linux/drivers/block/umem.c
<<
>>
Prefs
   1/*
   2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
   3 *
   4 * (C) 2001 San Mehat <nettwerk@valinux.com>
   5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
   6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
   7 *
   8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
   9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
  10 *
  11 * This driver is released to the public under the terms of the
  12 *  GNU GENERAL PUBLIC LICENSE version 2
  13 * See the file COPYING for details.
  14 *
  15 * This driver provides a standard block device interface for Micro Memory(tm)
  16 * PCI based RAM boards.
  17 * 10/05/01: Phap Nguyen - Rebuilt the driver
  18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
  20 *                       - use stand disk partitioning (so fdisk works).
  21 * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
  22 *                       - incorporate into main kernel
  23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
  24 *                       - use spin_lock_bh instead of _irq
  25 *                       - Never block on make_request.  queue
  26 *                         bh's instead.
  27 *                       - unregister umem from devfs at mod unload
  28 *                       - Change version to 2.3
  29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
  31 * 15May2002:NeilBrown   - convert to bio for 2.5
  32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
  33 *                       - a sequence of writes that cover the card, and
  34 *                       - set initialised bit then.
  35 */
  36
  37#undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
  38#include <linux/fs.h>
  39#include <linux/bio.h>
  40#include <linux/kernel.h>
  41#include <linux/mm.h>
  42#include <linux/mman.h>
  43#include <linux/gfp.h>
  44#include <linux/ioctl.h>
  45#include <linux/module.h>
  46#include <linux/init.h>
  47#include <linux/interrupt.h>
  48#include <linux/timer.h>
  49#include <linux/pci.h>
  50#include <linux/dma-mapping.h>
  51
  52#include <linux/fcntl.h>        /* O_ACCMODE */
  53#include <linux/hdreg.h>  /* HDIO_GETGEO */
  54
  55#include "umem.h"
  56
  57#include <asm/uaccess.h>
  58#include <asm/io.h>
  59
  60#define MM_MAXCARDS 4
  61#define MM_RAHEAD 2      /* two sectors */
  62#define MM_BLKSIZE 1024  /* 1k blocks */
  63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
  64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
  65
  66/*
  67 * Version Information
  68 */
  69
  70#define DRIVER_NAME     "umem"
  71#define DRIVER_VERSION  "v2.3"
  72#define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
  73#define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
  74
  75static int debug;
  76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  77#define HW_TRACE(x)
  78
  79#define DEBUG_LED_ON_TRANSFER   0x01
  80#define DEBUG_BATTERY_POLLING   0x02
  81
  82module_param(debug, int, 0644);
  83MODULE_PARM_DESC(debug, "Debug bitmask");
  84
  85static int pci_read_cmd = 0x0C;         /* Read Multiple */
  86module_param(pci_read_cmd, int, 0);
  87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  88
  89static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
  90module_param(pci_write_cmd, int, 0);
  91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  92
  93static int pci_cmds;
  94
  95static int major_nr;
  96
  97#include <linux/blkdev.h>
  98#include <linux/blkpg.h>
  99
 100struct cardinfo {
 101        struct pci_dev  *dev;
 102
 103        unsigned char   __iomem *csr_remap;
 104        unsigned int    mm_size;  /* size in kbytes */
 105
 106        unsigned int    init_size; /* initial segment, in sectors,
 107                                    * that we know to
 108                                    * have been written
 109                                    */
 110        struct bio      *bio, *currentbio, **biotail;
 111        int             current_idx;
 112        sector_t        current_sector;
 113
 114        struct request_queue *queue;
 115
 116        struct mm_page {
 117                dma_addr_t              page_dma;
 118                struct mm_dma_desc      *desc;
 119                int                     cnt, headcnt;
 120                struct bio              *bio, **biotail;
 121                int                     idx;
 122        } mm_pages[2];
 123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 124
 125        int  Active, Ready;
 126
 127        struct tasklet_struct   tasklet;
 128        unsigned int dma_status;
 129
 130        struct {
 131                int             good;
 132                int             warned;
 133                unsigned long   last_change;
 134        } battery[2];
 135
 136        spinlock_t      lock;
 137        int             check_batteries;
 138
 139        int             flags;
 140};
 141
 142static struct cardinfo cards[MM_MAXCARDS];
 143static struct timer_list battery_timer;
 144
 145static int num_cards;
 146
 147static struct gendisk *mm_gendisk[MM_MAXCARDS];
 148
 149static void check_batteries(struct cardinfo *card);
 150
 151static int get_userbit(struct cardinfo *card, int bit)
 152{
 153        unsigned char led;
 154
 155        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 156        return led & bit;
 157}
 158
 159static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 160{
 161        unsigned char led;
 162
 163        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 164        if (state)
 165                led |= bit;
 166        else
 167                led &= ~bit;
 168        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 169
 170        return 0;
 171}
 172
 173/*
 174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 175 */
 176static void set_led(struct cardinfo *card, int shift, unsigned char state)
 177{
 178        unsigned char led;
 179
 180        led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 181        if (state == LED_FLIP)
 182                led ^= (1<<shift);
 183        else {
 184                led &= ~(0x03 << shift);
 185                led |= (state << shift);
 186        }
 187        writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 188
 189}
 190
 191#ifdef MM_DIAG
 192static void dump_regs(struct cardinfo *card)
 193{
 194        unsigned char *p;
 195        int i, i1;
 196
 197        p = card->csr_remap;
 198        for (i = 0; i < 8; i++) {
 199                printk(KERN_DEBUG "%p   ", p);
 200
 201                for (i1 = 0; i1 < 16; i1++)
 202                        printk("%02x ", *p++);
 203
 204                printk("\n");
 205        }
 206}
 207#endif
 208
 209static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 210{
 211        dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 212        if (dmastat & DMASCR_ANY_ERR)
 213                printk(KERN_CONT "ANY_ERR ");
 214        if (dmastat & DMASCR_MBE_ERR)
 215                printk(KERN_CONT "MBE_ERR ");
 216        if (dmastat & DMASCR_PARITY_ERR_REP)
 217                printk(KERN_CONT "PARITY_ERR_REP ");
 218        if (dmastat & DMASCR_PARITY_ERR_DET)
 219                printk(KERN_CONT "PARITY_ERR_DET ");
 220        if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 221                printk(KERN_CONT "SYSTEM_ERR_SIG ");
 222        if (dmastat & DMASCR_TARGET_ABT)
 223                printk(KERN_CONT "TARGET_ABT ");
 224        if (dmastat & DMASCR_MASTER_ABT)
 225                printk(KERN_CONT "MASTER_ABT ");
 226        if (dmastat & DMASCR_CHAIN_COMPLETE)
 227                printk(KERN_CONT "CHAIN_COMPLETE ");
 228        if (dmastat & DMASCR_DMA_COMPLETE)
 229                printk(KERN_CONT "DMA_COMPLETE ");
 230        printk("\n");
 231}
 232
 233/*
 234 * Theory of request handling
 235 *
 236 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 237 * We have two pages of mm_dma_desc, holding about 64 descriptors
 238 * each.  These are allocated at init time.
 239 * One page is "Ready" and is either full, or can have request added.
 240 * The other page might be "Active", which DMA is happening on it.
 241 *
 242 * Whenever IO on the active page completes, the Ready page is activated
 243 * and the ex-Active page is clean out and made Ready.
 244 * Otherwise the Ready page is only activated when it becomes full.
 245 *
 246 * If a request arrives while both pages a full, it is queued, and b_rdev is
 247 * overloaded to record whether it was a read or a write.
 248 *
 249 * The interrupt handler only polls the device to clear the interrupt.
 250 * The processing of the result is done in a tasklet.
 251 */
 252
 253static void mm_start_io(struct cardinfo *card)
 254{
 255        /* we have the lock, we know there is
 256         * no IO active, and we know that card->Active
 257         * is set
 258         */
 259        struct mm_dma_desc *desc;
 260        struct mm_page *page;
 261        int offset;
 262
 263        /* make the last descriptor end the chain */
 264        page = &card->mm_pages[card->Active];
 265        pr_debug("start_io: %d %d->%d\n",
 266                card->Active, page->headcnt, page->cnt - 1);
 267        desc = &page->desc[page->cnt-1];
 268
 269        desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 270        desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 271        desc->sem_control_bits = desc->control_bits;
 272
 273
 274        if (debug & DEBUG_LED_ON_TRANSFER)
 275                set_led(card, LED_REMOVE, LED_ON);
 276
 277        desc = &page->desc[page->headcnt];
 278        writel(0, card->csr_remap + DMA_PCI_ADDR);
 279        writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 280
 281        writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 282        writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 283
 284        writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 285        writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 286
 287        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 288        writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 289
 290        offset = ((char *)desc) - ((char *)page->desc);
 291        writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 292               card->csr_remap + DMA_DESCRIPTOR_ADDR);
 293        /* Force the value to u64 before shifting otherwise >> 32 is undefined C
 294         * and on some ports will do nothing ! */
 295        writel(cpu_to_le32(((u64)page->page_dma)>>32),
 296               card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 297
 298        /* Go, go, go */
 299        writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 300               card->csr_remap + DMA_STATUS_CTRL);
 301}
 302
 303static int add_bio(struct cardinfo *card);
 304
 305static void activate(struct cardinfo *card)
 306{
 307        /* if No page is Active, and Ready is
 308         * not empty, then switch Ready page
 309         * to active and start IO.
 310         * Then add any bh's that are available to Ready
 311         */
 312
 313        do {
 314                while (add_bio(card))
 315                        ;
 316
 317                if (card->Active == -1 &&
 318                    card->mm_pages[card->Ready].cnt > 0) {
 319                        card->Active = card->Ready;
 320                        card->Ready = 1-card->Ready;
 321                        mm_start_io(card);
 322                }
 323
 324        } while (card->Active == -1 && add_bio(card));
 325}
 326
 327static inline void reset_page(struct mm_page *page)
 328{
 329        page->cnt = 0;
 330        page->headcnt = 0;
 331        page->bio = NULL;
 332        page->biotail = &page->bio;
 333}
 334
 335/*
 336 * If there is room on Ready page, take
 337 * one bh off list and add it.
 338 * return 1 if there was room, else 0.
 339 */
 340static int add_bio(struct cardinfo *card)
 341{
 342        struct mm_page *p;
 343        struct mm_dma_desc *desc;
 344        dma_addr_t dma_handle;
 345        int offset;
 346        struct bio *bio;
 347        struct bio_vec *vec;
 348        int idx;
 349        int rw;
 350        int len;
 351
 352        bio = card->currentbio;
 353        if (!bio && card->bio) {
 354                card->currentbio = card->bio;
 355                card->current_idx = card->bio->bi_idx;
 356                card->current_sector = card->bio->bi_sector;
 357                card->bio = card->bio->bi_next;
 358                if (card->bio == NULL)
 359                        card->biotail = &card->bio;
 360                card->currentbio->bi_next = NULL;
 361                return 1;
 362        }
 363        if (!bio)
 364                return 0;
 365        idx = card->current_idx;
 366
 367        rw = bio_rw(bio);
 368        if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 369                return 0;
 370
 371        vec = bio_iovec_idx(bio, idx);
 372        len = vec->bv_len;
 373        dma_handle = pci_map_page(card->dev,
 374                                  vec->bv_page,
 375                                  vec->bv_offset,
 376                                  len,
 377                                  (rw == READ) ?
 378                                  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 379
 380        p = &card->mm_pages[card->Ready];
 381        desc = &p->desc[p->cnt];
 382        p->cnt++;
 383        if (p->bio == NULL)
 384                p->idx = idx;
 385        if ((p->biotail) != &bio->bi_next) {
 386                *(p->biotail) = bio;
 387                p->biotail = &(bio->bi_next);
 388                bio->bi_next = NULL;
 389        }
 390
 391        desc->data_dma_handle = dma_handle;
 392
 393        desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 394        desc->local_addr = cpu_to_le64(card->current_sector << 9);
 395        desc->transfer_size = cpu_to_le32(len);
 396        offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 397        desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 398        desc->zero1 = desc->zero2 = 0;
 399        offset = (((char *)(desc+1)) - ((char *)p->desc));
 400        desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 401        desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 402                                         DMASCR_PARITY_INT_EN|
 403                                         DMASCR_CHAIN_EN |
 404                                         DMASCR_SEM_EN |
 405                                         pci_cmds);
 406        if (rw == WRITE)
 407                desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 408        desc->sem_control_bits = desc->control_bits;
 409
 410        card->current_sector += (len >> 9);
 411        idx++;
 412        card->current_idx = idx;
 413        if (idx >= bio->bi_vcnt)
 414                card->currentbio = NULL;
 415
 416        return 1;
 417}
 418
 419static void process_page(unsigned long data)
 420{
 421        /* check if any of the requests in the page are DMA_COMPLETE,
 422         * and deal with them appropriately.
 423         * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 424         * dma must have hit an error on that descriptor, so use dma_status
 425         * instead and assume that all following descriptors must be re-tried.
 426         */
 427        struct mm_page *page;
 428        struct bio *return_bio = NULL;
 429        struct cardinfo *card = (struct cardinfo *)data;
 430        unsigned int dma_status = card->dma_status;
 431
 432        spin_lock_bh(&card->lock);
 433        if (card->Active < 0)
 434                goto out_unlock;
 435        page = &card->mm_pages[card->Active];
 436
 437        while (page->headcnt < page->cnt) {
 438                struct bio *bio = page->bio;
 439                struct mm_dma_desc *desc = &page->desc[page->headcnt];
 440                int control = le32_to_cpu(desc->sem_control_bits);
 441                int last = 0;
 442                int idx;
 443
 444                if (!(control & DMASCR_DMA_COMPLETE)) {
 445                        control = dma_status;
 446                        last = 1;
 447                }
 448                page->headcnt++;
 449                idx = page->idx;
 450                page->idx++;
 451                if (page->idx >= bio->bi_vcnt) {
 452                        page->bio = bio->bi_next;
 453                        if (page->bio)
 454                                page->idx = page->bio->bi_idx;
 455                }
 456
 457                pci_unmap_page(card->dev, desc->data_dma_handle,
 458                               bio_iovec_idx(bio, idx)->bv_len,
 459                                 (control & DMASCR_TRANSFER_READ) ?
 460                                PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 461                if (control & DMASCR_HARD_ERROR) {
 462                        /* error */
 463                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
 464                        dev_printk(KERN_WARNING, &card->dev->dev,
 465                                "I/O error on sector %d/%d\n",
 466                                le32_to_cpu(desc->local_addr)>>9,
 467                                le32_to_cpu(desc->transfer_size));
 468                        dump_dmastat(card, control);
 469                } else if ((bio->bi_rw & REQ_WRITE) &&
 470                           le32_to_cpu(desc->local_addr) >> 9 ==
 471                                card->init_size) {
 472                        card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 473                        if (card->init_size >> 1 >= card->mm_size) {
 474                                dev_printk(KERN_INFO, &card->dev->dev,
 475                                        "memory now initialised\n");
 476                                set_userbit(card, MEMORY_INITIALIZED, 1);
 477                        }
 478                }
 479                if (bio != page->bio) {
 480                        bio->bi_next = return_bio;
 481                        return_bio = bio;
 482                }
 483
 484                if (last)
 485                        break;
 486        }
 487
 488        if (debug & DEBUG_LED_ON_TRANSFER)
 489                set_led(card, LED_REMOVE, LED_OFF);
 490
 491        if (card->check_batteries) {
 492                card->check_batteries = 0;
 493                check_batteries(card);
 494        }
 495        if (page->headcnt >= page->cnt) {
 496                reset_page(page);
 497                card->Active = -1;
 498                activate(card);
 499        } else {
 500                /* haven't finished with this one yet */
 501                pr_debug("do some more\n");
 502                mm_start_io(card);
 503        }
 504 out_unlock:
 505        spin_unlock_bh(&card->lock);
 506
 507        while (return_bio) {
 508                struct bio *bio = return_bio;
 509
 510                return_bio = bio->bi_next;
 511                bio->bi_next = NULL;
 512                bio_endio(bio, 0);
 513        }
 514}
 515
 516static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
 517{
 518        struct cardinfo *card = cb->data;
 519
 520        spin_lock_irq(&card->lock);
 521        activate(card);
 522        spin_unlock_irq(&card->lock);
 523        kfree(cb);
 524}
 525
 526static int mm_check_plugged(struct cardinfo *card)
 527{
 528        return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
 529}
 530
 531static void mm_make_request(struct request_queue *q, struct bio *bio)
 532{
 533        struct cardinfo *card = q->queuedata;
 534        pr_debug("mm_make_request %llu %u\n",
 535                 (unsigned long long)bio->bi_sector, bio->bi_size);
 536
 537        spin_lock_irq(&card->lock);
 538        *card->biotail = bio;
 539        bio->bi_next = NULL;
 540        card->biotail = &bio->bi_next;
 541        if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
 542                activate(card);
 543        spin_unlock_irq(&card->lock);
 544
 545        return;
 546}
 547
 548static irqreturn_t mm_interrupt(int irq, void *__card)
 549{
 550        struct cardinfo *card = (struct cardinfo *) __card;
 551        unsigned int dma_status;
 552        unsigned short cfg_status;
 553
 554HW_TRACE(0x30);
 555
 556        dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 557
 558        if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 559                /* interrupt wasn't for me ... */
 560                return IRQ_NONE;
 561        }
 562
 563        /* clear COMPLETION interrupts */
 564        if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 565                writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 566                       card->csr_remap + DMA_STATUS_CTRL);
 567        else
 568                writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 569                       card->csr_remap + DMA_STATUS_CTRL + 2);
 570
 571        /* log errors and clear interrupt status */
 572        if (dma_status & DMASCR_ANY_ERR) {
 573                unsigned int    data_log1, data_log2;
 574                unsigned int    addr_log1, addr_log2;
 575                unsigned char   stat, count, syndrome, check;
 576
 577                stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 578
 579                data_log1 = le32_to_cpu(readl(card->csr_remap +
 580                                                ERROR_DATA_LOG));
 581                data_log2 = le32_to_cpu(readl(card->csr_remap +
 582                                                ERROR_DATA_LOG + 4));
 583                addr_log1 = le32_to_cpu(readl(card->csr_remap +
 584                                                ERROR_ADDR_LOG));
 585                addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 586
 587                count = readb(card->csr_remap + ERROR_COUNT);
 588                syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 589                check = readb(card->csr_remap + ERROR_CHECK);
 590
 591                dump_dmastat(card, dma_status);
 592
 593                if (stat & 0x01)
 594                        dev_printk(KERN_ERR, &card->dev->dev,
 595                                "Memory access error detected (err count %d)\n",
 596                                count);
 597                if (stat & 0x02)
 598                        dev_printk(KERN_ERR, &card->dev->dev,
 599                                "Multi-bit EDC error\n");
 600
 601                dev_printk(KERN_ERR, &card->dev->dev,
 602                        "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 603                        addr_log2, addr_log1, data_log2, data_log1);
 604                dev_printk(KERN_ERR, &card->dev->dev,
 605                        "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 606                        check, syndrome);
 607
 608                writeb(0, card->csr_remap + ERROR_COUNT);
 609        }
 610
 611        if (dma_status & DMASCR_PARITY_ERR_REP) {
 612                dev_printk(KERN_ERR, &card->dev->dev,
 613                        "PARITY ERROR REPORTED\n");
 614                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 615                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 616        }
 617
 618        if (dma_status & DMASCR_PARITY_ERR_DET) {
 619                dev_printk(KERN_ERR, &card->dev->dev,
 620                        "PARITY ERROR DETECTED\n");
 621                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 622                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 623        }
 624
 625        if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 626                dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 627                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 628                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 629        }
 630
 631        if (dma_status & DMASCR_TARGET_ABT) {
 632                dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 633                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 634                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 635        }
 636
 637        if (dma_status & DMASCR_MASTER_ABT) {
 638                dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 639                pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 640                pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 641        }
 642
 643        /* and process the DMA descriptors */
 644        card->dma_status = dma_status;
 645        tasklet_schedule(&card->tasklet);
 646
 647HW_TRACE(0x36);
 648
 649        return IRQ_HANDLED;
 650}
 651
 652/*
 653 * If both batteries are good, no LED
 654 * If either battery has been warned, solid LED
 655 * If both batteries are bad, flash the LED quickly
 656 * If either battery is bad, flash the LED semi quickly
 657 */
 658static void set_fault_to_battery_status(struct cardinfo *card)
 659{
 660        if (card->battery[0].good && card->battery[1].good)
 661                set_led(card, LED_FAULT, LED_OFF);
 662        else if (card->battery[0].warned || card->battery[1].warned)
 663                set_led(card, LED_FAULT, LED_ON);
 664        else if (!card->battery[0].good && !card->battery[1].good)
 665                set_led(card, LED_FAULT, LED_FLASH_7_0);
 666        else
 667                set_led(card, LED_FAULT, LED_FLASH_3_5);
 668}
 669
 670static void init_battery_timer(void);
 671
 672static int check_battery(struct cardinfo *card, int battery, int status)
 673{
 674        if (status != card->battery[battery].good) {
 675                card->battery[battery].good = !card->battery[battery].good;
 676                card->battery[battery].last_change = jiffies;
 677
 678                if (card->battery[battery].good) {
 679                        dev_printk(KERN_ERR, &card->dev->dev,
 680                                "Battery %d now good\n", battery + 1);
 681                        card->battery[battery].warned = 0;
 682                } else
 683                        dev_printk(KERN_ERR, &card->dev->dev,
 684                                "Battery %d now FAILED\n", battery + 1);
 685
 686                return 1;
 687        } else if (!card->battery[battery].good &&
 688                   !card->battery[battery].warned &&
 689                   time_after_eq(jiffies, card->battery[battery].last_change +
 690                                 (HZ * 60 * 60 * 5))) {
 691                dev_printk(KERN_ERR, &card->dev->dev,
 692                        "Battery %d still FAILED after 5 hours\n", battery + 1);
 693                card->battery[battery].warned = 1;
 694
 695                return 1;
 696        }
 697
 698        return 0;
 699}
 700
 701static void check_batteries(struct cardinfo *card)
 702{
 703        /* NOTE: this must *never* be called while the card
 704         * is doing (bus-to-card) DMA, or you will need the
 705         * reset switch
 706         */
 707        unsigned char status;
 708        int ret1, ret2;
 709
 710        status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 711        if (debug & DEBUG_BATTERY_POLLING)
 712                dev_printk(KERN_DEBUG, &card->dev->dev,
 713                        "checking battery status, 1 = %s, 2 = %s\n",
 714                       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 715                       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 716
 717        ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 718        ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 719
 720        if (ret1 || ret2)
 721                set_fault_to_battery_status(card);
 722}
 723
 724static void check_all_batteries(unsigned long ptr)
 725{
 726        int i;
 727
 728        for (i = 0; i < num_cards; i++)
 729                if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 730                        struct cardinfo *card = &cards[i];
 731                        spin_lock_bh(&card->lock);
 732                        if (card->Active >= 0)
 733                                card->check_batteries = 1;
 734                        else
 735                                check_batteries(card);
 736                        spin_unlock_bh(&card->lock);
 737                }
 738
 739        init_battery_timer();
 740}
 741
 742static void init_battery_timer(void)
 743{
 744        init_timer(&battery_timer);
 745        battery_timer.function = check_all_batteries;
 746        battery_timer.expires = jiffies + (HZ * 60);
 747        add_timer(&battery_timer);
 748}
 749
 750static void del_battery_timer(void)
 751{
 752        del_timer(&battery_timer);
 753}
 754
 755/*
 756 * Note no locks taken out here.  In a worst case scenario, we could drop
 757 * a chunk of system memory.  But that should never happen, since validation
 758 * happens at open or mount time, when locks are held.
 759 *
 760 *      That's crap, since doing that while some partitions are opened
 761 * or mounted will give you really nasty results.
 762 */
 763static int mm_revalidate(struct gendisk *disk)
 764{
 765        struct cardinfo *card = disk->private_data;
 766        set_capacity(disk, card->mm_size << 1);
 767        return 0;
 768}
 769
 770static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 771{
 772        struct cardinfo *card = bdev->bd_disk->private_data;
 773        int size = card->mm_size * (1024 / MM_HARDSECT);
 774
 775        /*
 776         * get geometry: we have to fake one...  trim the size to a
 777         * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 778         * whatever cylinders.
 779         */
 780        geo->heads     = 64;
 781        geo->sectors   = 32;
 782        geo->cylinders = size / (geo->heads * geo->sectors);
 783        return 0;
 784}
 785
 786static const struct block_device_operations mm_fops = {
 787        .owner          = THIS_MODULE,
 788        .getgeo         = mm_getgeo,
 789        .revalidate_disk = mm_revalidate,
 790};
 791
 792static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 793{
 794        int ret = -ENODEV;
 795        struct cardinfo *card = &cards[num_cards];
 796        unsigned char   mem_present;
 797        unsigned char   batt_status;
 798        unsigned int    saved_bar, data;
 799        unsigned long   csr_base;
 800        unsigned long   csr_len;
 801        int             magic_number;
 802        static int      printed_version;
 803
 804        if (!printed_version++)
 805                printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 806
 807        ret = pci_enable_device(dev);
 808        if (ret)
 809                return ret;
 810
 811        pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 812        pci_set_master(dev);
 813
 814        card->dev         = dev;
 815
 816        csr_base = pci_resource_start(dev, 0);
 817        csr_len  = pci_resource_len(dev, 0);
 818        if (!csr_base || !csr_len)
 819                return -ENODEV;
 820
 821        dev_printk(KERN_INFO, &dev->dev,
 822          "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 823
 824        if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
 825            pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
 826                dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 827                return  -ENOMEM;
 828        }
 829
 830        ret = pci_request_regions(dev, DRIVER_NAME);
 831        if (ret) {
 832                dev_printk(KERN_ERR, &card->dev->dev,
 833                        "Unable to request memory region\n");
 834                goto failed_req_csr;
 835        }
 836
 837        card->csr_remap = ioremap_nocache(csr_base, csr_len);
 838        if (!card->csr_remap) {
 839                dev_printk(KERN_ERR, &card->dev->dev,
 840                        "Unable to remap memory region\n");
 841                ret = -ENOMEM;
 842
 843                goto failed_remap_csr;
 844        }
 845
 846        dev_printk(KERN_INFO, &card->dev->dev,
 847                "CSR 0x%08lx -> 0x%p (0x%lx)\n",
 848               csr_base, card->csr_remap, csr_len);
 849
 850        switch (card->dev->device) {
 851        case 0x5415:
 852                card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 853                magic_number = 0x59;
 854                break;
 855
 856        case 0x5425:
 857                card->flags |= UM_FLAG_NO_BYTE_STATUS;
 858                magic_number = 0x5C;
 859                break;
 860
 861        case 0x6155:
 862                card->flags |= UM_FLAG_NO_BYTE_STATUS |
 863                                UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 864                magic_number = 0x99;
 865                break;
 866
 867        default:
 868                magic_number = 0x100;
 869                break;
 870        }
 871
 872        if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 873                dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 874                ret = -ENOMEM;
 875                goto failed_magic;
 876        }
 877
 878        card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 879                                                PAGE_SIZE * 2,
 880                                                &card->mm_pages[0].page_dma);
 881        card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 882                                                PAGE_SIZE * 2,
 883                                                &card->mm_pages[1].page_dma);
 884        if (card->mm_pages[0].desc == NULL ||
 885            card->mm_pages[1].desc == NULL) {
 886                dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 887                goto failed_alloc;
 888        }
 889        reset_page(&card->mm_pages[0]);
 890        reset_page(&card->mm_pages[1]);
 891        card->Ready = 0;        /* page 0 is ready */
 892        card->Active = -1;      /* no page is active */
 893        card->bio = NULL;
 894        card->biotail = &card->bio;
 895
 896        card->queue = blk_alloc_queue(GFP_KERNEL);
 897        if (!card->queue)
 898                goto failed_alloc;
 899
 900        blk_queue_make_request(card->queue, mm_make_request);
 901        card->queue->queue_lock = &card->lock;
 902        card->queue->queuedata = card;
 903
 904        tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 905
 906        card->check_batteries = 0;
 907
 908        mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 909        switch (mem_present) {
 910        case MEM_128_MB:
 911                card->mm_size = 1024 * 128;
 912                break;
 913        case MEM_256_MB:
 914                card->mm_size = 1024 * 256;
 915                break;
 916        case MEM_512_MB:
 917                card->mm_size = 1024 * 512;
 918                break;
 919        case MEM_1_GB:
 920                card->mm_size = 1024 * 1024;
 921                break;
 922        case MEM_2_GB:
 923                card->mm_size = 1024 * 2048;
 924                break;
 925        default:
 926                card->mm_size = 0;
 927                break;
 928        }
 929
 930        /* Clear the LED's we control */
 931        set_led(card, LED_REMOVE, LED_OFF);
 932        set_led(card, LED_FAULT, LED_OFF);
 933
 934        batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 935
 936        card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 937        card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 938        card->battery[0].last_change = card->battery[1].last_change = jiffies;
 939
 940        if (card->flags & UM_FLAG_NO_BATT)
 941                dev_printk(KERN_INFO, &card->dev->dev,
 942                        "Size %d KB\n", card->mm_size);
 943        else {
 944                dev_printk(KERN_INFO, &card->dev->dev,
 945                        "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 946                       card->mm_size,
 947                       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 948                       card->battery[0].good ? "OK" : "FAILURE",
 949                       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 950                       card->battery[1].good ? "OK" : "FAILURE");
 951
 952                set_fault_to_battery_status(card);
 953        }
 954
 955        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 956        data = 0xffffffff;
 957        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 958        pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 959        pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 960        data &= 0xfffffff0;
 961        data = ~data;
 962        data += 1;
 963
 964        if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 965                        card)) {
 966                dev_printk(KERN_ERR, &card->dev->dev,
 967                        "Unable to allocate IRQ\n");
 968                ret = -ENODEV;
 969                goto failed_req_irq;
 970        }
 971
 972        dev_printk(KERN_INFO, &card->dev->dev,
 973                "Window size %d bytes, IRQ %d\n", data, dev->irq);
 974
 975        spin_lock_init(&card->lock);
 976
 977        pci_set_drvdata(dev, card);
 978
 979        if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
 980                pci_write_cmd = 0x07;   /* then Memory Write command */
 981
 982        if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 983                unsigned short cfg_command;
 984                pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 985                cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 986                pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 987        }
 988        pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 989
 990        num_cards++;
 991
 992        if (!get_userbit(card, MEMORY_INITIALIZED)) {
 993                dev_printk(KERN_INFO, &card->dev->dev,
 994                  "memory NOT initialized. Consider over-writing whole device.\n");
 995                card->init_size = 0;
 996        } else {
 997                dev_printk(KERN_INFO, &card->dev->dev,
 998                        "memory already initialized\n");
 999                card->init_size = card->mm_size;
1000        }
1001
1002        /* Enable ECC */
1003        writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1004
1005        return 0;
1006
1007 failed_req_irq:
1008 failed_alloc:
1009        if (card->mm_pages[0].desc)
1010                pci_free_consistent(card->dev, PAGE_SIZE*2,
1011                                    card->mm_pages[0].desc,
1012                                    card->mm_pages[0].page_dma);
1013        if (card->mm_pages[1].desc)
1014                pci_free_consistent(card->dev, PAGE_SIZE*2,
1015                                    card->mm_pages[1].desc,
1016                                    card->mm_pages[1].page_dma);
1017 failed_magic:
1018        iounmap(card->csr_remap);
1019 failed_remap_csr:
1020        pci_release_regions(dev);
1021 failed_req_csr:
1022
1023        return ret;
1024}
1025
1026static void mm_pci_remove(struct pci_dev *dev)
1027{
1028        struct cardinfo *card = pci_get_drvdata(dev);
1029
1030        tasklet_kill(&card->tasklet);
1031        free_irq(dev->irq, card);
1032        iounmap(card->csr_remap);
1033
1034        if (card->mm_pages[0].desc)
1035                pci_free_consistent(card->dev, PAGE_SIZE*2,
1036                                    card->mm_pages[0].desc,
1037                                    card->mm_pages[0].page_dma);
1038        if (card->mm_pages[1].desc)
1039                pci_free_consistent(card->dev, PAGE_SIZE*2,
1040                                    card->mm_pages[1].desc,
1041                                    card->mm_pages[1].page_dma);
1042        blk_cleanup_queue(card->queue);
1043
1044        pci_release_regions(dev);
1045        pci_disable_device(dev);
1046}
1047
1048static const struct pci_device_id mm_pci_ids[] = {
1049    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1050    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1051    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1052    {
1053        .vendor =       0x8086,
1054        .device =       0xB555,
1055        .subvendor =    0x1332,
1056        .subdevice =    0x5460,
1057        .class =        0x050000,
1058        .class_mask =   0,
1059    }, { /* end: all zeroes */ }
1060};
1061
1062MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1063
1064static struct pci_driver mm_pci_driver = {
1065        .name           = DRIVER_NAME,
1066        .id_table       = mm_pci_ids,
1067        .probe          = mm_pci_probe,
1068        .remove         = mm_pci_remove,
1069};
1070
1071static int __init mm_init(void)
1072{
1073        int retval, i;
1074        int err;
1075
1076        retval = pci_register_driver(&mm_pci_driver);
1077        if (retval)
1078                return -ENOMEM;
1079
1080        err = major_nr = register_blkdev(0, DRIVER_NAME);
1081        if (err < 0) {
1082                pci_unregister_driver(&mm_pci_driver);
1083                return -EIO;
1084        }
1085
1086        for (i = 0; i < num_cards; i++) {
1087                mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1088                if (!mm_gendisk[i])
1089                        goto out;
1090        }
1091
1092        for (i = 0; i < num_cards; i++) {
1093                struct gendisk *disk = mm_gendisk[i];
1094                sprintf(disk->disk_name, "umem%c", 'a'+i);
1095                spin_lock_init(&cards[i].lock);
1096                disk->major = major_nr;
1097                disk->first_minor  = i << MM_SHIFT;
1098                disk->fops = &mm_fops;
1099                disk->private_data = &cards[i];
1100                disk->queue = cards[i].queue;
1101                set_capacity(disk, cards[i].mm_size << 1);
1102                add_disk(disk);
1103        }
1104
1105        init_battery_timer();
1106        printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1107/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1108        return 0;
1109
1110out:
1111        pci_unregister_driver(&mm_pci_driver);
1112        unregister_blkdev(major_nr, DRIVER_NAME);
1113        while (i--)
1114                put_disk(mm_gendisk[i]);
1115        return -ENOMEM;
1116}
1117
1118static void __exit mm_cleanup(void)
1119{
1120        int i;
1121
1122        del_battery_timer();
1123
1124        for (i = 0; i < num_cards ; i++) {
1125                del_gendisk(mm_gendisk[i]);
1126                put_disk(mm_gendisk[i]);
1127        }
1128
1129        pci_unregister_driver(&mm_pci_driver);
1130
1131        unregister_blkdev(major_nr, DRIVER_NAME);
1132}
1133
1134module_init(mm_init);
1135module_exit(mm_cleanup);
1136
1137MODULE_AUTHOR(DRIVER_AUTHOR);
1138MODULE_DESCRIPTION(DRIVER_DESC);
1139MODULE_LICENSE("GPL");
1140