linux/drivers/block/cciss.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array controllers.
   3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
   4 *
   5 *    This program is free software; you can redistribute it and/or modify
   6 *    it under the terms of the GNU General Public License as published by
   7 *    the Free Software Foundation; version 2 of the License.
   8 *
   9 *    This program is distributed in the hope that it will be useful,
  10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12 *    General Public License for more details.
  13 *
  14 *    You should have received a copy of the GNU General Public License
  15 *    along with this program; if not, write to the Free Software
  16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17 *    02111-1307, USA.
  18 *
  19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20 *
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/types.h>
  26#include <linux/pci.h>
  27#include <linux/pci-aspm.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/delay.h>
  31#include <linux/major.h>
  32#include <linux/fs.h>
  33#include <linux/bio.h>
  34#include <linux/blkpg.h>
  35#include <linux/timer.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/init.h>
  39#include <linux/jiffies.h>
  40#include <linux/hdreg.h>
  41#include <linux/spinlock.h>
  42#include <linux/compat.h>
  43#include <linux/mutex.h>
  44#include <linux/bitmap.h>
  45#include <linux/io.h>
  46#include <asm/uaccess.h>
  47
  48#include <linux/dma-mapping.h>
  49#include <linux/blkdev.h>
  50#include <linux/genhd.h>
  51#include <linux/completion.h>
  52#include <scsi/scsi.h>
  53#include <scsi/sg.h>
  54#include <scsi/scsi_ioctl.h>
  55#include <linux/cdrom.h>
  56#include <linux/scatterlist.h>
  57#include <linux/kthread.h>
  58
  59#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  60#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
  61#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
  62
  63/* Embedded module documentation macros - see modules.h */
  64MODULE_AUTHOR("Hewlett-Packard Company");
  65MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  66MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  67MODULE_VERSION("3.6.26");
  68MODULE_LICENSE("GPL");
  69static int cciss_tape_cmds = 6;
  70module_param(cciss_tape_cmds, int, 0644);
  71MODULE_PARM_DESC(cciss_tape_cmds,
  72        "number of commands to allocate for tape devices (default: 6)");
  73static int cciss_simple_mode;
  74module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
  75MODULE_PARM_DESC(cciss_simple_mode,
  76        "Use 'simple mode' rather than 'performant mode'");
  77
  78static int cciss_allow_hpsa;
  79module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
  80MODULE_PARM_DESC(cciss_allow_hpsa,
  81        "Prevent cciss driver from accessing hardware known to be "
  82        " supported by the hpsa driver");
  83
  84static DEFINE_MUTEX(cciss_mutex);
  85static struct proc_dir_entry *proc_cciss;
  86
  87#include "cciss_cmd.h"
  88#include "cciss.h"
  89#include <linux/cciss_ioctl.h>
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id cciss_pci_device_id[] = {
  93        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
  94        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  95        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  96        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  97        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  98        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  99        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
 100        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
 101        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
 113        {0,}
 114};
 115
 116MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
 117
 118/*  board_id = Subsystem Device ID & Vendor ID
 119 *  product = Marketing Name for the board
 120 *  access = Address of the struct of function pointers
 121 */
 122static struct board_type products[] = {
 123        {0x40700E11, "Smart Array 5300", &SA5_access},
 124        {0x40800E11, "Smart Array 5i", &SA5B_access},
 125        {0x40820E11, "Smart Array 532", &SA5B_access},
 126        {0x40830E11, "Smart Array 5312", &SA5B_access},
 127        {0x409A0E11, "Smart Array 641", &SA5_access},
 128        {0x409B0E11, "Smart Array 642", &SA5_access},
 129        {0x409C0E11, "Smart Array 6400", &SA5_access},
 130        {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
 131        {0x40910E11, "Smart Array 6i", &SA5_access},
 132        {0x3225103C, "Smart Array P600", &SA5_access},
 133        {0x3223103C, "Smart Array P800", &SA5_access},
 134        {0x3234103C, "Smart Array P400", &SA5_access},
 135        {0x3235103C, "Smart Array P400i", &SA5_access},
 136        {0x3211103C, "Smart Array E200i", &SA5_access},
 137        {0x3212103C, "Smart Array E200", &SA5_access},
 138        {0x3213103C, "Smart Array E200i", &SA5_access},
 139        {0x3214103C, "Smart Array E200i", &SA5_access},
 140        {0x3215103C, "Smart Array E200i", &SA5_access},
 141        {0x3237103C, "Smart Array E500", &SA5_access},
 142        {0x3223103C, "Smart Array P800", &SA5_access},
 143        {0x3234103C, "Smart Array P400", &SA5_access},
 144        {0x323D103C, "Smart Array P700m", &SA5_access},
 145};
 146
 147/* How long to wait (in milliseconds) for board to go into simple mode */
 148#define MAX_CONFIG_WAIT 30000
 149#define MAX_IOCTL_CONFIG_WAIT 1000
 150
 151/*define how many times we will try a command because of bus resets */
 152#define MAX_CMD_RETRIES 3
 153
 154#define MAX_CTLR        32
 155
 156/* Originally cciss driver only supports 8 major numbers */
 157#define MAX_CTLR_ORIG   8
 158
 159static ctlr_info_t *hba[MAX_CTLR];
 160
 161static struct task_struct *cciss_scan_thread;
 162static DEFINE_MUTEX(scan_mutex);
 163static LIST_HEAD(scan_q);
 164
 165static void do_cciss_request(struct request_queue *q);
 166static irqreturn_t do_cciss_intx(int irq, void *dev_id);
 167static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
 168static int cciss_open(struct block_device *bdev, fmode_t mode);
 169static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
 170static void cciss_release(struct gendisk *disk, fmode_t mode);
 171static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
 172                       unsigned int cmd, unsigned long arg);
 173static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
 174
 175static int cciss_revalidate(struct gendisk *disk);
 176static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
 177static int deregister_disk(ctlr_info_t *h, int drv_index,
 178                           int clear_all, int via_ioctl);
 179
 180static void cciss_read_capacity(ctlr_info_t *h, int logvol,
 181                        sector_t *total_size, unsigned int *block_size);
 182static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
 183                        sector_t *total_size, unsigned int *block_size);
 184static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
 185                        sector_t total_size,
 186                        unsigned int block_size, InquiryData_struct *inq_buff,
 187                                   drive_info_struct *drv);
 188static void cciss_interrupt_mode(ctlr_info_t *);
 189static int cciss_enter_simple_mode(struct ctlr_info *h);
 190static void start_io(ctlr_info_t *h);
 191static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
 192                        __u8 page_code, unsigned char scsi3addr[],
 193                        int cmd_type);
 194static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
 195        int attempt_retry);
 196static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
 197
 198static int add_to_scan_list(struct ctlr_info *h);
 199static int scan_thread(void *data);
 200static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
 201static void cciss_hba_release(struct device *dev);
 202static void cciss_device_release(struct device *dev);
 203static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
 204static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
 205static inline u32 next_command(ctlr_info_t *h);
 206static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 207                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 208                                u64 *cfg_offset);
 209static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
 210                                     unsigned long *memory_bar);
 211static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
 212static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
 213
 214/* performant mode helper functions */
 215static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
 216                                int *bucket_map);
 217static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
 218
 219#ifdef CONFIG_PROC_FS
 220static void cciss_procinit(ctlr_info_t *h);
 221#else
 222static void cciss_procinit(ctlr_info_t *h)
 223{
 224}
 225#endif                          /* CONFIG_PROC_FS */
 226
 227#ifdef CONFIG_COMPAT
 228static int cciss_compat_ioctl(struct block_device *, fmode_t,
 229                              unsigned, unsigned long);
 230#endif
 231
 232static const struct block_device_operations cciss_fops = {
 233        .owner = THIS_MODULE,
 234        .open = cciss_unlocked_open,
 235        .release = cciss_release,
 236        .ioctl = cciss_ioctl,
 237        .getgeo = cciss_getgeo,
 238#ifdef CONFIG_COMPAT
 239        .compat_ioctl = cciss_compat_ioctl,
 240#endif
 241        .revalidate_disk = cciss_revalidate,
 242};
 243
 244/* set_performant_mode: Modify the tag for cciss performant
 245 * set bit 0 for pull model, bits 3-1 for block fetch
 246 * register number
 247 */
 248static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
 249{
 250        if (likely(h->transMethod & CFGTBL_Trans_Performant))
 251                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 252}
 253
 254/*
 255 * Enqueuing and dequeuing functions for cmdlists.
 256 */
 257static inline void addQ(struct list_head *list, CommandList_struct *c)
 258{
 259        list_add_tail(&c->list, list);
 260}
 261
 262static inline void removeQ(CommandList_struct *c)
 263{
 264        /*
 265         * After kexec/dump some commands might still
 266         * be in flight, which the firmware will try
 267         * to complete. Resetting the firmware doesn't work
 268         * with old fw revisions, so we have to mark
 269         * them off as 'stale' to prevent the driver from
 270         * falling over.
 271         */
 272        if (WARN_ON(list_empty(&c->list))) {
 273                c->cmd_type = CMD_MSG_STALE;
 274                return;
 275        }
 276
 277        list_del_init(&c->list);
 278}
 279
 280static void enqueue_cmd_and_start_io(ctlr_info_t *h,
 281        CommandList_struct *c)
 282{
 283        unsigned long flags;
 284        set_performant_mode(h, c);
 285        spin_lock_irqsave(&h->lock, flags);
 286        addQ(&h->reqQ, c);
 287        h->Qdepth++;
 288        if (h->Qdepth > h->maxQsinceinit)
 289                h->maxQsinceinit = h->Qdepth;
 290        start_io(h);
 291        spin_unlock_irqrestore(&h->lock, flags);
 292}
 293
 294static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
 295        int nr_cmds)
 296{
 297        int i;
 298
 299        if (!cmd_sg_list)
 300                return;
 301        for (i = 0; i < nr_cmds; i++) {
 302                kfree(cmd_sg_list[i]);
 303                cmd_sg_list[i] = NULL;
 304        }
 305        kfree(cmd_sg_list);
 306}
 307
 308static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
 309        ctlr_info_t *h, int chainsize, int nr_cmds)
 310{
 311        int j;
 312        SGDescriptor_struct **cmd_sg_list;
 313
 314        if (chainsize <= 0)
 315                return NULL;
 316
 317        cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
 318        if (!cmd_sg_list)
 319                return NULL;
 320
 321        /* Build up chain blocks for each command */
 322        for (j = 0; j < nr_cmds; j++) {
 323                /* Need a block of chainsized s/g elements. */
 324                cmd_sg_list[j] = kmalloc((chainsize *
 325                        sizeof(*cmd_sg_list[j])), GFP_KERNEL);
 326                if (!cmd_sg_list[j]) {
 327                        dev_err(&h->pdev->dev, "Cannot get memory "
 328                                "for s/g chains.\n");
 329                        goto clean;
 330                }
 331        }
 332        return cmd_sg_list;
 333clean:
 334        cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
 335        return NULL;
 336}
 337
 338static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
 339{
 340        SGDescriptor_struct *chain_sg;
 341        u64bit temp64;
 342
 343        if (c->Header.SGTotal <= h->max_cmd_sgentries)
 344                return;
 345
 346        chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 347        temp64.val32.lower = chain_sg->Addr.lower;
 348        temp64.val32.upper = chain_sg->Addr.upper;
 349        pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
 350}
 351
 352static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
 353        SGDescriptor_struct *chain_block, int len)
 354{
 355        SGDescriptor_struct *chain_sg;
 356        u64bit temp64;
 357
 358        chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 359        chain_sg->Ext = CCISS_SG_CHAIN;
 360        chain_sg->Len = len;
 361        temp64.val = pci_map_single(h->pdev, chain_block, len,
 362                                PCI_DMA_TODEVICE);
 363        chain_sg->Addr.lower = temp64.val32.lower;
 364        chain_sg->Addr.upper = temp64.val32.upper;
 365}
 366
 367#include "cciss_scsi.c"         /* For SCSI tape support */
 368
 369static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
 370        "UNKNOWN"
 371};
 372#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
 373
 374#ifdef CONFIG_PROC_FS
 375
 376/*
 377 * Report information about this controller.
 378 */
 379#define ENG_GIG 1000000000
 380#define ENG_GIG_FACTOR (ENG_GIG/512)
 381#define ENGAGE_SCSI     "engage scsi"
 382
 383static void cciss_seq_show_header(struct seq_file *seq)
 384{
 385        ctlr_info_t *h = seq->private;
 386
 387        seq_printf(seq, "%s: HP %s Controller\n"
 388                "Board ID: 0x%08lx\n"
 389                "Firmware Version: %c%c%c%c\n"
 390                "IRQ: %d\n"
 391                "Logical drives: %d\n"
 392                "Current Q depth: %d\n"
 393                "Current # commands on controller: %d\n"
 394                "Max Q depth since init: %d\n"
 395                "Max # commands on controller since init: %d\n"
 396                "Max SG entries since init: %d\n",
 397                h->devname,
 398                h->product_name,
 399                (unsigned long)h->board_id,
 400                h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
 401                h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
 402                h->num_luns,
 403                h->Qdepth, h->commands_outstanding,
 404                h->maxQsinceinit, h->max_outstanding, h->maxSG);
 405
 406#ifdef CONFIG_CISS_SCSI_TAPE
 407        cciss_seq_tape_report(seq, h);
 408#endif /* CONFIG_CISS_SCSI_TAPE */
 409}
 410
 411static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
 412{
 413        ctlr_info_t *h = seq->private;
 414        unsigned long flags;
 415
 416        /* prevent displaying bogus info during configuration
 417         * or deconfiguration of a logical volume
 418         */
 419        spin_lock_irqsave(&h->lock, flags);
 420        if (h->busy_configuring) {
 421                spin_unlock_irqrestore(&h->lock, flags);
 422                return ERR_PTR(-EBUSY);
 423        }
 424        h->busy_configuring = 1;
 425        spin_unlock_irqrestore(&h->lock, flags);
 426
 427        if (*pos == 0)
 428                cciss_seq_show_header(seq);
 429
 430        return pos;
 431}
 432
 433static int cciss_seq_show(struct seq_file *seq, void *v)
 434{
 435        sector_t vol_sz, vol_sz_frac;
 436        ctlr_info_t *h = seq->private;
 437        unsigned ctlr = h->ctlr;
 438        loff_t *pos = v;
 439        drive_info_struct *drv = h->drv[*pos];
 440
 441        if (*pos > h->highest_lun)
 442                return 0;
 443
 444        if (drv == NULL) /* it's possible for h->drv[] to have holes. */
 445                return 0;
 446
 447        if (drv->heads == 0)
 448                return 0;
 449
 450        vol_sz = drv->nr_blocks;
 451        vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
 452        vol_sz_frac *= 100;
 453        sector_div(vol_sz_frac, ENG_GIG_FACTOR);
 454
 455        if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
 456                drv->raid_level = RAID_UNKNOWN;
 457        seq_printf(seq, "cciss/c%dd%d:"
 458                        "\t%4u.%02uGB\tRAID %s\n",
 459                        ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
 460                        raid_label[drv->raid_level]);
 461        return 0;
 462}
 463
 464static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 465{
 466        ctlr_info_t *h = seq->private;
 467
 468        if (*pos > h->highest_lun)
 469                return NULL;
 470        *pos += 1;
 471
 472        return pos;
 473}
 474
 475static void cciss_seq_stop(struct seq_file *seq, void *v)
 476{
 477        ctlr_info_t *h = seq->private;
 478
 479        /* Only reset h->busy_configuring if we succeeded in setting
 480         * it during cciss_seq_start. */
 481        if (v == ERR_PTR(-EBUSY))
 482                return;
 483
 484        h->busy_configuring = 0;
 485}
 486
 487static const struct seq_operations cciss_seq_ops = {
 488        .start = cciss_seq_start,
 489        .show  = cciss_seq_show,
 490        .next  = cciss_seq_next,
 491        .stop  = cciss_seq_stop,
 492};
 493
 494static int cciss_seq_open(struct inode *inode, struct file *file)
 495{
 496        int ret = seq_open(file, &cciss_seq_ops);
 497        struct seq_file *seq = file->private_data;
 498
 499        if (!ret)
 500                seq->private = PDE_DATA(inode);
 501
 502        return ret;
 503}
 504
 505static ssize_t
 506cciss_proc_write(struct file *file, const char __user *buf,
 507                 size_t length, loff_t *ppos)
 508{
 509        int err;
 510        char *buffer;
 511
 512#ifndef CONFIG_CISS_SCSI_TAPE
 513        return -EINVAL;
 514#endif
 515
 516        if (!buf || length > PAGE_SIZE - 1)
 517                return -EINVAL;
 518
 519        buffer = (char *)__get_free_page(GFP_KERNEL);
 520        if (!buffer)
 521                return -ENOMEM;
 522
 523        err = -EFAULT;
 524        if (copy_from_user(buffer, buf, length))
 525                goto out;
 526        buffer[length] = '\0';
 527
 528#ifdef CONFIG_CISS_SCSI_TAPE
 529        if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
 530                struct seq_file *seq = file->private_data;
 531                ctlr_info_t *h = seq->private;
 532
 533                err = cciss_engage_scsi(h);
 534                if (err == 0)
 535                        err = length;
 536        } else
 537#endif /* CONFIG_CISS_SCSI_TAPE */
 538                err = -EINVAL;
 539        /* might be nice to have "disengage" too, but it's not
 540           safely possible. (only 1 module use count, lock issues.) */
 541
 542out:
 543        free_page((unsigned long)buffer);
 544        return err;
 545}
 546
 547static const struct file_operations cciss_proc_fops = {
 548        .owner   = THIS_MODULE,
 549        .open    = cciss_seq_open,
 550        .read    = seq_read,
 551        .llseek  = seq_lseek,
 552        .release = seq_release,
 553        .write   = cciss_proc_write,
 554};
 555
 556static void cciss_procinit(ctlr_info_t *h)
 557{
 558        struct proc_dir_entry *pde;
 559
 560        if (proc_cciss == NULL)
 561                proc_cciss = proc_mkdir("driver/cciss", NULL);
 562        if (!proc_cciss)
 563                return;
 564        pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
 565                                        S_IROTH, proc_cciss,
 566                                        &cciss_proc_fops, h);
 567}
 568#endif                          /* CONFIG_PROC_FS */
 569
 570#define MAX_PRODUCT_NAME_LEN 19
 571
 572#define to_hba(n) container_of(n, struct ctlr_info, dev)
 573#define to_drv(n) container_of(n, drive_info_struct, dev)
 574
 575/* List of controllers which cannot be hard reset on kexec with reset_devices */
 576static u32 unresettable_controller[] = {
 577        0x324a103C, /* Smart Array P712m */
 578        0x324b103C, /* SmartArray P711m */
 579        0x3223103C, /* Smart Array P800 */
 580        0x3234103C, /* Smart Array P400 */
 581        0x3235103C, /* Smart Array P400i */
 582        0x3211103C, /* Smart Array E200i */
 583        0x3212103C, /* Smart Array E200 */
 584        0x3213103C, /* Smart Array E200i */
 585        0x3214103C, /* Smart Array E200i */
 586        0x3215103C, /* Smart Array E200i */
 587        0x3237103C, /* Smart Array E500 */
 588        0x323D103C, /* Smart Array P700m */
 589        0x409C0E11, /* Smart Array 6400 */
 590        0x409D0E11, /* Smart Array 6400 EM */
 591};
 592
 593/* List of controllers which cannot even be soft reset */
 594static u32 soft_unresettable_controller[] = {
 595        0x409C0E11, /* Smart Array 6400 */
 596        0x409D0E11, /* Smart Array 6400 EM */
 597};
 598
 599static int ctlr_is_hard_resettable(u32 board_id)
 600{
 601        int i;
 602
 603        for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
 604                if (unresettable_controller[i] == board_id)
 605                        return 0;
 606        return 1;
 607}
 608
 609static int ctlr_is_soft_resettable(u32 board_id)
 610{
 611        int i;
 612
 613        for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
 614                if (soft_unresettable_controller[i] == board_id)
 615                        return 0;
 616        return 1;
 617}
 618
 619static int ctlr_is_resettable(u32 board_id)
 620{
 621        return ctlr_is_hard_resettable(board_id) ||
 622                ctlr_is_soft_resettable(board_id);
 623}
 624
 625static ssize_t host_show_resettable(struct device *dev,
 626                                    struct device_attribute *attr,
 627                                    char *buf)
 628{
 629        struct ctlr_info *h = to_hba(dev);
 630
 631        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 632}
 633static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
 634
 635static ssize_t host_store_rescan(struct device *dev,
 636                                 struct device_attribute *attr,
 637                                 const char *buf, size_t count)
 638{
 639        struct ctlr_info *h = to_hba(dev);
 640
 641        add_to_scan_list(h);
 642        wake_up_process(cciss_scan_thread);
 643        wait_for_completion_interruptible(&h->scan_wait);
 644
 645        return count;
 646}
 647static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 648
 649static ssize_t host_show_transport_mode(struct device *dev,
 650                                 struct device_attribute *attr,
 651                                 char *buf)
 652{
 653        struct ctlr_info *h = to_hba(dev);
 654
 655        return snprintf(buf, 20, "%s\n",
 656                h->transMethod & CFGTBL_Trans_Performant ?
 657                        "performant" : "simple");
 658}
 659static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
 660
 661static ssize_t dev_show_unique_id(struct device *dev,
 662                                 struct device_attribute *attr,
 663                                 char *buf)
 664{
 665        drive_info_struct *drv = to_drv(dev);
 666        struct ctlr_info *h = to_hba(drv->dev.parent);
 667        __u8 sn[16];
 668        unsigned long flags;
 669        int ret = 0;
 670
 671        spin_lock_irqsave(&h->lock, flags);
 672        if (h->busy_configuring)
 673                ret = -EBUSY;
 674        else
 675                memcpy(sn, drv->serial_no, sizeof(sn));
 676        spin_unlock_irqrestore(&h->lock, flags);
 677
 678        if (ret)
 679                return ret;
 680        else
 681                return snprintf(buf, 16 * 2 + 2,
 682                                "%02X%02X%02X%02X%02X%02X%02X%02X"
 683                                "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 684                                sn[0], sn[1], sn[2], sn[3],
 685                                sn[4], sn[5], sn[6], sn[7],
 686                                sn[8], sn[9], sn[10], sn[11],
 687                                sn[12], sn[13], sn[14], sn[15]);
 688}
 689static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
 690
 691static ssize_t dev_show_vendor(struct device *dev,
 692                               struct device_attribute *attr,
 693                               char *buf)
 694{
 695        drive_info_struct *drv = to_drv(dev);
 696        struct ctlr_info *h = to_hba(drv->dev.parent);
 697        char vendor[VENDOR_LEN + 1];
 698        unsigned long flags;
 699        int ret = 0;
 700
 701        spin_lock_irqsave(&h->lock, flags);
 702        if (h->busy_configuring)
 703                ret = -EBUSY;
 704        else
 705                memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
 706        spin_unlock_irqrestore(&h->lock, flags);
 707
 708        if (ret)
 709                return ret;
 710        else
 711                return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
 712}
 713static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
 714
 715static ssize_t dev_show_model(struct device *dev,
 716                              struct device_attribute *attr,
 717                              char *buf)
 718{
 719        drive_info_struct *drv = to_drv(dev);
 720        struct ctlr_info *h = to_hba(drv->dev.parent);
 721        char model[MODEL_LEN + 1];
 722        unsigned long flags;
 723        int ret = 0;
 724
 725        spin_lock_irqsave(&h->lock, flags);
 726        if (h->busy_configuring)
 727                ret = -EBUSY;
 728        else
 729                memcpy(model, drv->model, MODEL_LEN + 1);
 730        spin_unlock_irqrestore(&h->lock, flags);
 731
 732        if (ret)
 733                return ret;
 734        else
 735                return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
 736}
 737static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
 738
 739static ssize_t dev_show_rev(struct device *dev,
 740                            struct device_attribute *attr,
 741                            char *buf)
 742{
 743        drive_info_struct *drv = to_drv(dev);
 744        struct ctlr_info *h = to_hba(drv->dev.parent);
 745        char rev[REV_LEN + 1];
 746        unsigned long flags;
 747        int ret = 0;
 748
 749        spin_lock_irqsave(&h->lock, flags);
 750        if (h->busy_configuring)
 751                ret = -EBUSY;
 752        else
 753                memcpy(rev, drv->rev, REV_LEN + 1);
 754        spin_unlock_irqrestore(&h->lock, flags);
 755
 756        if (ret)
 757                return ret;
 758        else
 759                return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
 760}
 761static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
 762
 763static ssize_t cciss_show_lunid(struct device *dev,
 764                                struct device_attribute *attr, char *buf)
 765{
 766        drive_info_struct *drv = to_drv(dev);
 767        struct ctlr_info *h = to_hba(drv->dev.parent);
 768        unsigned long flags;
 769        unsigned char lunid[8];
 770
 771        spin_lock_irqsave(&h->lock, flags);
 772        if (h->busy_configuring) {
 773                spin_unlock_irqrestore(&h->lock, flags);
 774                return -EBUSY;
 775        }
 776        if (!drv->heads) {
 777                spin_unlock_irqrestore(&h->lock, flags);
 778                return -ENOTTY;
 779        }
 780        memcpy(lunid, drv->LunID, sizeof(lunid));
 781        spin_unlock_irqrestore(&h->lock, flags);
 782        return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 783                lunid[0], lunid[1], lunid[2], lunid[3],
 784                lunid[4], lunid[5], lunid[6], lunid[7]);
 785}
 786static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
 787
 788static ssize_t cciss_show_raid_level(struct device *dev,
 789                                     struct device_attribute *attr, char *buf)
 790{
 791        drive_info_struct *drv = to_drv(dev);
 792        struct ctlr_info *h = to_hba(drv->dev.parent);
 793        int raid;
 794        unsigned long flags;
 795
 796        spin_lock_irqsave(&h->lock, flags);
 797        if (h->busy_configuring) {
 798                spin_unlock_irqrestore(&h->lock, flags);
 799                return -EBUSY;
 800        }
 801        raid = drv->raid_level;
 802        spin_unlock_irqrestore(&h->lock, flags);
 803        if (raid < 0 || raid > RAID_UNKNOWN)
 804                raid = RAID_UNKNOWN;
 805
 806        return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
 807                        raid_label[raid]);
 808}
 809static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
 810
 811static ssize_t cciss_show_usage_count(struct device *dev,
 812                                      struct device_attribute *attr, char *buf)
 813{
 814        drive_info_struct *drv = to_drv(dev);
 815        struct ctlr_info *h = to_hba(drv->dev.parent);
 816        unsigned long flags;
 817        int count;
 818
 819        spin_lock_irqsave(&h->lock, flags);
 820        if (h->busy_configuring) {
 821                spin_unlock_irqrestore(&h->lock, flags);
 822                return -EBUSY;
 823        }
 824        count = drv->usage_count;
 825        spin_unlock_irqrestore(&h->lock, flags);
 826        return snprintf(buf, 20, "%d\n", count);
 827}
 828static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
 829
 830static struct attribute *cciss_host_attrs[] = {
 831        &dev_attr_rescan.attr,
 832        &dev_attr_resettable.attr,
 833        &dev_attr_transport_mode.attr,
 834        NULL
 835};
 836
 837static struct attribute_group cciss_host_attr_group = {
 838        .attrs = cciss_host_attrs,
 839};
 840
 841static const struct attribute_group *cciss_host_attr_groups[] = {
 842        &cciss_host_attr_group,
 843        NULL
 844};
 845
 846static struct device_type cciss_host_type = {
 847        .name           = "cciss_host",
 848        .groups         = cciss_host_attr_groups,
 849        .release        = cciss_hba_release,
 850};
 851
 852static struct attribute *cciss_dev_attrs[] = {
 853        &dev_attr_unique_id.attr,
 854        &dev_attr_model.attr,
 855        &dev_attr_vendor.attr,
 856        &dev_attr_rev.attr,
 857        &dev_attr_lunid.attr,
 858        &dev_attr_raid_level.attr,
 859        &dev_attr_usage_count.attr,
 860        NULL
 861};
 862
 863static struct attribute_group cciss_dev_attr_group = {
 864        .attrs = cciss_dev_attrs,
 865};
 866
 867static const struct attribute_group *cciss_dev_attr_groups[] = {
 868        &cciss_dev_attr_group,
 869        NULL
 870};
 871
 872static struct device_type cciss_dev_type = {
 873        .name           = "cciss_device",
 874        .groups         = cciss_dev_attr_groups,
 875        .release        = cciss_device_release,
 876};
 877
 878static struct bus_type cciss_bus_type = {
 879        .name           = "cciss",
 880};
 881
 882/*
 883 * cciss_hba_release is called when the reference count
 884 * of h->dev goes to zero.
 885 */
 886static void cciss_hba_release(struct device *dev)
 887{
 888        /*
 889         * nothing to do, but need this to avoid a warning
 890         * about not having a release handler from lib/kref.c.
 891         */
 892}
 893
 894/*
 895 * Initialize sysfs entry for each controller.  This sets up and registers
 896 * the 'cciss#' directory for each individual controller under
 897 * /sys/bus/pci/devices/<dev>/.
 898 */
 899static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
 900{
 901        device_initialize(&h->dev);
 902        h->dev.type = &cciss_host_type;
 903        h->dev.bus = &cciss_bus_type;
 904        dev_set_name(&h->dev, "%s", h->devname);
 905        h->dev.parent = &h->pdev->dev;
 906
 907        return device_add(&h->dev);
 908}
 909
 910/*
 911 * Remove sysfs entries for an hba.
 912 */
 913static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
 914{
 915        device_del(&h->dev);
 916        put_device(&h->dev); /* final put. */
 917}
 918
 919/* cciss_device_release is called when the reference count
 920 * of h->drv[x]dev goes to zero.
 921 */
 922static void cciss_device_release(struct device *dev)
 923{
 924        drive_info_struct *drv = to_drv(dev);
 925        kfree(drv);
 926}
 927
 928/*
 929 * Initialize sysfs for each logical drive.  This sets up and registers
 930 * the 'c#d#' directory for each individual logical drive under
 931 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
 932 * /sys/block/cciss!c#d# to this entry.
 933 */
 934static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
 935                                       int drv_index)
 936{
 937        struct device *dev;
 938
 939        if (h->drv[drv_index]->device_initialized)
 940                return 0;
 941
 942        dev = &h->drv[drv_index]->dev;
 943        device_initialize(dev);
 944        dev->type = &cciss_dev_type;
 945        dev->bus = &cciss_bus_type;
 946        dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
 947        dev->parent = &h->dev;
 948        h->drv[drv_index]->device_initialized = 1;
 949        return device_add(dev);
 950}
 951
 952/*
 953 * Remove sysfs entries for a logical drive.
 954 */
 955static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
 956        int ctlr_exiting)
 957{
 958        struct device *dev = &h->drv[drv_index]->dev;
 959
 960        /* special case for c*d0, we only destroy it on controller exit */
 961        if (drv_index == 0 && !ctlr_exiting)
 962                return;
 963
 964        device_del(dev);
 965        put_device(dev); /* the "final" put. */
 966        h->drv[drv_index] = NULL;
 967}
 968
 969/*
 970 * For operations that cannot sleep, a command block is allocated at init,
 971 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 972 * which ones are free or in use.
 973 */
 974static CommandList_struct *cmd_alloc(ctlr_info_t *h)
 975{
 976        CommandList_struct *c;
 977        int i;
 978        u64bit temp64;
 979        dma_addr_t cmd_dma_handle, err_dma_handle;
 980
 981        do {
 982                i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
 983                if (i == h->nr_cmds)
 984                        return NULL;
 985        } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
 986        c = h->cmd_pool + i;
 987        memset(c, 0, sizeof(CommandList_struct));
 988        cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
 989        c->err_info = h->errinfo_pool + i;
 990        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
 991        err_dma_handle = h->errinfo_pool_dhandle
 992            + i * sizeof(ErrorInfo_struct);
 993        h->nr_allocs++;
 994
 995        c->cmdindex = i;
 996
 997        INIT_LIST_HEAD(&c->list);
 998        c->busaddr = (__u32) cmd_dma_handle;
 999        temp64.val = (__u64) err_dma_handle;
1000        c->ErrDesc.Addr.lower = temp64.val32.lower;
1001        c->ErrDesc.Addr.upper = temp64.val32.upper;
1002        c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1003
1004        c->ctlr = h->ctlr;
1005        return c;
1006}
1007
1008/* allocate a command using pci_alloc_consistent, used for ioctls,
1009 * etc., not for the main i/o path.
1010 */
1011static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1012{
1013        CommandList_struct *c;
1014        u64bit temp64;
1015        dma_addr_t cmd_dma_handle, err_dma_handle;
1016
1017        c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1018                sizeof(CommandList_struct), &cmd_dma_handle);
1019        if (c == NULL)
1020                return NULL;
1021        memset(c, 0, sizeof(CommandList_struct));
1022
1023        c->cmdindex = -1;
1024
1025        c->err_info = (ErrorInfo_struct *)
1026            pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1027                    &err_dma_handle);
1028
1029        if (c->err_info == NULL) {
1030                pci_free_consistent(h->pdev,
1031                        sizeof(CommandList_struct), c, cmd_dma_handle);
1032                return NULL;
1033        }
1034        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1035
1036        INIT_LIST_HEAD(&c->list);
1037        c->busaddr = (__u32) cmd_dma_handle;
1038        temp64.val = (__u64) err_dma_handle;
1039        c->ErrDesc.Addr.lower = temp64.val32.lower;
1040        c->ErrDesc.Addr.upper = temp64.val32.upper;
1041        c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1042
1043        c->ctlr = h->ctlr;
1044        return c;
1045}
1046
1047static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1048{
1049        int i;
1050
1051        i = c - h->cmd_pool;
1052        clear_bit(i, h->cmd_pool_bits);
1053        h->nr_frees++;
1054}
1055
1056static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1057{
1058        u64bit temp64;
1059
1060        temp64.val32.lower = c->ErrDesc.Addr.lower;
1061        temp64.val32.upper = c->ErrDesc.Addr.upper;
1062        pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1063                            c->err_info, (dma_addr_t) temp64.val);
1064        pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1065                (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1066}
1067
1068static inline ctlr_info_t *get_host(struct gendisk *disk)
1069{
1070        return disk->queue->queuedata;
1071}
1072
1073static inline drive_info_struct *get_drv(struct gendisk *disk)
1074{
1075        return disk->private_data;
1076}
1077
1078/*
1079 * Open.  Make sure the device is really there.
1080 */
1081static int cciss_open(struct block_device *bdev, fmode_t mode)
1082{
1083        ctlr_info_t *h = get_host(bdev->bd_disk);
1084        drive_info_struct *drv = get_drv(bdev->bd_disk);
1085
1086        dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1087        if (drv->busy_configuring)
1088                return -EBUSY;
1089        /*
1090         * Root is allowed to open raw volume zero even if it's not configured
1091         * so array config can still work. Root is also allowed to open any
1092         * volume that has a LUN ID, so it can issue IOCTL to reread the
1093         * disk information.  I don't think I really like this
1094         * but I'm already using way to many device nodes to claim another one
1095         * for "raw controller".
1096         */
1097        if (drv->heads == 0) {
1098                if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1099                        /* if not node 0 make sure it is a partition = 0 */
1100                        if (MINOR(bdev->bd_dev) & 0x0f) {
1101                                return -ENXIO;
1102                                /* if it is, make sure we have a LUN ID */
1103                        } else if (memcmp(drv->LunID, CTLR_LUNID,
1104                                sizeof(drv->LunID))) {
1105                                return -ENXIO;
1106                        }
1107                }
1108                if (!capable(CAP_SYS_ADMIN))
1109                        return -EPERM;
1110        }
1111        drv->usage_count++;
1112        h->usage_count++;
1113        return 0;
1114}
1115
1116static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1117{
1118        int ret;
1119
1120        mutex_lock(&cciss_mutex);
1121        ret = cciss_open(bdev, mode);
1122        mutex_unlock(&cciss_mutex);
1123
1124        return ret;
1125}
1126
1127/*
1128 * Close.  Sync first.
1129 */
1130static void cciss_release(struct gendisk *disk, fmode_t mode)
1131{
1132        ctlr_info_t *h;
1133        drive_info_struct *drv;
1134
1135        mutex_lock(&cciss_mutex);
1136        h = get_host(disk);
1137        drv = get_drv(disk);
1138        dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1139        drv->usage_count--;
1140        h->usage_count--;
1141        mutex_unlock(&cciss_mutex);
1142}
1143
1144#ifdef CONFIG_COMPAT
1145
1146static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1147                                  unsigned cmd, unsigned long arg);
1148static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1149                                      unsigned cmd, unsigned long arg);
1150
1151static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1152                              unsigned cmd, unsigned long arg)
1153{
1154        switch (cmd) {
1155        case CCISS_GETPCIINFO:
1156        case CCISS_GETINTINFO:
1157        case CCISS_SETINTINFO:
1158        case CCISS_GETNODENAME:
1159        case CCISS_SETNODENAME:
1160        case CCISS_GETHEARTBEAT:
1161        case CCISS_GETBUSTYPES:
1162        case CCISS_GETFIRMVER:
1163        case CCISS_GETDRIVVER:
1164        case CCISS_REVALIDVOLS:
1165        case CCISS_DEREGDISK:
1166        case CCISS_REGNEWDISK:
1167        case CCISS_REGNEWD:
1168        case CCISS_RESCANDISK:
1169        case CCISS_GETLUNINFO:
1170                return cciss_ioctl(bdev, mode, cmd, arg);
1171
1172        case CCISS_PASSTHRU32:
1173                return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1174        case CCISS_BIG_PASSTHRU32:
1175                return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1176
1177        default:
1178                return -ENOIOCTLCMD;
1179        }
1180}
1181
1182static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1183                                  unsigned cmd, unsigned long arg)
1184{
1185        IOCTL32_Command_struct __user *arg32 =
1186            (IOCTL32_Command_struct __user *) arg;
1187        IOCTL_Command_struct arg64;
1188        IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1189        int err;
1190        u32 cp;
1191
1192        err = 0;
1193        err |=
1194            copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1195                           sizeof(arg64.LUN_info));
1196        err |=
1197            copy_from_user(&arg64.Request, &arg32->Request,
1198                           sizeof(arg64.Request));
1199        err |=
1200            copy_from_user(&arg64.error_info, &arg32->error_info,
1201                           sizeof(arg64.error_info));
1202        err |= get_user(arg64.buf_size, &arg32->buf_size);
1203        err |= get_user(cp, &arg32->buf);
1204        arg64.buf = compat_ptr(cp);
1205        err |= copy_to_user(p, &arg64, sizeof(arg64));
1206
1207        if (err)
1208                return -EFAULT;
1209
1210        err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1211        if (err)
1212                return err;
1213        err |=
1214            copy_in_user(&arg32->error_info, &p->error_info,
1215                         sizeof(arg32->error_info));
1216        if (err)
1217                return -EFAULT;
1218        return err;
1219}
1220
1221static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1222                                      unsigned cmd, unsigned long arg)
1223{
1224        BIG_IOCTL32_Command_struct __user *arg32 =
1225            (BIG_IOCTL32_Command_struct __user *) arg;
1226        BIG_IOCTL_Command_struct arg64;
1227        BIG_IOCTL_Command_struct __user *p =
1228            compat_alloc_user_space(sizeof(arg64));
1229        int err;
1230        u32 cp;
1231
1232        memset(&arg64, 0, sizeof(arg64));
1233        err = 0;
1234        err |=
1235            copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1236                           sizeof(arg64.LUN_info));
1237        err |=
1238            copy_from_user(&arg64.Request, &arg32->Request,
1239                           sizeof(arg64.Request));
1240        err |=
1241            copy_from_user(&arg64.error_info, &arg32->error_info,
1242                           sizeof(arg64.error_info));
1243        err |= get_user(arg64.buf_size, &arg32->buf_size);
1244        err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1245        err |= get_user(cp, &arg32->buf);
1246        arg64.buf = compat_ptr(cp);
1247        err |= copy_to_user(p, &arg64, sizeof(arg64));
1248
1249        if (err)
1250                return -EFAULT;
1251
1252        err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1253        if (err)
1254                return err;
1255        err |=
1256            copy_in_user(&arg32->error_info, &p->error_info,
1257                         sizeof(arg32->error_info));
1258        if (err)
1259                return -EFAULT;
1260        return err;
1261}
1262#endif
1263
1264static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1265{
1266        drive_info_struct *drv = get_drv(bdev->bd_disk);
1267
1268        if (!drv->cylinders)
1269                return -ENXIO;
1270
1271        geo->heads = drv->heads;
1272        geo->sectors = drv->sectors;
1273        geo->cylinders = drv->cylinders;
1274        return 0;
1275}
1276
1277static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1278{
1279        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1280                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1281                (void)check_for_unit_attention(h, c);
1282}
1283
1284static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1285{
1286        cciss_pci_info_struct pciinfo;
1287
1288        if (!argp)
1289                return -EINVAL;
1290        pciinfo.domain = pci_domain_nr(h->pdev->bus);
1291        pciinfo.bus = h->pdev->bus->number;
1292        pciinfo.dev_fn = h->pdev->devfn;
1293        pciinfo.board_id = h->board_id;
1294        if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1295                return -EFAULT;
1296        return 0;
1297}
1298
1299static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1300{
1301        cciss_coalint_struct intinfo;
1302        unsigned long flags;
1303
1304        if (!argp)
1305                return -EINVAL;
1306        spin_lock_irqsave(&h->lock, flags);
1307        intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1308        intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1309        spin_unlock_irqrestore(&h->lock, flags);
1310        if (copy_to_user
1311            (argp, &intinfo, sizeof(cciss_coalint_struct)))
1312                return -EFAULT;
1313        return 0;
1314}
1315
1316static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1317{
1318        cciss_coalint_struct intinfo;
1319        unsigned long flags;
1320        int i;
1321
1322        if (!argp)
1323                return -EINVAL;
1324        if (!capable(CAP_SYS_ADMIN))
1325                return -EPERM;
1326        if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1327                return -EFAULT;
1328        if ((intinfo.delay == 0) && (intinfo.count == 0))
1329                return -EINVAL;
1330        spin_lock_irqsave(&h->lock, flags);
1331        /* Update the field, and then ring the doorbell */
1332        writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1333        writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1334        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1335
1336        for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1337                if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1338                        break;
1339                udelay(1000); /* delay and try again */
1340        }
1341        spin_unlock_irqrestore(&h->lock, flags);
1342        if (i >= MAX_IOCTL_CONFIG_WAIT)
1343                return -EAGAIN;
1344        return 0;
1345}
1346
1347static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1348{
1349        NodeName_type NodeName;
1350        unsigned long flags;
1351        int i;
1352
1353        if (!argp)
1354                return -EINVAL;
1355        spin_lock_irqsave(&h->lock, flags);
1356        for (i = 0; i < 16; i++)
1357                NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1358        spin_unlock_irqrestore(&h->lock, flags);
1359        if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1360                return -EFAULT;
1361        return 0;
1362}
1363
1364static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1365{
1366        NodeName_type NodeName;
1367        unsigned long flags;
1368        int i;
1369
1370        if (!argp)
1371                return -EINVAL;
1372        if (!capable(CAP_SYS_ADMIN))
1373                return -EPERM;
1374        if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1375                return -EFAULT;
1376        spin_lock_irqsave(&h->lock, flags);
1377        /* Update the field, and then ring the doorbell */
1378        for (i = 0; i < 16; i++)
1379                writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1380        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1381        for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1382                if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1383                        break;
1384                udelay(1000); /* delay and try again */
1385        }
1386        spin_unlock_irqrestore(&h->lock, flags);
1387        if (i >= MAX_IOCTL_CONFIG_WAIT)
1388                return -EAGAIN;
1389        return 0;
1390}
1391
1392static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1393{
1394        Heartbeat_type heartbeat;
1395        unsigned long flags;
1396
1397        if (!argp)
1398                return -EINVAL;
1399        spin_lock_irqsave(&h->lock, flags);
1400        heartbeat = readl(&h->cfgtable->HeartBeat);
1401        spin_unlock_irqrestore(&h->lock, flags);
1402        if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1403                return -EFAULT;
1404        return 0;
1405}
1406
1407static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1408{
1409        BusTypes_type BusTypes;
1410        unsigned long flags;
1411
1412        if (!argp)
1413                return -EINVAL;
1414        spin_lock_irqsave(&h->lock, flags);
1415        BusTypes = readl(&h->cfgtable->BusTypes);
1416        spin_unlock_irqrestore(&h->lock, flags);
1417        if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1418                return -EFAULT;
1419        return 0;
1420}
1421
1422static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1423{
1424        FirmwareVer_type firmware;
1425
1426        if (!argp)
1427                return -EINVAL;
1428        memcpy(firmware, h->firm_ver, 4);
1429
1430        if (copy_to_user
1431            (argp, firmware, sizeof(FirmwareVer_type)))
1432                return -EFAULT;
1433        return 0;
1434}
1435
1436static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1437{
1438        DriverVer_type DriverVer = DRIVER_VERSION;
1439
1440        if (!argp)
1441                return -EINVAL;
1442        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1443                return -EFAULT;
1444        return 0;
1445}
1446
1447static int cciss_getluninfo(ctlr_info_t *h,
1448        struct gendisk *disk, void __user *argp)
1449{
1450        LogvolInfo_struct luninfo;
1451        drive_info_struct *drv = get_drv(disk);
1452
1453        if (!argp)
1454                return -EINVAL;
1455        memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1456        luninfo.num_opens = drv->usage_count;
1457        luninfo.num_parts = 0;
1458        if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1459                return -EFAULT;
1460        return 0;
1461}
1462
1463static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1464{
1465        IOCTL_Command_struct iocommand;
1466        CommandList_struct *c;
1467        char *buff = NULL;
1468        u64bit temp64;
1469        DECLARE_COMPLETION_ONSTACK(wait);
1470
1471        if (!argp)
1472                return -EINVAL;
1473
1474        if (!capable(CAP_SYS_RAWIO))
1475                return -EPERM;
1476
1477        if (copy_from_user
1478            (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1479                return -EFAULT;
1480        if ((iocommand.buf_size < 1) &&
1481            (iocommand.Request.Type.Direction != XFER_NONE)) {
1482                return -EINVAL;
1483        }
1484        if (iocommand.buf_size > 0) {
1485                buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1486                if (buff == NULL)
1487                        return -EFAULT;
1488        }
1489        if (iocommand.Request.Type.Direction == XFER_WRITE) {
1490                /* Copy the data into the buffer we created */
1491                if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1492                        kfree(buff);
1493                        return -EFAULT;
1494                }
1495        } else {
1496                memset(buff, 0, iocommand.buf_size);
1497        }
1498        c = cmd_special_alloc(h);
1499        if (!c) {
1500                kfree(buff);
1501                return -ENOMEM;
1502        }
1503        /* Fill in the command type */
1504        c->cmd_type = CMD_IOCTL_PEND;
1505        /* Fill in Command Header */
1506        c->Header.ReplyQueue = 0;   /* unused in simple mode */
1507        if (iocommand.buf_size > 0) { /* buffer to fill */
1508                c->Header.SGList = 1;
1509                c->Header.SGTotal = 1;
1510        } else { /* no buffers to fill */
1511                c->Header.SGList = 0;
1512                c->Header.SGTotal = 0;
1513        }
1514        c->Header.LUN = iocommand.LUN_info;
1515        /* use the kernel address the cmd block for tag */
1516        c->Header.Tag.lower = c->busaddr;
1517
1518        /* Fill in Request block */
1519        c->Request = iocommand.Request;
1520
1521        /* Fill in the scatter gather information */
1522        if (iocommand.buf_size > 0) {
1523                temp64.val = pci_map_single(h->pdev, buff,
1524                        iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1525                c->SG[0].Addr.lower = temp64.val32.lower;
1526                c->SG[0].Addr.upper = temp64.val32.upper;
1527                c->SG[0].Len = iocommand.buf_size;
1528                c->SG[0].Ext = 0;  /* we are not chaining */
1529        }
1530        c->waiting = &wait;
1531
1532        enqueue_cmd_and_start_io(h, c);
1533        wait_for_completion(&wait);
1534
1535        /* unlock the buffers from DMA */
1536        temp64.val32.lower = c->SG[0].Addr.lower;
1537        temp64.val32.upper = c->SG[0].Addr.upper;
1538        pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1539                         PCI_DMA_BIDIRECTIONAL);
1540        check_ioctl_unit_attention(h, c);
1541
1542        /* Copy the error information out */
1543        iocommand.error_info = *(c->err_info);
1544        if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1545                kfree(buff);
1546                cmd_special_free(h, c);
1547                return -EFAULT;
1548        }
1549
1550        if (iocommand.Request.Type.Direction == XFER_READ) {
1551                /* Copy the data out of the buffer we created */
1552                if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1553                        kfree(buff);
1554                        cmd_special_free(h, c);
1555                        return -EFAULT;
1556                }
1557        }
1558        kfree(buff);
1559        cmd_special_free(h, c);
1560        return 0;
1561}
1562
1563static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1564{
1565        BIG_IOCTL_Command_struct *ioc;
1566        CommandList_struct *c;
1567        unsigned char **buff = NULL;
1568        int *buff_size = NULL;
1569        u64bit temp64;
1570        BYTE sg_used = 0;
1571        int status = 0;
1572        int i;
1573        DECLARE_COMPLETION_ONSTACK(wait);
1574        __u32 left;
1575        __u32 sz;
1576        BYTE __user *data_ptr;
1577
1578        if (!argp)
1579                return -EINVAL;
1580        if (!capable(CAP_SYS_RAWIO))
1581                return -EPERM;
1582        ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1583        if (!ioc) {
1584                status = -ENOMEM;
1585                goto cleanup1;
1586        }
1587        if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1588                status = -EFAULT;
1589                goto cleanup1;
1590        }
1591        if ((ioc->buf_size < 1) &&
1592            (ioc->Request.Type.Direction != XFER_NONE)) {
1593                status = -EINVAL;
1594                goto cleanup1;
1595        }
1596        /* Check kmalloc limits  using all SGs */
1597        if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1598                status = -EINVAL;
1599                goto cleanup1;
1600        }
1601        if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1602                status = -EINVAL;
1603                goto cleanup1;
1604        }
1605        buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1606        if (!buff) {
1607                status = -ENOMEM;
1608                goto cleanup1;
1609        }
1610        buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1611        if (!buff_size) {
1612                status = -ENOMEM;
1613                goto cleanup1;
1614        }
1615        left = ioc->buf_size;
1616        data_ptr = ioc->buf;
1617        while (left) {
1618                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1619                buff_size[sg_used] = sz;
1620                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1621                if (buff[sg_used] == NULL) {
1622                        status = -ENOMEM;
1623                        goto cleanup1;
1624                }
1625                if (ioc->Request.Type.Direction == XFER_WRITE) {
1626                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1627                                status = -EFAULT;
1628                                goto cleanup1;
1629                        }
1630                } else {
1631                        memset(buff[sg_used], 0, sz);
1632                }
1633                left -= sz;
1634                data_ptr += sz;
1635                sg_used++;
1636        }
1637        c = cmd_special_alloc(h);
1638        if (!c) {
1639                status = -ENOMEM;
1640                goto cleanup1;
1641        }
1642        c->cmd_type = CMD_IOCTL_PEND;
1643        c->Header.ReplyQueue = 0;
1644        c->Header.SGList = sg_used;
1645        c->Header.SGTotal = sg_used;
1646        c->Header.LUN = ioc->LUN_info;
1647        c->Header.Tag.lower = c->busaddr;
1648
1649        c->Request = ioc->Request;
1650        for (i = 0; i < sg_used; i++) {
1651                temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1652                                    PCI_DMA_BIDIRECTIONAL);
1653                c->SG[i].Addr.lower = temp64.val32.lower;
1654                c->SG[i].Addr.upper = temp64.val32.upper;
1655                c->SG[i].Len = buff_size[i];
1656                c->SG[i].Ext = 0;       /* we are not chaining */
1657        }
1658        c->waiting = &wait;
1659        enqueue_cmd_and_start_io(h, c);
1660        wait_for_completion(&wait);
1661        /* unlock the buffers from DMA */
1662        for (i = 0; i < sg_used; i++) {
1663                temp64.val32.lower = c->SG[i].Addr.lower;
1664                temp64.val32.upper = c->SG[i].Addr.upper;
1665                pci_unmap_single(h->pdev,
1666                        (dma_addr_t) temp64.val, buff_size[i],
1667                        PCI_DMA_BIDIRECTIONAL);
1668        }
1669        check_ioctl_unit_attention(h, c);
1670        /* Copy the error information out */
1671        ioc->error_info = *(c->err_info);
1672        if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1673                cmd_special_free(h, c);
1674                status = -EFAULT;
1675                goto cleanup1;
1676        }
1677        if (ioc->Request.Type.Direction == XFER_READ) {
1678                /* Copy the data out of the buffer we created */
1679                BYTE __user *ptr = ioc->buf;
1680                for (i = 0; i < sg_used; i++) {
1681                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
1682                                cmd_special_free(h, c);
1683                                status = -EFAULT;
1684                                goto cleanup1;
1685                        }
1686                        ptr += buff_size[i];
1687                }
1688        }
1689        cmd_special_free(h, c);
1690        status = 0;
1691cleanup1:
1692        if (buff) {
1693                for (i = 0; i < sg_used; i++)
1694                        kfree(buff[i]);
1695                kfree(buff);
1696        }
1697        kfree(buff_size);
1698        kfree(ioc);
1699        return status;
1700}
1701
1702static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1703        unsigned int cmd, unsigned long arg)
1704{
1705        struct gendisk *disk = bdev->bd_disk;
1706        ctlr_info_t *h = get_host(disk);
1707        void __user *argp = (void __user *)arg;
1708
1709        dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1710                cmd, arg);
1711        switch (cmd) {
1712        case CCISS_GETPCIINFO:
1713                return cciss_getpciinfo(h, argp);
1714        case CCISS_GETINTINFO:
1715                return cciss_getintinfo(h, argp);
1716        case CCISS_SETINTINFO:
1717                return cciss_setintinfo(h, argp);
1718        case CCISS_GETNODENAME:
1719                return cciss_getnodename(h, argp);
1720        case CCISS_SETNODENAME:
1721                return cciss_setnodename(h, argp);
1722        case CCISS_GETHEARTBEAT:
1723                return cciss_getheartbeat(h, argp);
1724        case CCISS_GETBUSTYPES:
1725                return cciss_getbustypes(h, argp);
1726        case CCISS_GETFIRMVER:
1727                return cciss_getfirmver(h, argp);
1728        case CCISS_GETDRIVVER:
1729                return cciss_getdrivver(h, argp);
1730        case CCISS_DEREGDISK:
1731        case CCISS_REGNEWD:
1732        case CCISS_REVALIDVOLS:
1733                return rebuild_lun_table(h, 0, 1);
1734        case CCISS_GETLUNINFO:
1735                return cciss_getluninfo(h, disk, argp);
1736        case CCISS_PASSTHRU:
1737                return cciss_passthru(h, argp);
1738        case CCISS_BIG_PASSTHRU:
1739                return cciss_bigpassthru(h, argp);
1740
1741        /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1742        /* very meaningful for cciss.  SG_IO is the main one people want. */
1743
1744        case SG_GET_VERSION_NUM:
1745        case SG_SET_TIMEOUT:
1746        case SG_GET_TIMEOUT:
1747        case SG_GET_RESERVED_SIZE:
1748        case SG_SET_RESERVED_SIZE:
1749        case SG_EMULATED_HOST:
1750        case SG_IO:
1751        case SCSI_IOCTL_SEND_COMMAND:
1752                return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1753
1754        /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1755        /* they aren't a good fit for cciss, as CD-ROMs are */
1756        /* not supported, and we don't have any bus/target/lun */
1757        /* which we present to the kernel. */
1758
1759        case CDROM_SEND_PACKET:
1760        case CDROMCLOSETRAY:
1761        case CDROMEJECT:
1762        case SCSI_IOCTL_GET_IDLUN:
1763        case SCSI_IOCTL_GET_BUS_NUMBER:
1764        default:
1765                return -ENOTTY;
1766        }
1767}
1768
1769static void cciss_check_queues(ctlr_info_t *h)
1770{
1771        int start_queue = h->next_to_run;
1772        int i;
1773
1774        /* check to see if we have maxed out the number of commands that can
1775         * be placed on the queue.  If so then exit.  We do this check here
1776         * in case the interrupt we serviced was from an ioctl and did not
1777         * free any new commands.
1778         */
1779        if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1780                return;
1781
1782        /* We have room on the queue for more commands.  Now we need to queue
1783         * them up.  We will also keep track of the next queue to run so
1784         * that every queue gets a chance to be started first.
1785         */
1786        for (i = 0; i < h->highest_lun + 1; i++) {
1787                int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1788                /* make sure the disk has been added and the drive is real
1789                 * because this can be called from the middle of init_one.
1790                 */
1791                if (!h->drv[curr_queue])
1792                        continue;
1793                if (!(h->drv[curr_queue]->queue) ||
1794                        !(h->drv[curr_queue]->heads))
1795                        continue;
1796                blk_start_queue(h->gendisk[curr_queue]->queue);
1797
1798                /* check to see if we have maxed out the number of commands
1799                 * that can be placed on the queue.
1800                 */
1801                if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1802                        if (curr_queue == start_queue) {
1803                                h->next_to_run =
1804                                    (start_queue + 1) % (h->highest_lun + 1);
1805                                break;
1806                        } else {
1807                                h->next_to_run = curr_queue;
1808                                break;
1809                        }
1810                }
1811        }
1812}
1813
1814static void cciss_softirq_done(struct request *rq)
1815{
1816        CommandList_struct *c = rq->completion_data;
1817        ctlr_info_t *h = hba[c->ctlr];
1818        SGDescriptor_struct *curr_sg = c->SG;
1819        u64bit temp64;
1820        unsigned long flags;
1821        int i, ddir;
1822        int sg_index = 0;
1823
1824        if (c->Request.Type.Direction == XFER_READ)
1825                ddir = PCI_DMA_FROMDEVICE;
1826        else
1827                ddir = PCI_DMA_TODEVICE;
1828
1829        /* command did not need to be retried */
1830        /* unmap the DMA mapping for all the scatter gather elements */
1831        for (i = 0; i < c->Header.SGList; i++) {
1832                if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1833                        cciss_unmap_sg_chain_block(h, c);
1834                        /* Point to the next block */
1835                        curr_sg = h->cmd_sg_list[c->cmdindex];
1836                        sg_index = 0;
1837                }
1838                temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1839                temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1840                pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1841                                ddir);
1842                ++sg_index;
1843        }
1844
1845        dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1846
1847        /* set the residual count for pc requests */
1848        if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1849                rq->resid_len = c->err_info->ResidualCnt;
1850
1851        blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1852
1853        spin_lock_irqsave(&h->lock, flags);
1854        cmd_free(h, c);
1855        cciss_check_queues(h);
1856        spin_unlock_irqrestore(&h->lock, flags);
1857}
1858
1859static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1860        unsigned char scsi3addr[], uint32_t log_unit)
1861{
1862        memcpy(scsi3addr, h->drv[log_unit]->LunID,
1863                sizeof(h->drv[log_unit]->LunID));
1864}
1865
1866/* This function gets the SCSI vendor, model, and revision of a logical drive
1867 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1868 * they cannot be read.
1869 */
1870static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1871                                   char *vendor, char *model, char *rev)
1872{
1873        int rc;
1874        InquiryData_struct *inq_buf;
1875        unsigned char scsi3addr[8];
1876
1877        *vendor = '\0';
1878        *model = '\0';
1879        *rev = '\0';
1880
1881        inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1882        if (!inq_buf)
1883                return;
1884
1885        log_unit_to_scsi3addr(h, scsi3addr, logvol);
1886        rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1887                        scsi3addr, TYPE_CMD);
1888        if (rc == IO_OK) {
1889                memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1890                vendor[VENDOR_LEN] = '\0';
1891                memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1892                model[MODEL_LEN] = '\0';
1893                memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1894                rev[REV_LEN] = '\0';
1895        }
1896
1897        kfree(inq_buf);
1898        return;
1899}
1900
1901/* This function gets the serial number of a logical drive via
1902 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1903 * number cannot be had, for whatever reason, 16 bytes of 0xff
1904 * are returned instead.
1905 */
1906static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1907                                unsigned char *serial_no, int buflen)
1908{
1909#define PAGE_83_INQ_BYTES 64
1910        int rc;
1911        unsigned char *buf;
1912        unsigned char scsi3addr[8];
1913
1914        if (buflen > 16)
1915                buflen = 16;
1916        memset(serial_no, 0xff, buflen);
1917        buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1918        if (!buf)
1919                return;
1920        memset(serial_no, 0, buflen);
1921        log_unit_to_scsi3addr(h, scsi3addr, logvol);
1922        rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1923                PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1924        if (rc == IO_OK)
1925                memcpy(serial_no, &buf[8], buflen);
1926        kfree(buf);
1927        return;
1928}
1929
1930/*
1931 * cciss_add_disk sets up the block device queue for a logical drive
1932 */
1933static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1934                                int drv_index)
1935{
1936        disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1937        if (!disk->queue)
1938                goto init_queue_failure;
1939        sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1940        disk->major = h->major;
1941        disk->first_minor = drv_index << NWD_SHIFT;
1942        disk->fops = &cciss_fops;
1943        if (cciss_create_ld_sysfs_entry(h, drv_index))
1944                goto cleanup_queue;
1945        disk->private_data = h->drv[drv_index];
1946        disk->driverfs_dev = &h->drv[drv_index]->dev;
1947
1948        /* Set up queue information */
1949        blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1950
1951        /* This is a hardware imposed limit. */
1952        blk_queue_max_segments(disk->queue, h->maxsgentries);
1953
1954        blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1955
1956        blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1957
1958        disk->queue->queuedata = h;
1959
1960        blk_queue_logical_block_size(disk->queue,
1961                                     h->drv[drv_index]->block_size);
1962
1963        /* Make sure all queue data is written out before */
1964        /* setting h->drv[drv_index]->queue, as setting this */
1965        /* allows the interrupt handler to start the queue */
1966        wmb();
1967        h->drv[drv_index]->queue = disk->queue;
1968        add_disk(disk);
1969        return 0;
1970
1971cleanup_queue:
1972        blk_cleanup_queue(disk->queue);
1973        disk->queue = NULL;
1974init_queue_failure:
1975        return -1;
1976}
1977
1978/* This function will check the usage_count of the drive to be updated/added.
1979 * If the usage_count is zero and it is a heretofore unknown drive, or,
1980 * the drive's capacity, geometry, or serial number has changed,
1981 * then the drive information will be updated and the disk will be
1982 * re-registered with the kernel.  If these conditions don't hold,
1983 * then it will be left alone for the next reboot.  The exception to this
1984 * is disk 0 which will always be left registered with the kernel since it
1985 * is also the controller node.  Any changes to disk 0 will show up on
1986 * the next reboot.
1987 */
1988static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1989        int first_time, int via_ioctl)
1990{
1991        struct gendisk *disk;
1992        InquiryData_struct *inq_buff = NULL;
1993        unsigned int block_size;
1994        sector_t total_size;
1995        unsigned long flags = 0;
1996        int ret = 0;
1997        drive_info_struct *drvinfo;
1998
1999        /* Get information about the disk and modify the driver structure */
2000        inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2001        drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2002        if (inq_buff == NULL || drvinfo == NULL)
2003                goto mem_msg;
2004
2005        /* testing to see if 16-byte CDBs are already being used */
2006        if (h->cciss_read == CCISS_READ_16) {
2007                cciss_read_capacity_16(h, drv_index,
2008                        &total_size, &block_size);
2009
2010        } else {
2011                cciss_read_capacity(h, drv_index, &total_size, &block_size);
2012                /* if read_capacity returns all F's this volume is >2TB */
2013                /* in size so we switch to 16-byte CDB's for all */
2014                /* read/write ops */
2015                if (total_size == 0xFFFFFFFFULL) {
2016                        cciss_read_capacity_16(h, drv_index,
2017                        &total_size, &block_size);
2018                        h->cciss_read = CCISS_READ_16;
2019                        h->cciss_write = CCISS_WRITE_16;
2020                } else {
2021                        h->cciss_read = CCISS_READ_10;
2022                        h->cciss_write = CCISS_WRITE_10;
2023                }
2024        }
2025
2026        cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2027                               inq_buff, drvinfo);
2028        drvinfo->block_size = block_size;
2029        drvinfo->nr_blocks = total_size + 1;
2030
2031        cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2032                                drvinfo->model, drvinfo->rev);
2033        cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2034                        sizeof(drvinfo->serial_no));
2035        /* Save the lunid in case we deregister the disk, below. */
2036        memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2037                sizeof(drvinfo->LunID));
2038
2039        /* Is it the same disk we already know, and nothing's changed? */
2040        if (h->drv[drv_index]->raid_level != -1 &&
2041                ((memcmp(drvinfo->serial_no,
2042                                h->drv[drv_index]->serial_no, 16) == 0) &&
2043                drvinfo->block_size == h->drv[drv_index]->block_size &&
2044                drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2045                drvinfo->heads == h->drv[drv_index]->heads &&
2046                drvinfo->sectors == h->drv[drv_index]->sectors &&
2047                drvinfo->cylinders == h->drv[drv_index]->cylinders))
2048                        /* The disk is unchanged, nothing to update */
2049                        goto freeret;
2050
2051        /* If we get here it's not the same disk, or something's changed,
2052         * so we need to * deregister it, and re-register it, if it's not
2053         * in use.
2054         * If the disk already exists then deregister it before proceeding
2055         * (unless it's the first disk (for the controller node).
2056         */
2057        if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2058                dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2059                spin_lock_irqsave(&h->lock, flags);
2060                h->drv[drv_index]->busy_configuring = 1;
2061                spin_unlock_irqrestore(&h->lock, flags);
2062
2063                /* deregister_disk sets h->drv[drv_index]->queue = NULL
2064                 * which keeps the interrupt handler from starting
2065                 * the queue.
2066                 */
2067                ret = deregister_disk(h, drv_index, 0, via_ioctl);
2068        }
2069
2070        /* If the disk is in use return */
2071        if (ret)
2072                goto freeret;
2073
2074        /* Save the new information from cciss_geometry_inquiry
2075         * and serial number inquiry.  If the disk was deregistered
2076         * above, then h->drv[drv_index] will be NULL.
2077         */
2078        if (h->drv[drv_index] == NULL) {
2079                drvinfo->device_initialized = 0;
2080                h->drv[drv_index] = drvinfo;
2081                drvinfo = NULL; /* so it won't be freed below. */
2082        } else {
2083                /* special case for cxd0 */
2084                h->drv[drv_index]->block_size = drvinfo->block_size;
2085                h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2086                h->drv[drv_index]->heads = drvinfo->heads;
2087                h->drv[drv_index]->sectors = drvinfo->sectors;
2088                h->drv[drv_index]->cylinders = drvinfo->cylinders;
2089                h->drv[drv_index]->raid_level = drvinfo->raid_level;
2090                memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2091                memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2092                        VENDOR_LEN + 1);
2093                memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2094                memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2095        }
2096
2097        ++h->num_luns;
2098        disk = h->gendisk[drv_index];
2099        set_capacity(disk, h->drv[drv_index]->nr_blocks);
2100
2101        /* If it's not disk 0 (drv_index != 0)
2102         * or if it was disk 0, but there was previously
2103         * no actual corresponding configured logical drive
2104         * (raid_leve == -1) then we want to update the
2105         * logical drive's information.
2106         */
2107        if (drv_index || first_time) {
2108                if (cciss_add_disk(h, disk, drv_index) != 0) {
2109                        cciss_free_gendisk(h, drv_index);
2110                        cciss_free_drive_info(h, drv_index);
2111                        dev_warn(&h->pdev->dev, "could not update disk %d\n",
2112                                drv_index);
2113                        --h->num_luns;
2114                }
2115        }
2116
2117freeret:
2118        kfree(inq_buff);
2119        kfree(drvinfo);
2120        return;
2121mem_msg:
2122        dev_err(&h->pdev->dev, "out of memory\n");
2123        goto freeret;
2124}
2125
2126/* This function will find the first index of the controllers drive array
2127 * that has a null drv pointer and allocate the drive info struct and
2128 * will return that index   This is where new drives will be added.
2129 * If the index to be returned is greater than the highest_lun index for
2130 * the controller then highest_lun is set * to this new index.
2131 * If there are no available indexes or if tha allocation fails, then -1
2132 * is returned.  * "controller_node" is used to know if this is a real
2133 * logical drive, or just the controller node, which determines if this
2134 * counts towards highest_lun.
2135 */
2136static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2137{
2138        int i;
2139        drive_info_struct *drv;
2140
2141        /* Search for an empty slot for our drive info */
2142        for (i = 0; i < CISS_MAX_LUN; i++) {
2143
2144                /* if not cxd0 case, and it's occupied, skip it. */
2145                if (h->drv[i] && i != 0)
2146                        continue;
2147                /*
2148                 * If it's cxd0 case, and drv is alloc'ed already, and a
2149                 * disk is configured there, skip it.
2150                 */
2151                if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2152                        continue;
2153
2154                /*
2155                 * We've found an empty slot.  Update highest_lun
2156                 * provided this isn't just the fake cxd0 controller node.
2157                 */
2158                if (i > h->highest_lun && !controller_node)
2159                        h->highest_lun = i;
2160
2161                /* If adding a real disk at cxd0, and it's already alloc'ed */
2162                if (i == 0 && h->drv[i] != NULL)
2163                        return i;
2164
2165                /*
2166                 * Found an empty slot, not already alloc'ed.  Allocate it.
2167                 * Mark it with raid_level == -1, so we know it's new later on.
2168                 */
2169                drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2170                if (!drv)
2171                        return -1;
2172                drv->raid_level = -1; /* so we know it's new */
2173                h->drv[i] = drv;
2174                return i;
2175        }
2176        return -1;
2177}
2178
2179static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2180{
2181        kfree(h->drv[drv_index]);
2182        h->drv[drv_index] = NULL;
2183}
2184
2185static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2186{
2187        put_disk(h->gendisk[drv_index]);
2188        h->gendisk[drv_index] = NULL;
2189}
2190
2191/* cciss_add_gendisk finds a free hba[]->drv structure
2192 * and allocates a gendisk if needed, and sets the lunid
2193 * in the drvinfo structure.   It returns the index into
2194 * the ->drv[] array, or -1 if none are free.
2195 * is_controller_node indicates whether highest_lun should
2196 * count this disk, or if it's only being added to provide
2197 * a means to talk to the controller in case no logical
2198 * drives have yet been configured.
2199 */
2200static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2201        int controller_node)
2202{
2203        int drv_index;
2204
2205        drv_index = cciss_alloc_drive_info(h, controller_node);
2206        if (drv_index == -1)
2207                return -1;
2208
2209        /*Check if the gendisk needs to be allocated */
2210        if (!h->gendisk[drv_index]) {
2211                h->gendisk[drv_index] =
2212                        alloc_disk(1 << NWD_SHIFT);
2213                if (!h->gendisk[drv_index]) {
2214                        dev_err(&h->pdev->dev,
2215                                "could not allocate a new disk %d\n",
2216                                drv_index);
2217                        goto err_free_drive_info;
2218                }
2219        }
2220        memcpy(h->drv[drv_index]->LunID, lunid,
2221                sizeof(h->drv[drv_index]->LunID));
2222        if (cciss_create_ld_sysfs_entry(h, drv_index))
2223                goto err_free_disk;
2224        /* Don't need to mark this busy because nobody */
2225        /* else knows about this disk yet to contend */
2226        /* for access to it. */
2227        h->drv[drv_index]->busy_configuring = 0;
2228        wmb();
2229        return drv_index;
2230
2231err_free_disk:
2232        cciss_free_gendisk(h, drv_index);
2233err_free_drive_info:
2234        cciss_free_drive_info(h, drv_index);
2235        return -1;
2236}
2237
2238/* This is for the special case of a controller which
2239 * has no logical drives.  In this case, we still need
2240 * to register a disk so the controller can be accessed
2241 * by the Array Config Utility.
2242 */
2243static void cciss_add_controller_node(ctlr_info_t *h)
2244{
2245        struct gendisk *disk;
2246        int drv_index;
2247
2248        if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2249                return;
2250
2251        drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2252        if (drv_index == -1)
2253                goto error;
2254        h->drv[drv_index]->block_size = 512;
2255        h->drv[drv_index]->nr_blocks = 0;
2256        h->drv[drv_index]->heads = 0;
2257        h->drv[drv_index]->sectors = 0;
2258        h->drv[drv_index]->cylinders = 0;
2259        h->drv[drv_index]->raid_level = -1;
2260        memset(h->drv[drv_index]->serial_no, 0, 16);
2261        disk = h->gendisk[drv_index];
2262        if (cciss_add_disk(h, disk, drv_index) == 0)
2263                return;
2264        cciss_free_gendisk(h, drv_index);
2265        cciss_free_drive_info(h, drv_index);
2266error:
2267        dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2268        return;
2269}
2270
2271/* This function will add and remove logical drives from the Logical
2272 * drive array of the controller and maintain persistency of ordering
2273 * so that mount points are preserved until the next reboot.  This allows
2274 * for the removal of logical drives in the middle of the drive array
2275 * without a re-ordering of those drives.
2276 * INPUT
2277 * h            = The controller to perform the operations on
2278 */
2279static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2280        int via_ioctl)
2281{
2282        int num_luns;
2283        ReportLunData_struct *ld_buff = NULL;
2284        int return_code;
2285        int listlength = 0;
2286        int i;
2287        int drv_found;
2288        int drv_index = 0;
2289        unsigned char lunid[8] = CTLR_LUNID;
2290        unsigned long flags;
2291
2292        if (!capable(CAP_SYS_RAWIO))
2293                return -EPERM;
2294
2295        /* Set busy_configuring flag for this operation */
2296        spin_lock_irqsave(&h->lock, flags);
2297        if (h->busy_configuring) {
2298                spin_unlock_irqrestore(&h->lock, flags);
2299                return -EBUSY;
2300        }
2301        h->busy_configuring = 1;
2302        spin_unlock_irqrestore(&h->lock, flags);
2303
2304        ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2305        if (ld_buff == NULL)
2306                goto mem_msg;
2307
2308        return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2309                                      sizeof(ReportLunData_struct),
2310                                      0, CTLR_LUNID, TYPE_CMD);
2311
2312        if (return_code == IO_OK)
2313                listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2314        else {  /* reading number of logical volumes failed */
2315                dev_warn(&h->pdev->dev,
2316                        "report logical volume command failed\n");
2317                listlength = 0;
2318                goto freeret;
2319        }
2320
2321        num_luns = listlength / 8;      /* 8 bytes per entry */
2322        if (num_luns > CISS_MAX_LUN) {
2323                num_luns = CISS_MAX_LUN;
2324                dev_warn(&h->pdev->dev, "more luns configured"
2325                       " on controller than can be handled by"
2326                       " this driver.\n");
2327        }
2328
2329        if (num_luns == 0)
2330                cciss_add_controller_node(h);
2331
2332        /* Compare controller drive array to driver's drive array
2333         * to see if any drives are missing on the controller due
2334         * to action of Array Config Utility (user deletes drive)
2335         * and deregister logical drives which have disappeared.
2336         */
2337        for (i = 0; i <= h->highest_lun; i++) {
2338                int j;
2339                drv_found = 0;
2340
2341                /* skip holes in the array from already deleted drives */
2342                if (h->drv[i] == NULL)
2343                        continue;
2344
2345                for (j = 0; j < num_luns; j++) {
2346                        memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2347                        if (memcmp(h->drv[i]->LunID, lunid,
2348                                sizeof(lunid)) == 0) {
2349                                drv_found = 1;
2350                                break;
2351                        }
2352                }
2353                if (!drv_found) {
2354                        /* Deregister it from the OS, it's gone. */
2355                        spin_lock_irqsave(&h->lock, flags);
2356                        h->drv[i]->busy_configuring = 1;
2357                        spin_unlock_irqrestore(&h->lock, flags);
2358                        return_code = deregister_disk(h, i, 1, via_ioctl);
2359                        if (h->drv[i] != NULL)
2360                                h->drv[i]->busy_configuring = 0;
2361                }
2362        }
2363
2364        /* Compare controller drive array to driver's drive array.
2365         * Check for updates in the drive information and any new drives
2366         * on the controller due to ACU adding logical drives, or changing
2367         * a logical drive's size, etc.  Reregister any new/changed drives
2368         */
2369        for (i = 0; i < num_luns; i++) {
2370                int j;
2371
2372                drv_found = 0;
2373
2374                memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2375                /* Find if the LUN is already in the drive array
2376                 * of the driver.  If so then update its info
2377                 * if not in use.  If it does not exist then find
2378                 * the first free index and add it.
2379                 */
2380                for (j = 0; j <= h->highest_lun; j++) {
2381                        if (h->drv[j] != NULL &&
2382                                memcmp(h->drv[j]->LunID, lunid,
2383                                        sizeof(h->drv[j]->LunID)) == 0) {
2384                                drv_index = j;
2385                                drv_found = 1;
2386                                break;
2387                        }
2388                }
2389
2390                /* check if the drive was found already in the array */
2391                if (!drv_found) {
2392                        drv_index = cciss_add_gendisk(h, lunid, 0);
2393                        if (drv_index == -1)
2394                                goto freeret;
2395                }
2396                cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2397        }               /* end for */
2398
2399freeret:
2400        kfree(ld_buff);
2401        h->busy_configuring = 0;
2402        /* We return -1 here to tell the ACU that we have registered/updated
2403         * all of the drives that we can and to keep it from calling us
2404         * additional times.
2405         */
2406        return -1;
2407mem_msg:
2408        dev_err(&h->pdev->dev, "out of memory\n");
2409        h->busy_configuring = 0;
2410        goto freeret;
2411}
2412
2413static void cciss_clear_drive_info(drive_info_struct *drive_info)
2414{
2415        /* zero out the disk size info */
2416        drive_info->nr_blocks = 0;
2417        drive_info->block_size = 0;
2418        drive_info->heads = 0;
2419        drive_info->sectors = 0;
2420        drive_info->cylinders = 0;
2421        drive_info->raid_level = -1;
2422        memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2423        memset(drive_info->model, 0, sizeof(drive_info->model));
2424        memset(drive_info->rev, 0, sizeof(drive_info->rev));
2425        memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2426        /*
2427         * don't clear the LUNID though, we need to remember which
2428         * one this one is.
2429         */
2430}
2431
2432/* This function will deregister the disk and it's queue from the
2433 * kernel.  It must be called with the controller lock held and the
2434 * drv structures busy_configuring flag set.  It's parameters are:
2435 *
2436 * disk = This is the disk to be deregistered
2437 * drv  = This is the drive_info_struct associated with the disk to be
2438 *        deregistered.  It contains information about the disk used
2439 *        by the driver.
2440 * clear_all = This flag determines whether or not the disk information
2441 *             is going to be completely cleared out and the highest_lun
2442 *             reset.  Sometimes we want to clear out information about
2443 *             the disk in preparation for re-adding it.  In this case
2444 *             the highest_lun should be left unchanged and the LunID
2445 *             should not be cleared.
2446 * via_ioctl
2447 *    This indicates whether we've reached this path via ioctl.
2448 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2449 *    If this path is reached via ioctl(), then the max_usage_count will
2450 *    be 1, as the process calling ioctl() has got to have the device open.
2451 *    If we get here via sysfs, then the max usage count will be zero.
2452*/
2453static int deregister_disk(ctlr_info_t *h, int drv_index,
2454                           int clear_all, int via_ioctl)
2455{
2456        int i;
2457        struct gendisk *disk;
2458        drive_info_struct *drv;
2459        int recalculate_highest_lun;
2460
2461        if (!capable(CAP_SYS_RAWIO))
2462                return -EPERM;
2463
2464        drv = h->drv[drv_index];
2465        disk = h->gendisk[drv_index];
2466
2467        /* make sure logical volume is NOT is use */
2468        if (clear_all || (h->gendisk[0] == disk)) {
2469                if (drv->usage_count > via_ioctl)
2470                        return -EBUSY;
2471        } else if (drv->usage_count > 0)
2472                return -EBUSY;
2473
2474        recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2475
2476        /* invalidate the devices and deregister the disk.  If it is disk
2477         * zero do not deregister it but just zero out it's values.  This
2478         * allows us to delete disk zero but keep the controller registered.
2479         */
2480        if (h->gendisk[0] != disk) {
2481                struct request_queue *q = disk->queue;
2482                if (disk->flags & GENHD_FL_UP) {
2483                        cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2484                        del_gendisk(disk);
2485                }
2486                if (q)
2487                        blk_cleanup_queue(q);
2488                /* If clear_all is set then we are deleting the logical
2489                 * drive, not just refreshing its info.  For drives
2490                 * other than disk 0 we will call put_disk.  We do not
2491                 * do this for disk 0 as we need it to be able to
2492                 * configure the controller.
2493                 */
2494                if (clear_all){
2495                        /* This isn't pretty, but we need to find the
2496                         * disk in our array and NULL our the pointer.
2497                         * This is so that we will call alloc_disk if
2498                         * this index is used again later.
2499                         */
2500                        for (i=0; i < CISS_MAX_LUN; i++){
2501                                if (h->gendisk[i] == disk) {
2502                                        h->gendisk[i] = NULL;
2503                                        break;
2504                                }
2505                        }
2506                        put_disk(disk);
2507                }
2508        } else {
2509                set_capacity(disk, 0);
2510                cciss_clear_drive_info(drv);
2511        }
2512
2513        --h->num_luns;
2514
2515        /* if it was the last disk, find the new hightest lun */
2516        if (clear_all && recalculate_highest_lun) {
2517                int newhighest = -1;
2518                for (i = 0; i <= h->highest_lun; i++) {
2519                        /* if the disk has size > 0, it is available */
2520                        if (h->drv[i] && h->drv[i]->heads)
2521                                newhighest = i;
2522                }
2523                h->highest_lun = newhighest;
2524        }
2525        return 0;
2526}
2527
2528static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2529                size_t size, __u8 page_code, unsigned char *scsi3addr,
2530                int cmd_type)
2531{
2532        u64bit buff_dma_handle;
2533        int status = IO_OK;
2534
2535        c->cmd_type = CMD_IOCTL_PEND;
2536        c->Header.ReplyQueue = 0;
2537        if (buff != NULL) {
2538                c->Header.SGList = 1;
2539                c->Header.SGTotal = 1;
2540        } else {
2541                c->Header.SGList = 0;
2542                c->Header.SGTotal = 0;
2543        }
2544        c->Header.Tag.lower = c->busaddr;
2545        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2546
2547        c->Request.Type.Type = cmd_type;
2548        if (cmd_type == TYPE_CMD) {
2549                switch (cmd) {
2550                case CISS_INQUIRY:
2551                        /* are we trying to read a vital product page */
2552                        if (page_code != 0) {
2553                                c->Request.CDB[1] = 0x01;
2554                                c->Request.CDB[2] = page_code;
2555                        }
2556                        c->Request.CDBLen = 6;
2557                        c->Request.Type.Attribute = ATTR_SIMPLE;
2558                        c->Request.Type.Direction = XFER_READ;
2559                        c->Request.Timeout = 0;
2560                        c->Request.CDB[0] = CISS_INQUIRY;
2561                        c->Request.CDB[4] = size & 0xFF;
2562                        break;
2563                case CISS_REPORT_LOG:
2564                case CISS_REPORT_PHYS:
2565                        /* Talking to controller so It's a physical command
2566                           mode = 00 target = 0.  Nothing to write.
2567                         */
2568                        c->Request.CDBLen = 12;
2569                        c->Request.Type.Attribute = ATTR_SIMPLE;
2570                        c->Request.Type.Direction = XFER_READ;
2571                        c->Request.Timeout = 0;
2572                        c->Request.CDB[0] = cmd;
2573                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2574                        c->Request.CDB[7] = (size >> 16) & 0xFF;
2575                        c->Request.CDB[8] = (size >> 8) & 0xFF;
2576                        c->Request.CDB[9] = size & 0xFF;
2577                        break;
2578
2579                case CCISS_READ_CAPACITY:
2580                        c->Request.CDBLen = 10;
2581                        c->Request.Type.Attribute = ATTR_SIMPLE;
2582                        c->Request.Type.Direction = XFER_READ;
2583                        c->Request.Timeout = 0;
2584                        c->Request.CDB[0] = cmd;
2585                        break;
2586                case CCISS_READ_CAPACITY_16:
2587                        c->Request.CDBLen = 16;
2588                        c->Request.Type.Attribute = ATTR_SIMPLE;
2589                        c->Request.Type.Direction = XFER_READ;
2590                        c->Request.Timeout = 0;
2591                        c->Request.CDB[0] = cmd;
2592                        c->Request.CDB[1] = 0x10;
2593                        c->Request.CDB[10] = (size >> 24) & 0xFF;
2594                        c->Request.CDB[11] = (size >> 16) & 0xFF;
2595                        c->Request.CDB[12] = (size >> 8) & 0xFF;
2596                        c->Request.CDB[13] = size & 0xFF;
2597                        c->Request.Timeout = 0;
2598                        c->Request.CDB[0] = cmd;
2599                        break;
2600                case CCISS_CACHE_FLUSH:
2601                        c->Request.CDBLen = 12;
2602                        c->Request.Type.Attribute = ATTR_SIMPLE;
2603                        c->Request.Type.Direction = XFER_WRITE;
2604                        c->Request.Timeout = 0;
2605                        c->Request.CDB[0] = BMIC_WRITE;
2606                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2607                        c->Request.CDB[7] = (size >> 8) & 0xFF;
2608                        c->Request.CDB[8] = size & 0xFF;
2609                        break;
2610                case TEST_UNIT_READY:
2611                        c->Request.CDBLen = 6;
2612                        c->Request.Type.Attribute = ATTR_SIMPLE;
2613                        c->Request.Type.Direction = XFER_NONE;
2614                        c->Request.Timeout = 0;
2615                        break;
2616                default:
2617                        dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2618                        return IO_ERROR;
2619                }
2620        } else if (cmd_type == TYPE_MSG) {
2621                switch (cmd) {
2622                case CCISS_ABORT_MSG:
2623                        c->Request.CDBLen = 12;
2624                        c->Request.Type.Attribute = ATTR_SIMPLE;
2625                        c->Request.Type.Direction = XFER_WRITE;
2626                        c->Request.Timeout = 0;
2627                        c->Request.CDB[0] = cmd;        /* abort */
2628                        c->Request.CDB[1] = 0;  /* abort a command */
2629                        /* buff contains the tag of the command to abort */
2630                        memcpy(&c->Request.CDB[4], buff, 8);
2631                        break;
2632                case CCISS_RESET_MSG:
2633                        c->Request.CDBLen = 16;
2634                        c->Request.Type.Attribute = ATTR_SIMPLE;
2635                        c->Request.Type.Direction = XFER_NONE;
2636                        c->Request.Timeout = 0;
2637                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2638                        c->Request.CDB[0] = cmd;        /* reset */
2639                        c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2640                        break;
2641                case CCISS_NOOP_MSG:
2642                        c->Request.CDBLen = 1;
2643                        c->Request.Type.Attribute = ATTR_SIMPLE;
2644                        c->Request.Type.Direction = XFER_WRITE;
2645                        c->Request.Timeout = 0;
2646                        c->Request.CDB[0] = cmd;
2647                        break;
2648                default:
2649                        dev_warn(&h->pdev->dev,
2650                                "unknown message type %d\n", cmd);
2651                        return IO_ERROR;
2652                }
2653        } else {
2654                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2655                return IO_ERROR;
2656        }
2657        /* Fill in the scatter gather information */
2658        if (size > 0) {
2659                buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2660                                                             buff, size,
2661                                                             PCI_DMA_BIDIRECTIONAL);
2662                c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2663                c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2664                c->SG[0].Len = size;
2665                c->SG[0].Ext = 0;       /* we are not chaining */
2666        }
2667        return status;
2668}
2669
2670static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2671                            u8 reset_type)
2672{
2673        CommandList_struct *c;
2674        int return_status;
2675
2676        c = cmd_alloc(h);
2677        if (!c)
2678                return -ENOMEM;
2679        return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2680                CTLR_LUNID, TYPE_MSG);
2681        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2682        if (return_status != IO_OK) {
2683                cmd_special_free(h, c);
2684                return return_status;
2685        }
2686        c->waiting = NULL;
2687        enqueue_cmd_and_start_io(h, c);
2688        /* Don't wait for completion, the reset won't complete.  Don't free
2689         * the command either.  This is the last command we will send before
2690         * re-initializing everything, so it doesn't matter and won't leak.
2691         */
2692        return 0;
2693}
2694
2695static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2696{
2697        switch (c->err_info->ScsiStatus) {
2698        case SAM_STAT_GOOD:
2699                return IO_OK;
2700        case SAM_STAT_CHECK_CONDITION:
2701                switch (0xf & c->err_info->SenseInfo[2]) {
2702                case 0: return IO_OK; /* no sense */
2703                case 1: return IO_OK; /* recovered error */
2704                default:
2705                        if (check_for_unit_attention(h, c))
2706                                return IO_NEEDS_RETRY;
2707                        dev_warn(&h->pdev->dev, "cmd 0x%02x "
2708                                "check condition, sense key = 0x%02x\n",
2709                                c->Request.CDB[0], c->err_info->SenseInfo[2]);
2710                }
2711                break;
2712        default:
2713                dev_warn(&h->pdev->dev, "cmd 0x%02x"
2714                        "scsi status = 0x%02x\n",
2715                        c->Request.CDB[0], c->err_info->ScsiStatus);
2716                break;
2717        }
2718        return IO_ERROR;
2719}
2720
2721static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2722{
2723        int return_status = IO_OK;
2724
2725        if (c->err_info->CommandStatus == CMD_SUCCESS)
2726                return IO_OK;
2727
2728        switch (c->err_info->CommandStatus) {
2729        case CMD_TARGET_STATUS:
2730                return_status = check_target_status(h, c);
2731                break;
2732        case CMD_DATA_UNDERRUN:
2733        case CMD_DATA_OVERRUN:
2734                /* expected for inquiry and report lun commands */
2735                break;
2736        case CMD_INVALID:
2737                dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2738                       "reported invalid\n", c->Request.CDB[0]);
2739                return_status = IO_ERROR;
2740                break;
2741        case CMD_PROTOCOL_ERR:
2742                dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2743                       "protocol error\n", c->Request.CDB[0]);
2744                return_status = IO_ERROR;
2745                break;
2746        case CMD_HARDWARE_ERR:
2747                dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2748                       " hardware error\n", c->Request.CDB[0]);
2749                return_status = IO_ERROR;
2750                break;
2751        case CMD_CONNECTION_LOST:
2752                dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2753                       "connection lost\n", c->Request.CDB[0]);
2754                return_status = IO_ERROR;
2755                break;
2756        case CMD_ABORTED:
2757                dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2758                       "aborted\n", c->Request.CDB[0]);
2759                return_status = IO_ERROR;
2760                break;
2761        case CMD_ABORT_FAILED:
2762                dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2763                       "abort failed\n", c->Request.CDB[0]);
2764                return_status = IO_ERROR;
2765                break;
2766        case CMD_UNSOLICITED_ABORT:
2767                dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2768                        c->Request.CDB[0]);
2769                return_status = IO_NEEDS_RETRY;
2770                break;
2771        case CMD_UNABORTABLE:
2772                dev_warn(&h->pdev->dev, "cmd unabortable\n");
2773                return_status = IO_ERROR;
2774                break;
2775        default:
2776                dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2777                       "unknown status %x\n", c->Request.CDB[0],
2778                       c->err_info->CommandStatus);
2779                return_status = IO_ERROR;
2780        }
2781        return return_status;
2782}
2783
2784static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2785        int attempt_retry)
2786{
2787        DECLARE_COMPLETION_ONSTACK(wait);
2788        u64bit buff_dma_handle;
2789        int return_status = IO_OK;
2790
2791resend_cmd2:
2792        c->waiting = &wait;
2793        enqueue_cmd_and_start_io(h, c);
2794
2795        wait_for_completion(&wait);
2796
2797        if (c->err_info->CommandStatus == 0 || !attempt_retry)
2798                goto command_done;
2799
2800        return_status = process_sendcmd_error(h, c);
2801
2802        if (return_status == IO_NEEDS_RETRY &&
2803                c->retry_count < MAX_CMD_RETRIES) {
2804                dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2805                        c->Request.CDB[0]);
2806                c->retry_count++;
2807                /* erase the old error information */
2808                memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2809                return_status = IO_OK;
2810                INIT_COMPLETION(wait);
2811                goto resend_cmd2;
2812        }
2813
2814command_done:
2815        /* unlock the buffers from DMA */
2816        buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2817        buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2818        pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2819                         c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2820        return return_status;
2821}
2822
2823static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2824                           __u8 page_code, unsigned char scsi3addr[],
2825                        int cmd_type)
2826{
2827        CommandList_struct *c;
2828        int return_status;
2829
2830        c = cmd_special_alloc(h);
2831        if (!c)
2832                return -ENOMEM;
2833        return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2834                scsi3addr, cmd_type);
2835        if (return_status == IO_OK)
2836                return_status = sendcmd_withirq_core(h, c, 1);
2837
2838        cmd_special_free(h, c);
2839        return return_status;
2840}
2841
2842static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2843                                   sector_t total_size,
2844                                   unsigned int block_size,
2845                                   InquiryData_struct *inq_buff,
2846                                   drive_info_struct *drv)
2847{
2848        int return_code;
2849        unsigned long t;
2850        unsigned char scsi3addr[8];
2851
2852        memset(inq_buff, 0, sizeof(InquiryData_struct));
2853        log_unit_to_scsi3addr(h, scsi3addr, logvol);
2854        return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2855                        sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2856        if (return_code == IO_OK) {
2857                if (inq_buff->data_byte[8] == 0xFF) {
2858                        dev_warn(&h->pdev->dev,
2859                               "reading geometry failed, volume "
2860                               "does not support reading geometry\n");
2861                        drv->heads = 255;
2862                        drv->sectors = 32;      /* Sectors per track */
2863                        drv->cylinders = total_size + 1;
2864                        drv->raid_level = RAID_UNKNOWN;
2865                } else {
2866                        drv->heads = inq_buff->data_byte[6];
2867                        drv->sectors = inq_buff->data_byte[7];
2868                        drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2869                        drv->cylinders += inq_buff->data_byte[5];
2870                        drv->raid_level = inq_buff->data_byte[8];
2871                }
2872                drv->block_size = block_size;
2873                drv->nr_blocks = total_size + 1;
2874                t = drv->heads * drv->sectors;
2875                if (t > 1) {
2876                        sector_t real_size = total_size + 1;
2877                        unsigned long rem = sector_div(real_size, t);
2878                        if (rem)
2879                                real_size++;
2880                        drv->cylinders = real_size;
2881                }
2882        } else {                /* Get geometry failed */
2883                dev_warn(&h->pdev->dev, "reading geometry failed\n");
2884        }
2885}
2886
2887static void
2888cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2889                    unsigned int *block_size)
2890{
2891        ReadCapdata_struct *buf;
2892        int return_code;
2893        unsigned char scsi3addr[8];
2894
2895        buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2896        if (!buf) {
2897                dev_warn(&h->pdev->dev, "out of memory\n");
2898                return;
2899        }
2900
2901        log_unit_to_scsi3addr(h, scsi3addr, logvol);
2902        return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2903                sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2904        if (return_code == IO_OK) {
2905                *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2906                *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2907        } else {                /* read capacity command failed */
2908                dev_warn(&h->pdev->dev, "read capacity failed\n");
2909                *total_size = 0;
2910                *block_size = BLOCK_SIZE;
2911        }
2912        kfree(buf);
2913}
2914
2915static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2916        sector_t *total_size, unsigned int *block_size)
2917{
2918        ReadCapdata_struct_16 *buf;
2919        int return_code;
2920        unsigned char scsi3addr[8];
2921
2922        buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2923        if (!buf) {
2924                dev_warn(&h->pdev->dev, "out of memory\n");
2925                return;
2926        }
2927
2928        log_unit_to_scsi3addr(h, scsi3addr, logvol);
2929        return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2930                buf, sizeof(ReadCapdata_struct_16),
2931                        0, scsi3addr, TYPE_CMD);
2932        if (return_code == IO_OK) {
2933                *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2934                *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2935        } else {                /* read capacity command failed */
2936                dev_warn(&h->pdev->dev, "read capacity failed\n");
2937                *total_size = 0;
2938                *block_size = BLOCK_SIZE;
2939        }
2940        dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2941               (unsigned long long)*total_size+1, *block_size);
2942        kfree(buf);
2943}
2944
2945static int cciss_revalidate(struct gendisk *disk)
2946{
2947        ctlr_info_t *h = get_host(disk);
2948        drive_info_struct *drv = get_drv(disk);
2949        int logvol;
2950        int FOUND = 0;
2951        unsigned int block_size;
2952        sector_t total_size;
2953        InquiryData_struct *inq_buff = NULL;
2954
2955        for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2956                if (!h->drv[logvol])
2957                        continue;
2958                if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2959                        sizeof(drv->LunID)) == 0) {
2960                        FOUND = 1;
2961                        break;
2962                }
2963        }
2964
2965        if (!FOUND)
2966                return 1;
2967
2968        inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2969        if (inq_buff == NULL) {
2970                dev_warn(&h->pdev->dev, "out of memory\n");
2971                return 1;
2972        }
2973        if (h->cciss_read == CCISS_READ_10) {
2974                cciss_read_capacity(h, logvol,
2975                                        &total_size, &block_size);
2976        } else {
2977                cciss_read_capacity_16(h, logvol,
2978                                        &total_size, &block_size);
2979        }
2980        cciss_geometry_inquiry(h, logvol, total_size, block_size,
2981                               inq_buff, drv);
2982
2983        blk_queue_logical_block_size(drv->queue, drv->block_size);
2984        set_capacity(disk, drv->nr_blocks);
2985
2986        kfree(inq_buff);
2987        return 0;
2988}
2989
2990/*
2991 * Map (physical) PCI mem into (virtual) kernel space
2992 */
2993static void __iomem *remap_pci_mem(ulong base, ulong size)
2994{
2995        ulong page_base = ((ulong) base) & PAGE_MASK;
2996        ulong page_offs = ((ulong) base) - page_base;
2997        void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2998
2999        return page_remapped ? (page_remapped + page_offs) : NULL;
3000}
3001
3002/*
3003 * Takes jobs of the Q and sends them to the hardware, then puts it on
3004 * the Q to wait for completion.
3005 */
3006static void start_io(ctlr_info_t *h)
3007{
3008        CommandList_struct *c;
3009
3010        while (!list_empty(&h->reqQ)) {
3011                c = list_entry(h->reqQ.next, CommandList_struct, list);
3012                /* can't do anything if fifo is full */
3013                if ((h->access.fifo_full(h))) {
3014                        dev_warn(&h->pdev->dev, "fifo full\n");
3015                        break;
3016                }
3017
3018                /* Get the first entry from the Request Q */
3019                removeQ(c);
3020                h->Qdepth--;
3021
3022                /* Tell the controller execute command */
3023                h->access.submit_command(h, c);
3024
3025                /* Put job onto the completed Q */
3026                addQ(&h->cmpQ, c);
3027        }
3028}
3029
3030/* Assumes that h->lock is held. */
3031/* Zeros out the error record and then resends the command back */
3032/* to the controller */
3033static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3034{
3035        /* erase the old error information */
3036        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3037
3038        /* add it to software queue and then send it to the controller */
3039        addQ(&h->reqQ, c);
3040        h->Qdepth++;
3041        if (h->Qdepth > h->maxQsinceinit)
3042                h->maxQsinceinit = h->Qdepth;
3043
3044        start_io(h);
3045}
3046
3047static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3048        unsigned int msg_byte, unsigned int host_byte,
3049        unsigned int driver_byte)
3050{
3051        /* inverse of macros in scsi.h */
3052        return (scsi_status_byte & 0xff) |
3053                ((msg_byte & 0xff) << 8) |
3054                ((host_byte & 0xff) << 16) |
3055                ((driver_byte & 0xff) << 24);
3056}
3057
3058static inline int evaluate_target_status(ctlr_info_t *h,
3059                        CommandList_struct *cmd, int *retry_cmd)
3060{
3061        unsigned char sense_key;
3062        unsigned char status_byte, msg_byte, host_byte, driver_byte;
3063        int error_value;
3064
3065        *retry_cmd = 0;
3066        /* If we get in here, it means we got "target status", that is, scsi status */
3067        status_byte = cmd->err_info->ScsiStatus;
3068        driver_byte = DRIVER_OK;
3069        msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3070
3071        if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3072                host_byte = DID_PASSTHROUGH;
3073        else
3074                host_byte = DID_OK;
3075
3076        error_value = make_status_bytes(status_byte, msg_byte,
3077                host_byte, driver_byte);
3078
3079        if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3080                if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3081                        dev_warn(&h->pdev->dev, "cmd %p "
3082                               "has SCSI Status 0x%x\n",
3083                               cmd, cmd->err_info->ScsiStatus);
3084                return error_value;
3085        }
3086
3087        /* check the sense key */
3088        sense_key = 0xf & cmd->err_info->SenseInfo[2];
3089        /* no status or recovered error */
3090        if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3091            (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3092                error_value = 0;
3093
3094        if (check_for_unit_attention(h, cmd)) {
3095                *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3096                return 0;
3097        }
3098
3099        /* Not SG_IO or similar? */
3100        if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3101                if (error_value != 0)
3102                        dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3103                               " sense key = 0x%x\n", cmd, sense_key);
3104                return error_value;
3105        }
3106
3107        /* SG_IO or similar, copy sense data back */
3108        if (cmd->rq->sense) {
3109                if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3110                        cmd->rq->sense_len = cmd->err_info->SenseLen;
3111                memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3112                        cmd->rq->sense_len);
3113        } else
3114                cmd->rq->sense_len = 0;
3115
3116        return error_value;
3117}
3118
3119/* checks the status of the job and calls complete buffers to mark all
3120 * buffers for the completed job. Note that this function does not need
3121 * to hold the hba/queue lock.
3122 */
3123static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3124                                    int timeout)
3125{
3126        int retry_cmd = 0;
3127        struct request *rq = cmd->rq;
3128
3129        rq->errors = 0;
3130
3131        if (timeout)
3132                rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3133
3134        if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3135                goto after_error_processing;
3136
3137        switch (cmd->err_info->CommandStatus) {
3138        case CMD_TARGET_STATUS:
3139                rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3140                break;
3141        case CMD_DATA_UNDERRUN:
3142                if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3143                        dev_warn(&h->pdev->dev, "cmd %p has"
3144                               " completed with data underrun "
3145                               "reported\n", cmd);
3146                        cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3147                }
3148                break;
3149        case CMD_DATA_OVERRUN:
3150                if (cmd->rq->cmd_type == REQ_TYPE_FS)
3151                        dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3152                               " completed with data overrun "
3153                               "reported\n", cmd);
3154                break;
3155        case CMD_INVALID:
3156                dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3157                       "reported invalid\n", cmd);
3158                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3159                        cmd->err_info->CommandStatus, DRIVER_OK,
3160                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3161                                DID_PASSTHROUGH : DID_ERROR);
3162                break;
3163        case CMD_PROTOCOL_ERR:
3164                dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3165                       "protocol error\n", cmd);
3166                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167                        cmd->err_info->CommandStatus, DRIVER_OK,
3168                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3169                                DID_PASSTHROUGH : DID_ERROR);
3170                break;
3171        case CMD_HARDWARE_ERR:
3172                dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3173                       " hardware error\n", cmd);
3174                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3175                        cmd->err_info->CommandStatus, DRIVER_OK,
3176                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3177                                DID_PASSTHROUGH : DID_ERROR);
3178                break;
3179        case CMD_CONNECTION_LOST:
3180                dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3181                       "connection lost\n", cmd);
3182                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3183                        cmd->err_info->CommandStatus, DRIVER_OK,
3184                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3185                                DID_PASSTHROUGH : DID_ERROR);
3186                break;
3187        case CMD_ABORTED:
3188                dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3189                       "aborted\n", cmd);
3190                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3191                        cmd->err_info->CommandStatus, DRIVER_OK,
3192                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3193                                DID_PASSTHROUGH : DID_ABORT);
3194                break;
3195        case CMD_ABORT_FAILED:
3196                dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3197                       "abort failed\n", cmd);
3198                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3199                        cmd->err_info->CommandStatus, DRIVER_OK,
3200                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3201                                DID_PASSTHROUGH : DID_ERROR);
3202                break;
3203        case CMD_UNSOLICITED_ABORT:
3204                dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3205                       "abort %p\n", h->ctlr, cmd);
3206                if (cmd->retry_count < MAX_CMD_RETRIES) {
3207                        retry_cmd = 1;
3208                        dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3209                        cmd->retry_count++;
3210                } else
3211                        dev_warn(&h->pdev->dev,
3212                                "%p retried too many times\n", cmd);
3213                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3214                        cmd->err_info->CommandStatus, DRIVER_OK,
3215                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3216                                DID_PASSTHROUGH : DID_ABORT);
3217                break;
3218        case CMD_TIMEOUT:
3219                dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3220                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3221                        cmd->err_info->CommandStatus, DRIVER_OK,
3222                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3223                                DID_PASSTHROUGH : DID_ERROR);
3224                break;
3225        case CMD_UNABORTABLE:
3226                dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3227                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3228                        cmd->err_info->CommandStatus, DRIVER_OK,
3229                        cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3230                                DID_PASSTHROUGH : DID_ERROR);
3231                break;
3232        default:
3233                dev_warn(&h->pdev->dev, "cmd %p returned "
3234                       "unknown status %x\n", cmd,
3235                       cmd->err_info->CommandStatus);
3236                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3237                        cmd->err_info->CommandStatus, DRIVER_OK,
3238                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3239                                DID_PASSTHROUGH : DID_ERROR);
3240        }
3241
3242after_error_processing:
3243
3244        /* We need to return this command */
3245        if (retry_cmd) {
3246                resend_cciss_cmd(h, cmd);
3247                return;
3248        }
3249        cmd->rq->completion_data = cmd;
3250        blk_complete_request(cmd->rq);
3251}
3252
3253static inline u32 cciss_tag_contains_index(u32 tag)
3254{
3255#define DIRECT_LOOKUP_BIT 0x10
3256        return tag & DIRECT_LOOKUP_BIT;
3257}
3258
3259static inline u32 cciss_tag_to_index(u32 tag)
3260{
3261#define DIRECT_LOOKUP_SHIFT 5
3262        return tag >> DIRECT_LOOKUP_SHIFT;
3263}
3264
3265static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3266{
3267#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3268#define CCISS_SIMPLE_ERROR_BITS 0x03
3269        if (likely(h->transMethod & CFGTBL_Trans_Performant))
3270                return tag & ~CCISS_PERF_ERROR_BITS;
3271        return tag & ~CCISS_SIMPLE_ERROR_BITS;
3272}
3273
3274static inline void cciss_mark_tag_indexed(u32 *tag)
3275{
3276        *tag |= DIRECT_LOOKUP_BIT;
3277}
3278
3279static inline void cciss_set_tag_index(u32 *tag, u32 index)
3280{
3281        *tag |= (index << DIRECT_LOOKUP_SHIFT);
3282}
3283
3284/*
3285 * Get a request and submit it to the controller.
3286 */
3287static void do_cciss_request(struct request_queue *q)
3288{
3289        ctlr_info_t *h = q->queuedata;
3290        CommandList_struct *c;
3291        sector_t start_blk;
3292        int seg;
3293        struct request *creq;
3294        u64bit temp64;
3295        struct scatterlist *tmp_sg;
3296        SGDescriptor_struct *curr_sg;
3297        drive_info_struct *drv;
3298        int i, dir;
3299        int sg_index = 0;
3300        int chained = 0;
3301
3302      queue:
3303        creq = blk_peek_request(q);
3304        if (!creq)
3305                goto startio;
3306
3307        BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3308
3309        c = cmd_alloc(h);
3310        if (!c)
3311                goto full;
3312
3313        blk_start_request(creq);
3314
3315        tmp_sg = h->scatter_list[c->cmdindex];
3316        spin_unlock_irq(q->queue_lock);
3317
3318        c->cmd_type = CMD_RWREQ;
3319        c->rq = creq;
3320
3321        /* fill in the request */
3322        drv = creq->rq_disk->private_data;
3323        c->Header.ReplyQueue = 0;       /* unused in simple mode */
3324        /* got command from pool, so use the command block index instead */
3325        /* for direct lookups. */
3326        /* The first 2 bits are reserved for controller error reporting. */
3327        cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3328        cciss_mark_tag_indexed(&c->Header.Tag.lower);
3329        memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3330        c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3331        c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3332        c->Request.Type.Attribute = ATTR_SIMPLE;
3333        c->Request.Type.Direction =
3334            (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3335        c->Request.Timeout = 0; /* Don't time out */
3336        c->Request.CDB[0] =
3337            (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3338        start_blk = blk_rq_pos(creq);
3339        dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3340               (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3341        sg_init_table(tmp_sg, h->maxsgentries);
3342        seg = blk_rq_map_sg(q, creq, tmp_sg);
3343
3344        /* get the DMA records for the setup */
3345        if (c->Request.Type.Direction == XFER_READ)
3346                dir = PCI_DMA_FROMDEVICE;
3347        else
3348                dir = PCI_DMA_TODEVICE;
3349
3350        curr_sg = c->SG;
3351        sg_index = 0;
3352        chained = 0;
3353
3354        for (i = 0; i < seg; i++) {
3355                if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3356                        !chained && ((seg - i) > 1)) {
3357                        /* Point to next chain block. */
3358                        curr_sg = h->cmd_sg_list[c->cmdindex];
3359                        sg_index = 0;
3360                        chained = 1;
3361                }
3362                curr_sg[sg_index].Len = tmp_sg[i].length;
3363                temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3364                                                tmp_sg[i].offset,
3365                                                tmp_sg[i].length, dir);
3366                curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3367                curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3368                curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3369                ++sg_index;
3370        }
3371        if (chained)
3372                cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3373                        (seg - (h->max_cmd_sgentries - 1)) *
3374                                sizeof(SGDescriptor_struct));
3375
3376        /* track how many SG entries we are using */
3377        if (seg > h->maxSG)
3378                h->maxSG = seg;
3379
3380        dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3381                        "chained[%d]\n",
3382                        blk_rq_sectors(creq), seg, chained);
3383
3384        c->Header.SGTotal = seg + chained;
3385        if (seg <= h->max_cmd_sgentries)
3386                c->Header.SGList = c->Header.SGTotal;
3387        else
3388                c->Header.SGList = h->max_cmd_sgentries;
3389        set_performant_mode(h, c);
3390
3391        if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3392                if(h->cciss_read == CCISS_READ_10) {
3393                        c->Request.CDB[1] = 0;
3394                        c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3395                        c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3396                        c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3397                        c->Request.CDB[5] = start_blk & 0xff;
3398                        c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3399                        c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3400                        c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3401                        c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3402                } else {
3403                        u32 upper32 = upper_32_bits(start_blk);
3404
3405                        c->Request.CDBLen = 16;
3406                        c->Request.CDB[1]= 0;
3407                        c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3408                        c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3409                        c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3410                        c->Request.CDB[5]= upper32 & 0xff;
3411                        c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3412                        c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3413                        c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3414                        c->Request.CDB[9]= start_blk & 0xff;
3415                        c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3416                        c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3417                        c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3418                        c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3419                        c->Request.CDB[14] = c->Request.CDB[15] = 0;
3420                }
3421        } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3422                c->Request.CDBLen = creq->cmd_len;
3423                memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3424        } else {
3425                dev_warn(&h->pdev->dev, "bad request type %d\n",
3426                        creq->cmd_type);
3427                BUG();
3428        }
3429
3430        spin_lock_irq(q->queue_lock);
3431
3432        addQ(&h->reqQ, c);
3433        h->Qdepth++;
3434        if (h->Qdepth > h->maxQsinceinit)
3435                h->maxQsinceinit = h->Qdepth;
3436
3437        goto queue;
3438full:
3439        blk_stop_queue(q);
3440startio:
3441        /* We will already have the driver lock here so not need
3442         * to lock it.
3443         */
3444        start_io(h);
3445}
3446
3447static inline unsigned long get_next_completion(ctlr_info_t *h)
3448{
3449        return h->access.command_completed(h);
3450}
3451
3452static inline int interrupt_pending(ctlr_info_t *h)
3453{
3454        return h->access.intr_pending(h);
3455}
3456
3457static inline long interrupt_not_for_us(ctlr_info_t *h)
3458{
3459        return ((h->access.intr_pending(h) == 0) ||
3460                (h->interrupts_enabled == 0));
3461}
3462
3463static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3464                        u32 raw_tag)
3465{
3466        if (unlikely(tag_index >= h->nr_cmds)) {
3467                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3468                return 1;
3469        }
3470        return 0;
3471}
3472
3473static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3474                                u32 raw_tag)
3475{
3476        removeQ(c);
3477        if (likely(c->cmd_type == CMD_RWREQ))
3478                complete_command(h, c, 0);
3479        else if (c->cmd_type == CMD_IOCTL_PEND)
3480                complete(c->waiting);
3481#ifdef CONFIG_CISS_SCSI_TAPE
3482        else if (c->cmd_type == CMD_SCSI)
3483                complete_scsi_command(c, 0, raw_tag);
3484#endif
3485}
3486
3487static inline u32 next_command(ctlr_info_t *h)
3488{
3489        u32 a;
3490
3491        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3492                return h->access.command_completed(h);
3493
3494        if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3495                a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3496                (h->reply_pool_head)++;
3497                h->commands_outstanding--;
3498        } else {
3499                a = FIFO_EMPTY;
3500        }
3501        /* Check for wraparound */
3502        if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3503                h->reply_pool_head = h->reply_pool;
3504                h->reply_pool_wraparound ^= 1;
3505        }
3506        return a;
3507}
3508
3509/* process completion of an indexed ("direct lookup") command */
3510static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3511{
3512        u32 tag_index;
3513        CommandList_struct *c;
3514
3515        tag_index = cciss_tag_to_index(raw_tag);
3516        if (bad_tag(h, tag_index, raw_tag))
3517                return next_command(h);
3518        c = h->cmd_pool + tag_index;
3519        finish_cmd(h, c, raw_tag);
3520        return next_command(h);
3521}
3522
3523/* process completion of a non-indexed command */
3524static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3525{
3526        CommandList_struct *c = NULL;
3527        __u32 busaddr_masked, tag_masked;
3528
3529        tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3530        list_for_each_entry(c, &h->cmpQ, list) {
3531                busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3532                if (busaddr_masked == tag_masked) {
3533                        finish_cmd(h, c, raw_tag);
3534                        return next_command(h);
3535                }
3536        }
3537        bad_tag(h, h->nr_cmds + 1, raw_tag);
3538        return next_command(h);
3539}
3540
3541/* Some controllers, like p400, will give us one interrupt
3542 * after a soft reset, even if we turned interrupts off.
3543 * Only need to check for this in the cciss_xxx_discard_completions
3544 * functions.
3545 */
3546static int ignore_bogus_interrupt(ctlr_info_t *h)
3547{
3548        if (likely(!reset_devices))
3549                return 0;
3550
3551        if (likely(h->interrupts_enabled))
3552                return 0;
3553
3554        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3555                "(known firmware bug.)  Ignoring.\n");
3556
3557        return 1;
3558}
3559
3560static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3561{
3562        ctlr_info_t *h = dev_id;
3563        unsigned long flags;
3564        u32 raw_tag;
3565
3566        if (ignore_bogus_interrupt(h))
3567                return IRQ_NONE;
3568
3569        if (interrupt_not_for_us(h))
3570                return IRQ_NONE;
3571        spin_lock_irqsave(&h->lock, flags);
3572        while (interrupt_pending(h)) {
3573                raw_tag = get_next_completion(h);
3574                while (raw_tag != FIFO_EMPTY)
3575                        raw_tag = next_command(h);
3576        }
3577        spin_unlock_irqrestore(&h->lock, flags);
3578        return IRQ_HANDLED;
3579}
3580
3581static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3582{
3583        ctlr_info_t *h = dev_id;
3584        unsigned long flags;
3585        u32 raw_tag;
3586
3587        if (ignore_bogus_interrupt(h))
3588                return IRQ_NONE;
3589
3590        spin_lock_irqsave(&h->lock, flags);
3591        raw_tag = get_next_completion(h);
3592        while (raw_tag != FIFO_EMPTY)
3593                raw_tag = next_command(h);
3594        spin_unlock_irqrestore(&h->lock, flags);
3595        return IRQ_HANDLED;
3596}
3597
3598static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3599{
3600        ctlr_info_t *h = dev_id;
3601        unsigned long flags;
3602        u32 raw_tag;
3603
3604        if (interrupt_not_for_us(h))
3605                return IRQ_NONE;
3606        spin_lock_irqsave(&h->lock, flags);
3607        while (interrupt_pending(h)) {
3608                raw_tag = get_next_completion(h);
3609                while (raw_tag != FIFO_EMPTY) {
3610                        if (cciss_tag_contains_index(raw_tag))
3611                                raw_tag = process_indexed_cmd(h, raw_tag);
3612                        else
3613                                raw_tag = process_nonindexed_cmd(h, raw_tag);
3614                }
3615        }
3616        spin_unlock_irqrestore(&h->lock, flags);
3617        return IRQ_HANDLED;
3618}
3619
3620/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3621 * check the interrupt pending register because it is not set.
3622 */
3623static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3624{
3625        ctlr_info_t *h = dev_id;
3626        unsigned long flags;
3627        u32 raw_tag;
3628
3629        spin_lock_irqsave(&h->lock, flags);
3630        raw_tag = get_next_completion(h);
3631        while (raw_tag != FIFO_EMPTY) {
3632                if (cciss_tag_contains_index(raw_tag))
3633                        raw_tag = process_indexed_cmd(h, raw_tag);
3634                else
3635                        raw_tag = process_nonindexed_cmd(h, raw_tag);
3636        }
3637        spin_unlock_irqrestore(&h->lock, flags);
3638        return IRQ_HANDLED;
3639}
3640
3641/**
3642 * add_to_scan_list() - add controller to rescan queue
3643 * @h:                Pointer to the controller.
3644 *
3645 * Adds the controller to the rescan queue if not already on the queue.
3646 *
3647 * returns 1 if added to the queue, 0 if skipped (could be on the
3648 * queue already, or the controller could be initializing or shutting
3649 * down).
3650 **/
3651static int add_to_scan_list(struct ctlr_info *h)
3652{
3653        struct ctlr_info *test_h;
3654        int found = 0;
3655        int ret = 0;
3656
3657        if (h->busy_initializing)
3658                return 0;
3659
3660        if (!mutex_trylock(&h->busy_shutting_down))
3661                return 0;
3662
3663        mutex_lock(&scan_mutex);
3664        list_for_each_entry(test_h, &scan_q, scan_list) {
3665                if (test_h == h) {
3666                        found = 1;
3667                        break;
3668                }
3669        }
3670        if (!found && !h->busy_scanning) {
3671                INIT_COMPLETION(h->scan_wait);
3672                list_add_tail(&h->scan_list, &scan_q);
3673                ret = 1;
3674        }
3675        mutex_unlock(&scan_mutex);
3676        mutex_unlock(&h->busy_shutting_down);
3677
3678        return ret;
3679}
3680
3681/**
3682 * remove_from_scan_list() - remove controller from rescan queue
3683 * @h:                     Pointer to the controller.
3684 *
3685 * Removes the controller from the rescan queue if present. Blocks if
3686 * the controller is currently conducting a rescan.  The controller
3687 * can be in one of three states:
3688 * 1. Doesn't need a scan
3689 * 2. On the scan list, but not scanning yet (we remove it)
3690 * 3. Busy scanning (and not on the list). In this case we want to wait for
3691 *    the scan to complete to make sure the scanning thread for this
3692 *    controller is completely idle.
3693 **/
3694static void remove_from_scan_list(struct ctlr_info *h)
3695{
3696        struct ctlr_info *test_h, *tmp_h;
3697
3698        mutex_lock(&scan_mutex);
3699        list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3700                if (test_h == h) { /* state 2. */
3701                        list_del(&h->scan_list);
3702                        complete_all(&h->scan_wait);
3703                        mutex_unlock(&scan_mutex);
3704                        return;
3705                }
3706        }
3707        if (h->busy_scanning) { /* state 3. */
3708                mutex_unlock(&scan_mutex);
3709                wait_for_completion(&h->scan_wait);
3710        } else { /* state 1, nothing to do. */
3711                mutex_unlock(&scan_mutex);
3712        }
3713}
3714
3715/**
3716 * scan_thread() - kernel thread used to rescan controllers
3717 * @data:        Ignored.
3718 *
3719 * A kernel thread used scan for drive topology changes on
3720 * controllers. The thread processes only one controller at a time
3721 * using a queue.  Controllers are added to the queue using
3722 * add_to_scan_list() and removed from the queue either after done
3723 * processing or using remove_from_scan_list().
3724 *
3725 * returns 0.
3726 **/
3727static int scan_thread(void *data)
3728{
3729        struct ctlr_info *h;
3730
3731        while (1) {
3732                set_current_state(TASK_INTERRUPTIBLE);
3733                schedule();
3734                if (kthread_should_stop())
3735                        break;
3736
3737                while (1) {
3738                        mutex_lock(&scan_mutex);
3739                        if (list_empty(&scan_q)) {
3740                                mutex_unlock(&scan_mutex);
3741                                break;
3742                        }
3743
3744                        h = list_entry(scan_q.next,
3745                                       struct ctlr_info,
3746                                       scan_list);
3747                        list_del(&h->scan_list);
3748                        h->busy_scanning = 1;
3749                        mutex_unlock(&scan_mutex);
3750
3751                        rebuild_lun_table(h, 0, 0);
3752                        complete_all(&h->scan_wait);
3753                        mutex_lock(&scan_mutex);
3754                        h->busy_scanning = 0;
3755                        mutex_unlock(&scan_mutex);
3756                }
3757        }
3758
3759        return 0;
3760}
3761
3762static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3763{
3764        if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3765                return 0;
3766
3767        switch (c->err_info->SenseInfo[12]) {
3768        case STATE_CHANGED:
3769                dev_warn(&h->pdev->dev, "a state change "
3770                        "detected, command retried\n");
3771                return 1;
3772        break;
3773        case LUN_FAILED:
3774                dev_warn(&h->pdev->dev, "LUN failure "
3775                        "detected, action required\n");
3776                return 1;
3777        break;
3778        case REPORT_LUNS_CHANGED:
3779                dev_warn(&h->pdev->dev, "report LUN data changed\n");
3780        /*
3781         * Here, we could call add_to_scan_list and wake up the scan thread,
3782         * except that it's quite likely that we will get more than one
3783         * REPORT_LUNS_CHANGED condition in quick succession, which means
3784         * that those which occur after the first one will likely happen
3785         * *during* the scan_thread's rescan.  And the rescan code is not
3786         * robust enough to restart in the middle, undoing what it has already
3787         * done, and it's not clear that it's even possible to do this, since
3788         * part of what it does is notify the block layer, which starts
3789         * doing it's own i/o to read partition tables and so on, and the
3790         * driver doesn't have visibility to know what might need undoing.
3791         * In any event, if possible, it is horribly complicated to get right
3792         * so we just don't do it for now.
3793         *
3794         * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3795         */
3796                return 1;
3797        break;
3798        case POWER_OR_RESET:
3799                dev_warn(&h->pdev->dev,
3800                        "a power on or device reset detected\n");
3801                return 1;
3802        break;
3803        case UNIT_ATTENTION_CLEARED:
3804                dev_warn(&h->pdev->dev,
3805                        "unit attention cleared by another initiator\n");
3806                return 1;
3807        break;
3808        default:
3809                dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3810                return 1;
3811        }
3812}
3813
3814/*
3815 *  We cannot read the structure directly, for portability we must use
3816 *   the io functions.
3817 *   This is for debug only.
3818 */
3819static void print_cfg_table(ctlr_info_t *h)
3820{
3821        int i;
3822        char temp_name[17];
3823        CfgTable_struct *tb = h->cfgtable;
3824
3825        dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3826        dev_dbg(&h->pdev->dev, "------------------------------------\n");
3827        for (i = 0; i < 4; i++)
3828                temp_name[i] = readb(&(tb->Signature[i]));
3829        temp_name[4] = '\0';
3830        dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3831        dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3832                readl(&(tb->SpecValence)));
3833        dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3834               readl(&(tb->TransportSupport)));
3835        dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3836               readl(&(tb->TransportActive)));
3837        dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3838               readl(&(tb->HostWrite.TransportRequest)));
3839        dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3840               readl(&(tb->HostWrite.CoalIntDelay)));
3841        dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3842               readl(&(tb->HostWrite.CoalIntCount)));
3843        dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3844               readl(&(tb->CmdsOutMax)));
3845        dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3846                readl(&(tb->BusTypes)));
3847        for (i = 0; i < 16; i++)
3848                temp_name[i] = readb(&(tb->ServerName[i]));
3849        temp_name[16] = '\0';
3850        dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3851        dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3852                readl(&(tb->HeartBeat)));
3853}
3854
3855static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3856{
3857        int i, offset, mem_type, bar_type;
3858        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3859                return 0;
3860        offset = 0;
3861        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3862                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3863                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3864                        offset += 4;
3865                else {
3866                        mem_type = pci_resource_flags(pdev, i) &
3867                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3868                        switch (mem_type) {
3869                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
3870                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3871                                offset += 4;    /* 32 bit */
3872                                break;
3873                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
3874                                offset += 8;
3875                                break;
3876                        default:        /* reserved in PCI 2.2 */
3877                                dev_warn(&pdev->dev,
3878                                       "Base address is invalid\n");
3879                                return -1;
3880                                break;
3881                        }
3882                }
3883                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3884                        return i + 1;
3885        }
3886        return -1;
3887}
3888
3889/* Fill in bucket_map[], given nsgs (the max number of
3890 * scatter gather elements supported) and bucket[],
3891 * which is an array of 8 integers.  The bucket[] array
3892 * contains 8 different DMA transfer sizes (in 16
3893 * byte increments) which the controller uses to fetch
3894 * commands.  This function fills in bucket_map[], which
3895 * maps a given number of scatter gather elements to one of
3896 * the 8 DMA transfer sizes.  The point of it is to allow the
3897 * controller to only do as much DMA as needed to fetch the
3898 * command, with the DMA transfer size encoded in the lower
3899 * bits of the command address.
3900 */
3901static void  calc_bucket_map(int bucket[], int num_buckets,
3902        int nsgs, int *bucket_map)
3903{
3904        int i, j, b, size;
3905
3906        /* even a command with 0 SGs requires 4 blocks */
3907#define MINIMUM_TRANSFER_BLOCKS 4
3908#define NUM_BUCKETS 8
3909        /* Note, bucket_map must have nsgs+1 entries. */
3910        for (i = 0; i <= nsgs; i++) {
3911                /* Compute size of a command with i SG entries */
3912                size = i + MINIMUM_TRANSFER_BLOCKS;
3913                b = num_buckets; /* Assume the biggest bucket */
3914                /* Find the bucket that is just big enough */
3915                for (j = 0; j < 8; j++) {
3916                        if (bucket[j] >= size) {
3917                                b = j;
3918                                break;
3919                        }
3920                }
3921                /* for a command with i SG entries, use bucket b. */
3922                bucket_map[i] = b;
3923        }
3924}
3925
3926static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3927{
3928        int i;
3929
3930        /* under certain very rare conditions, this can take awhile.
3931         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3932         * as we enter this code.) */
3933        for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3934                if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3935                        break;
3936                usleep_range(10000, 20000);
3937        }
3938}
3939
3940static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3941{
3942        /* This is a bit complicated.  There are 8 registers on
3943         * the controller which we write to to tell it 8 different
3944         * sizes of commands which there may be.  It's a way of
3945         * reducing the DMA done to fetch each command.  Encoded into
3946         * each command's tag are 3 bits which communicate to the controller
3947         * which of the eight sizes that command fits within.  The size of
3948         * each command depends on how many scatter gather entries there are.
3949         * Each SG entry requires 16 bytes.  The eight registers are programmed
3950         * with the number of 16-byte blocks a command of that size requires.
3951         * The smallest command possible requires 5 such 16 byte blocks.
3952         * the largest command possible requires MAXSGENTRIES + 4 16-byte
3953         * blocks.  Note, this only extends to the SG entries contained
3954         * within the command block, and does not extend to chained blocks
3955         * of SG elements.   bft[] contains the eight values we write to
3956         * the registers.  They are not evenly distributed, but have more
3957         * sizes for small commands, and fewer sizes for larger commands.
3958         */
3959        __u32 trans_offset;
3960        int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3961                        /*
3962                         *  5 = 1 s/g entry or 4k
3963                         *  6 = 2 s/g entry or 8k
3964                         *  8 = 4 s/g entry or 16k
3965                         * 10 = 6 s/g entry or 24k
3966                         */
3967        unsigned long register_value;
3968        BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3969
3970        h->reply_pool_wraparound = 1; /* spec: init to 1 */
3971
3972        /* Controller spec: zero out this buffer. */
3973        memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3974        h->reply_pool_head = h->reply_pool;
3975
3976        trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3977        calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3978                                h->blockFetchTable);
3979        writel(bft[0], &h->transtable->BlockFetch0);
3980        writel(bft[1], &h->transtable->BlockFetch1);
3981        writel(bft[2], &h->transtable->BlockFetch2);
3982        writel(bft[3], &h->transtable->BlockFetch3);
3983        writel(bft[4], &h->transtable->BlockFetch4);
3984        writel(bft[5], &h->transtable->BlockFetch5);
3985        writel(bft[6], &h->transtable->BlockFetch6);
3986        writel(bft[7], &h->transtable->BlockFetch7);
3987
3988        /* size of controller ring buffer */
3989        writel(h->max_commands, &h->transtable->RepQSize);
3990        writel(1, &h->transtable->RepQCount);
3991        writel(0, &h->transtable->RepQCtrAddrLow32);
3992        writel(0, &h->transtable->RepQCtrAddrHigh32);
3993        writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3994        writel(0, &h->transtable->RepQAddr0High32);
3995        writel(CFGTBL_Trans_Performant | use_short_tags,
3996                        &(h->cfgtable->HostWrite.TransportRequest));
3997
3998        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3999        cciss_wait_for_mode_change_ack(h);
4000        register_value = readl(&(h->cfgtable->TransportActive));
4001        if (!(register_value & CFGTBL_Trans_Performant))
4002                dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4003                                        " performant mode\n");
4004}
4005
4006static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4007{
4008        __u32 trans_support;
4009
4010        if (cciss_simple_mode)
4011                return;
4012
4013        dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4014        /* Attempt to put controller into performant mode if supported */
4015        /* Does board support performant mode? */
4016        trans_support = readl(&(h->cfgtable->TransportSupport));
4017        if (!(trans_support & PERFORMANT_MODE))
4018                return;
4019
4020        dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4021        /* Performant mode demands commands on a 32 byte boundary
4022         * pci_alloc_consistent aligns on page boundarys already.
4023         * Just need to check if divisible by 32
4024         */
4025        if ((sizeof(CommandList_struct) % 32) != 0) {
4026                dev_warn(&h->pdev->dev, "%s %d %s\n",
4027                        "cciss info: command size[",
4028                        (int)sizeof(CommandList_struct),
4029                        "] not divisible by 32, no performant mode..\n");
4030                return;
4031        }
4032
4033        /* Performant mode ring buffer and supporting data structures */
4034        h->reply_pool = (__u64 *)pci_alloc_consistent(
4035                h->pdev, h->max_commands * sizeof(__u64),
4036                &(h->reply_pool_dhandle));
4037
4038        /* Need a block fetch table for performant mode */
4039        h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4040                sizeof(__u32)), GFP_KERNEL);
4041
4042        if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4043                goto clean_up;
4044
4045        cciss_enter_performant_mode(h,
4046                trans_support & CFGTBL_Trans_use_short_tags);
4047
4048        /* Change the access methods to the performant access methods */
4049        h->access = SA5_performant_access;
4050        h->transMethod = CFGTBL_Trans_Performant;
4051
4052        return;
4053clean_up:
4054        kfree(h->blockFetchTable);
4055        if (h->reply_pool)
4056                pci_free_consistent(h->pdev,
4057                                h->max_commands * sizeof(__u64),
4058                                h->reply_pool,
4059                                h->reply_pool_dhandle);
4060        return;
4061
4062} /* cciss_put_controller_into_performant_mode */
4063
4064/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4065 * controllers that are capable. If not, we use IO-APIC mode.
4066 */
4067
4068static void cciss_interrupt_mode(ctlr_info_t *h)
4069{
4070#ifdef CONFIG_PCI_MSI
4071        int err;
4072        struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4073        {0, 2}, {0, 3}
4074        };
4075
4076        /* Some boards advertise MSI but don't really support it */
4077        if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4078            (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4079                goto default_int_mode;
4080
4081        if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4082                err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4083                if (!err) {
4084                        h->intr[0] = cciss_msix_entries[0].vector;
4085                        h->intr[1] = cciss_msix_entries[1].vector;
4086                        h->intr[2] = cciss_msix_entries[2].vector;
4087                        h->intr[3] = cciss_msix_entries[3].vector;
4088                        h->msix_vector = 1;
4089                        return;
4090                }
4091                if (err > 0) {
4092                        dev_warn(&h->pdev->dev,
4093                                "only %d MSI-X vectors available\n", err);
4094                        goto default_int_mode;
4095                } else {
4096                        dev_warn(&h->pdev->dev,
4097                                "MSI-X init failed %d\n", err);
4098                        goto default_int_mode;
4099                }
4100        }
4101        if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4102                if (!pci_enable_msi(h->pdev))
4103                        h->msi_vector = 1;
4104                else
4105                        dev_warn(&h->pdev->dev, "MSI init failed\n");
4106        }
4107default_int_mode:
4108#endif                          /* CONFIG_PCI_MSI */
4109        /* if we get here we're going to use the default interrupt mode */
4110        h->intr[h->intr_mode] = h->pdev->irq;
4111        return;
4112}
4113
4114static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4115{
4116        int i;
4117        u32 subsystem_vendor_id, subsystem_device_id;
4118
4119        subsystem_vendor_id = pdev->subsystem_vendor;
4120        subsystem_device_id = pdev->subsystem_device;
4121        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4122                        subsystem_vendor_id;
4123
4124        for (i = 0; i < ARRAY_SIZE(products); i++) {
4125                /* Stand aside for hpsa driver on request */
4126                if (cciss_allow_hpsa)
4127                        return -ENODEV;
4128                if (*board_id == products[i].board_id)
4129                        return i;
4130        }
4131        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4132                *board_id);
4133        return -ENODEV;
4134}
4135
4136static inline bool cciss_board_disabled(ctlr_info_t *h)
4137{
4138        u16 command;
4139
4140        (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4141        return ((command & PCI_COMMAND_MEMORY) == 0);
4142}
4143
4144static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4145                                     unsigned long *memory_bar)
4146{
4147        int i;
4148
4149        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4150                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4151                        /* addressing mode bits already removed */
4152                        *memory_bar = pci_resource_start(pdev, i);
4153                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4154                                *memory_bar);
4155                        return 0;
4156                }
4157        dev_warn(&pdev->dev, "no memory BAR found\n");
4158        return -ENODEV;
4159}
4160
4161static int cciss_wait_for_board_state(struct pci_dev *pdev,
4162                                      void __iomem *vaddr, int wait_for_ready)
4163#define BOARD_READY 1
4164#define BOARD_NOT_READY 0
4165{
4166        int i, iterations;
4167        u32 scratchpad;
4168
4169        if (wait_for_ready)
4170                iterations = CCISS_BOARD_READY_ITERATIONS;
4171        else
4172                iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4173
4174        for (i = 0; i < iterations; i++) {
4175                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4176                if (wait_for_ready) {
4177                        if (scratchpad == CCISS_FIRMWARE_READY)
4178                                return 0;
4179                } else {
4180                        if (scratchpad != CCISS_FIRMWARE_READY)
4181                                return 0;
4182                }
4183                msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4184        }
4185        dev_warn(&pdev->dev, "board not ready, timed out.\n");
4186        return -ENODEV;
4187}
4188
4189static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4190                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4191                                u64 *cfg_offset)
4192{
4193        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4194        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4195        *cfg_base_addr &= (u32) 0x0000ffff;
4196        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4197        if (*cfg_base_addr_index == -1) {
4198                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4199                        "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4200                return -ENODEV;
4201        }
4202        return 0;
4203}
4204
4205static int cciss_find_cfgtables(ctlr_info_t *h)
4206{
4207        u64 cfg_offset;
4208        u32 cfg_base_addr;
4209        u64 cfg_base_addr_index;
4210        u32 trans_offset;
4211        int rc;
4212
4213        rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4214                &cfg_base_addr_index, &cfg_offset);
4215        if (rc)
4216                return rc;
4217        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4218                cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4219        if (!h->cfgtable)
4220                return -ENOMEM;
4221        rc = write_driver_ver_to_cfgtable(h->cfgtable);
4222        if (rc)
4223                return rc;
4224        /* Find performant mode table. */
4225        trans_offset = readl(&h->cfgtable->TransMethodOffset);
4226        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4227                                cfg_base_addr_index)+cfg_offset+trans_offset,
4228                                sizeof(*h->transtable));
4229        if (!h->transtable)
4230                return -ENOMEM;
4231        return 0;
4232}
4233
4234static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4235{
4236        h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4237
4238        /* Limit commands in memory limited kdump scenario. */
4239        if (reset_devices && h->max_commands > 32)
4240                h->max_commands = 32;
4241
4242        if (h->max_commands < 16) {
4243                dev_warn(&h->pdev->dev, "Controller reports "
4244                        "max supported commands of %d, an obvious lie. "
4245                        "Using 16.  Ensure that firmware is up to date.\n",
4246                        h->max_commands);
4247                h->max_commands = 16;
4248        }
4249}
4250
4251/* Interrogate the hardware for some limits:
4252 * max commands, max SG elements without chaining, and with chaining,
4253 * SG chain block size, etc.
4254 */
4255static void cciss_find_board_params(ctlr_info_t *h)
4256{
4257        cciss_get_max_perf_mode_cmds(h);
4258        h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4259        h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4260        /*
4261         * Limit in-command s/g elements to 32 save dma'able memory.
4262         * Howvever spec says if 0, use 31
4263         */
4264        h->max_cmd_sgentries = 31;
4265        if (h->maxsgentries > 512) {
4266                h->max_cmd_sgentries = 32;
4267                h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4268                h->maxsgentries--; /* save one for chain pointer */
4269        } else {
4270                h->maxsgentries = 31; /* default to traditional values */
4271                h->chainsize = 0;
4272        }
4273}
4274
4275static inline bool CISS_signature_present(ctlr_info_t *h)
4276{
4277        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4278                dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4279                return false;
4280        }
4281        return true;
4282}
4283
4284/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4285static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4286{
4287#ifdef CONFIG_X86
4288        u32 prefetch;
4289
4290        prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4291        prefetch |= 0x100;
4292        writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4293#endif
4294}
4295
4296/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4297 * in a prefetch beyond physical memory.
4298 */
4299static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4300{
4301        u32 dma_prefetch;
4302        __u32 dma_refetch;
4303
4304        if (h->board_id != 0x3225103C)
4305                return;
4306        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4307        dma_prefetch |= 0x8000;
4308        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4309        pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4310        dma_refetch |= 0x1;
4311        pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4312}
4313
4314static int cciss_pci_init(ctlr_info_t *h)
4315{
4316        int prod_index, err;
4317
4318        prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4319        if (prod_index < 0)
4320                return -ENODEV;
4321        h->product_name = products[prod_index].product_name;
4322        h->access = *(products[prod_index].access);
4323
4324        if (cciss_board_disabled(h)) {
4325                dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4326                return -ENODEV;
4327        }
4328
4329        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4330                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4331
4332        err = pci_enable_device(h->pdev);
4333        if (err) {
4334                dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4335                return err;
4336        }
4337
4338        err = pci_request_regions(h->pdev, "cciss");
4339        if (err) {
4340                dev_warn(&h->pdev->dev,
4341                        "Cannot obtain PCI resources, aborting\n");
4342                return err;
4343        }
4344
4345        dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4346        dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4347
4348/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4349 * else we use the IO-APIC interrupt assigned to us by system ROM.
4350 */
4351        cciss_interrupt_mode(h);
4352        err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4353        if (err)
4354                goto err_out_free_res;
4355        h->vaddr = remap_pci_mem(h->paddr, 0x250);
4356        if (!h->vaddr) {
4357                err = -ENOMEM;
4358                goto err_out_free_res;
4359        }
4360        err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4361        if (err)
4362                goto err_out_free_res;
4363        err = cciss_find_cfgtables(h);
4364        if (err)
4365                goto err_out_free_res;
4366        print_cfg_table(h);
4367        cciss_find_board_params(h);
4368
4369        if (!CISS_signature_present(h)) {
4370                err = -ENODEV;
4371                goto err_out_free_res;
4372        }
4373        cciss_enable_scsi_prefetch(h);
4374        cciss_p600_dma_prefetch_quirk(h);
4375        err = cciss_enter_simple_mode(h);
4376        if (err)
4377                goto err_out_free_res;
4378        cciss_put_controller_into_performant_mode(h);
4379        return 0;
4380
4381err_out_free_res:
4382        /*
4383         * Deliberately omit pci_disable_device(): it does something nasty to
4384         * Smart Array controllers that pci_enable_device does not undo
4385         */
4386        if (h->transtable)
4387                iounmap(h->transtable);
4388        if (h->cfgtable)
4389                iounmap(h->cfgtable);
4390        if (h->vaddr)
4391                iounmap(h->vaddr);
4392        pci_release_regions(h->pdev);
4393        return err;
4394}
4395
4396/* Function to find the first free pointer into our hba[] array
4397 * Returns -1 if no free entries are left.
4398 */
4399static int alloc_cciss_hba(struct pci_dev *pdev)
4400{
4401        int i;
4402
4403        for (i = 0; i < MAX_CTLR; i++) {
4404                if (!hba[i]) {
4405                        ctlr_info_t *h;
4406
4407                        h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4408                        if (!h)
4409                                goto Enomem;
4410                        hba[i] = h;
4411                        return i;
4412                }
4413        }
4414        dev_warn(&pdev->dev, "This driver supports a maximum"
4415               " of %d controllers.\n", MAX_CTLR);
4416        return -1;
4417Enomem:
4418        dev_warn(&pdev->dev, "out of memory.\n");
4419        return -1;
4420}
4421
4422static void free_hba(ctlr_info_t *h)
4423{
4424        int i;
4425
4426        hba[h->ctlr] = NULL;
4427        for (i = 0; i < h->highest_lun + 1; i++)
4428                if (h->gendisk[i] != NULL)
4429                        put_disk(h->gendisk[i]);
4430        kfree(h);
4431}
4432
4433/* Send a message CDB to the firmware. */
4434static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4435                         unsigned char type)
4436{
4437        typedef struct {
4438                CommandListHeader_struct CommandHeader;
4439                RequestBlock_struct Request;
4440                ErrDescriptor_struct ErrorDescriptor;
4441        } Command;
4442        static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4443        Command *cmd;
4444        dma_addr_t paddr64;
4445        uint32_t paddr32, tag;
4446        void __iomem *vaddr;
4447        int i, err;
4448
4449        vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4450        if (vaddr == NULL)
4451                return -ENOMEM;
4452
4453        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4454           CCISS commands, so they must be allocated from the lower 4GiB of
4455           memory. */
4456        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4457        if (err) {
4458                iounmap(vaddr);
4459                return -ENOMEM;
4460        }
4461
4462        cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4463        if (cmd == NULL) {
4464                iounmap(vaddr);
4465                return -ENOMEM;
4466        }
4467
4468        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
4469           although there's no guarantee, we assume that the address is at
4470           least 4-byte aligned (most likely, it's page-aligned). */
4471        paddr32 = paddr64;
4472
4473        cmd->CommandHeader.ReplyQueue = 0;
4474        cmd->CommandHeader.SGList = 0;
4475        cmd->CommandHeader.SGTotal = 0;
4476        cmd->CommandHeader.Tag.lower = paddr32;
4477        cmd->CommandHeader.Tag.upper = 0;
4478        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4479
4480        cmd->Request.CDBLen = 16;
4481        cmd->Request.Type.Type = TYPE_MSG;
4482        cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4483        cmd->Request.Type.Direction = XFER_NONE;
4484        cmd->Request.Timeout = 0; /* Don't time out */
4485        cmd->Request.CDB[0] = opcode;
4486        cmd->Request.CDB[1] = type;
4487        memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4488
4489        cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4490        cmd->ErrorDescriptor.Addr.upper = 0;
4491        cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4492
4493        writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4494
4495        for (i = 0; i < 10; i++) {
4496                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4497                if ((tag & ~3) == paddr32)
4498                        break;
4499                msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4500        }
4501
4502        iounmap(vaddr);
4503
4504        /* we leak the DMA buffer here ... no choice since the controller could
4505           still complete the command. */
4506        if (i == 10) {
4507                dev_err(&pdev->dev,
4508                        "controller message %02x:%02x timed out\n",
4509                        opcode, type);
4510                return -ETIMEDOUT;
4511        }
4512
4513        pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4514
4515        if (tag & 2) {
4516                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4517                        opcode, type);
4518                return -EIO;
4519        }
4520
4521        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4522                opcode, type);
4523        return 0;
4524}
4525
4526#define cciss_noop(p) cciss_message(p, 3, 0)
4527
4528static int cciss_controller_hard_reset(struct pci_dev *pdev,
4529        void * __iomem vaddr, u32 use_doorbell)
4530{
4531        u16 pmcsr;
4532        int pos;
4533
4534        if (use_doorbell) {
4535                /* For everything after the P600, the PCI power state method
4536                 * of resetting the controller doesn't work, so we have this
4537                 * other way using the doorbell register.
4538                 */
4539                dev_info(&pdev->dev, "using doorbell to reset controller\n");
4540                writel(use_doorbell, vaddr + SA5_DOORBELL);
4541        } else { /* Try to do it the PCI power state way */
4542
4543                /* Quoting from the Open CISS Specification: "The Power
4544                 * Management Control/Status Register (CSR) controls the power
4545                 * state of the device.  The normal operating state is D0,
4546                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4547                 * the controller, place the interface device in D3 then to D0,
4548                 * this causes a secondary PCI reset which will reset the
4549                 * controller." */
4550
4551                pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4552                if (pos == 0) {
4553                        dev_err(&pdev->dev,
4554                                "cciss_controller_hard_reset: "
4555                                "PCI PM not supported\n");
4556                        return -ENODEV;
4557                }
4558                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4559                /* enter the D3hot power management state */
4560                pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4561                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4562                pmcsr |= PCI_D3hot;
4563                pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4564
4565                msleep(500);
4566
4567                /* enter the D0 power management state */
4568                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4569                pmcsr |= PCI_D0;
4570                pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4571
4572                /*
4573                 * The P600 requires a small delay when changing states.
4574                 * Otherwise we may think the board did not reset and we bail.
4575                 * This for kdump only and is particular to the P600.
4576                 */
4577                msleep(500);
4578        }
4579        return 0;
4580}
4581
4582static void init_driver_version(char *driver_version, int len)
4583{
4584        memset(driver_version, 0, len);
4585        strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4586}
4587
4588static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4589{
4590        char *driver_version;
4591        int i, size = sizeof(cfgtable->driver_version);
4592
4593        driver_version = kmalloc(size, GFP_KERNEL);
4594        if (!driver_version)
4595                return -ENOMEM;
4596
4597        init_driver_version(driver_version, size);
4598        for (i = 0; i < size; i++)
4599                writeb(driver_version[i], &cfgtable->driver_version[i]);
4600        kfree(driver_version);
4601        return 0;
4602}
4603
4604static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4605                                          unsigned char *driver_ver)
4606{
4607        int i;
4608
4609        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4610                driver_ver[i] = readb(&cfgtable->driver_version[i]);
4611}
4612
4613static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4614{
4615
4616        char *driver_ver, *old_driver_ver;
4617        int rc, size = sizeof(cfgtable->driver_version);
4618
4619        old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4620        if (!old_driver_ver)
4621                return -ENOMEM;
4622        driver_ver = old_driver_ver + size;
4623
4624        /* After a reset, the 32 bytes of "driver version" in the cfgtable
4625         * should have been changed, otherwise we know the reset failed.
4626         */
4627        init_driver_version(old_driver_ver, size);
4628        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4629        rc = !memcmp(driver_ver, old_driver_ver, size);
4630        kfree(old_driver_ver);
4631        return rc;
4632}
4633
4634/* This does a hard reset of the controller using PCI power management
4635 * states or using the doorbell register. */
4636static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4637{
4638        u64 cfg_offset;
4639        u32 cfg_base_addr;
4640        u64 cfg_base_addr_index;
4641        void __iomem *vaddr;
4642        unsigned long paddr;
4643        u32 misc_fw_support;
4644        int rc;
4645        CfgTable_struct __iomem *cfgtable;
4646        u32 use_doorbell;
4647        u32 board_id;
4648        u16 command_register;
4649
4650        /* For controllers as old a the p600, this is very nearly
4651         * the same thing as
4652         *
4653         * pci_save_state(pci_dev);
4654         * pci_set_power_state(pci_dev, PCI_D3hot);
4655         * pci_set_power_state(pci_dev, PCI_D0);
4656         * pci_restore_state(pci_dev);
4657         *
4658         * For controllers newer than the P600, the pci power state
4659         * method of resetting doesn't work so we have another way
4660         * using the doorbell register.
4661         */
4662
4663        /* Exclude 640x boards.  These are two pci devices in one slot
4664         * which share a battery backed cache module.  One controls the
4665         * cache, the other accesses the cache through the one that controls
4666         * it.  If we reset the one controlling the cache, the other will
4667         * likely not be happy.  Just forbid resetting this conjoined mess.
4668         */
4669        cciss_lookup_board_id(pdev, &board_id);
4670        if (!ctlr_is_resettable(board_id)) {
4671                dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4672                                "due to shared cache module.");
4673                return -ENODEV;
4674        }
4675
4676        /* if controller is soft- but not hard resettable... */
4677        if (!ctlr_is_hard_resettable(board_id))
4678                return -ENOTSUPP; /* try soft reset later. */
4679
4680        /* Save the PCI command register */
4681        pci_read_config_word(pdev, 4, &command_register);
4682        /* Turn the board off.  This is so that later pci_restore_state()
4683         * won't turn the board on before the rest of config space is ready.
4684         */
4685        pci_disable_device(pdev);
4686        pci_save_state(pdev);
4687
4688        /* find the first memory BAR, so we can find the cfg table */
4689        rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4690        if (rc)
4691                return rc;
4692        vaddr = remap_pci_mem(paddr, 0x250);
4693        if (!vaddr)
4694                return -ENOMEM;
4695
4696        /* find cfgtable in order to check if reset via doorbell is supported */
4697        rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4698                                        &cfg_base_addr_index, &cfg_offset);
4699        if (rc)
4700                goto unmap_vaddr;
4701        cfgtable = remap_pci_mem(pci_resource_start(pdev,
4702                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4703        if (!cfgtable) {
4704                rc = -ENOMEM;
4705                goto unmap_vaddr;
4706        }
4707        rc = write_driver_ver_to_cfgtable(cfgtable);
4708        if (rc)
4709                goto unmap_vaddr;
4710
4711        /* If reset via doorbell register is supported, use that.
4712         * There are two such methods.  Favor the newest method.
4713         */
4714        misc_fw_support = readl(&cfgtable->misc_fw_support);
4715        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4716        if (use_doorbell) {
4717                use_doorbell = DOORBELL_CTLR_RESET2;
4718        } else {
4719                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4720                if (use_doorbell) {
4721                        dev_warn(&pdev->dev, "Controller claims that "
4722                                "'Bit 2 doorbell reset' is "
4723                                "supported, but not 'bit 5 doorbell reset'.  "
4724                                "Firmware update is recommended.\n");
4725                        rc = -ENOTSUPP; /* use the soft reset */
4726                        goto unmap_cfgtable;
4727                }
4728        }
4729
4730        rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4731        if (rc)
4732                goto unmap_cfgtable;
4733        pci_restore_state(pdev);
4734        rc = pci_enable_device(pdev);
4735        if (rc) {
4736                dev_warn(&pdev->dev, "failed to enable device.\n");
4737                goto unmap_cfgtable;
4738        }
4739        pci_write_config_word(pdev, 4, command_register);
4740
4741        /* Some devices (notably the HP Smart Array 5i Controller)
4742           need a little pause here */
4743        msleep(CCISS_POST_RESET_PAUSE_MSECS);
4744
4745        /* Wait for board to become not ready, then ready. */
4746        dev_info(&pdev->dev, "Waiting for board to reset.\n");
4747        rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4748        if (rc) {
4749                dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4750                                "  Will try soft reset.\n");
4751                rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4752                goto unmap_cfgtable;
4753        }
4754        rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4755        if (rc) {
4756                dev_warn(&pdev->dev,
4757                        "failed waiting for board to become ready "
4758                        "after hard reset\n");
4759                goto unmap_cfgtable;
4760        }
4761
4762        rc = controller_reset_failed(vaddr);
4763        if (rc < 0)
4764                goto unmap_cfgtable;
4765        if (rc) {
4766                dev_warn(&pdev->dev, "Unable to successfully hard reset "
4767                        "controller. Will try soft reset.\n");
4768                rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4769        } else {
4770                dev_info(&pdev->dev, "Board ready after hard reset.\n");
4771        }
4772
4773unmap_cfgtable:
4774        iounmap(cfgtable);
4775
4776unmap_vaddr:
4777        iounmap(vaddr);
4778        return rc;
4779}
4780
4781static int cciss_init_reset_devices(struct pci_dev *pdev)
4782{
4783        int rc, i;
4784
4785        if (!reset_devices)
4786                return 0;
4787
4788        /* Reset the controller with a PCI power-cycle or via doorbell */
4789        rc = cciss_kdump_hard_reset_controller(pdev);
4790
4791        /* -ENOTSUPP here means we cannot reset the controller
4792         * but it's already (and still) up and running in
4793         * "performant mode".  Or, it might be 640x, which can't reset
4794         * due to concerns about shared bbwc between 6402/6404 pair.
4795         */
4796        if (rc == -ENOTSUPP)
4797                return rc; /* just try to do the kdump anyhow. */
4798        if (rc)
4799                return -ENODEV;
4800
4801        /* Now try to get the controller to respond to a no-op */
4802        dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4803        for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4804                if (cciss_noop(pdev) == 0)
4805                        break;
4806                else
4807                        dev_warn(&pdev->dev, "no-op failed%s\n",
4808                                (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4809                                        "; re-trying" : ""));
4810                msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4811        }
4812        return 0;
4813}
4814
4815static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4816{
4817        h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4818                sizeof(unsigned long), GFP_KERNEL);
4819        h->cmd_pool = pci_alloc_consistent(h->pdev,
4820                h->nr_cmds * sizeof(CommandList_struct),
4821                &(h->cmd_pool_dhandle));
4822        h->errinfo_pool = pci_alloc_consistent(h->pdev,
4823                h->nr_cmds * sizeof(ErrorInfo_struct),
4824                &(h->errinfo_pool_dhandle));
4825        if ((h->cmd_pool_bits == NULL)
4826                || (h->cmd_pool == NULL)
4827                || (h->errinfo_pool == NULL)) {
4828                dev_err(&h->pdev->dev, "out of memory");
4829                return -ENOMEM;
4830        }
4831        return 0;
4832}
4833
4834static int cciss_allocate_scatterlists(ctlr_info_t *h)
4835{
4836        int i;
4837
4838        /* zero it, so that on free we need not know how many were alloc'ed */
4839        h->scatter_list = kzalloc(h->max_commands *
4840                                sizeof(struct scatterlist *), GFP_KERNEL);
4841        if (!h->scatter_list)
4842                return -ENOMEM;
4843
4844        for (i = 0; i < h->nr_cmds; i++) {
4845                h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4846                                                h->maxsgentries, GFP_KERNEL);
4847                if (h->scatter_list[i] == NULL) {
4848                        dev_err(&h->pdev->dev, "could not allocate "
4849                                "s/g lists\n");
4850                        return -ENOMEM;
4851                }
4852        }
4853        return 0;
4854}
4855
4856static void cciss_free_scatterlists(ctlr_info_t *h)
4857{
4858        int i;
4859
4860        if (h->scatter_list) {
4861                for (i = 0; i < h->nr_cmds; i++)
4862                        kfree(h->scatter_list[i]);
4863                kfree(h->scatter_list);
4864        }
4865}
4866
4867static void cciss_free_cmd_pool(ctlr_info_t *h)
4868{
4869        kfree(h->cmd_pool_bits);
4870        if (h->cmd_pool)
4871                pci_free_consistent(h->pdev,
4872                        h->nr_cmds * sizeof(CommandList_struct),
4873                        h->cmd_pool, h->cmd_pool_dhandle);
4874        if (h->errinfo_pool)
4875                pci_free_consistent(h->pdev,
4876                        h->nr_cmds * sizeof(ErrorInfo_struct),
4877                        h->errinfo_pool, h->errinfo_pool_dhandle);
4878}
4879
4880static int cciss_request_irq(ctlr_info_t *h,
4881        irqreturn_t (*msixhandler)(int, void *),
4882        irqreturn_t (*intxhandler)(int, void *))
4883{
4884        if (h->msix_vector || h->msi_vector) {
4885                if (!request_irq(h->intr[h->intr_mode], msixhandler,
4886                                0, h->devname, h))
4887                        return 0;
4888                dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4889                        " for %s\n", h->intr[h->intr_mode],
4890                        h->devname);
4891                return -1;
4892        }
4893
4894        if (!request_irq(h->intr[h->intr_mode], intxhandler,
4895                        IRQF_SHARED, h->devname, h))
4896                return 0;
4897        dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4898                h->intr[h->intr_mode], h->devname);
4899        return -1;
4900}
4901
4902static int cciss_kdump_soft_reset(ctlr_info_t *h)
4903{
4904        if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4905                dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4906                return -EIO;
4907        }
4908
4909        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4910        if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4911                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4912                return -1;
4913        }
4914
4915        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4916        if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4917                dev_warn(&h->pdev->dev, "Board failed to become ready "
4918                        "after soft reset.\n");
4919                return -1;
4920        }
4921
4922        return 0;
4923}
4924
4925static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4926{
4927        int ctlr = h->ctlr;
4928
4929        free_irq(h->intr[h->intr_mode], h);
4930#ifdef CONFIG_PCI_MSI
4931        if (h->msix_vector)
4932                pci_disable_msix(h->pdev);
4933        else if (h->msi_vector)
4934                pci_disable_msi(h->pdev);
4935#endif /* CONFIG_PCI_MSI */
4936        cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4937        cciss_free_scatterlists(h);
4938        cciss_free_cmd_pool(h);
4939        kfree(h->blockFetchTable);
4940        if (h->reply_pool)
4941                pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4942                                h->reply_pool, h->reply_pool_dhandle);
4943        if (h->transtable)
4944                iounmap(h->transtable);
4945        if (h->cfgtable)
4946                iounmap(h->cfgtable);
4947        if (h->vaddr)
4948                iounmap(h->vaddr);
4949        unregister_blkdev(h->major, h->devname);
4950        cciss_destroy_hba_sysfs_entry(h);
4951        pci_release_regions(h->pdev);
4952        kfree(h);
4953        hba[ctlr] = NULL;
4954}
4955
4956/*
4957 *  This is it.  Find all the controllers and register them.  I really hate
4958 *  stealing all these major device numbers.
4959 *  returns the number of block devices registered.
4960 */
4961static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4962{
4963        int i;
4964        int j = 0;
4965        int rc;
4966        int try_soft_reset = 0;
4967        int dac, return_code;
4968        InquiryData_struct *inq_buff;
4969        ctlr_info_t *h;
4970        unsigned long flags;
4971
4972        /*
4973         * By default the cciss driver is used for all older HP Smart Array
4974         * controllers. There are module paramaters that allow a user to
4975         * override this behavior and instead use the hpsa SCSI driver. If
4976         * this is the case cciss may be loaded first from the kdump initrd
4977         * image and cause a kernel panic. So if reset_devices is true and
4978         * cciss_allow_hpsa is set just bail.
4979         */
4980        if ((reset_devices) && (cciss_allow_hpsa == 1))
4981                return -ENODEV;
4982        rc = cciss_init_reset_devices(pdev);
4983        if (rc) {
4984                if (rc != -ENOTSUPP)
4985                        return rc;
4986                /* If the reset fails in a particular way (it has no way to do
4987                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4988                 * a soft reset once we get the controller configured up to the
4989                 * point that it can accept a command.
4990                 */
4991                try_soft_reset = 1;
4992                rc = 0;
4993        }
4994
4995reinit_after_soft_reset:
4996
4997        i = alloc_cciss_hba(pdev);
4998        if (i < 0)
4999                return -1;
5000
5001        h = hba[i];
5002        h->pdev = pdev;
5003        h->busy_initializing = 1;
5004        h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5005        INIT_LIST_HEAD(&h->cmpQ);
5006        INIT_LIST_HEAD(&h->reqQ);
5007        mutex_init(&h->busy_shutting_down);
5008
5009        if (cciss_pci_init(h) != 0)
5010                goto clean_no_release_regions;
5011
5012        sprintf(h->devname, "cciss%d", i);
5013        h->ctlr = i;
5014
5015        if (cciss_tape_cmds < 2)
5016                cciss_tape_cmds = 2;
5017        if (cciss_tape_cmds > 16)
5018                cciss_tape_cmds = 16;
5019
5020        init_completion(&h->scan_wait);
5021
5022        if (cciss_create_hba_sysfs_entry(h))
5023                goto clean0;
5024
5025        /* configure PCI DMA stuff */
5026        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5027                dac = 1;
5028        else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5029                dac = 0;
5030        else {
5031                dev_err(&h->pdev->dev, "no suitable DMA available\n");
5032                goto clean1;
5033        }
5034
5035        /*
5036         * register with the major number, or get a dynamic major number
5037         * by passing 0 as argument.  This is done for greater than
5038         * 8 controller support.
5039         */
5040        if (i < MAX_CTLR_ORIG)
5041                h->major = COMPAQ_CISS_MAJOR + i;
5042        rc = register_blkdev(h->major, h->devname);
5043        if (rc == -EBUSY || rc == -EINVAL) {
5044                dev_err(&h->pdev->dev,
5045                       "Unable to get major number %d for %s "
5046                       "on hba %d\n", h->major, h->devname, i);
5047                goto clean1;
5048        } else {
5049                if (i >= MAX_CTLR_ORIG)
5050                        h->major = rc;
5051        }
5052
5053        /* make sure the board interrupts are off */
5054        h->access.set_intr_mask(h, CCISS_INTR_OFF);
5055        rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5056        if (rc)
5057                goto clean2;
5058
5059        dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5060               h->devname, pdev->device, pci_name(pdev),
5061               h->intr[h->intr_mode], dac ? "" : " not");
5062
5063        if (cciss_allocate_cmd_pool(h))
5064                goto clean4;
5065
5066        if (cciss_allocate_scatterlists(h))
5067                goto clean4;
5068
5069        h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5070                h->chainsize, h->nr_cmds);
5071        if (!h->cmd_sg_list && h->chainsize > 0)
5072                goto clean4;
5073
5074        spin_lock_init(&h->lock);
5075
5076        /* Initialize the pdev driver private data.
5077           have it point to h.  */
5078        pci_set_drvdata(pdev, h);
5079        /* command and error info recs zeroed out before
5080           they are used */
5081        bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5082
5083        h->num_luns = 0;
5084        h->highest_lun = -1;
5085        for (j = 0; j < CISS_MAX_LUN; j++) {
5086                h->drv[j] = NULL;
5087                h->gendisk[j] = NULL;
5088        }
5089
5090        /* At this point, the controller is ready to take commands.
5091         * Now, if reset_devices and the hard reset didn't work, try
5092         * the soft reset and see if that works.
5093         */
5094        if (try_soft_reset) {
5095
5096                /* This is kind of gross.  We may or may not get a completion
5097                 * from the soft reset command, and if we do, then the value
5098                 * from the fifo may or may not be valid.  So, we wait 10 secs
5099                 * after the reset throwing away any completions we get during
5100                 * that time.  Unregister the interrupt handler and register
5101                 * fake ones to scoop up any residual completions.
5102                 */
5103                spin_lock_irqsave(&h->lock, flags);
5104                h->access.set_intr_mask(h, CCISS_INTR_OFF);
5105                spin_unlock_irqrestore(&h->lock, flags);
5106                free_irq(h->intr[h->intr_mode], h);
5107                rc = cciss_request_irq(h, cciss_msix_discard_completions,
5108                                        cciss_intx_discard_completions);
5109                if (rc) {
5110                        dev_warn(&h->pdev->dev, "Failed to request_irq after "
5111                                "soft reset.\n");
5112                        goto clean4;
5113                }
5114
5115                rc = cciss_kdump_soft_reset(h);
5116                if (rc) {
5117                        dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5118                        goto clean4;
5119                }
5120
5121                dev_info(&h->pdev->dev, "Board READY.\n");
5122                dev_info(&h->pdev->dev,
5123                        "Waiting for stale completions to drain.\n");
5124                h->access.set_intr_mask(h, CCISS_INTR_ON);
5125                msleep(10000);
5126                h->access.set_intr_mask(h, CCISS_INTR_OFF);
5127
5128                rc = controller_reset_failed(h->cfgtable);
5129                if (rc)
5130                        dev_info(&h->pdev->dev,
5131                                "Soft reset appears to have failed.\n");
5132
5133                /* since the controller's reset, we have to go back and re-init
5134                 * everything.  Easiest to just forget what we've done and do it
5135                 * all over again.
5136                 */
5137                cciss_undo_allocations_after_kdump_soft_reset(h);
5138                try_soft_reset = 0;
5139                if (rc)
5140                        /* don't go to clean4, we already unallocated */
5141                        return -ENODEV;
5142
5143                goto reinit_after_soft_reset;
5144        }
5145
5146        cciss_scsi_setup(h);
5147
5148        /* Turn the interrupts on so we can service requests */
5149        h->access.set_intr_mask(h, CCISS_INTR_ON);
5150
5151        /* Get the firmware version */
5152        inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5153        if (inq_buff == NULL) {
5154                dev_err(&h->pdev->dev, "out of memory\n");
5155                goto clean4;
5156        }
5157
5158        return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5159                sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5160        if (return_code == IO_OK) {
5161                h->firm_ver[0] = inq_buff->data_byte[32];
5162                h->firm_ver[1] = inq_buff->data_byte[33];
5163                h->firm_ver[2] = inq_buff->data_byte[34];
5164                h->firm_ver[3] = inq_buff->data_byte[35];
5165        } else {         /* send command failed */
5166                dev_warn(&h->pdev->dev, "unable to determine firmware"
5167                        " version of controller\n");
5168        }
5169        kfree(inq_buff);
5170
5171        cciss_procinit(h);
5172
5173        h->cciss_max_sectors = 8192;
5174
5175        rebuild_lun_table(h, 1, 0);
5176        cciss_engage_scsi(h);
5177        h->busy_initializing = 0;
5178        return 1;
5179
5180clean4:
5181        cciss_free_cmd_pool(h);
5182        cciss_free_scatterlists(h);
5183        cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5184        free_irq(h->intr[h->intr_mode], h);
5185clean2:
5186        unregister_blkdev(h->major, h->devname);
5187clean1:
5188        cciss_destroy_hba_sysfs_entry(h);
5189clean0:
5190        pci_release_regions(pdev);
5191clean_no_release_regions:
5192        h->busy_initializing = 0;
5193
5194        /*
5195         * Deliberately omit pci_disable_device(): it does something nasty to
5196         * Smart Array controllers that pci_enable_device does not undo
5197         */
5198        pci_set_drvdata(pdev, NULL);
5199        free_hba(h);
5200        return -1;
5201}
5202
5203static void cciss_shutdown(struct pci_dev *pdev)
5204{
5205        ctlr_info_t *h;
5206        char *flush_buf;
5207        int return_code;
5208
5209        h = pci_get_drvdata(pdev);
5210        flush_buf = kzalloc(4, GFP_KERNEL);
5211        if (!flush_buf) {
5212                dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5213                return;
5214        }
5215        /* write all data in the battery backed cache to disk */
5216        return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5217                4, 0, CTLR_LUNID, TYPE_CMD);
5218        kfree(flush_buf);
5219        if (return_code != IO_OK)
5220                dev_warn(&h->pdev->dev, "Error flushing cache\n");
5221        h->access.set_intr_mask(h, CCISS_INTR_OFF);
5222        free_irq(h->intr[h->intr_mode], h);
5223}
5224
5225static int cciss_enter_simple_mode(struct ctlr_info *h)
5226{
5227        u32 trans_support;
5228
5229        trans_support = readl(&(h->cfgtable->TransportSupport));
5230        if (!(trans_support & SIMPLE_MODE))
5231                return -ENOTSUPP;
5232
5233        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5234        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5235        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5236        cciss_wait_for_mode_change_ack(h);
5237        print_cfg_table(h);
5238        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5239                dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5240                return -ENODEV;
5241        }
5242        h->transMethod = CFGTBL_Trans_Simple;
5243        return 0;
5244}
5245
5246
5247static void cciss_remove_one(struct pci_dev *pdev)
5248{
5249        ctlr_info_t *h;
5250        int i, j;
5251
5252        if (pci_get_drvdata(pdev) == NULL) {
5253                dev_err(&pdev->dev, "Unable to remove device\n");
5254                return;
5255        }
5256
5257        h = pci_get_drvdata(pdev);
5258        i = h->ctlr;
5259        if (hba[i] == NULL) {
5260                dev_err(&pdev->dev, "device appears to already be removed\n");
5261                return;
5262        }
5263
5264        mutex_lock(&h->busy_shutting_down);
5265
5266        remove_from_scan_list(h);
5267        remove_proc_entry(h->devname, proc_cciss);
5268        unregister_blkdev(h->major, h->devname);
5269
5270        /* remove it from the disk list */
5271        for (j = 0; j < CISS_MAX_LUN; j++) {
5272                struct gendisk *disk = h->gendisk[j];
5273                if (disk) {
5274                        struct request_queue *q = disk->queue;
5275
5276                        if (disk->flags & GENHD_FL_UP) {
5277                                cciss_destroy_ld_sysfs_entry(h, j, 1);
5278                                del_gendisk(disk);
5279                        }
5280                        if (q)
5281                                blk_cleanup_queue(q);
5282                }
5283        }
5284
5285#ifdef CONFIG_CISS_SCSI_TAPE
5286        cciss_unregister_scsi(h);       /* unhook from SCSI subsystem */
5287#endif
5288
5289        cciss_shutdown(pdev);
5290
5291#ifdef CONFIG_PCI_MSI
5292        if (h->msix_vector)
5293                pci_disable_msix(h->pdev);
5294        else if (h->msi_vector)
5295                pci_disable_msi(h->pdev);
5296#endif                          /* CONFIG_PCI_MSI */
5297
5298        iounmap(h->transtable);
5299        iounmap(h->cfgtable);
5300        iounmap(h->vaddr);
5301
5302        cciss_free_cmd_pool(h);
5303        /* Free up sg elements */
5304        for (j = 0; j < h->nr_cmds; j++)
5305                kfree(h->scatter_list[j]);
5306        kfree(h->scatter_list);
5307        cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5308        kfree(h->blockFetchTable);
5309        if (h->reply_pool)
5310                pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5311                                h->reply_pool, h->reply_pool_dhandle);
5312        /*
5313         * Deliberately omit pci_disable_device(): it does something nasty to
5314         * Smart Array controllers that pci_enable_device does not undo
5315         */
5316        pci_release_regions(pdev);
5317        pci_set_drvdata(pdev, NULL);
5318        cciss_destroy_hba_sysfs_entry(h);
5319        mutex_unlock(&h->busy_shutting_down);
5320        free_hba(h);
5321}
5322
5323static struct pci_driver cciss_pci_driver = {
5324        .name = "cciss",
5325        .probe = cciss_init_one,
5326        .remove = cciss_remove_one,
5327        .id_table = cciss_pci_device_id,        /* id_table */
5328        .shutdown = cciss_shutdown,
5329};
5330
5331/*
5332 *  This is it.  Register the PCI driver information for the cards we control
5333 *  the OS will call our registered routines when it finds one of our cards.
5334 */
5335static int __init cciss_init(void)
5336{
5337        int err;
5338
5339        /*
5340         * The hardware requires that commands are aligned on a 64-bit
5341         * boundary. Given that we use pci_alloc_consistent() to allocate an
5342         * array of them, the size must be a multiple of 8 bytes.
5343         */
5344        BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5345        printk(KERN_INFO DRIVER_NAME "\n");
5346
5347        err = bus_register(&cciss_bus_type);
5348        if (err)
5349                return err;
5350
5351        /* Start the scan thread */
5352        cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5353        if (IS_ERR(cciss_scan_thread)) {
5354                err = PTR_ERR(cciss_scan_thread);
5355                goto err_bus_unregister;
5356        }
5357
5358        /* Register for our PCI devices */
5359        err = pci_register_driver(&cciss_pci_driver);
5360        if (err)
5361                goto err_thread_stop;
5362
5363        return err;
5364
5365err_thread_stop:
5366        kthread_stop(cciss_scan_thread);
5367err_bus_unregister:
5368        bus_unregister(&cciss_bus_type);
5369
5370        return err;
5371}
5372
5373static void __exit cciss_cleanup(void)
5374{
5375        int i;
5376
5377        pci_unregister_driver(&cciss_pci_driver);
5378        /* double check that all controller entrys have been removed */
5379        for (i = 0; i < MAX_CTLR; i++) {
5380                if (hba[i] != NULL) {
5381                        dev_warn(&hba[i]->pdev->dev,
5382                                "had to remove controller\n");
5383                        cciss_remove_one(hba[i]->pdev);
5384                }
5385        }
5386        kthread_stop(cciss_scan_thread);
5387        if (proc_cciss)
5388                remove_proc_entry("driver/cciss", NULL);
5389        bus_unregister(&cciss_bus_type);
5390}
5391
5392module_init(cciss_init);
5393module_exit(cciss_cleanup);
5394