227        xen_mc_batch();
2228        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2229                mcs = __xen_mc_entry(0);
2230
2231                if (in_frames)
2232                        in_frames[i] = virt_to_mfn(vaddr);
2233
2234                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2235                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2236
2237                if (out_frames)
2238                        out_frames[i] = virt_to_pfn(vaddr);
2239        }
2240        xen_mc_issue(0);
2241}
2242
2243/*
2244 * Update the pfn-to-mfn mappings for a virtual address range, either to
2245 * point to an array of mfns, or contiguously from a single starting
2246 * mfn.
2247 */
2248static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2249                                     unsigned long *mfns,
2250                                     unsigned long first_mfn)
2251{
2252        unsigned i, limit;
2253        unsigned long mfn;
2254
2255        xen_mc_batch();
2256
2257        limit = 1u << order;
2258        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2259                struct multicall_space mcs;
2260                unsigned flags;
2261
2262                mcs = __xen_mc_entry(0);
2263                if (mfns)
2264                        mfn = mfns[i];
2265                else
2266                        mfn = first_mfn + i;
2267
2268                if (i < (limit - 1))
2269                        flags = 0;
2270                else {
2271                        if (order == 0)
2272                                flags = UVMF_INVLPG | UVMF_ALL;
2273                        else
2274                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2275                }
2276
2277                MULTI_update_va_mapping(mcs.mc, vaddr,
2278                                mfn_pte(mfn, PAGE_KERNEL), flags);
2279
2280                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2281        }
2282
2283        xen_mc_issue(0);
2284}
2285
2286/*
2287 * Perform the hypercall to exchange a region of our pfns to point to
2288 * memory with the required contiguous alignment.  Takes the pfns as
2289 * input, and populates mfns as output.
2290 *
2291 * Returns a success code indicating whether the hypervisor was able to
2292 * satisfy the request or not.
2293 */
2294static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2295                               unsigned long *pfns_in,
2296                               unsigned long extents_out,
2297                               unsigned int order_out,
2298                               unsigned long *mfns_out,
2299                               unsigned int address_bits)
2300{
2301        long rc;
2302        int success;
2303
2304        struct xen_memory_exchange exchange = {
2305                .in = {
2306                        .nr_extents   = extents_in,
2307                        .extent_order = order_in,
2308                        .extent_start = pfns_in,
2309                        .domid        = DOMID_SELF
2310                },
2311                .out = {
2312                        .nr_extents   = extents_out,
2313                        .extent_order = order_out,
2314                        .extent_start = mfns_out,
2315                        .address_bits = address_bits,
2316                        .domid        = DOMID_SELF
2317                }
2318        };
2319
2320        BUG_ON(extents_in << order_in != extents_out << order_out);
2321
2322        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2323        success = (exchange.nr_exchanged == extents_in);
2324
2325        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2326        BUG_ON(success && (rc != 0));
2327
2328        return success;
2329}
2330
2331int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2332                                 unsigned int address_bits)
2333{
2334        unsigned long *in_frames = discontig_frames, out_frame;
2335        unsigned long  flags;
2336        int            success;
2337
2338        /*
2339         * Currently an auto-translated guest will not perform I/O, nor will
2340         * it require PAE page directories below 4GB. Therefore any calls to
2341         * this function are redundant and can be ignored.
2342         */
2343
2344        if (xen_feature(XENFEAT_auto_translated_physmap))
2345                return 0;
2346
2347        if (unlikely(order > MAX_CONTIG_ORDER))
2348                return -ENOMEM;
2349
2350        memset((void *) vstart, 0, PAGE_SIZE << order);
2351
2352        spin_lock_irqsave(&xen_reservation_lock, flags);
2353
2354        /* 1. Zap current PTEs, remembering MFNs. */
2355        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2356
2357        /* 2. Get a new contiguous memory extent. */
2358        out_frame = virt_to_pfn(vstart);
2359        success = xen_exchange_memory(1UL << order, 0, in_frames,
2360                                      1, order, &out_frame,
2361                                      address_bits);
2362
2363        /* 3. Map the new extent in place of old pages. */
2364        if (success)
2365                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2366        else
2367                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2368
2369        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2370
2371        return success ? 0 : -ENOMEM;
2372}
2373EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2374
2375void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2376{
2377        unsigned long *out_frames = discontig_frames, in_frame;
2378        unsigned long  flags;
2379        int success;
2380
2381        if (xen_feature(XENFEAT_auto_translated_physmap))
2382                return;
2383
2384        if (unlikely(order > MAX_CONTIG_ORDER))
2385                return;
2386
2387        memset((void *) vstart, 0, PAGE_SIZE << order);
2388
2389        spin_lock_irqsave(&xen_reservation_lock, flags);
2390
2391        /* 1. Find start MFN of contiguous extent. */
2392        in_frame = virt_to_mfn(vstart);
2393
2394        /* 2. Zap current PTEs. */
2395        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2396
2397        /* 3. Do the exchange for non-contiguous MFNs. */
2398        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2399                                        0, out_frames, 0);
2400
2401        /* 4. Map new pages in place of old pages. */
2402        if (success)
2403                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2404        else
2405                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2406
2407        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2408}
2409EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2410
2411#ifdef CONFIG_XEN_PVHVM
2412#ifdef CONFIG_PROC_VMCORE
2413/*
2414 * This function is used in two contexts:
2415 * - the kdump kernel has to check whether a pfn of the crashed kernel
2416 *   was a ballooned page. vmcore is using this function to decide
2417 *   whether to access a pfn of the crashed kernel.
2418 * - the kexec kernel has to check whether a pfn was ballooned by the
2419 *   previous kernel. If the pfn is ballooned, handle it properly.
2420 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2421 * handle the pfn special in this case.
2422 */
2423static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2424{
2425        struct xen_hvm_get_mem_type a = {
2426                .domid = DOMID_SELF,
2427                .pfn = pfn,
2428        };
2429        int ram;
2430
2431        if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2432                return -ENXIO;
2433
2434        switch (a.mem_type) {
2435                case HVMMEM_mmio_dm:
2436                        ram = 0;
2437                        break;
2438                case HVMMEM_ram_rw:
2439                case HVMMEM_ram_ro:
2440                default:
2441                        ram = 1;
2442                        break;
2443        }
2444
2445        return ram;
2446}
2447#endif
2448
2449static void xen_hvm_exit_mmap(struct mm_struct *mm)
2450{
2451        struct xen_hvm_pagetable_dying a;
2452        int rc;
2453
2454        a.domid = DOMID_SELF;
2455        a.gpa = __pa(mm->pgd);
2456        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2457        WARN_ON_ONCE(rc < 0);
2458}
2459
2460static int is_pagetable_dying_supported(void)
2461{
2462        struct xen_hvm_pagetable_dying a;
2463        int rc = 0;
2464
2465        a.domid = DOMID_SELF;
2466        a.gpa = 0x00;
2467        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2468        if (rc < 0) {
2469                printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2470                return 0;
2471        }
2472        return 1;
2473}
2474
2475void __init xen_hvm_init_mmu_ops(void)
2476{
2477        if (is_pagetable_dying_supported())
2478                pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2479#ifdef CONFIG_PROC_VMCORE
2480        register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2481#endif
2482}
2483#endif
2484
2485#define REMAP_BATCH_SIZE 16
2486
2487struct remap_data {
2488        unsigned long mfn;
2489        pgprot_t prot;
2490        struct mmu_update *mmu_update;
2491};
2492
2493static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2494                                 unsigned long addr, void *data)
2495{
2496        struct remap_data *rmd = data;
2497        pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2498
2499        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2500        rmd->mmu_update->val = pte_val_ma(pte);
2501        rmd->mmu_update++;
2502
2503        return 0;
2504}
2505
2506int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2507                               unsigned long addr,
2508                               xen_pfn_t mfn, int nr,
2509                               pgprot_t prot, unsigned domid,
2510                               struct page **pages)
2511
2512{
2513        struct remap_data rmd;
2514        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2515        int batch;
2516        unsigned long range;
2517        int err = 0;
2518
2519        if (xen_feature(XENFEAT_auto_translated_physmap))
2520                return -EINVAL;
2521
2522        prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2523
2524        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2525
2526        rmd.mfn = mfn;
2527        rmd.prot = prot;
2528
2529        while (nr) {
2530                batch = min(REMAP_BATCH_SIZE, nr);
2531                range = (unsigned long)batch << PAGE_SHIFT;
2532
2533                rmd.mmu_update = mmu_update;
2534                err = apply_to_page_range(vma->vm_mm, addr, range,
2535                                          remap_area_mfn_pte_fn, &rmd);
2536                if (err)
2537                        goto out;
2538
2539                err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2540                if (err < 0)
2541                        goto out;
2542
2543                nr -= batch;
2544                addr += range;
2545        }
2546
2547        err = 0;
2548out:
2549
2550        xen_flush_tlb_all();
2551
2552        return err;
2553}
2554EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2555
2556/* Returns: 0 success */
2557int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2558                               int numpgs, struct page **pages)
2559{
2560        if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2561                return 0;
2562
2563        return -EINVAL;
2564}
2565EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2566