linux/arch/xtensa/kernel/process.c
<<
>>
Prefs
   1/*
   2 * arch/xtensa/kernel/process.c
   3 *
   4 * Xtensa Processor version.
   5 *
   6 * This file is subject to the terms and conditions of the GNU General Public
   7 * License.  See the file "COPYING" in the main directory of this archive
   8 * for more details.
   9 *
  10 * Copyright (C) 2001 - 2005 Tensilica Inc.
  11 *
  12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
  13 * Chris Zankel <chris@zankel.net>
  14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
  15 * Kevin Chea
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <linux/smp.h>
  23#include <linux/stddef.h>
  24#include <linux/unistd.h>
  25#include <linux/ptrace.h>
  26#include <linux/elf.h>
  27#include <linux/init.h>
  28#include <linux/prctl.h>
  29#include <linux/init_task.h>
  30#include <linux/module.h>
  31#include <linux/mqueue.h>
  32#include <linux/fs.h>
  33#include <linux/slab.h>
  34#include <linux/rcupdate.h>
  35
  36#include <asm/pgtable.h>
  37#include <asm/uaccess.h>
  38#include <asm/io.h>
  39#include <asm/processor.h>
  40#include <asm/platform.h>
  41#include <asm/mmu.h>
  42#include <asm/irq.h>
  43#include <linux/atomic.h>
  44#include <asm/asm-offsets.h>
  45#include <asm/regs.h>
  46
  47extern void ret_from_fork(void);
  48extern void ret_from_kernel_thread(void);
  49
  50struct task_struct *current_set[NR_CPUS] = {&init_task, };
  51
  52void (*pm_power_off)(void) = NULL;
  53EXPORT_SYMBOL(pm_power_off);
  54
  55
  56#if XTENSA_HAVE_COPROCESSORS
  57
  58void coprocessor_release_all(struct thread_info *ti)
  59{
  60        unsigned long cpenable;
  61        int i;
  62
  63        /* Make sure we don't switch tasks during this operation. */
  64
  65        preempt_disable();
  66
  67        /* Walk through all cp owners and release it for the requested one. */
  68
  69        cpenable = ti->cpenable;
  70
  71        for (i = 0; i < XCHAL_CP_MAX; i++) {
  72                if (coprocessor_owner[i] == ti) {
  73                        coprocessor_owner[i] = 0;
  74                        cpenable &= ~(1 << i);
  75                }
  76        }
  77
  78        ti->cpenable = cpenable;
  79        coprocessor_clear_cpenable();
  80
  81        preempt_enable();
  82}
  83
  84void coprocessor_flush_all(struct thread_info *ti)
  85{
  86        unsigned long cpenable;
  87        int i;
  88
  89        preempt_disable();
  90
  91        cpenable = ti->cpenable;
  92
  93        for (i = 0; i < XCHAL_CP_MAX; i++) {
  94                if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
  95                        coprocessor_flush(ti, i);
  96                cpenable >>= 1;
  97        }
  98
  99        preempt_enable();
 100}
 101
 102#endif
 103
 104
 105/*
 106 * Powermanagement idle function, if any is provided by the platform.
 107 */
 108void arch_cpu_idle(void)
 109{
 110        platform_idle();
 111}
 112
 113/*
 114 * This is called when the thread calls exit().
 115 */
 116void exit_thread(void)
 117{
 118#if XTENSA_HAVE_COPROCESSORS
 119        coprocessor_release_all(current_thread_info());
 120#endif
 121}
 122
 123/*
 124 * Flush thread state. This is called when a thread does an execve()
 125 * Note that we flush coprocessor registers for the case execve fails.
 126 */
 127void flush_thread(void)
 128{
 129#if XTENSA_HAVE_COPROCESSORS
 130        struct thread_info *ti = current_thread_info();
 131        coprocessor_flush_all(ti);
 132        coprocessor_release_all(ti);
 133#endif
 134}
 135
 136/*
 137 * this gets called so that we can store coprocessor state into memory and
 138 * copy the current task into the new thread.
 139 */
 140int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 141{
 142#if XTENSA_HAVE_COPROCESSORS
 143        coprocessor_flush_all(task_thread_info(src));
 144#endif
 145        *dst = *src;
 146        return 0;
 147}
 148
 149/*
 150 * Copy thread.
 151 *
 152 * There are two modes in which this function is called:
 153 * 1) Userspace thread creation,
 154 *    regs != NULL, usp_thread_fn is userspace stack pointer.
 155 *    It is expected to copy parent regs (in case CLONE_VM is not set
 156 *    in the clone_flags) and set up passed usp in the childregs.
 157 * 2) Kernel thread creation,
 158 *    regs == NULL, usp_thread_fn is the function to run in the new thread
 159 *    and thread_fn_arg is its parameter.
 160 *    childregs are not used for the kernel threads.
 161 *
 162 * The stack layout for the new thread looks like this:
 163 *
 164 *      +------------------------+
 165 *      |       childregs        |
 166 *      +------------------------+ <- thread.sp = sp in dummy-frame
 167 *      |      dummy-frame       |    (saved in dummy-frame spill-area)
 168 *      +------------------------+
 169 *
 170 * We create a dummy frame to return to either ret_from_fork or
 171 *   ret_from_kernel_thread:
 172 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
 173 *   sp points to itself (thread.sp)
 174 *   a2, a3 are unused for userspace threads,
 175 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
 176 *
 177 * Note: This is a pristine frame, so we don't need any spill region on top of
 178 *       childregs.
 179 *
 180 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
 181 * not an entire process), we're normally given a new usp, and we CANNOT share
 182 * any live address register windows.  If we just copy those live frames over,
 183 * the two threads (parent and child) will overflow the same frames onto the
 184 * parent stack at different times, likely corrupting the parent stack (esp.
 185 * if the parent returns from functions that called clone() and calls new
 186 * ones, before the child overflows its now old copies of its parent windows).
 187 * One solution is to spill windows to the parent stack, but that's fairly
 188 * involved.  Much simpler to just not copy those live frames across.
 189 */
 190
 191int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
 192                unsigned long thread_fn_arg, struct task_struct *p)
 193{
 194        struct pt_regs *childregs = task_pt_regs(p);
 195
 196#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 197        struct thread_info *ti;
 198#endif
 199
 200        /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
 201        *((int*)childregs - 3) = (unsigned long)childregs;
 202        *((int*)childregs - 4) = 0;
 203
 204        p->thread.sp = (unsigned long)childregs;
 205
 206        if (!(p->flags & PF_KTHREAD)) {
 207                struct pt_regs *regs = current_pt_regs();
 208                unsigned long usp = usp_thread_fn ?
 209                        usp_thread_fn : regs->areg[1];
 210
 211                p->thread.ra = MAKE_RA_FOR_CALL(
 212                                (unsigned long)ret_from_fork, 0x1);
 213
 214                /* This does not copy all the regs.
 215                 * In a bout of brilliance or madness,
 216                 * ARs beyond a0-a15 exist past the end of the struct.
 217                 */
 218                *childregs = *regs;
 219                childregs->areg[1] = usp;
 220                childregs->areg[2] = 0;
 221
 222                /* When sharing memory with the parent thread, the child
 223                   usually starts on a pristine stack, so we have to reset
 224                   windowbase, windowstart and wmask.
 225                   (Note that such a new thread is required to always create
 226                   an initial call4 frame)
 227                   The exception is vfork, where the new thread continues to
 228                   run on the parent's stack until it calls execve. This could
 229                   be a call8 or call12, which requires a legal stack frame
 230                   of the previous caller for the overflow handlers to work.
 231                   (Note that it's always legal to overflow live registers).
 232                   In this case, ensure to spill at least the stack pointer
 233                   of that frame. */
 234
 235                if (clone_flags & CLONE_VM) {
 236                        /* check that caller window is live and same stack */
 237                        int len = childregs->wmask & ~0xf;
 238                        if (regs->areg[1] == usp && len != 0) {
 239                                int callinc = (regs->areg[0] >> 30) & 3;
 240                                int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
 241                                put_user(regs->areg[caller_ars+1],
 242                                         (unsigned __user*)(usp - 12));
 243                        }
 244                        childregs->wmask = 1;
 245                        childregs->windowstart = 1;
 246                        childregs->windowbase = 0;
 247                } else {
 248                        int len = childregs->wmask & ~0xf;
 249                        memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
 250                               &regs->areg[XCHAL_NUM_AREGS - len/4], len);
 251                }
 252
 253                /* The thread pointer is passed in the '4th argument' (= a5) */
 254                if (clone_flags & CLONE_SETTLS)
 255                        childregs->threadptr = childregs->areg[5];
 256        } else {
 257                p->thread.ra = MAKE_RA_FOR_CALL(
 258                                (unsigned long)ret_from_kernel_thread, 1);
 259
 260                /* pass parameters to ret_from_kernel_thread:
 261                 * a2 = thread_fn, a3 = thread_fn arg
 262                 */
 263                *((int *)childregs - 1) = thread_fn_arg;
 264                *((int *)childregs - 2) = usp_thread_fn;
 265
 266                /* Childregs are only used when we're going to userspace
 267                 * in which case start_thread will set them up.
 268                 */
 269        }
 270
 271#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 272        ti = task_thread_info(p);
 273        ti->cpenable = 0;
 274#endif
 275
 276        return 0;
 277}
 278
 279
 280/*
 281 * These bracket the sleeping functions..
 282 */
 283
 284unsigned long get_wchan(struct task_struct *p)
 285{
 286        unsigned long sp, pc;
 287        unsigned long stack_page = (unsigned long) task_stack_page(p);
 288        int count = 0;
 289
 290        if (!p || p == current || p->state == TASK_RUNNING)
 291                return 0;
 292
 293        sp = p->thread.sp;
 294        pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
 295
 296        do {
 297                if (sp < stack_page + sizeof(struct task_struct) ||
 298                    sp >= (stack_page + THREAD_SIZE) ||
 299                    pc == 0)
 300                        return 0;
 301                if (!in_sched_functions(pc))
 302                        return pc;
 303
 304                /* Stack layout: sp-4: ra, sp-3: sp' */
 305
 306                pc = MAKE_PC_FROM_RA(*(unsigned long*)sp - 4, sp);
 307                sp = *(unsigned long *)sp - 3;
 308        } while (count++ < 16);
 309        return 0;
 310}
 311
 312/*
 313 * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
 314 * of processor registers.  Besides different ordering,
 315 * xtensa_gregset_t contains non-live register information that
 316 * 'struct pt_regs' does not.  Exception handling (primarily) uses
 317 * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
 318 *
 319 */
 320
 321void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
 322{
 323        unsigned long wb, ws, wm;
 324        int live, last;
 325
 326        wb = regs->windowbase;
 327        ws = regs->windowstart;
 328        wm = regs->wmask;
 329        ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
 330
 331        /* Don't leak any random bits. */
 332
 333        memset(elfregs, 0, sizeof(*elfregs));
 334
 335        /* Note:  PS.EXCM is not set while user task is running; its
 336         * being set in regs->ps is for exception handling convenience.
 337         */
 338
 339        elfregs->pc             = regs->pc;
 340        elfregs->ps             = (regs->ps & ~(1 << PS_EXCM_BIT));
 341        elfregs->lbeg           = regs->lbeg;
 342        elfregs->lend           = regs->lend;
 343        elfregs->lcount         = regs->lcount;
 344        elfregs->sar            = regs->sar;
 345        elfregs->windowstart    = ws;
 346
 347        live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
 348        last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
 349        memcpy(elfregs->a, regs->areg, live * 4);
 350        memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
 351}
 352
 353int dump_fpu(void)
 354{
 355        return 0;
 356}
 357