linux/drivers/char/ipmi/ipmi_si_intf.c
<<
>>
Prefs
   1/*
   2 * ipmi_si.c
   3 *
   4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
   5 * BT).
   6 *
   7 * Author: MontaVista Software, Inc.
   8 *         Corey Minyard <minyard@mvista.com>
   9 *         source@mvista.com
  10 *
  11 * Copyright 2002 MontaVista Software Inc.
  12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13 *
  14 *  This program is free software; you can redistribute it and/or modify it
  15 *  under the terms of the GNU General Public License as published by the
  16 *  Free Software Foundation; either version 2 of the License, or (at your
  17 *  option) any later version.
  18 *
  19 *
  20 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30 *
  31 *  You should have received a copy of the GNU General Public License along
  32 *  with this program; if not, write to the Free Software Foundation, Inc.,
  33 *  675 Mass Ave, Cambridge, MA 02139, USA.
  34 */
  35
  36/*
  37 * This file holds the "policy" for the interface to the SMI state
  38 * machine.  It does the configuration, handles timers and interrupts,
  39 * and drives the real SMI state machine.
  40 */
  41
  42#include <linux/module.h>
  43#include <linux/moduleparam.h>
  44#include <linux/sched.h>
  45#include <linux/seq_file.h>
  46#include <linux/timer.h>
  47#include <linux/errno.h>
  48#include <linux/spinlock.h>
  49#include <linux/slab.h>
  50#include <linux/delay.h>
  51#include <linux/list.h>
  52#include <linux/pci.h>
  53#include <linux/ioport.h>
  54#include <linux/notifier.h>
  55#include <linux/mutex.h>
  56#include <linux/kthread.h>
  57#include <asm/irq.h>
  58#include <linux/interrupt.h>
  59#include <linux/rcupdate.h>
  60#include <linux/ipmi.h>
  61#include <linux/ipmi_smi.h>
  62#include <asm/io.h>
  63#include "ipmi_si_sm.h"
  64#include <linux/init.h>
  65#include <linux/dmi.h>
  66#include <linux/string.h>
  67#include <linux/ctype.h>
  68#include <linux/pnp.h>
  69#include <linux/of_device.h>
  70#include <linux/of_platform.h>
  71#include <linux/of_address.h>
  72#include <linux/of_irq.h>
  73
  74#define PFX "ipmi_si: "
  75
  76/* Measure times between events in the driver. */
  77#undef DEBUG_TIMING
  78
  79/* Call every 10 ms. */
  80#define SI_TIMEOUT_TIME_USEC    10000
  81#define SI_USEC_PER_JIFFY       (1000000/HZ)
  82#define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  83#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
  84                                      short timeout */
  85
  86enum si_intf_state {
  87        SI_NORMAL,
  88        SI_GETTING_FLAGS,
  89        SI_GETTING_EVENTS,
  90        SI_CLEARING_FLAGS,
  91        SI_CLEARING_FLAGS_THEN_SET_IRQ,
  92        SI_GETTING_MESSAGES,
  93        SI_ENABLE_INTERRUPTS1,
  94        SI_ENABLE_INTERRUPTS2,
  95        SI_DISABLE_INTERRUPTS1,
  96        SI_DISABLE_INTERRUPTS2
  97        /* FIXME - add watchdog stuff. */
  98};
  99
 100/* Some BT-specific defines we need here. */
 101#define IPMI_BT_INTMASK_REG             2
 102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
 103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
 104
 105enum si_type {
 106    SI_KCS, SI_SMIC, SI_BT
 107};
 108static char *si_to_str[] = { "kcs", "smic", "bt" };
 109
 110static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
 111                                        "ACPI", "SMBIOS", "PCI",
 112                                        "device-tree", "default" };
 113
 114#define DEVICE_NAME "ipmi_si"
 115
 116static struct platform_driver ipmi_driver;
 117
 118/*
 119 * Indexes into stats[] in smi_info below.
 120 */
 121enum si_stat_indexes {
 122        /*
 123         * Number of times the driver requested a timer while an operation
 124         * was in progress.
 125         */
 126        SI_STAT_short_timeouts = 0,
 127
 128        /*
 129         * Number of times the driver requested a timer while nothing was in
 130         * progress.
 131         */
 132        SI_STAT_long_timeouts,
 133
 134        /* Number of times the interface was idle while being polled. */
 135        SI_STAT_idles,
 136
 137        /* Number of interrupts the driver handled. */
 138        SI_STAT_interrupts,
 139
 140        /* Number of time the driver got an ATTN from the hardware. */
 141        SI_STAT_attentions,
 142
 143        /* Number of times the driver requested flags from the hardware. */
 144        SI_STAT_flag_fetches,
 145
 146        /* Number of times the hardware didn't follow the state machine. */
 147        SI_STAT_hosed_count,
 148
 149        /* Number of completed messages. */
 150        SI_STAT_complete_transactions,
 151
 152        /* Number of IPMI events received from the hardware. */
 153        SI_STAT_events,
 154
 155        /* Number of watchdog pretimeouts. */
 156        SI_STAT_watchdog_pretimeouts,
 157
 158        /* Number of asynchronous messages received. */
 159        SI_STAT_incoming_messages,
 160
 161
 162        /* This *must* remain last, add new values above this. */
 163        SI_NUM_STATS
 164};
 165
 166struct smi_info {
 167        int                    intf_num;
 168        ipmi_smi_t             intf;
 169        struct si_sm_data      *si_sm;
 170        struct si_sm_handlers  *handlers;
 171        enum si_type           si_type;
 172        spinlock_t             si_lock;
 173        struct list_head       xmit_msgs;
 174        struct list_head       hp_xmit_msgs;
 175        struct ipmi_smi_msg    *curr_msg;
 176        enum si_intf_state     si_state;
 177
 178        /*
 179         * Used to handle the various types of I/O that can occur with
 180         * IPMI
 181         */
 182        struct si_sm_io io;
 183        int (*io_setup)(struct smi_info *info);
 184        void (*io_cleanup)(struct smi_info *info);
 185        int (*irq_setup)(struct smi_info *info);
 186        void (*irq_cleanup)(struct smi_info *info);
 187        unsigned int io_size;
 188        enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
 189        void (*addr_source_cleanup)(struct smi_info *info);
 190        void *addr_source_data;
 191
 192        /*
 193         * Per-OEM handler, called from handle_flags().  Returns 1
 194         * when handle_flags() needs to be re-run or 0 indicating it
 195         * set si_state itself.
 196         */
 197        int (*oem_data_avail_handler)(struct smi_info *smi_info);
 198
 199        /*
 200         * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 201         * is set to hold the flags until we are done handling everything
 202         * from the flags.
 203         */
 204#define RECEIVE_MSG_AVAIL       0x01
 205#define EVENT_MSG_BUFFER_FULL   0x02
 206#define WDT_PRE_TIMEOUT_INT     0x08
 207#define OEM0_DATA_AVAIL     0x20
 208#define OEM1_DATA_AVAIL     0x40
 209#define OEM2_DATA_AVAIL     0x80
 210#define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 211                             OEM1_DATA_AVAIL | \
 212                             OEM2_DATA_AVAIL)
 213        unsigned char       msg_flags;
 214
 215        /* Does the BMC have an event buffer? */
 216        char                has_event_buffer;
 217
 218        /*
 219         * If set to true, this will request events the next time the
 220         * state machine is idle.
 221         */
 222        atomic_t            req_events;
 223
 224        /*
 225         * If true, run the state machine to completion on every send
 226         * call.  Generally used after a panic to make sure stuff goes
 227         * out.
 228         */
 229        int                 run_to_completion;
 230
 231        /* The I/O port of an SI interface. */
 232        int                 port;
 233
 234        /*
 235         * The space between start addresses of the two ports.  For
 236         * instance, if the first port is 0xca2 and the spacing is 4, then
 237         * the second port is 0xca6.
 238         */
 239        unsigned int        spacing;
 240
 241        /* zero if no irq; */
 242        int                 irq;
 243
 244        /* The timer for this si. */
 245        struct timer_list   si_timer;
 246
 247        /* The time (in jiffies) the last timeout occurred at. */
 248        unsigned long       last_timeout_jiffies;
 249
 250        /* Used to gracefully stop the timer without race conditions. */
 251        atomic_t            stop_operation;
 252
 253        /*
 254         * The driver will disable interrupts when it gets into a
 255         * situation where it cannot handle messages due to lack of
 256         * memory.  Once that situation clears up, it will re-enable
 257         * interrupts.
 258         */
 259        int interrupt_disabled;
 260
 261        /* From the get device id response... */
 262        struct ipmi_device_id device_id;
 263
 264        /* Driver model stuff. */
 265        struct device *dev;
 266        struct platform_device *pdev;
 267
 268        /*
 269         * True if we allocated the device, false if it came from
 270         * someplace else (like PCI).
 271         */
 272        int dev_registered;
 273
 274        /* Slave address, could be reported from DMI. */
 275        unsigned char slave_addr;
 276
 277        /* Counters and things for the proc filesystem. */
 278        atomic_t stats[SI_NUM_STATS];
 279
 280        struct task_struct *thread;
 281
 282        struct list_head link;
 283        union ipmi_smi_info_union addr_info;
 284};
 285
 286#define smi_inc_stat(smi, stat) \
 287        atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 288#define smi_get_stat(smi, stat) \
 289        ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 290
 291#define SI_MAX_PARMS 4
 292
 293static int force_kipmid[SI_MAX_PARMS];
 294static int num_force_kipmid;
 295#ifdef CONFIG_PCI
 296static int pci_registered;
 297#endif
 298#ifdef CONFIG_ACPI
 299static int pnp_registered;
 300#endif
 301
 302static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
 303static int num_max_busy_us;
 304
 305static int unload_when_empty = 1;
 306
 307static int add_smi(struct smi_info *smi);
 308static int try_smi_init(struct smi_info *smi);
 309static void cleanup_one_si(struct smi_info *to_clean);
 310static void cleanup_ipmi_si(void);
 311
 312static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 313static int register_xaction_notifier(struct notifier_block *nb)
 314{
 315        return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 316}
 317
 318static void deliver_recv_msg(struct smi_info *smi_info,
 319                             struct ipmi_smi_msg *msg)
 320{
 321        /* Deliver the message to the upper layer. */
 322        ipmi_smi_msg_received(smi_info->intf, msg);
 323}
 324
 325static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 326{
 327        struct ipmi_smi_msg *msg = smi_info->curr_msg;
 328
 329        if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 330                cCode = IPMI_ERR_UNSPECIFIED;
 331        /* else use it as is */
 332
 333        /* Make it a response */
 334        msg->rsp[0] = msg->data[0] | 4;
 335        msg->rsp[1] = msg->data[1];
 336        msg->rsp[2] = cCode;
 337        msg->rsp_size = 3;
 338
 339        smi_info->curr_msg = NULL;
 340        deliver_recv_msg(smi_info, msg);
 341}
 342
 343static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 344{
 345        int              rv;
 346        struct list_head *entry = NULL;
 347#ifdef DEBUG_TIMING
 348        struct timeval t;
 349#endif
 350
 351        /* Pick the high priority queue first. */
 352        if (!list_empty(&(smi_info->hp_xmit_msgs))) {
 353                entry = smi_info->hp_xmit_msgs.next;
 354        } else if (!list_empty(&(smi_info->xmit_msgs))) {
 355                entry = smi_info->xmit_msgs.next;
 356        }
 357
 358        if (!entry) {
 359                smi_info->curr_msg = NULL;
 360                rv = SI_SM_IDLE;
 361        } else {
 362                int err;
 363
 364                list_del(entry);
 365                smi_info->curr_msg = list_entry(entry,
 366                                                struct ipmi_smi_msg,
 367                                                link);
 368#ifdef DEBUG_TIMING
 369                do_gettimeofday(&t);
 370                printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 371#endif
 372                err = atomic_notifier_call_chain(&xaction_notifier_list,
 373                                0, smi_info);
 374                if (err & NOTIFY_STOP_MASK) {
 375                        rv = SI_SM_CALL_WITHOUT_DELAY;
 376                        goto out;
 377                }
 378                err = smi_info->handlers->start_transaction(
 379                        smi_info->si_sm,
 380                        smi_info->curr_msg->data,
 381                        smi_info->curr_msg->data_size);
 382                if (err)
 383                        return_hosed_msg(smi_info, err);
 384
 385                rv = SI_SM_CALL_WITHOUT_DELAY;
 386        }
 387 out:
 388        return rv;
 389}
 390
 391static void start_enable_irq(struct smi_info *smi_info)
 392{
 393        unsigned char msg[2];
 394
 395        /*
 396         * If we are enabling interrupts, we have to tell the
 397         * BMC to use them.
 398         */
 399        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 400        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 401
 402        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 403        smi_info->si_state = SI_ENABLE_INTERRUPTS1;
 404}
 405
 406static void start_disable_irq(struct smi_info *smi_info)
 407{
 408        unsigned char msg[2];
 409
 410        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 411        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 412
 413        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 414        smi_info->si_state = SI_DISABLE_INTERRUPTS1;
 415}
 416
 417static void start_clear_flags(struct smi_info *smi_info)
 418{
 419        unsigned char msg[3];
 420
 421        /* Make sure the watchdog pre-timeout flag is not set at startup. */
 422        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 423        msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 424        msg[2] = WDT_PRE_TIMEOUT_INT;
 425
 426        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 427        smi_info->si_state = SI_CLEARING_FLAGS;
 428}
 429
 430/*
 431 * When we have a situtaion where we run out of memory and cannot
 432 * allocate messages, we just leave them in the BMC and run the system
 433 * polled until we can allocate some memory.  Once we have some
 434 * memory, we will re-enable the interrupt.
 435 */
 436static inline void disable_si_irq(struct smi_info *smi_info)
 437{
 438        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 439                start_disable_irq(smi_info);
 440                smi_info->interrupt_disabled = 1;
 441                if (!atomic_read(&smi_info->stop_operation))
 442                        mod_timer(&smi_info->si_timer,
 443                                  jiffies + SI_TIMEOUT_JIFFIES);
 444        }
 445}
 446
 447static inline void enable_si_irq(struct smi_info *smi_info)
 448{
 449        if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 450                start_enable_irq(smi_info);
 451                smi_info->interrupt_disabled = 0;
 452        }
 453}
 454
 455static void handle_flags(struct smi_info *smi_info)
 456{
 457 retry:
 458        if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 459                /* Watchdog pre-timeout */
 460                smi_inc_stat(smi_info, watchdog_pretimeouts);
 461
 462                start_clear_flags(smi_info);
 463                smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 464                ipmi_smi_watchdog_pretimeout(smi_info->intf);
 465        } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 466                /* Messages available. */
 467                smi_info->curr_msg = ipmi_alloc_smi_msg();
 468                if (!smi_info->curr_msg) {
 469                        disable_si_irq(smi_info);
 470                        smi_info->si_state = SI_NORMAL;
 471                        return;
 472                }
 473                enable_si_irq(smi_info);
 474
 475                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 476                smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 477                smi_info->curr_msg->data_size = 2;
 478
 479                smi_info->handlers->start_transaction(
 480                        smi_info->si_sm,
 481                        smi_info->curr_msg->data,
 482                        smi_info->curr_msg->data_size);
 483                smi_info->si_state = SI_GETTING_MESSAGES;
 484        } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 485                /* Events available. */
 486                smi_info->curr_msg = ipmi_alloc_smi_msg();
 487                if (!smi_info->curr_msg) {
 488                        disable_si_irq(smi_info);
 489                        smi_info->si_state = SI_NORMAL;
 490                        return;
 491                }
 492                enable_si_irq(smi_info);
 493
 494                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 495                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 496                smi_info->curr_msg->data_size = 2;
 497
 498                smi_info->handlers->start_transaction(
 499                        smi_info->si_sm,
 500                        smi_info->curr_msg->data,
 501                        smi_info->curr_msg->data_size);
 502                smi_info->si_state = SI_GETTING_EVENTS;
 503        } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 504                   smi_info->oem_data_avail_handler) {
 505                if (smi_info->oem_data_avail_handler(smi_info))
 506                        goto retry;
 507        } else
 508                smi_info->si_state = SI_NORMAL;
 509}
 510
 511static void handle_transaction_done(struct smi_info *smi_info)
 512{
 513        struct ipmi_smi_msg *msg;
 514#ifdef DEBUG_TIMING
 515        struct timeval t;
 516
 517        do_gettimeofday(&t);
 518        printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 519#endif
 520        switch (smi_info->si_state) {
 521        case SI_NORMAL:
 522                if (!smi_info->curr_msg)
 523                        break;
 524
 525                smi_info->curr_msg->rsp_size
 526                        = smi_info->handlers->get_result(
 527                                smi_info->si_sm,
 528                                smi_info->curr_msg->rsp,
 529                                IPMI_MAX_MSG_LENGTH);
 530
 531                /*
 532                 * Do this here becase deliver_recv_msg() releases the
 533                 * lock, and a new message can be put in during the
 534                 * time the lock is released.
 535                 */
 536                msg = smi_info->curr_msg;
 537                smi_info->curr_msg = NULL;
 538                deliver_recv_msg(smi_info, msg);
 539                break;
 540
 541        case SI_GETTING_FLAGS:
 542        {
 543                unsigned char msg[4];
 544                unsigned int  len;
 545
 546                /* We got the flags from the SMI, now handle them. */
 547                len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 548                if (msg[2] != 0) {
 549                        /* Error fetching flags, just give up for now. */
 550                        smi_info->si_state = SI_NORMAL;
 551                } else if (len < 4) {
 552                        /*
 553                         * Hmm, no flags.  That's technically illegal, but
 554                         * don't use uninitialized data.
 555                         */
 556                        smi_info->si_state = SI_NORMAL;
 557                } else {
 558                        smi_info->msg_flags = msg[3];
 559                        handle_flags(smi_info);
 560                }
 561                break;
 562        }
 563
 564        case SI_CLEARING_FLAGS:
 565        case SI_CLEARING_FLAGS_THEN_SET_IRQ:
 566        {
 567                unsigned char msg[3];
 568
 569                /* We cleared the flags. */
 570                smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 571                if (msg[2] != 0) {
 572                        /* Error clearing flags */
 573                        dev_warn(smi_info->dev,
 574                                 "Error clearing flags: %2.2x\n", msg[2]);
 575                }
 576                if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
 577                        start_enable_irq(smi_info);
 578                else
 579                        smi_info->si_state = SI_NORMAL;
 580                break;
 581        }
 582
 583        case SI_GETTING_EVENTS:
 584        {
 585                smi_info->curr_msg->rsp_size
 586                        = smi_info->handlers->get_result(
 587                                smi_info->si_sm,
 588                                smi_info->curr_msg->rsp,
 589                                IPMI_MAX_MSG_LENGTH);
 590
 591                /*
 592                 * Do this here becase deliver_recv_msg() releases the
 593                 * lock, and a new message can be put in during the
 594                 * time the lock is released.
 595                 */
 596                msg = smi_info->curr_msg;
 597                smi_info->curr_msg = NULL;
 598                if (msg->rsp[2] != 0) {
 599                        /* Error getting event, probably done. */
 600                        msg->done(msg);
 601
 602                        /* Take off the event flag. */
 603                        smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 604                        handle_flags(smi_info);
 605                } else {
 606                        smi_inc_stat(smi_info, events);
 607
 608                        /*
 609                         * Do this before we deliver the message
 610                         * because delivering the message releases the
 611                         * lock and something else can mess with the
 612                         * state.
 613                         */
 614                        handle_flags(smi_info);
 615
 616                        deliver_recv_msg(smi_info, msg);
 617                }
 618                break;
 619        }
 620
 621        case SI_GETTING_MESSAGES:
 622        {
 623                smi_info->curr_msg->rsp_size
 624                        = smi_info->handlers->get_result(
 625                                smi_info->si_sm,
 626                                smi_info->curr_msg->rsp,
 627                                IPMI_MAX_MSG_LENGTH);
 628
 629                /*
 630                 * Do this here becase deliver_recv_msg() releases the
 631                 * lock, and a new message can be put in during the
 632                 * time the lock is released.
 633                 */
 634                msg = smi_info->curr_msg;
 635                smi_info->curr_msg = NULL;
 636                if (msg->rsp[2] != 0) {
 637                        /* Error getting event, probably done. */
 638                        msg->done(msg);
 639
 640                        /* Take off the msg flag. */
 641                        smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 642                        handle_flags(smi_info);
 643                } else {
 644                        smi_inc_stat(smi_info, incoming_messages);
 645
 646                        /*
 647                         * Do this before we deliver the message
 648                         * because delivering the message releases the
 649                         * lock and something else can mess with the
 650                         * state.
 651                         */
 652                        handle_flags(smi_info);
 653
 654                        deliver_recv_msg(smi_info, msg);
 655                }
 656                break;
 657        }
 658
 659        case SI_ENABLE_INTERRUPTS1:
 660        {
 661                unsigned char msg[4];
 662
 663                /* We got the flags from the SMI, now handle them. */
 664                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 665                if (msg[2] != 0) {
 666                        dev_warn(smi_info->dev,
 667                                 "Couldn't get irq info: %x.\n", msg[2]);
 668                        dev_warn(smi_info->dev,
 669                                 "Maybe ok, but ipmi might run very slowly.\n");
 670                        smi_info->si_state = SI_NORMAL;
 671                } else {
 672                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 673                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 674                        msg[2] = (msg[3] |
 675                                  IPMI_BMC_RCV_MSG_INTR |
 676                                  IPMI_BMC_EVT_MSG_INTR);
 677                        smi_info->handlers->start_transaction(
 678                                smi_info->si_sm, msg, 3);
 679                        smi_info->si_state = SI_ENABLE_INTERRUPTS2;
 680                }
 681                break;
 682        }
 683
 684        case SI_ENABLE_INTERRUPTS2:
 685        {
 686                unsigned char msg[4];
 687
 688                /* We got the flags from the SMI, now handle them. */
 689                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 690                if (msg[2] != 0) {
 691                        dev_warn(smi_info->dev,
 692                                 "Couldn't set irq info: %x.\n", msg[2]);
 693                        dev_warn(smi_info->dev,
 694                                 "Maybe ok, but ipmi might run very slowly.\n");
 695                } else
 696                        smi_info->interrupt_disabled = 0;
 697                smi_info->si_state = SI_NORMAL;
 698                break;
 699        }
 700
 701        case SI_DISABLE_INTERRUPTS1:
 702        {
 703                unsigned char msg[4];
 704
 705                /* We got the flags from the SMI, now handle them. */
 706                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 707                if (msg[2] != 0) {
 708                        dev_warn(smi_info->dev, "Could not disable interrupts"
 709                                 ", failed get.\n");
 710                        smi_info->si_state = SI_NORMAL;
 711                } else {
 712                        msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 713                        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 714                        msg[2] = (msg[3] &
 715                                  ~(IPMI_BMC_RCV_MSG_INTR |
 716                                    IPMI_BMC_EVT_MSG_INTR));
 717                        smi_info->handlers->start_transaction(
 718                                smi_info->si_sm, msg, 3);
 719                        smi_info->si_state = SI_DISABLE_INTERRUPTS2;
 720                }
 721                break;
 722        }
 723
 724        case SI_DISABLE_INTERRUPTS2:
 725        {
 726                unsigned char msg[4];
 727
 728                /* We got the flags from the SMI, now handle them. */
 729                smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 730                if (msg[2] != 0) {
 731                        dev_warn(smi_info->dev, "Could not disable interrupts"
 732                                 ", failed set.\n");
 733                }
 734                smi_info->si_state = SI_NORMAL;
 735                break;
 736        }
 737        }
 738}
 739
 740/*
 741 * Called on timeouts and events.  Timeouts should pass the elapsed
 742 * time, interrupts should pass in zero.  Must be called with
 743 * si_lock held and interrupts disabled.
 744 */
 745static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 746                                           int time)
 747{
 748        enum si_sm_result si_sm_result;
 749
 750 restart:
 751        /*
 752         * There used to be a loop here that waited a little while
 753         * (around 25us) before giving up.  That turned out to be
 754         * pointless, the minimum delays I was seeing were in the 300us
 755         * range, which is far too long to wait in an interrupt.  So
 756         * we just run until the state machine tells us something
 757         * happened or it needs a delay.
 758         */
 759        si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 760        time = 0;
 761        while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 762                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 763
 764        if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 765                smi_inc_stat(smi_info, complete_transactions);
 766
 767                handle_transaction_done(smi_info);
 768                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 769        } else if (si_sm_result == SI_SM_HOSED) {
 770                smi_inc_stat(smi_info, hosed_count);
 771
 772                /*
 773                 * Do the before return_hosed_msg, because that
 774                 * releases the lock.
 775                 */
 776                smi_info->si_state = SI_NORMAL;
 777                if (smi_info->curr_msg != NULL) {
 778                        /*
 779                         * If we were handling a user message, format
 780                         * a response to send to the upper layer to
 781                         * tell it about the error.
 782                         */
 783                        return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 784                }
 785                si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 786        }
 787
 788        /*
 789         * We prefer handling attn over new messages.  But don't do
 790         * this if there is not yet an upper layer to handle anything.
 791         */
 792        if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
 793                unsigned char msg[2];
 794
 795                smi_inc_stat(smi_info, attentions);
 796
 797                /*
 798                 * Got a attn, send down a get message flags to see
 799                 * what's causing it.  It would be better to handle
 800                 * this in the upper layer, but due to the way
 801                 * interrupts work with the SMI, that's not really
 802                 * possible.
 803                 */
 804                msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 805                msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 806
 807                smi_info->handlers->start_transaction(
 808                        smi_info->si_sm, msg, 2);
 809                smi_info->si_state = SI_GETTING_FLAGS;
 810                goto restart;
 811        }
 812
 813        /* If we are currently idle, try to start the next message. */
 814        if (si_sm_result == SI_SM_IDLE) {
 815                smi_inc_stat(smi_info, idles);
 816
 817                si_sm_result = start_next_msg(smi_info);
 818                if (si_sm_result != SI_SM_IDLE)
 819                        goto restart;
 820        }
 821
 822        if ((si_sm_result == SI_SM_IDLE)
 823            && (atomic_read(&smi_info->req_events))) {
 824                /*
 825                 * We are idle and the upper layer requested that I fetch
 826                 * events, so do so.
 827                 */
 828                atomic_set(&smi_info->req_events, 0);
 829
 830                smi_info->curr_msg = ipmi_alloc_smi_msg();
 831                if (!smi_info->curr_msg)
 832                        goto out;
 833
 834                smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 835                smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 836                smi_info->curr_msg->data_size = 2;
 837
 838                smi_info->handlers->start_transaction(
 839                        smi_info->si_sm,
 840                        smi_info->curr_msg->data,
 841                        smi_info->curr_msg->data_size);
 842                smi_info->si_state = SI_GETTING_EVENTS;
 843                goto restart;
 844        }
 845 out:
 846        return si_sm_result;
 847}
 848
 849static void sender(void                *send_info,
 850                   struct ipmi_smi_msg *msg,
 851                   int                 priority)
 852{
 853        struct smi_info   *smi_info = send_info;
 854        enum si_sm_result result;
 855        unsigned long     flags;
 856#ifdef DEBUG_TIMING
 857        struct timeval    t;
 858#endif
 859
 860        if (atomic_read(&smi_info->stop_operation)) {
 861                msg->rsp[0] = msg->data[0] | 4;
 862                msg->rsp[1] = msg->data[1];
 863                msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
 864                msg->rsp_size = 3;
 865                deliver_recv_msg(smi_info, msg);
 866                return;
 867        }
 868
 869#ifdef DEBUG_TIMING
 870        do_gettimeofday(&t);
 871        printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 872#endif
 873
 874        if (smi_info->run_to_completion) {
 875                /*
 876                 * If we are running to completion, then throw it in
 877                 * the list and run transactions until everything is
 878                 * clear.  Priority doesn't matter here.
 879                 */
 880
 881                /*
 882                 * Run to completion means we are single-threaded, no
 883                 * need for locks.
 884                 */
 885                list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
 886
 887                result = smi_event_handler(smi_info, 0);
 888                while (result != SI_SM_IDLE) {
 889                        udelay(SI_SHORT_TIMEOUT_USEC);
 890                        result = smi_event_handler(smi_info,
 891                                                   SI_SHORT_TIMEOUT_USEC);
 892                }
 893                return;
 894        }
 895
 896        spin_lock_irqsave(&smi_info->si_lock, flags);
 897        if (priority > 0)
 898                list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
 899        else
 900                list_add_tail(&msg->link, &smi_info->xmit_msgs);
 901
 902        if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
 903                /*
 904                 * last_timeout_jiffies is updated here to avoid
 905                 * smi_timeout() handler passing very large time_diff
 906                 * value to smi_event_handler() that causes
 907                 * the send command to abort.
 908                 */
 909                smi_info->last_timeout_jiffies = jiffies;
 910
 911                mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
 912
 913                if (smi_info->thread)
 914                        wake_up_process(smi_info->thread);
 915
 916                start_next_msg(smi_info);
 917                smi_event_handler(smi_info, 0);
 918        }
 919        spin_unlock_irqrestore(&smi_info->si_lock, flags);
 920}
 921
 922static void set_run_to_completion(void *send_info, int i_run_to_completion)
 923{
 924        struct smi_info   *smi_info = send_info;
 925        enum si_sm_result result;
 926
 927        smi_info->run_to_completion = i_run_to_completion;
 928        if (i_run_to_completion) {
 929                result = smi_event_handler(smi_info, 0);
 930                while (result != SI_SM_IDLE) {
 931                        udelay(SI_SHORT_TIMEOUT_USEC);
 932                        result = smi_event_handler(smi_info,
 933                                                   SI_SHORT_TIMEOUT_USEC);
 934                }
 935        }
 936}
 937
 938/*
 939 * Use -1 in the nsec value of the busy waiting timespec to tell that
 940 * we are spinning in kipmid looking for something and not delaying
 941 * between checks
 942 */
 943static inline void ipmi_si_set_not_busy(struct timespec *ts)
 944{
 945        ts->tv_nsec = -1;
 946}
 947static inline int ipmi_si_is_busy(struct timespec *ts)
 948{
 949        return ts->tv_nsec != -1;
 950}
 951
 952static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
 953                                 const struct smi_info *smi_info,
 954                                 struct timespec *busy_until)
 955{
 956        unsigned int max_busy_us = 0;
 957
 958        if (smi_info->intf_num < num_max_busy_us)
 959                max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
 960        if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
 961                ipmi_si_set_not_busy(busy_until);
 962        else if (!ipmi_si_is_busy(busy_until)) {
 963                getnstimeofday(busy_until);
 964                timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
 965        } else {
 966                struct timespec now;
 967                getnstimeofday(&now);
 968                if (unlikely(timespec_compare(&now, busy_until) > 0)) {
 969                        ipmi_si_set_not_busy(busy_until);
 970                        return 0;
 971                }
 972        }
 973        return 1;
 974}
 975
 976
 977/*
 978 * A busy-waiting loop for speeding up IPMI operation.
 979 *
 980 * Lousy hardware makes this hard.  This is only enabled for systems
 981 * that are not BT and do not have interrupts.  It starts spinning
 982 * when an operation is complete or until max_busy tells it to stop
 983 * (if that is enabled).  See the paragraph on kimid_max_busy_us in
 984 * Documentation/IPMI.txt for details.
 985 */
 986static int ipmi_thread(void *data)
 987{
 988        struct smi_info *smi_info = data;
 989        unsigned long flags;
 990        enum si_sm_result smi_result;
 991        struct timespec busy_until;
 992
 993        ipmi_si_set_not_busy(&busy_until);
 994        set_user_nice(current, 19);
 995        while (!kthread_should_stop()) {
 996                int busy_wait;
 997
 998                spin_lock_irqsave(&(smi_info->si_lock), flags);
 999                smi_result = smi_event_handler(smi_info, 0);
1000                spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001                busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1002                                                  &busy_until);
1003                if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1004                        ; /* do nothing */
1005                else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1006                        schedule();
1007                else if (smi_result == SI_SM_IDLE)
1008                        schedule_timeout_interruptible(100);
1009                else
1010                        schedule_timeout_interruptible(1);
1011        }
1012        return 0;
1013}
1014
1015
1016static void poll(void *send_info)
1017{
1018        struct smi_info *smi_info = send_info;
1019        unsigned long flags = 0;
1020        int run_to_completion = smi_info->run_to_completion;
1021
1022        /*
1023         * Make sure there is some delay in the poll loop so we can
1024         * drive time forward and timeout things.
1025         */
1026        udelay(10);
1027        if (!run_to_completion)
1028                spin_lock_irqsave(&smi_info->si_lock, flags);
1029        smi_event_handler(smi_info, 10);
1030        if (!run_to_completion)
1031                spin_unlock_irqrestore(&smi_info->si_lock, flags);
1032}
1033
1034static void request_events(void *send_info)
1035{
1036        struct smi_info *smi_info = send_info;
1037
1038        if (atomic_read(&smi_info->stop_operation) ||
1039                                !smi_info->has_event_buffer)
1040                return;
1041
1042        atomic_set(&smi_info->req_events, 1);
1043}
1044
1045static int initialized;
1046
1047static void smi_timeout(unsigned long data)
1048{
1049        struct smi_info   *smi_info = (struct smi_info *) data;
1050        enum si_sm_result smi_result;
1051        unsigned long     flags;
1052        unsigned long     jiffies_now;
1053        long              time_diff;
1054        long              timeout;
1055#ifdef DEBUG_TIMING
1056        struct timeval    t;
1057#endif
1058
1059        spin_lock_irqsave(&(smi_info->si_lock), flags);
1060#ifdef DEBUG_TIMING
1061        do_gettimeofday(&t);
1062        printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1063#endif
1064        jiffies_now = jiffies;
1065        time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1066                     * SI_USEC_PER_JIFFY);
1067        smi_result = smi_event_handler(smi_info, time_diff);
1068
1069        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1070
1071        smi_info->last_timeout_jiffies = jiffies_now;
1072
1073        if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1074                /* Running with interrupts, only do long timeouts. */
1075                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1076                smi_inc_stat(smi_info, long_timeouts);
1077                goto do_mod_timer;
1078        }
1079
1080        /*
1081         * If the state machine asks for a short delay, then shorten
1082         * the timer timeout.
1083         */
1084        if (smi_result == SI_SM_CALL_WITH_DELAY) {
1085                smi_inc_stat(smi_info, short_timeouts);
1086                timeout = jiffies + 1;
1087        } else {
1088                smi_inc_stat(smi_info, long_timeouts);
1089                timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090        }
1091
1092 do_mod_timer:
1093        if (smi_result != SI_SM_IDLE)
1094                mod_timer(&(smi_info->si_timer), timeout);
1095}
1096
1097static irqreturn_t si_irq_handler(int irq, void *data)
1098{
1099        struct smi_info *smi_info = data;
1100        unsigned long   flags;
1101#ifdef DEBUG_TIMING
1102        struct timeval  t;
1103#endif
1104
1105        spin_lock_irqsave(&(smi_info->si_lock), flags);
1106
1107        smi_inc_stat(smi_info, interrupts);
1108
1109#ifdef DEBUG_TIMING
1110        do_gettimeofday(&t);
1111        printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1112#endif
1113        smi_event_handler(smi_info, 0);
1114        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115        return IRQ_HANDLED;
1116}
1117
1118static irqreturn_t si_bt_irq_handler(int irq, void *data)
1119{
1120        struct smi_info *smi_info = data;
1121        /* We need to clear the IRQ flag for the BT interface. */
1122        smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123                             IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124                             | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1125        return si_irq_handler(irq, data);
1126}
1127
1128static int smi_start_processing(void       *send_info,
1129                                ipmi_smi_t intf)
1130{
1131        struct smi_info *new_smi = send_info;
1132        int             enable = 0;
1133
1134        new_smi->intf = intf;
1135
1136        /* Try to claim any interrupts. */
1137        if (new_smi->irq_setup)
1138                new_smi->irq_setup(new_smi);
1139
1140        /* Set up the timer that drives the interface. */
1141        setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1142        new_smi->last_timeout_jiffies = jiffies;
1143        mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1144
1145        /*
1146         * Check if the user forcefully enabled the daemon.
1147         */
1148        if (new_smi->intf_num < num_force_kipmid)
1149                enable = force_kipmid[new_smi->intf_num];
1150        /*
1151         * The BT interface is efficient enough to not need a thread,
1152         * and there is no need for a thread if we have interrupts.
1153         */
1154        else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1155                enable = 1;
1156
1157        if (enable) {
1158                new_smi->thread = kthread_run(ipmi_thread, new_smi,
1159                                              "kipmi%d", new_smi->intf_num);
1160                if (IS_ERR(new_smi->thread)) {
1161                        dev_notice(new_smi->dev, "Could not start"
1162                                   " kernel thread due to error %ld, only using"
1163                                   " timers to drive the interface\n",
1164                                   PTR_ERR(new_smi->thread));
1165                        new_smi->thread = NULL;
1166                }
1167        }
1168
1169        return 0;
1170}
1171
1172static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1173{
1174        struct smi_info *smi = send_info;
1175
1176        data->addr_src = smi->addr_source;
1177        data->dev = smi->dev;
1178        data->addr_info = smi->addr_info;
1179        get_device(smi->dev);
1180
1181        return 0;
1182}
1183
1184static void set_maintenance_mode(void *send_info, int enable)
1185{
1186        struct smi_info   *smi_info = send_info;
1187
1188        if (!enable)
1189                atomic_set(&smi_info->req_events, 0);
1190}
1191
1192static struct ipmi_smi_handlers handlers = {
1193        .owner                  = THIS_MODULE,
1194        .start_processing       = smi_start_processing,
1195        .get_smi_info           = get_smi_info,
1196        .sender                 = sender,
1197        .request_events         = request_events,
1198        .set_maintenance_mode   = set_maintenance_mode,
1199        .set_run_to_completion  = set_run_to_completion,
1200        .poll                   = poll,
1201};
1202
1203/*
1204 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1205 * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1206 */
1207
1208static LIST_HEAD(smi_infos);
1209static DEFINE_MUTEX(smi_infos_lock);
1210static int smi_num; /* Used to sequence the SMIs */
1211
1212#define DEFAULT_REGSPACING      1
1213#define DEFAULT_REGSIZE         1
1214
1215#ifdef CONFIG_ACPI
1216static bool          si_tryacpi = 1;
1217#endif
1218#ifdef CONFIG_DMI
1219static bool          si_trydmi = 1;
1220#endif
1221static bool          si_tryplatform = 1;
1222#ifdef CONFIG_PCI
1223static bool          si_trypci = 1;
1224#endif
1225static bool          si_trydefaults = 1;
1226static char          *si_type[SI_MAX_PARMS];
1227#define MAX_SI_TYPE_STR 30
1228static char          si_type_str[MAX_SI_TYPE_STR];
1229static unsigned long addrs[SI_MAX_PARMS];
1230static unsigned int num_addrs;
1231static unsigned int  ports[SI_MAX_PARMS];
1232static unsigned int num_ports;
1233static int           irqs[SI_MAX_PARMS];
1234static unsigned int num_irqs;
1235static int           regspacings[SI_MAX_PARMS];
1236static unsigned int num_regspacings;
1237static int           regsizes[SI_MAX_PARMS];
1238static unsigned int num_regsizes;
1239static int           regshifts[SI_MAX_PARMS];
1240static unsigned int num_regshifts;
1241static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1242static unsigned int num_slave_addrs;
1243
1244#define IPMI_IO_ADDR_SPACE  0
1245#define IPMI_MEM_ADDR_SPACE 1
1246static char *addr_space_to_str[] = { "i/o", "mem" };
1247
1248static int hotmod_handler(const char *val, struct kernel_param *kp);
1249
1250module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1251MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1252                 " Documentation/IPMI.txt in the kernel sources for the"
1253                 " gory details.");
1254
1255#ifdef CONFIG_ACPI
1256module_param_named(tryacpi, si_tryacpi, bool, 0);
1257MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1258                 " default scan of the interfaces identified via ACPI");
1259#endif
1260#ifdef CONFIG_DMI
1261module_param_named(trydmi, si_trydmi, bool, 0);
1262MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1263                 " default scan of the interfaces identified via DMI");
1264#endif
1265module_param_named(tryplatform, si_tryplatform, bool, 0);
1266MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1267                 " default scan of the interfaces identified via platform"
1268                 " interfaces like openfirmware");
1269#ifdef CONFIG_PCI
1270module_param_named(trypci, si_trypci, bool, 0);
1271MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1272                 " default scan of the interfaces identified via pci");
1273#endif
1274module_param_named(trydefaults, si_trydefaults, bool, 0);
1275MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1276                 " default scan of the KCS and SMIC interface at the standard"
1277                 " address");
1278module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1279MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1280                 " interface separated by commas.  The types are 'kcs',"
1281                 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1282                 " the first interface to kcs and the second to bt");
1283module_param_array(addrs, ulong, &num_addrs, 0);
1284MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1285                 " addresses separated by commas.  Only use if an interface"
1286                 " is in memory.  Otherwise, set it to zero or leave"
1287                 " it blank.");
1288module_param_array(ports, uint, &num_ports, 0);
1289MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1290                 " addresses separated by commas.  Only use if an interface"
1291                 " is a port.  Otherwise, set it to zero or leave"
1292                 " it blank.");
1293module_param_array(irqs, int, &num_irqs, 0);
1294MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1295                 " addresses separated by commas.  Only use if an interface"
1296                 " has an interrupt.  Otherwise, set it to zero or leave"
1297                 " it blank.");
1298module_param_array(regspacings, int, &num_regspacings, 0);
1299MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1300                 " and each successive register used by the interface.  For"
1301                 " instance, if the start address is 0xca2 and the spacing"
1302                 " is 2, then the second address is at 0xca4.  Defaults"
1303                 " to 1.");
1304module_param_array(regsizes, int, &num_regsizes, 0);
1305MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1306                 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1307                 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1308                 " the 8-bit IPMI register has to be read from a larger"
1309                 " register.");
1310module_param_array(regshifts, int, &num_regshifts, 0);
1311MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1312                 " IPMI register, in bits.  For instance, if the data"
1313                 " is read from a 32-bit word and the IPMI data is in"
1314                 " bit 8-15, then the shift would be 8");
1315module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1316MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1317                 " the controller.  Normally this is 0x20, but can be"
1318                 " overridden by this parm.  This is an array indexed"
1319                 " by interface number.");
1320module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1321MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1322                 " disabled(0).  Normally the IPMI driver auto-detects"
1323                 " this, but the value may be overridden by this parm.");
1324module_param(unload_when_empty, int, 0);
1325MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1326                 " specified or found, default is 1.  Setting to 0"
1327                 " is useful for hot add of devices using hotmod.");
1328module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1329MODULE_PARM_DESC(kipmid_max_busy_us,
1330                 "Max time (in microseconds) to busy-wait for IPMI data before"
1331                 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1332                 " if kipmid is using up a lot of CPU time.");
1333
1334
1335static void std_irq_cleanup(struct smi_info *info)
1336{
1337        if (info->si_type == SI_BT)
1338                /* Disable the interrupt in the BT interface. */
1339                info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1340        free_irq(info->irq, info);
1341}
1342
1343static int std_irq_setup(struct smi_info *info)
1344{
1345        int rv;
1346
1347        if (!info->irq)
1348                return 0;
1349
1350        if (info->si_type == SI_BT) {
1351                rv = request_irq(info->irq,
1352                                 si_bt_irq_handler,
1353                                 IRQF_SHARED | IRQF_DISABLED,
1354                                 DEVICE_NAME,
1355                                 info);
1356                if (!rv)
1357                        /* Enable the interrupt in the BT interface. */
1358                        info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1359                                         IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1360        } else
1361                rv = request_irq(info->irq,
1362                                 si_irq_handler,
1363                                 IRQF_SHARED | IRQF_DISABLED,
1364                                 DEVICE_NAME,
1365                                 info);
1366        if (rv) {
1367                dev_warn(info->dev, "%s unable to claim interrupt %d,"
1368                         " running polled\n",
1369                         DEVICE_NAME, info->irq);
1370                info->irq = 0;
1371        } else {
1372                info->irq_cleanup = std_irq_cleanup;
1373                dev_info(info->dev, "Using irq %d\n", info->irq);
1374        }
1375
1376        return rv;
1377}
1378
1379static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1380{
1381        unsigned int addr = io->addr_data;
1382
1383        return inb(addr + (offset * io->regspacing));
1384}
1385
1386static void port_outb(struct si_sm_io *io, unsigned int offset,
1387                      unsigned char b)
1388{
1389        unsigned int addr = io->addr_data;
1390
1391        outb(b, addr + (offset * io->regspacing));
1392}
1393
1394static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1395{
1396        unsigned int addr = io->addr_data;
1397
1398        return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1399}
1400
1401static void port_outw(struct si_sm_io *io, unsigned int offset,
1402                      unsigned char b)
1403{
1404        unsigned int addr = io->addr_data;
1405
1406        outw(b << io->regshift, addr + (offset * io->regspacing));
1407}
1408
1409static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1410{
1411        unsigned int addr = io->addr_data;
1412
1413        return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1414}
1415
1416static void port_outl(struct si_sm_io *io, unsigned int offset,
1417                      unsigned char b)
1418{
1419        unsigned int addr = io->addr_data;
1420
1421        outl(b << io->regshift, addr+(offset * io->regspacing));
1422}
1423
1424static void port_cleanup(struct smi_info *info)
1425{
1426        unsigned int addr = info->io.addr_data;
1427        int          idx;
1428
1429        if (addr) {
1430                for (idx = 0; idx < info->io_size; idx++)
1431                        release_region(addr + idx * info->io.regspacing,
1432                                       info->io.regsize);
1433        }
1434}
1435
1436static int port_setup(struct smi_info *info)
1437{
1438        unsigned int addr = info->io.addr_data;
1439        int          idx;
1440
1441        if (!addr)
1442                return -ENODEV;
1443
1444        info->io_cleanup = port_cleanup;
1445
1446        /*
1447         * Figure out the actual inb/inw/inl/etc routine to use based
1448         * upon the register size.
1449         */
1450        switch (info->io.regsize) {
1451        case 1:
1452                info->io.inputb = port_inb;
1453                info->io.outputb = port_outb;
1454                break;
1455        case 2:
1456                info->io.inputb = port_inw;
1457                info->io.outputb = port_outw;
1458                break;
1459        case 4:
1460                info->io.inputb = port_inl;
1461                info->io.outputb = port_outl;
1462                break;
1463        default:
1464                dev_warn(info->dev, "Invalid register size: %d\n",
1465                         info->io.regsize);
1466                return -EINVAL;
1467        }
1468
1469        /*
1470         * Some BIOSes reserve disjoint I/O regions in their ACPI
1471         * tables.  This causes problems when trying to register the
1472         * entire I/O region.  Therefore we must register each I/O
1473         * port separately.
1474         */
1475        for (idx = 0; idx < info->io_size; idx++) {
1476                if (request_region(addr + idx * info->io.regspacing,
1477                                   info->io.regsize, DEVICE_NAME) == NULL) {
1478                        /* Undo allocations */
1479                        while (idx--) {
1480                                release_region(addr + idx * info->io.regspacing,
1481                                               info->io.regsize);
1482                        }
1483                        return -EIO;
1484                }
1485        }
1486        return 0;
1487}
1488
1489static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1490{
1491        return readb((io->addr)+(offset * io->regspacing));
1492}
1493
1494static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1495                     unsigned char b)
1496{
1497        writeb(b, (io->addr)+(offset * io->regspacing));
1498}
1499
1500static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1501{
1502        return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503                & 0xff;
1504}
1505
1506static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1507                     unsigned char b)
1508{
1509        writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510}
1511
1512static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1513{
1514        return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1515                & 0xff;
1516}
1517
1518static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1519                     unsigned char b)
1520{
1521        writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1522}
1523
1524#ifdef readq
1525static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1526{
1527        return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1528                & 0xff;
1529}
1530
1531static void mem_outq(struct si_sm_io *io, unsigned int offset,
1532                     unsigned char b)
1533{
1534        writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1535}
1536#endif
1537
1538static void mem_cleanup(struct smi_info *info)
1539{
1540        unsigned long addr = info->io.addr_data;
1541        int           mapsize;
1542
1543        if (info->io.addr) {
1544                iounmap(info->io.addr);
1545
1546                mapsize = ((info->io_size * info->io.regspacing)
1547                           - (info->io.regspacing - info->io.regsize));
1548
1549                release_mem_region(addr, mapsize);
1550        }
1551}
1552
1553static int mem_setup(struct smi_info *info)
1554{
1555        unsigned long addr = info->io.addr_data;
1556        int           mapsize;
1557
1558        if (!addr)
1559                return -ENODEV;
1560
1561        info->io_cleanup = mem_cleanup;
1562
1563        /*
1564         * Figure out the actual readb/readw/readl/etc routine to use based
1565         * upon the register size.
1566         */
1567        switch (info->io.regsize) {
1568        case 1:
1569                info->io.inputb = intf_mem_inb;
1570                info->io.outputb = intf_mem_outb;
1571                break;
1572        case 2:
1573                info->io.inputb = intf_mem_inw;
1574                info->io.outputb = intf_mem_outw;
1575                break;
1576        case 4:
1577                info->io.inputb = intf_mem_inl;
1578                info->io.outputb = intf_mem_outl;
1579                break;
1580#ifdef readq
1581        case 8:
1582                info->io.inputb = mem_inq;
1583                info->io.outputb = mem_outq;
1584                break;
1585#endif
1586        default:
1587                dev_warn(info->dev, "Invalid register size: %d\n",
1588                         info->io.regsize);
1589                return -EINVAL;
1590        }
1591
1592        /*
1593         * Calculate the total amount of memory to claim.  This is an
1594         * unusual looking calculation, but it avoids claiming any
1595         * more memory than it has to.  It will claim everything
1596         * between the first address to the end of the last full
1597         * register.
1598         */
1599        mapsize = ((info->io_size * info->io.regspacing)
1600                   - (info->io.regspacing - info->io.regsize));
1601
1602        if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1603                return -EIO;
1604
1605        info->io.addr = ioremap(addr, mapsize);
1606        if (info->io.addr == NULL) {
1607                release_mem_region(addr, mapsize);
1608                return -EIO;
1609        }
1610        return 0;
1611}
1612
1613/*
1614 * Parms come in as <op1>[:op2[:op3...]].  ops are:
1615 *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1616 * Options are:
1617 *   rsp=<regspacing>
1618 *   rsi=<regsize>
1619 *   rsh=<regshift>
1620 *   irq=<irq>
1621 *   ipmb=<ipmb addr>
1622 */
1623enum hotmod_op { HM_ADD, HM_REMOVE };
1624struct hotmod_vals {
1625        char *name;
1626        int  val;
1627};
1628static struct hotmod_vals hotmod_ops[] = {
1629        { "add",        HM_ADD },
1630        { "remove",     HM_REMOVE },
1631        { NULL }
1632};
1633static struct hotmod_vals hotmod_si[] = {
1634        { "kcs",        SI_KCS },
1635        { "smic",       SI_SMIC },
1636        { "bt",         SI_BT },
1637        { NULL }
1638};
1639static struct hotmod_vals hotmod_as[] = {
1640        { "mem",        IPMI_MEM_ADDR_SPACE },
1641        { "i/o",        IPMI_IO_ADDR_SPACE },
1642        { NULL }
1643};
1644
1645static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1646{
1647        char *s;
1648        int  i;
1649
1650        s = strchr(*curr, ',');
1651        if (!s) {
1652                printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1653                return -EINVAL;
1654        }
1655        *s = '\0';
1656        s++;
1657        for (i = 0; hotmod_ops[i].name; i++) {
1658                if (strcmp(*curr, v[i].name) == 0) {
1659                        *val = v[i].val;
1660                        *curr = s;
1661                        return 0;
1662                }
1663        }
1664
1665        printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1666        return -EINVAL;
1667}
1668
1669static int check_hotmod_int_op(const char *curr, const char *option,
1670                               const char *name, int *val)
1671{
1672        char *n;
1673
1674        if (strcmp(curr, name) == 0) {
1675                if (!option) {
1676                        printk(KERN_WARNING PFX
1677                               "No option given for '%s'\n",
1678                               curr);
1679                        return -EINVAL;
1680                }
1681                *val = simple_strtoul(option, &n, 0);
1682                if ((*n != '\0') || (*option == '\0')) {
1683                        printk(KERN_WARNING PFX
1684                               "Bad option given for '%s'\n",
1685                               curr);
1686                        return -EINVAL;
1687                }
1688                return 1;
1689        }
1690        return 0;
1691}
1692
1693static struct smi_info *smi_info_alloc(void)
1694{
1695        struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1696
1697        if (info)
1698                spin_lock_init(&info->si_lock);
1699        return info;
1700}
1701
1702static int hotmod_handler(const char *val, struct kernel_param *kp)
1703{
1704        char *str = kstrdup(val, GFP_KERNEL);
1705        int  rv;
1706        char *next, *curr, *s, *n, *o;
1707        enum hotmod_op op;
1708        enum si_type si_type;
1709        int  addr_space;
1710        unsigned long addr;
1711        int regspacing;
1712        int regsize;
1713        int regshift;
1714        int irq;
1715        int ipmb;
1716        int ival;
1717        int len;
1718        struct smi_info *info;
1719
1720        if (!str)
1721                return -ENOMEM;
1722
1723        /* Kill any trailing spaces, as we can get a "\n" from echo. */
1724        len = strlen(str);
1725        ival = len - 1;
1726        while ((ival >= 0) && isspace(str[ival])) {
1727                str[ival] = '\0';
1728                ival--;
1729        }
1730
1731        for (curr = str; curr; curr = next) {
1732                regspacing = 1;
1733                regsize = 1;
1734                regshift = 0;
1735                irq = 0;
1736                ipmb = 0; /* Choose the default if not specified */
1737
1738                next = strchr(curr, ':');
1739                if (next) {
1740                        *next = '\0';
1741                        next++;
1742                }
1743
1744                rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1745                if (rv)
1746                        break;
1747                op = ival;
1748
1749                rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1750                if (rv)
1751                        break;
1752                si_type = ival;
1753
1754                rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1755                if (rv)
1756                        break;
1757
1758                s = strchr(curr, ',');
1759                if (s) {
1760                        *s = '\0';
1761                        s++;
1762                }
1763                addr = simple_strtoul(curr, &n, 0);
1764                if ((*n != '\0') || (*curr == '\0')) {
1765                        printk(KERN_WARNING PFX "Invalid hotmod address"
1766                               " '%s'\n", curr);
1767                        break;
1768                }
1769
1770                while (s) {
1771                        curr = s;
1772                        s = strchr(curr, ',');
1773                        if (s) {
1774                                *s = '\0';
1775                                s++;
1776                        }
1777                        o = strchr(curr, '=');
1778                        if (o) {
1779                                *o = '\0';
1780                                o++;
1781                        }
1782                        rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1783                        if (rv < 0)
1784                                goto out;
1785                        else if (rv)
1786                                continue;
1787                        rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1788                        if (rv < 0)
1789                                goto out;
1790                        else if (rv)
1791                                continue;
1792                        rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1793                        if (rv < 0)
1794                                goto out;
1795                        else if (rv)
1796                                continue;
1797                        rv = check_hotmod_int_op(curr, o, "irq", &irq);
1798                        if (rv < 0)
1799                                goto out;
1800                        else if (rv)
1801                                continue;
1802                        rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1803                        if (rv < 0)
1804                                goto out;
1805                        else if (rv)
1806                                continue;
1807
1808                        rv = -EINVAL;
1809                        printk(KERN_WARNING PFX
1810                               "Invalid hotmod option '%s'\n",
1811                               curr);
1812                        goto out;
1813                }
1814
1815                if (op == HM_ADD) {
1816                        info = smi_info_alloc();
1817                        if (!info) {
1818                                rv = -ENOMEM;
1819                                goto out;
1820                        }
1821
1822                        info->addr_source = SI_HOTMOD;
1823                        info->si_type = si_type;
1824                        info->io.addr_data = addr;
1825                        info->io.addr_type = addr_space;
1826                        if (addr_space == IPMI_MEM_ADDR_SPACE)
1827                                info->io_setup = mem_setup;
1828                        else
1829                                info->io_setup = port_setup;
1830
1831                        info->io.addr = NULL;
1832                        info->io.regspacing = regspacing;
1833                        if (!info->io.regspacing)
1834                                info->io.regspacing = DEFAULT_REGSPACING;
1835                        info->io.regsize = regsize;
1836                        if (!info->io.regsize)
1837                                info->io.regsize = DEFAULT_REGSPACING;
1838                        info->io.regshift = regshift;
1839                        info->irq = irq;
1840                        if (info->irq)
1841                                info->irq_setup = std_irq_setup;
1842                        info->slave_addr = ipmb;
1843
1844                        if (!add_smi(info)) {
1845                                if (try_smi_init(info))
1846                                        cleanup_one_si(info);
1847                        } else {
1848                                kfree(info);
1849                        }
1850                } else {
1851                        /* remove */
1852                        struct smi_info *e, *tmp_e;
1853
1854                        mutex_lock(&smi_infos_lock);
1855                        list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1856                                if (e->io.addr_type != addr_space)
1857                                        continue;
1858                                if (e->si_type != si_type)
1859                                        continue;
1860                                if (e->io.addr_data == addr)
1861                                        cleanup_one_si(e);
1862                        }
1863                        mutex_unlock(&smi_infos_lock);
1864                }
1865        }
1866        rv = len;
1867 out:
1868        kfree(str);
1869        return rv;
1870}
1871
1872static int hardcode_find_bmc(void)
1873{
1874        int ret = -ENODEV;
1875        int             i;
1876        struct smi_info *info;
1877
1878        for (i = 0; i < SI_MAX_PARMS; i++) {
1879                if (!ports[i] && !addrs[i])
1880                        continue;
1881
1882                info = smi_info_alloc();
1883                if (!info)
1884                        return -ENOMEM;
1885
1886                info->addr_source = SI_HARDCODED;
1887                printk(KERN_INFO PFX "probing via hardcoded address\n");
1888
1889                if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1890                        info->si_type = SI_KCS;
1891                } else if (strcmp(si_type[i], "smic") == 0) {
1892                        info->si_type = SI_SMIC;
1893                } else if (strcmp(si_type[i], "bt") == 0) {
1894                        info->si_type = SI_BT;
1895                } else {
1896                        printk(KERN_WARNING PFX "Interface type specified "
1897                               "for interface %d, was invalid: %s\n",
1898                               i, si_type[i]);
1899                        kfree(info);
1900                        continue;
1901                }
1902
1903                if (ports[i]) {
1904                        /* An I/O port */
1905                        info->io_setup = port_setup;
1906                        info->io.addr_data = ports[i];
1907                        info->io.addr_type = IPMI_IO_ADDR_SPACE;
1908                } else if (addrs[i]) {
1909                        /* A memory port */
1910                        info->io_setup = mem_setup;
1911                        info->io.addr_data = addrs[i];
1912                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1913                } else {
1914                        printk(KERN_WARNING PFX "Interface type specified "
1915                               "for interface %d, but port and address were "
1916                               "not set or set to zero.\n", i);
1917                        kfree(info);
1918                        continue;
1919                }
1920
1921                info->io.addr = NULL;
1922                info->io.regspacing = regspacings[i];
1923                if (!info->io.regspacing)
1924                        info->io.regspacing = DEFAULT_REGSPACING;
1925                info->io.regsize = regsizes[i];
1926                if (!info->io.regsize)
1927                        info->io.regsize = DEFAULT_REGSPACING;
1928                info->io.regshift = regshifts[i];
1929                info->irq = irqs[i];
1930                if (info->irq)
1931                        info->irq_setup = std_irq_setup;
1932                info->slave_addr = slave_addrs[i];
1933
1934                if (!add_smi(info)) {
1935                        if (try_smi_init(info))
1936                                cleanup_one_si(info);
1937                        ret = 0;
1938                } else {
1939                        kfree(info);
1940                }
1941        }
1942        return ret;
1943}
1944
1945#ifdef CONFIG_ACPI
1946
1947#include <linux/acpi.h>
1948
1949/*
1950 * Once we get an ACPI failure, we don't try any more, because we go
1951 * through the tables sequentially.  Once we don't find a table, there
1952 * are no more.
1953 */
1954static int acpi_failure;
1955
1956/* For GPE-type interrupts. */
1957static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1958        u32 gpe_number, void *context)
1959{
1960        struct smi_info *smi_info = context;
1961        unsigned long   flags;
1962#ifdef DEBUG_TIMING
1963        struct timeval t;
1964#endif
1965
1966        spin_lock_irqsave(&(smi_info->si_lock), flags);
1967
1968        smi_inc_stat(smi_info, interrupts);
1969
1970#ifdef DEBUG_TIMING
1971        do_gettimeofday(&t);
1972        printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1973#endif
1974        smi_event_handler(smi_info, 0);
1975        spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1976
1977        return ACPI_INTERRUPT_HANDLED;
1978}
1979
1980static void acpi_gpe_irq_cleanup(struct smi_info *info)
1981{
1982        if (!info->irq)
1983                return;
1984
1985        acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1986}
1987
1988static int acpi_gpe_irq_setup(struct smi_info *info)
1989{
1990        acpi_status status;
1991
1992        if (!info->irq)
1993                return 0;
1994
1995        /* FIXME - is level triggered right? */
1996        status = acpi_install_gpe_handler(NULL,
1997                                          info->irq,
1998                                          ACPI_GPE_LEVEL_TRIGGERED,
1999                                          &ipmi_acpi_gpe,
2000                                          info);
2001        if (status != AE_OK) {
2002                dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2003                         " running polled\n", DEVICE_NAME, info->irq);
2004                info->irq = 0;
2005                return -EINVAL;
2006        } else {
2007                info->irq_cleanup = acpi_gpe_irq_cleanup;
2008                dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2009                return 0;
2010        }
2011}
2012
2013/*
2014 * Defined at
2015 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2016 */
2017struct SPMITable {
2018        s8      Signature[4];
2019        u32     Length;
2020        u8      Revision;
2021        u8      Checksum;
2022        s8      OEMID[6];
2023        s8      OEMTableID[8];
2024        s8      OEMRevision[4];
2025        s8      CreatorID[4];
2026        s8      CreatorRevision[4];
2027        u8      InterfaceType;
2028        u8      IPMIlegacy;
2029        s16     SpecificationRevision;
2030
2031        /*
2032         * Bit 0 - SCI interrupt supported
2033         * Bit 1 - I/O APIC/SAPIC
2034         */
2035        u8      InterruptType;
2036
2037        /*
2038         * If bit 0 of InterruptType is set, then this is the SCI
2039         * interrupt in the GPEx_STS register.
2040         */
2041        u8      GPE;
2042
2043        s16     Reserved;
2044
2045        /*
2046         * If bit 1 of InterruptType is set, then this is the I/O
2047         * APIC/SAPIC interrupt.
2048         */
2049        u32     GlobalSystemInterrupt;
2050
2051        /* The actual register address. */
2052        struct acpi_generic_address addr;
2053
2054        u8      UID[4];
2055
2056        s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2057};
2058
2059static int try_init_spmi(struct SPMITable *spmi)
2060{
2061        struct smi_info  *info;
2062
2063        if (spmi->IPMIlegacy != 1) {
2064                printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2065                return -ENODEV;
2066        }
2067
2068        info = smi_info_alloc();
2069        if (!info) {
2070                printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2071                return -ENOMEM;
2072        }
2073
2074        info->addr_source = SI_SPMI;
2075        printk(KERN_INFO PFX "probing via SPMI\n");
2076
2077        /* Figure out the interface type. */
2078        switch (spmi->InterfaceType) {
2079        case 1: /* KCS */
2080                info->si_type = SI_KCS;
2081                break;
2082        case 2: /* SMIC */
2083                info->si_type = SI_SMIC;
2084                break;
2085        case 3: /* BT */
2086                info->si_type = SI_BT;
2087                break;
2088        default:
2089                printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2090                       spmi->InterfaceType);
2091                kfree(info);
2092                return -EIO;
2093        }
2094
2095        if (spmi->InterruptType & 1) {
2096                /* We've got a GPE interrupt. */
2097                info->irq = spmi->GPE;
2098                info->irq_setup = acpi_gpe_irq_setup;
2099        } else if (spmi->InterruptType & 2) {
2100                /* We've got an APIC/SAPIC interrupt. */
2101                info->irq = spmi->GlobalSystemInterrupt;
2102                info->irq_setup = std_irq_setup;
2103        } else {
2104                /* Use the default interrupt setting. */
2105                info->irq = 0;
2106                info->irq_setup = NULL;
2107        }
2108
2109        if (spmi->addr.bit_width) {
2110                /* A (hopefully) properly formed register bit width. */
2111                info->io.regspacing = spmi->addr.bit_width / 8;
2112        } else {
2113                info->io.regspacing = DEFAULT_REGSPACING;
2114        }
2115        info->io.regsize = info->io.regspacing;
2116        info->io.regshift = spmi->addr.bit_offset;
2117
2118        if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2119                info->io_setup = mem_setup;
2120                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2121        } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2122                info->io_setup = port_setup;
2123                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2124        } else {
2125                kfree(info);
2126                printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2127                return -EIO;
2128        }
2129        info->io.addr_data = spmi->addr.address;
2130
2131        pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2132                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2133                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2134                 info->irq);
2135
2136        if (add_smi(info))
2137                kfree(info);
2138
2139        return 0;
2140}
2141
2142static void spmi_find_bmc(void)
2143{
2144        acpi_status      status;
2145        struct SPMITable *spmi;
2146        int              i;
2147
2148        if (acpi_disabled)
2149                return;
2150
2151        if (acpi_failure)
2152                return;
2153
2154        for (i = 0; ; i++) {
2155                status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2156                                        (struct acpi_table_header **)&spmi);
2157                if (status != AE_OK)
2158                        return;
2159
2160                try_init_spmi(spmi);
2161        }
2162}
2163
2164static int ipmi_pnp_probe(struct pnp_dev *dev,
2165                                    const struct pnp_device_id *dev_id)
2166{
2167        struct acpi_device *acpi_dev;
2168        struct smi_info *info;
2169        struct resource *res, *res_second;
2170        acpi_handle handle;
2171        acpi_status status;
2172        unsigned long long tmp;
2173
2174        acpi_dev = pnp_acpi_device(dev);
2175        if (!acpi_dev)
2176                return -ENODEV;
2177
2178        info = smi_info_alloc();
2179        if (!info)
2180                return -ENOMEM;
2181
2182        info->addr_source = SI_ACPI;
2183        printk(KERN_INFO PFX "probing via ACPI\n");
2184
2185        handle = acpi_dev->handle;
2186        info->addr_info.acpi_info.acpi_handle = handle;
2187
2188        /* _IFT tells us the interface type: KCS, BT, etc */
2189        status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2190        if (ACPI_FAILURE(status))
2191                goto err_free;
2192
2193        switch (tmp) {
2194        case 1:
2195                info->si_type = SI_KCS;
2196                break;
2197        case 2:
2198                info->si_type = SI_SMIC;
2199                break;
2200        case 3:
2201                info->si_type = SI_BT;
2202                break;
2203        default:
2204                dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2205                goto err_free;
2206        }
2207
2208        res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2209        if (res) {
2210                info->io_setup = port_setup;
2211                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2212        } else {
2213                res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2214                if (res) {
2215                        info->io_setup = mem_setup;
2216                        info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2217                }
2218        }
2219        if (!res) {
2220                dev_err(&dev->dev, "no I/O or memory address\n");
2221                goto err_free;
2222        }
2223        info->io.addr_data = res->start;
2224
2225        info->io.regspacing = DEFAULT_REGSPACING;
2226        res_second = pnp_get_resource(dev,
2227                               (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2228                                        IORESOURCE_IO : IORESOURCE_MEM,
2229                               1);
2230        if (res_second) {
2231                if (res_second->start > info->io.addr_data)
2232                        info->io.regspacing = res_second->start - info->io.addr_data;
2233        }
2234        info->io.regsize = DEFAULT_REGSPACING;
2235        info->io.regshift = 0;
2236
2237        /* If _GPE exists, use it; otherwise use standard interrupts */
2238        status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2239        if (ACPI_SUCCESS(status)) {
2240                info->irq = tmp;
2241                info->irq_setup = acpi_gpe_irq_setup;
2242        } else if (pnp_irq_valid(dev, 0)) {
2243                info->irq = pnp_irq(dev, 0);
2244                info->irq_setup = std_irq_setup;
2245        }
2246
2247        info->dev = &dev->dev;
2248        pnp_set_drvdata(dev, info);
2249
2250        dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2251                 res, info->io.regsize, info->io.regspacing,
2252                 info->irq);
2253
2254        if (add_smi(info))
2255                goto err_free;
2256
2257        return 0;
2258
2259err_free:
2260        kfree(info);
2261        return -EINVAL;
2262}
2263
2264static void ipmi_pnp_remove(struct pnp_dev *dev)
2265{
2266        struct smi_info *info = pnp_get_drvdata(dev);
2267
2268        cleanup_one_si(info);
2269}
2270
2271static const struct pnp_device_id pnp_dev_table[] = {
2272        {"IPI0001", 0},
2273        {"", 0},
2274};
2275
2276static struct pnp_driver ipmi_pnp_driver = {
2277        .name           = DEVICE_NAME,
2278        .probe          = ipmi_pnp_probe,
2279        .remove         = ipmi_pnp_remove,
2280        .id_table       = pnp_dev_table,
2281};
2282#endif
2283
2284#ifdef CONFIG_DMI
2285struct dmi_ipmi_data {
2286        u8              type;
2287        u8              addr_space;
2288        unsigned long   base_addr;
2289        u8              irq;
2290        u8              offset;
2291        u8              slave_addr;
2292};
2293
2294static int decode_dmi(const struct dmi_header *dm,
2295                                struct dmi_ipmi_data *dmi)
2296{
2297        const u8        *data = (const u8 *)dm;
2298        unsigned long   base_addr;
2299        u8              reg_spacing;
2300        u8              len = dm->length;
2301
2302        dmi->type = data[4];
2303
2304        memcpy(&base_addr, data+8, sizeof(unsigned long));
2305        if (len >= 0x11) {
2306                if (base_addr & 1) {
2307                        /* I/O */
2308                        base_addr &= 0xFFFE;
2309                        dmi->addr_space = IPMI_IO_ADDR_SPACE;
2310                } else
2311                        /* Memory */
2312                        dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2313
2314                /* If bit 4 of byte 0x10 is set, then the lsb for the address
2315                   is odd. */
2316                dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2317
2318                dmi->irq = data[0x11];
2319
2320                /* The top two bits of byte 0x10 hold the register spacing. */
2321                reg_spacing = (data[0x10] & 0xC0) >> 6;
2322                switch (reg_spacing) {
2323                case 0x00: /* Byte boundaries */
2324                    dmi->offset = 1;
2325                    break;
2326                case 0x01: /* 32-bit boundaries */
2327                    dmi->offset = 4;
2328                    break;
2329                case 0x02: /* 16-byte boundaries */
2330                    dmi->offset = 16;
2331                    break;
2332                default:
2333                    /* Some other interface, just ignore it. */
2334                    return -EIO;
2335                }
2336        } else {
2337                /* Old DMI spec. */
2338                /*
2339                 * Note that technically, the lower bit of the base
2340                 * address should be 1 if the address is I/O and 0 if
2341                 * the address is in memory.  So many systems get that
2342                 * wrong (and all that I have seen are I/O) so we just
2343                 * ignore that bit and assume I/O.  Systems that use
2344                 * memory should use the newer spec, anyway.
2345                 */
2346                dmi->base_addr = base_addr & 0xfffe;
2347                dmi->addr_space = IPMI_IO_ADDR_SPACE;
2348                dmi->offset = 1;
2349        }
2350
2351        dmi->slave_addr = data[6];
2352
2353        return 0;
2354}
2355
2356static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2357{
2358        struct smi_info *info;
2359
2360        info = smi_info_alloc();
2361        if (!info) {
2362                printk(KERN_ERR PFX "Could not allocate SI data\n");
2363                return;
2364        }
2365
2366        info->addr_source = SI_SMBIOS;
2367        printk(KERN_INFO PFX "probing via SMBIOS\n");
2368
2369        switch (ipmi_data->type) {
2370        case 0x01: /* KCS */
2371                info->si_type = SI_KCS;
2372                break;
2373        case 0x02: /* SMIC */
2374                info->si_type = SI_SMIC;
2375                break;
2376        case 0x03: /* BT */
2377                info->si_type = SI_BT;
2378                break;
2379        default:
2380                kfree(info);
2381                return;
2382        }
2383
2384        switch (ipmi_data->addr_space) {
2385        case IPMI_MEM_ADDR_SPACE:
2386                info->io_setup = mem_setup;
2387                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2388                break;
2389
2390        case IPMI_IO_ADDR_SPACE:
2391                info->io_setup = port_setup;
2392                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2393                break;
2394
2395        default:
2396                kfree(info);
2397                printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2398                       ipmi_data->addr_space);
2399                return;
2400        }
2401        info->io.addr_data = ipmi_data->base_addr;
2402
2403        info->io.regspacing = ipmi_data->offset;
2404        if (!info->io.regspacing)
2405                info->io.regspacing = DEFAULT_REGSPACING;
2406        info->io.regsize = DEFAULT_REGSPACING;
2407        info->io.regshift = 0;
2408
2409        info->slave_addr = ipmi_data->slave_addr;
2410
2411        info->irq = ipmi_data->irq;
2412        if (info->irq)
2413                info->irq_setup = std_irq_setup;
2414
2415        pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2416                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2417                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2418                 info->irq);
2419
2420        if (add_smi(info))
2421                kfree(info);
2422}
2423
2424static void dmi_find_bmc(void)
2425{
2426        const struct dmi_device *dev = NULL;
2427        struct dmi_ipmi_data data;
2428        int                  rv;
2429
2430        while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2431                memset(&data, 0, sizeof(data));
2432                rv = decode_dmi((const struct dmi_header *) dev->device_data,
2433                                &data);
2434                if (!rv)
2435                        try_init_dmi(&data);
2436        }
2437}
2438#endif /* CONFIG_DMI */
2439
2440#ifdef CONFIG_PCI
2441
2442#define PCI_ERMC_CLASSCODE              0x0C0700
2443#define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2444#define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2445#define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2446#define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2447#define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2448
2449#define PCI_HP_VENDOR_ID    0x103C
2450#define PCI_MMC_DEVICE_ID   0x121A
2451#define PCI_MMC_ADDR_CW     0x10
2452
2453static void ipmi_pci_cleanup(struct smi_info *info)
2454{
2455        struct pci_dev *pdev = info->addr_source_data;
2456
2457        pci_disable_device(pdev);
2458}
2459
2460static int ipmi_pci_probe_regspacing(struct smi_info *info)
2461{
2462        if (info->si_type == SI_KCS) {
2463                unsigned char   status;
2464                int             regspacing;
2465
2466                info->io.regsize = DEFAULT_REGSIZE;
2467                info->io.regshift = 0;
2468                info->io_size = 2;
2469                info->handlers = &kcs_smi_handlers;
2470
2471                /* detect 1, 4, 16byte spacing */
2472                for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2473                        info->io.regspacing = regspacing;
2474                        if (info->io_setup(info)) {
2475                                dev_err(info->dev,
2476                                        "Could not setup I/O space\n");
2477                                return DEFAULT_REGSPACING;
2478                        }
2479                        /* write invalid cmd */
2480                        info->io.outputb(&info->io, 1, 0x10);
2481                        /* read status back */
2482                        status = info->io.inputb(&info->io, 1);
2483                        info->io_cleanup(info);
2484                        if (status)
2485                                return regspacing;
2486                        regspacing *= 4;
2487                }
2488        }
2489        return DEFAULT_REGSPACING;
2490}
2491
2492static int ipmi_pci_probe(struct pci_dev *pdev,
2493                                    const struct pci_device_id *ent)
2494{
2495        int rv;
2496        int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2497        struct smi_info *info;
2498
2499        info = smi_info_alloc();
2500        if (!info)
2501                return -ENOMEM;
2502
2503        info->addr_source = SI_PCI;
2504        dev_info(&pdev->dev, "probing via PCI");
2505
2506        switch (class_type) {
2507        case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2508                info->si_type = SI_SMIC;
2509                break;
2510
2511        case PCI_ERMC_CLASSCODE_TYPE_KCS:
2512                info->si_type = SI_KCS;
2513                break;
2514
2515        case PCI_ERMC_CLASSCODE_TYPE_BT:
2516                info->si_type = SI_BT;
2517                break;
2518
2519        default:
2520                kfree(info);
2521                dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2522                return -ENOMEM;
2523        }
2524
2525        rv = pci_enable_device(pdev);
2526        if (rv) {
2527                dev_err(&pdev->dev, "couldn't enable PCI device\n");
2528                kfree(info);
2529                return rv;
2530        }
2531
2532        info->addr_source_cleanup = ipmi_pci_cleanup;
2533        info->addr_source_data = pdev;
2534
2535        if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2536                info->io_setup = port_setup;
2537                info->io.addr_type = IPMI_IO_ADDR_SPACE;
2538        } else {
2539                info->io_setup = mem_setup;
2540                info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2541        }
2542        info->io.addr_data = pci_resource_start(pdev, 0);
2543
2544        info->io.regspacing = ipmi_pci_probe_regspacing(info);
2545        info->io.regsize = DEFAULT_REGSIZE;
2546        info->io.regshift = 0;
2547
2548        info->irq = pdev->irq;
2549        if (info->irq)
2550                info->irq_setup = std_irq_setup;
2551
2552        info->dev = &pdev->dev;
2553        pci_set_drvdata(pdev, info);
2554
2555        dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2556                &pdev->resource[0], info->io.regsize, info->io.regspacing,
2557                info->irq);
2558
2559        if (add_smi(info))
2560                kfree(info);
2561
2562        return 0;
2563}
2564
2565static void ipmi_pci_remove(struct pci_dev *pdev)
2566{
2567        struct smi_info *info = pci_get_drvdata(pdev);
2568        cleanup_one_si(info);
2569}
2570
2571static struct pci_device_id ipmi_pci_devices[] = {
2572        { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573        { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2574        { 0, }
2575};
2576MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2577
2578static struct pci_driver ipmi_pci_driver = {
2579        .name =         DEVICE_NAME,
2580        .id_table =     ipmi_pci_devices,
2581        .probe =        ipmi_pci_probe,
2582        .remove =       ipmi_pci_remove,
2583};
2584#endif /* CONFIG_PCI */
2585
2586static struct of_device_id ipmi_match[];
2587static int ipmi_probe(struct platform_device *dev)
2588{
2589#ifdef CONFIG_OF
2590        const struct of_device_id *match;
2591        struct smi_info *info;
2592        struct resource resource;
2593        const __be32 *regsize, *regspacing, *regshift;
2594        struct device_node *np = dev->dev.of_node;
2595        int ret;
2596        int proplen;
2597
2598        dev_info(&dev->dev, "probing via device tree\n");
2599
2600        match = of_match_device(ipmi_match, &dev->dev);
2601        if (!match)
2602                return -EINVAL;
2603
2604        ret = of_address_to_resource(np, 0, &resource);
2605        if (ret) {
2606                dev_warn(&dev->dev, PFX "invalid address from OF\n");
2607                return ret;
2608        }
2609
2610        regsize = of_get_property(np, "reg-size", &proplen);
2611        if (regsize && proplen != 4) {
2612                dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2613                return -EINVAL;
2614        }
2615
2616        regspacing = of_get_property(np, "reg-spacing", &proplen);
2617        if (regspacing && proplen != 4) {
2618                dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2619                return -EINVAL;
2620        }
2621
2622        regshift = of_get_property(np, "reg-shift", &proplen);
2623        if (regshift && proplen != 4) {
2624                dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2625                return -EINVAL;
2626        }
2627
2628        info = smi_info_alloc();
2629
2630        if (!info) {
2631                dev_err(&dev->dev,
2632                        "could not allocate memory for OF probe\n");
2633                return -ENOMEM;
2634        }
2635
2636        info->si_type           = (enum si_type) match->data;
2637        info->addr_source       = SI_DEVICETREE;
2638        info->irq_setup         = std_irq_setup;
2639
2640        if (resource.flags & IORESOURCE_IO) {
2641                info->io_setup          = port_setup;
2642                info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2643        } else {
2644                info->io_setup          = mem_setup;
2645                info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2646        }
2647
2648        info->io.addr_data      = resource.start;
2649
2650        info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2651        info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2652        info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2653
2654        info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2655        info->dev               = &dev->dev;
2656
2657        dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2658                info->io.addr_data, info->io.regsize, info->io.regspacing,
2659                info->irq);
2660
2661        dev_set_drvdata(&dev->dev, info);
2662
2663        if (add_smi(info)) {
2664                kfree(info);
2665                return -EBUSY;
2666        }
2667#endif
2668        return 0;
2669}
2670
2671static int ipmi_remove(struct platform_device *dev)
2672{
2673#ifdef CONFIG_OF
2674        cleanup_one_si(dev_get_drvdata(&dev->dev));
2675#endif
2676        return 0;
2677}
2678
2679static struct of_device_id ipmi_match[] =
2680{
2681        { .type = "ipmi", .compatible = "ipmi-kcs",
2682          .data = (void *)(unsigned long) SI_KCS },
2683        { .type = "ipmi", .compatible = "ipmi-smic",
2684          .data = (void *)(unsigned long) SI_SMIC },
2685        { .type = "ipmi", .compatible = "ipmi-bt",
2686          .data = (void *)(unsigned long) SI_BT },
2687        {},
2688};
2689
2690static struct platform_driver ipmi_driver = {
2691        .driver = {
2692                .name = DEVICE_NAME,
2693                .owner = THIS_MODULE,
2694                .of_match_table = ipmi_match,
2695        },
2696        .probe          = ipmi_probe,
2697        .remove         = ipmi_remove,
2698};
2699
2700static int wait_for_msg_done(struct smi_info *smi_info)
2701{
2702        enum si_sm_result     smi_result;
2703
2704        smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2705        for (;;) {
2706                if (smi_result == SI_SM_CALL_WITH_DELAY ||
2707                    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2708                        schedule_timeout_uninterruptible(1);
2709                        smi_result = smi_info->handlers->event(
2710                                smi_info->si_sm, 100);
2711                } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2712                        smi_result = smi_info->handlers->event(
2713                                smi_info->si_sm, 0);
2714                } else
2715                        break;
2716        }
2717        if (smi_result == SI_SM_HOSED)
2718                /*
2719                 * We couldn't get the state machine to run, so whatever's at
2720                 * the port is probably not an IPMI SMI interface.
2721                 */
2722                return -ENODEV;
2723
2724        return 0;
2725}
2726
2727static int try_get_dev_id(struct smi_info *smi_info)
2728{
2729        unsigned char         msg[2];
2730        unsigned char         *resp;
2731        unsigned long         resp_len;
2732        int                   rv = 0;
2733
2734        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2735        if (!resp)
2736                return -ENOMEM;
2737
2738        /*
2739         * Do a Get Device ID command, since it comes back with some
2740         * useful info.
2741         */
2742        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2743        msg[1] = IPMI_GET_DEVICE_ID_CMD;
2744        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2745
2746        rv = wait_for_msg_done(smi_info);
2747        if (rv)
2748                goto out;
2749
2750        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2751                                                  resp, IPMI_MAX_MSG_LENGTH);
2752
2753        /* Check and record info from the get device id, in case we need it. */
2754        rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2755
2756 out:
2757        kfree(resp);
2758        return rv;
2759}
2760
2761static int try_enable_event_buffer(struct smi_info *smi_info)
2762{
2763        unsigned char         msg[3];
2764        unsigned char         *resp;
2765        unsigned long         resp_len;
2766        int                   rv = 0;
2767
2768        resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2769        if (!resp)
2770                return -ENOMEM;
2771
2772        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2773        msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2774        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2775
2776        rv = wait_for_msg_done(smi_info);
2777        if (rv) {
2778                printk(KERN_WARNING PFX "Error getting response from get"
2779                       " global enables command, the event buffer is not"
2780                       " enabled.\n");
2781                goto out;
2782        }
2783
2784        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2785                                                  resp, IPMI_MAX_MSG_LENGTH);
2786
2787        if (resp_len < 4 ||
2788                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2789                        resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2790                        resp[2] != 0) {
2791                printk(KERN_WARNING PFX "Invalid return from get global"
2792                       " enables command, cannot enable the event buffer.\n");
2793                rv = -EINVAL;
2794                goto out;
2795        }
2796
2797        if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2798                /* buffer is already enabled, nothing to do. */
2799                goto out;
2800
2801        msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2802        msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2803        msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2804        smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2805
2806        rv = wait_for_msg_done(smi_info);
2807        if (rv) {
2808                printk(KERN_WARNING PFX "Error getting response from set"
2809                       " global, enables command, the event buffer is not"
2810                       " enabled.\n");
2811                goto out;
2812        }
2813
2814        resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2815                                                  resp, IPMI_MAX_MSG_LENGTH);
2816
2817        if (resp_len < 3 ||
2818                        resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2819                        resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2820                printk(KERN_WARNING PFX "Invalid return from get global,"
2821                       "enables command, not enable the event buffer.\n");
2822                rv = -EINVAL;
2823                goto out;
2824        }
2825
2826        if (resp[2] != 0)
2827                /*
2828                 * An error when setting the event buffer bit means
2829                 * that the event buffer is not supported.
2830                 */
2831                rv = -ENOENT;
2832 out:
2833        kfree(resp);
2834        return rv;
2835}
2836
2837static int smi_type_proc_show(struct seq_file *m, void *v)
2838{
2839        struct smi_info *smi = m->private;
2840
2841        return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2842}
2843
2844static int smi_type_proc_open(struct inode *inode, struct file *file)
2845{
2846        return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2847}
2848
2849static const struct file_operations smi_type_proc_ops = {
2850        .open           = smi_type_proc_open,
2851        .read           = seq_read,
2852        .llseek         = seq_lseek,
2853        .release        = single_release,
2854};
2855
2856static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2857{
2858        struct smi_info *smi = m->private;
2859
2860        seq_printf(m, "interrupts_enabled:    %d\n",
2861                       smi->irq && !smi->interrupt_disabled);
2862        seq_printf(m, "short_timeouts:        %u\n",
2863                       smi_get_stat(smi, short_timeouts));
2864        seq_printf(m, "long_timeouts:         %u\n",
2865                       smi_get_stat(smi, long_timeouts));
2866        seq_printf(m, "idles:                 %u\n",
2867                       smi_get_stat(smi, idles));
2868        seq_printf(m, "interrupts:            %u\n",
2869                       smi_get_stat(smi, interrupts));
2870        seq_printf(m, "attentions:            %u\n",
2871                       smi_get_stat(smi, attentions));
2872        seq_printf(m, "flag_fetches:          %u\n",
2873                       smi_get_stat(smi, flag_fetches));
2874        seq_printf(m, "hosed_count:           %u\n",
2875                       smi_get_stat(smi, hosed_count));
2876        seq_printf(m, "complete_transactions: %u\n",
2877                       smi_get_stat(smi, complete_transactions));
2878        seq_printf(m, "events:                %u\n",
2879                       smi_get_stat(smi, events));
2880        seq_printf(m, "watchdog_pretimeouts:  %u\n",
2881                       smi_get_stat(smi, watchdog_pretimeouts));
2882        seq_printf(m, "incoming_messages:     %u\n",
2883                       smi_get_stat(smi, incoming_messages));
2884        return 0;
2885}
2886
2887static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2888{
2889        return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2890}
2891
2892static const struct file_operations smi_si_stats_proc_ops = {
2893        .open           = smi_si_stats_proc_open,
2894        .read           = seq_read,
2895        .llseek         = seq_lseek,
2896        .release        = single_release,
2897};
2898
2899static int smi_params_proc_show(struct seq_file *m, void *v)
2900{
2901        struct smi_info *smi = m->private;
2902
2903        return seq_printf(m,
2904                       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2905                       si_to_str[smi->si_type],
2906                       addr_space_to_str[smi->io.addr_type],
2907                       smi->io.addr_data,
2908                       smi->io.regspacing,
2909                       smi->io.regsize,
2910                       smi->io.regshift,
2911                       smi->irq,
2912                       smi->slave_addr);
2913}
2914
2915static int smi_params_proc_open(struct inode *inode, struct file *file)
2916{
2917        return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2918}
2919
2920static const struct file_operations smi_params_proc_ops = {
2921        .open           = smi_params_proc_open,
2922        .read           = seq_read,
2923        .llseek         = seq_lseek,
2924        .release        = single_release,
2925};
2926
2927/*
2928 * oem_data_avail_to_receive_msg_avail
2929 * @info - smi_info structure with msg_flags set
2930 *
2931 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2932 * Returns 1 indicating need to re-run handle_flags().
2933 */
2934static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2935{
2936        smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2937                               RECEIVE_MSG_AVAIL);
2938        return 1;
2939}
2940
2941/*
2942 * setup_dell_poweredge_oem_data_handler
2943 * @info - smi_info.device_id must be populated
2944 *
2945 * Systems that match, but have firmware version < 1.40 may assert
2946 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2947 * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2948 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2949 * as RECEIVE_MSG_AVAIL instead.
2950 *
2951 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2952 * assert the OEM[012] bits, and if it did, the driver would have to
2953 * change to handle that properly, we don't actually check for the
2954 * firmware version.
2955 * Device ID = 0x20                BMC on PowerEdge 8G servers
2956 * Device Revision = 0x80
2957 * Firmware Revision1 = 0x01       BMC version 1.40
2958 * Firmware Revision2 = 0x40       BCD encoded
2959 * IPMI Version = 0x51             IPMI 1.5
2960 * Manufacturer ID = A2 02 00      Dell IANA
2961 *
2962 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2963 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2964 *
2965 */
2966#define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2967#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2968#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2969#define DELL_IANA_MFR_ID 0x0002a2
2970static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2971{
2972        struct ipmi_device_id *id = &smi_info->device_id;
2973        if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2974                if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2975                    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2976                    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2977                        smi_info->oem_data_avail_handler =
2978                                oem_data_avail_to_receive_msg_avail;
2979                } else if (ipmi_version_major(id) < 1 ||
2980                           (ipmi_version_major(id) == 1 &&
2981                            ipmi_version_minor(id) < 5)) {
2982                        smi_info->oem_data_avail_handler =
2983                                oem_data_avail_to_receive_msg_avail;
2984                }
2985        }
2986}
2987
2988#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2989static void return_hosed_msg_badsize(struct smi_info *smi_info)
2990{
2991        struct ipmi_smi_msg *msg = smi_info->curr_msg;
2992
2993        /* Make it a response */
2994        msg->rsp[0] = msg->data[0] | 4;
2995        msg->rsp[1] = msg->data[1];
2996        msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2997        msg->rsp_size = 3;
2998        smi_info->curr_msg = NULL;
2999        deliver_recv_msg(smi_info, msg);
3000}
3001
3002/*
3003 * dell_poweredge_bt_xaction_handler
3004 * @info - smi_info.device_id must be populated
3005 *
3006 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3007 * not respond to a Get SDR command if the length of the data
3008 * requested is exactly 0x3A, which leads to command timeouts and no
3009 * data returned.  This intercepts such commands, and causes userspace
3010 * callers to try again with a different-sized buffer, which succeeds.
3011 */
3012
3013#define STORAGE_NETFN 0x0A
3014#define STORAGE_CMD_GET_SDR 0x23
3015static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3016                                             unsigned long unused,
3017                                             void *in)
3018{
3019        struct smi_info *smi_info = in;
3020        unsigned char *data = smi_info->curr_msg->data;
3021        unsigned int size   = smi_info->curr_msg->data_size;
3022        if (size >= 8 &&
3023            (data[0]>>2) == STORAGE_NETFN &&
3024            data[1] == STORAGE_CMD_GET_SDR &&
3025            data[7] == 0x3A) {
3026                return_hosed_msg_badsize(smi_info);
3027                return NOTIFY_STOP;
3028        }
3029        return NOTIFY_DONE;
3030}
3031
3032static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3033        .notifier_call  = dell_poweredge_bt_xaction_handler,
3034};
3035
3036/*
3037 * setup_dell_poweredge_bt_xaction_handler
3038 * @info - smi_info.device_id must be filled in already
3039 *
3040 * Fills in smi_info.device_id.start_transaction_pre_hook
3041 * when we know what function to use there.
3042 */
3043static void
3044setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3045{
3046        struct ipmi_device_id *id = &smi_info->device_id;
3047        if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3048            smi_info->si_type == SI_BT)
3049                register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3050}
3051
3052/*
3053 * setup_oem_data_handler
3054 * @info - smi_info.device_id must be filled in already
3055 *
3056 * Fills in smi_info.device_id.oem_data_available_handler
3057 * when we know what function to use there.
3058 */
3059
3060static void setup_oem_data_handler(struct smi_info *smi_info)
3061{
3062        setup_dell_poweredge_oem_data_handler(smi_info);
3063}
3064
3065static void setup_xaction_handlers(struct smi_info *smi_info)
3066{
3067        setup_dell_poweredge_bt_xaction_handler(smi_info);
3068}
3069
3070static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3071{
3072        if (smi_info->intf) {
3073                /*
3074                 * The timer and thread are only running if the
3075                 * interface has been started up and registered.
3076                 */
3077                if (smi_info->thread != NULL)
3078                        kthread_stop(smi_info->thread);
3079                del_timer_sync(&smi_info->si_timer);
3080        }
3081}
3082
3083static struct ipmi_default_vals
3084{
3085        int type;
3086        int port;
3087} ipmi_defaults[] =
3088{
3089        { .type = SI_KCS, .port = 0xca2 },
3090        { .type = SI_SMIC, .port = 0xca9 },
3091        { .type = SI_BT, .port = 0xe4 },
3092        { .port = 0 }
3093};
3094
3095static void default_find_bmc(void)
3096{
3097        struct smi_info *info;
3098        int             i;
3099
3100        for (i = 0; ; i++) {
3101                if (!ipmi_defaults[i].port)
3102                        break;
3103#ifdef CONFIG_PPC
3104                if (check_legacy_ioport(ipmi_defaults[i].port))
3105                        continue;
3106#endif
3107                info = smi_info_alloc();
3108                if (!info)
3109                        return;
3110
3111                info->addr_source = SI_DEFAULT;
3112
3113                info->si_type = ipmi_defaults[i].type;
3114                info->io_setup = port_setup;
3115                info->io.addr_data = ipmi_defaults[i].port;
3116                info->io.addr_type = IPMI_IO_ADDR_SPACE;
3117
3118                info->io.addr = NULL;
3119                info->io.regspacing = DEFAULT_REGSPACING;
3120                info->io.regsize = DEFAULT_REGSPACING;
3121                info->io.regshift = 0;
3122
3123                if (add_smi(info) == 0) {
3124                        if ((try_smi_init(info)) == 0) {
3125                                /* Found one... */
3126                                printk(KERN_INFO PFX "Found default %s"
3127                                " state machine at %s address 0x%lx\n",
3128                                si_to_str[info->si_type],
3129                                addr_space_to_str[info->io.addr_type],
3130                                info->io.addr_data);
3131                        } else
3132                                cleanup_one_si(info);
3133                } else {
3134                        kfree(info);
3135                }
3136        }
3137}
3138
3139static int is_new_interface(struct smi_info *info)
3140{
3141        struct smi_info *e;
3142
3143        list_for_each_entry(e, &smi_infos, link) {
3144                if (e->io.addr_type != info->io.addr_type)
3145                        continue;
3146                if (e->io.addr_data == info->io.addr_data)
3147                        return 0;
3148        }
3149
3150        return 1;
3151}
3152
3153static int add_smi(struct smi_info *new_smi)
3154{
3155        int rv = 0;
3156
3157        printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3158                        ipmi_addr_src_to_str[new_smi->addr_source],
3159                        si_to_str[new_smi->si_type]);
3160        mutex_lock(&smi_infos_lock);
3161        if (!is_new_interface(new_smi)) {
3162                printk(KERN_CONT " duplicate interface\n");
3163                rv = -EBUSY;
3164                goto out_err;
3165        }
3166
3167        printk(KERN_CONT "\n");
3168
3169        /* So we know not to free it unless we have allocated one. */
3170        new_smi->intf = NULL;
3171        new_smi->si_sm = NULL;
3172        new_smi->handlers = NULL;
3173
3174        list_add_tail(&new_smi->link, &smi_infos);
3175
3176out_err:
3177        mutex_unlock(&smi_infos_lock);
3178        return rv;
3179}
3180
3181static int try_smi_init(struct smi_info *new_smi)
3182{
3183        int rv = 0;
3184        int i;
3185
3186        printk(KERN_INFO PFX "Trying %s-specified %s state"
3187               " machine at %s address 0x%lx, slave address 0x%x,"
3188               " irq %d\n",
3189               ipmi_addr_src_to_str[new_smi->addr_source],
3190               si_to_str[new_smi->si_type],
3191               addr_space_to_str[new_smi->io.addr_type],
3192               new_smi->io.addr_data,
3193               new_smi->slave_addr, new_smi->irq);
3194
3195        switch (new_smi->si_type) {
3196        case SI_KCS:
3197                new_smi->handlers = &kcs_smi_handlers;
3198                break;
3199
3200        case SI_SMIC:
3201                new_smi->handlers = &smic_smi_handlers;
3202                break;
3203
3204        case SI_BT:
3205                new_smi->handlers = &bt_smi_handlers;
3206                break;
3207
3208        default:
3209                /* No support for anything else yet. */
3210                rv = -EIO;
3211                goto out_err;
3212        }
3213
3214        /* Allocate the state machine's data and initialize it. */
3215        new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3216        if (!new_smi->si_sm) {
3217                printk(KERN_ERR PFX
3218                       "Could not allocate state machine memory\n");
3219                rv = -ENOMEM;
3220                goto out_err;
3221        }
3222        new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3223                                                        &new_smi->io);
3224
3225        /* Now that we know the I/O size, we can set up the I/O. */
3226        rv = new_smi->io_setup(new_smi);
3227        if (rv) {
3228                printk(KERN_ERR PFX "Could not set up I/O space\n");
3229                goto out_err;
3230        }
3231
3232        /* Do low-level detection first. */
3233        if (new_smi->handlers->detect(new_smi->si_sm)) {
3234                if (new_smi->addr_source)
3235                        printk(KERN_INFO PFX "Interface detection failed\n");
3236                rv = -ENODEV;
3237                goto out_err;
3238        }
3239
3240        /*
3241         * Attempt a get device id command.  If it fails, we probably
3242         * don't have a BMC here.
3243         */
3244        rv = try_get_dev_id(new_smi);
3245        if (rv) {
3246                if (new_smi->addr_source)
3247                        printk(KERN_INFO PFX "There appears to be no BMC"
3248                               " at this location\n");
3249                goto out_err;
3250        }
3251
3252        setup_oem_data_handler(new_smi);
3253        setup_xaction_handlers(new_smi);
3254
3255        INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3256        INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3257        new_smi->curr_msg = NULL;
3258        atomic_set(&new_smi->req_events, 0);
3259        new_smi->run_to_completion = 0;
3260        for (i = 0; i < SI_NUM_STATS; i++)
3261                atomic_set(&new_smi->stats[i], 0);
3262
3263        new_smi->interrupt_disabled = 1;
3264        atomic_set(&new_smi->stop_operation, 0);
3265        new_smi->intf_num = smi_num;
3266        smi_num++;
3267
3268        rv = try_enable_event_buffer(new_smi);
3269        if (rv == 0)
3270                new_smi->has_event_buffer = 1;
3271
3272        /*
3273         * Start clearing the flags before we enable interrupts or the
3274         * timer to avoid racing with the timer.
3275         */
3276        start_clear_flags(new_smi);
3277        /* IRQ is defined to be set when non-zero. */
3278        if (new_smi->irq)
3279                new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3280
3281        if (!new_smi->dev) {
3282                /*
3283                 * If we don't already have a device from something
3284                 * else (like PCI), then register a new one.
3285                 */
3286                new_smi->pdev = platform_device_alloc("ipmi_si",
3287                                                      new_smi->intf_num);
3288                if (!new_smi->pdev) {
3289                        printk(KERN_ERR PFX
3290                               "Unable to allocate platform device\n");
3291                        goto out_err;
3292                }
3293                new_smi->dev = &new_smi->pdev->dev;
3294                new_smi->dev->driver = &ipmi_driver.driver;
3295
3296                rv = platform_device_add(new_smi->pdev);
3297                if (rv) {
3298                        printk(KERN_ERR PFX
3299                               "Unable to register system interface device:"
3300                               " %d\n",
3301                               rv);
3302                        goto out_err;
3303                }
3304                new_smi->dev_registered = 1;
3305        }
3306
3307        rv = ipmi_register_smi(&handlers,
3308                               new_smi,
3309                               &new_smi->device_id,
3310                               new_smi->dev,
3311                               "bmc",
3312                               new_smi->slave_addr);
3313        if (rv) {
3314                dev_err(new_smi->dev, "Unable to register device: error %d\n",
3315                        rv);
3316                goto out_err_stop_timer;
3317        }
3318
3319        rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3320                                     &smi_type_proc_ops,
3321                                     new_smi);
3322        if (rv) {
3323                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3324                goto out_err_stop_timer;
3325        }
3326
3327        rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3328                                     &smi_si_stats_proc_ops,
3329                                     new_smi);
3330        if (rv) {
3331                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3332                goto out_err_stop_timer;
3333        }
3334
3335        rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3336                                     &smi_params_proc_ops,
3337                                     new_smi);
3338        if (rv) {
3339                dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3340                goto out_err_stop_timer;
3341        }
3342
3343        dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3344                 si_to_str[new_smi->si_type]);
3345
3346        return 0;
3347
3348 out_err_stop_timer:
3349        atomic_inc(&new_smi->stop_operation);
3350        wait_for_timer_and_thread(new_smi);
3351
3352 out_err:
3353        new_smi->interrupt_disabled = 1;
3354
3355        if (new_smi->intf) {
3356                ipmi_unregister_smi(new_smi->intf);
3357                new_smi->intf = NULL;
3358        }
3359
3360        if (new_smi->irq_cleanup) {
3361                new_smi->irq_cleanup(new_smi);
3362                new_smi->irq_cleanup = NULL;
3363        }
3364
3365        /*
3366         * Wait until we know that we are out of any interrupt
3367         * handlers might have been running before we freed the
3368         * interrupt.
3369         */
3370        synchronize_sched();
3371
3372        if (new_smi->si_sm) {
3373                if (new_smi->handlers)
3374                        new_smi->handlers->cleanup(new_smi->si_sm);
3375                kfree(new_smi->si_sm);
3376                new_smi->si_sm = NULL;
3377        }
3378        if (new_smi->addr_source_cleanup) {
3379                new_smi->addr_source_cleanup(new_smi);
3380                new_smi->addr_source_cleanup = NULL;
3381        }
3382        if (new_smi->io_cleanup) {
3383                new_smi->io_cleanup(new_smi);
3384                new_smi->io_cleanup = NULL;
3385        }
3386
3387        if (new_smi->dev_registered) {
3388                platform_device_unregister(new_smi->pdev);
3389                new_smi->dev_registered = 0;
3390        }
3391
3392        return rv;
3393}
3394
3395static int init_ipmi_si(void)
3396{
3397        int  i;
3398        char *str;
3399        int  rv;
3400        struct smi_info *e;
3401        enum ipmi_addr_src type = SI_INVALID;
3402
3403        if (initialized)
3404                return 0;
3405        initialized = 1;
3406
3407        if (si_tryplatform) {
3408                rv = platform_driver_register(&ipmi_driver);
3409                if (rv) {
3410                        printk(KERN_ERR PFX "Unable to register "
3411                               "driver: %d\n", rv);
3412                        return rv;
3413                }
3414        }
3415
3416        /* Parse out the si_type string into its components. */
3417        str = si_type_str;
3418        if (*str != '\0') {
3419                for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3420                        si_type[i] = str;
3421                        str = strchr(str, ',');
3422                        if (str) {
3423                                *str = '\0';
3424                                str++;
3425                        } else {
3426                                break;
3427                        }
3428                }
3429        }
3430
3431        printk(KERN_INFO "IPMI System Interface driver.\n");
3432
3433        /* If the user gave us a device, they presumably want us to use it */
3434        if (!hardcode_find_bmc())
3435                return 0;
3436
3437#ifdef CONFIG_PCI
3438        if (si_trypci) {
3439                rv = pci_register_driver(&ipmi_pci_driver);
3440                if (rv)
3441                        printk(KERN_ERR PFX "Unable to register "
3442                               "PCI driver: %d\n", rv);
3443                else
3444                        pci_registered = 1;
3445        }
3446#endif
3447
3448#ifdef CONFIG_ACPI
3449        if (si_tryacpi) {
3450                pnp_register_driver(&ipmi_pnp_driver);
3451                pnp_registered = 1;
3452        }
3453#endif
3454
3455#ifdef CONFIG_DMI
3456        if (si_trydmi)
3457                dmi_find_bmc();
3458#endif
3459
3460#ifdef CONFIG_ACPI
3461        if (si_tryacpi)
3462                spmi_find_bmc();
3463#endif
3464
3465        /* We prefer devices with interrupts, but in the case of a machine
3466           with multiple BMCs we assume that there will be several instances
3467           of a given type so if we succeed in registering a type then also
3468           try to register everything else of the same type */
3469
3470        mutex_lock(&smi_infos_lock);
3471        list_for_each_entry(e, &smi_infos, link) {
3472                /* Try to register a device if it has an IRQ and we either
3473                   haven't successfully registered a device yet or this
3474                   device has the same type as one we successfully registered */
3475                if (e->irq && (!type || e->addr_source == type)) {
3476                        if (!try_smi_init(e)) {
3477                                type = e->addr_source;
3478                        }
3479                }
3480        }
3481
3482        /* type will only have been set if we successfully registered an si */
3483        if (type) {
3484                mutex_unlock(&smi_infos_lock);
3485                return 0;
3486        }
3487
3488        /* Fall back to the preferred device */
3489
3490        list_for_each_entry(e, &smi_infos, link) {
3491                if (!e->irq && (!type || e->addr_source == type)) {
3492                        if (!try_smi_init(e)) {
3493                                type = e->addr_source;
3494                        }
3495                }
3496        }
3497        mutex_unlock(&smi_infos_lock);
3498
3499        if (type)
3500                return 0;
3501
3502        if (si_trydefaults) {
3503                mutex_lock(&smi_infos_lock);
3504                if (list_empty(&smi_infos)) {
3505                        /* No BMC was found, try defaults. */
3506                        mutex_unlock(&smi_infos_lock);
3507                        default_find_bmc();
3508                } else
3509                        mutex_unlock(&smi_infos_lock);
3510        }
3511
3512        mutex_lock(&smi_infos_lock);
3513        if (unload_when_empty && list_empty(&smi_infos)) {
3514                mutex_unlock(&smi_infos_lock);
3515                cleanup_ipmi_si();
3516                printk(KERN_WARNING PFX
3517                       "Unable to find any System Interface(s)\n");
3518                return -ENODEV;
3519        } else {
3520                mutex_unlock(&smi_infos_lock);
3521                return 0;
3522        }
3523}
3524module_init(init_ipmi_si);
3525
3526static void cleanup_one_si(struct smi_info *to_clean)
3527{
3528        int           rv = 0;
3529        unsigned long flags;
3530
3531        if (!to_clean)
3532                return;
3533
3534        list_del(&to_clean->link);
3535
3536        /* Tell the driver that we are shutting down. */
3537        atomic_inc(&to_clean->stop_operation);
3538
3539        /*
3540         * Make sure the timer and thread are stopped and will not run
3541         * again.
3542         */
3543        wait_for_timer_and_thread(to_clean);
3544
3545        /*
3546         * Timeouts are stopped, now make sure the interrupts are off
3547         * for the device.  A little tricky with locks to make sure
3548         * there are no races.
3549         */
3550        spin_lock_irqsave(&to_clean->si_lock, flags);
3551        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3552                spin_unlock_irqrestore(&to_clean->si_lock, flags);
3553                poll(to_clean);
3554                schedule_timeout_uninterruptible(1);
3555                spin_lock_irqsave(&to_clean->si_lock, flags);
3556        }
3557        disable_si_irq(to_clean);
3558        spin_unlock_irqrestore(&to_clean->si_lock, flags);
3559        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3560                poll(to_clean);
3561                schedule_timeout_uninterruptible(1);
3562        }
3563
3564        /* Clean up interrupts and make sure that everything is done. */
3565        if (to_clean->irq_cleanup)
3566                to_clean->irq_cleanup(to_clean);
3567        while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3568                poll(to_clean);
3569                schedule_timeout_uninterruptible(1);
3570        }
3571
3572        if (to_clean->intf)
3573                rv = ipmi_unregister_smi(to_clean->intf);
3574
3575        if (rv) {
3576                printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3577                       rv);
3578        }
3579
3580        if (to_clean->handlers)
3581                to_clean->handlers->cleanup(to_clean->si_sm);
3582
3583        kfree(to_clean->si_sm);
3584
3585        if (to_clean->addr_source_cleanup)
3586                to_clean->addr_source_cleanup(to_clean);
3587        if (to_clean->io_cleanup)
3588                to_clean->io_cleanup(to_clean);
3589
3590        if (to_clean->dev_registered)
3591                platform_device_unregister(to_clean->pdev);
3592
3593        kfree(to_clean);
3594}
3595
3596static void cleanup_ipmi_si(void)
3597{
3598        struct smi_info *e, *tmp_e;
3599
3600        if (!initialized)
3601                return;
3602
3603#ifdef CONFIG_PCI
3604        if (pci_registered)
3605                pci_unregister_driver(&ipmi_pci_driver);
3606#endif
3607#ifdef CONFIG_ACPI
3608        if (pnp_registered)
3609                pnp_unregister_driver(&ipmi_pnp_driver);
3610#endif
3611
3612        platform_driver_unregister(&ipmi_driver);
3613
3614        mutex_lock(&smi_infos_lock);
3615        list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3616                cleanup_one_si(e);
3617        mutex_unlock(&smi_infos_lock);
3618}
3619module_exit(cleanup_ipmi_si);
3620
3621MODULE_LICENSE("GPL");
3622MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3623MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3624                   " system interfaces.");
3625