linux/drivers/dma/fsldma.c
<<
>>
Prefs
   1/*
   2 * Freescale MPC85xx, MPC83xx DMA Engine support
   3 *
   4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   5 *
   6 * Author:
   7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
   9 *
  10 * Description:
  11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13 *   The support for MPC8349 DMA controller is also added.
  14 *
  15 * This driver instructs the DMA controller to issue the PCI Read Multiple
  16 * command for PCI read operations, instead of using the default PCI Read Line
  17 * command. Please be aware that this setting may result in read pre-fetching
  18 * on some platforms.
  19 *
  20 * This is free software; you can redistribute it and/or modify
  21 * it under the terms of the GNU General Public License as published by
  22 * the Free Software Foundation; either version 2 of the License, or
  23 * (at your option) any later version.
  24 *
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/dmaengine.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/dmapool.h>
  36#include <linux/of_platform.h>
  37
  38#include "dmaengine.h"
  39#include "fsldma.h"
  40
  41#define chan_dbg(chan, fmt, arg...)                                     \
  42        dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  43#define chan_err(chan, fmt, arg...)                                     \
  44        dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  45
  46static const char msg_ld_oom[] = "No free memory for link descriptor";
  47
  48/*
  49 * Register Helpers
  50 */
  51
  52static void set_sr(struct fsldma_chan *chan, u32 val)
  53{
  54        DMA_OUT(chan, &chan->regs->sr, val, 32);
  55}
  56
  57static u32 get_sr(struct fsldma_chan *chan)
  58{
  59        return DMA_IN(chan, &chan->regs->sr, 32);
  60}
  61
  62static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  63{
  64        DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  65}
  66
  67static dma_addr_t get_cdar(struct fsldma_chan *chan)
  68{
  69        return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  70}
  71
  72static u32 get_bcr(struct fsldma_chan *chan)
  73{
  74        return DMA_IN(chan, &chan->regs->bcr, 32);
  75}
  76
  77/*
  78 * Descriptor Helpers
  79 */
  80
  81static void set_desc_cnt(struct fsldma_chan *chan,
  82                                struct fsl_dma_ld_hw *hw, u32 count)
  83{
  84        hw->count = CPU_TO_DMA(chan, count, 32);
  85}
  86
  87static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  88{
  89        return DMA_TO_CPU(chan, desc->hw.count, 32);
  90}
  91
  92static void set_desc_src(struct fsldma_chan *chan,
  93                         struct fsl_dma_ld_hw *hw, dma_addr_t src)
  94{
  95        u64 snoop_bits;
  96
  97        snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  98                ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  99        hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 100}
 101
 102static dma_addr_t get_desc_src(struct fsldma_chan *chan,
 103                               struct fsl_desc_sw *desc)
 104{
 105        u64 snoop_bits;
 106
 107        snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 108                ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 109        return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
 110}
 111
 112static void set_desc_dst(struct fsldma_chan *chan,
 113                         struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 114{
 115        u64 snoop_bits;
 116
 117        snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 118                ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 119        hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 120}
 121
 122static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
 123                               struct fsl_desc_sw *desc)
 124{
 125        u64 snoop_bits;
 126
 127        snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 128                ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 129        return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
 130}
 131
 132static void set_desc_next(struct fsldma_chan *chan,
 133                          struct fsl_dma_ld_hw *hw, dma_addr_t next)
 134{
 135        u64 snoop_bits;
 136
 137        snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 138                ? FSL_DMA_SNEN : 0;
 139        hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 140}
 141
 142static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 143{
 144        u64 snoop_bits;
 145
 146        snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 147                ? FSL_DMA_SNEN : 0;
 148
 149        desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 150                DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 151                        | snoop_bits, 64);
 152}
 153
 154/*
 155 * DMA Engine Hardware Control Helpers
 156 */
 157
 158static void dma_init(struct fsldma_chan *chan)
 159{
 160        /* Reset the channel */
 161        DMA_OUT(chan, &chan->regs->mr, 0, 32);
 162
 163        switch (chan->feature & FSL_DMA_IP_MASK) {
 164        case FSL_DMA_IP_85XX:
 165                /* Set the channel to below modes:
 166                 * EIE - Error interrupt enable
 167                 * EOLNIE - End of links interrupt enable
 168                 * BWC - Bandwidth sharing among channels
 169                 */
 170                DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
 171                                | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
 172                break;
 173        case FSL_DMA_IP_83XX:
 174                /* Set the channel to below modes:
 175                 * EOTIE - End-of-transfer interrupt enable
 176                 * PRC_RM - PCI read multiple
 177                 */
 178                DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
 179                                | FSL_DMA_MR_PRC_RM, 32);
 180                break;
 181        }
 182}
 183
 184static int dma_is_idle(struct fsldma_chan *chan)
 185{
 186        u32 sr = get_sr(chan);
 187        return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 188}
 189
 190/*
 191 * Start the DMA controller
 192 *
 193 * Preconditions:
 194 * - the CDAR register must point to the start descriptor
 195 * - the MRn[CS] bit must be cleared
 196 */
 197static void dma_start(struct fsldma_chan *chan)
 198{
 199        u32 mode;
 200
 201        mode = DMA_IN(chan, &chan->regs->mr, 32);
 202
 203        if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 204                DMA_OUT(chan, &chan->regs->bcr, 0, 32);
 205                mode |= FSL_DMA_MR_EMP_EN;
 206        } else {
 207                mode &= ~FSL_DMA_MR_EMP_EN;
 208        }
 209
 210        if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 211                mode |= FSL_DMA_MR_EMS_EN;
 212        } else {
 213                mode &= ~FSL_DMA_MR_EMS_EN;
 214                mode |= FSL_DMA_MR_CS;
 215        }
 216
 217        DMA_OUT(chan, &chan->regs->mr, mode, 32);
 218}
 219
 220static void dma_halt(struct fsldma_chan *chan)
 221{
 222        u32 mode;
 223        int i;
 224
 225        /* read the mode register */
 226        mode = DMA_IN(chan, &chan->regs->mr, 32);
 227
 228        /*
 229         * The 85xx controller supports channel abort, which will stop
 230         * the current transfer. On 83xx, this bit is the transfer error
 231         * mask bit, which should not be changed.
 232         */
 233        if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 234                mode |= FSL_DMA_MR_CA;
 235                DMA_OUT(chan, &chan->regs->mr, mode, 32);
 236
 237                mode &= ~FSL_DMA_MR_CA;
 238        }
 239
 240        /* stop the DMA controller */
 241        mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 242        DMA_OUT(chan, &chan->regs->mr, mode, 32);
 243
 244        /* wait for the DMA controller to become idle */
 245        for (i = 0; i < 100; i++) {
 246                if (dma_is_idle(chan))
 247                        return;
 248
 249                udelay(10);
 250        }
 251
 252        if (!dma_is_idle(chan))
 253                chan_err(chan, "DMA halt timeout!\n");
 254}
 255
 256/**
 257 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 258 * @chan : Freescale DMA channel
 259 * @size     : Address loop size, 0 for disable loop
 260 *
 261 * The set source address hold transfer size. The source
 262 * address hold or loop transfer size is when the DMA transfer
 263 * data from source address (SA), if the loop size is 4, the DMA will
 264 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 265 * SA + 1 ... and so on.
 266 */
 267static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 268{
 269        u32 mode;
 270
 271        mode = DMA_IN(chan, &chan->regs->mr, 32);
 272
 273        switch (size) {
 274        case 0:
 275                mode &= ~FSL_DMA_MR_SAHE;
 276                break;
 277        case 1:
 278        case 2:
 279        case 4:
 280        case 8:
 281                mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 282                break;
 283        }
 284
 285        DMA_OUT(chan, &chan->regs->mr, mode, 32);
 286}
 287
 288/**
 289 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 290 * @chan : Freescale DMA channel
 291 * @size     : Address loop size, 0 for disable loop
 292 *
 293 * The set destination address hold transfer size. The destination
 294 * address hold or loop transfer size is when the DMA transfer
 295 * data to destination address (TA), if the loop size is 4, the DMA will
 296 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 297 * TA + 1 ... and so on.
 298 */
 299static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 300{
 301        u32 mode;
 302
 303        mode = DMA_IN(chan, &chan->regs->mr, 32);
 304
 305        switch (size) {
 306        case 0:
 307                mode &= ~FSL_DMA_MR_DAHE;
 308                break;
 309        case 1:
 310        case 2:
 311        case 4:
 312        case 8:
 313                mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 314                break;
 315        }
 316
 317        DMA_OUT(chan, &chan->regs->mr, mode, 32);
 318}
 319
 320/**
 321 * fsl_chan_set_request_count - Set DMA Request Count for external control
 322 * @chan : Freescale DMA channel
 323 * @size     : Number of bytes to transfer in a single request
 324 *
 325 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 326 * The DMA request count is how many bytes are allowed to transfer before
 327 * pausing the channel, after which a new assertion of DREQ# resumes channel
 328 * operation.
 329 *
 330 * A size of 0 disables external pause control. The maximum size is 1024.
 331 */
 332static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 333{
 334        u32 mode;
 335
 336        BUG_ON(size > 1024);
 337
 338        mode = DMA_IN(chan, &chan->regs->mr, 32);
 339        mode |= (__ilog2(size) << 24) & 0x0f000000;
 340
 341        DMA_OUT(chan, &chan->regs->mr, mode, 32);
 342}
 343
 344/**
 345 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 346 * @chan : Freescale DMA channel
 347 * @enable   : 0 is disabled, 1 is enabled.
 348 *
 349 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 350 * The DMA Request Count feature should be used in addition to this feature
 351 * to set the number of bytes to transfer before pausing the channel.
 352 */
 353static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 354{
 355        if (enable)
 356                chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 357        else
 358                chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 359}
 360
 361/**
 362 * fsl_chan_toggle_ext_start - Toggle channel external start status
 363 * @chan : Freescale DMA channel
 364 * @enable   : 0 is disabled, 1 is enabled.
 365 *
 366 * If enable the external start, the channel can be started by an
 367 * external DMA start pin. So the dma_start() does not start the
 368 * transfer immediately. The DMA channel will wait for the
 369 * control pin asserted.
 370 */
 371static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 372{
 373        if (enable)
 374                chan->feature |= FSL_DMA_CHAN_START_EXT;
 375        else
 376                chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 377}
 378
 379static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 380{
 381        struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 382
 383        if (list_empty(&chan->ld_pending))
 384                goto out_splice;
 385
 386        /*
 387         * Add the hardware descriptor to the chain of hardware descriptors
 388         * that already exists in memory.
 389         *
 390         * This will un-set the EOL bit of the existing transaction, and the
 391         * last link in this transaction will become the EOL descriptor.
 392         */
 393        set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 394
 395        /*
 396         * Add the software descriptor and all children to the list
 397         * of pending transactions
 398         */
 399out_splice:
 400        list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 401}
 402
 403static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 404{
 405        struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 406        struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 407        struct fsl_desc_sw *child;
 408        unsigned long flags;
 409        dma_cookie_t cookie;
 410
 411        spin_lock_irqsave(&chan->desc_lock, flags);
 412
 413        /*
 414         * assign cookies to all of the software descriptors
 415         * that make up this transaction
 416         */
 417        list_for_each_entry(child, &desc->tx_list, node) {
 418                cookie = dma_cookie_assign(&child->async_tx);
 419        }
 420
 421        /* put this transaction onto the tail of the pending queue */
 422        append_ld_queue(chan, desc);
 423
 424        spin_unlock_irqrestore(&chan->desc_lock, flags);
 425
 426        return cookie;
 427}
 428
 429/**
 430 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 431 * @chan : Freescale DMA channel
 432 *
 433 * Return - The descriptor allocated. NULL for failed.
 434 */
 435static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 436{
 437        struct fsl_desc_sw *desc;
 438        dma_addr_t pdesc;
 439
 440        desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 441        if (!desc) {
 442                chan_dbg(chan, "out of memory for link descriptor\n");
 443                return NULL;
 444        }
 445
 446        memset(desc, 0, sizeof(*desc));
 447        INIT_LIST_HEAD(&desc->tx_list);
 448        dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 449        desc->async_tx.tx_submit = fsl_dma_tx_submit;
 450        desc->async_tx.phys = pdesc;
 451
 452#ifdef FSL_DMA_LD_DEBUG
 453        chan_dbg(chan, "LD %p allocated\n", desc);
 454#endif
 455
 456        return desc;
 457}
 458
 459/**
 460 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 461 * @chan : Freescale DMA channel
 462 *
 463 * This function will create a dma pool for descriptor allocation.
 464 *
 465 * Return - The number of descriptors allocated.
 466 */
 467static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 468{
 469        struct fsldma_chan *chan = to_fsl_chan(dchan);
 470
 471        /* Has this channel already been allocated? */
 472        if (chan->desc_pool)
 473                return 1;
 474
 475        /*
 476         * We need the descriptor to be aligned to 32bytes
 477         * for meeting FSL DMA specification requirement.
 478         */
 479        chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 480                                          sizeof(struct fsl_desc_sw),
 481                                          __alignof__(struct fsl_desc_sw), 0);
 482        if (!chan->desc_pool) {
 483                chan_err(chan, "unable to allocate descriptor pool\n");
 484                return -ENOMEM;
 485        }
 486
 487        /* there is at least one descriptor free to be allocated */
 488        return 1;
 489}
 490
 491/**
 492 * fsldma_free_desc_list - Free all descriptors in a queue
 493 * @chan: Freescae DMA channel
 494 * @list: the list to free
 495 *
 496 * LOCKING: must hold chan->desc_lock
 497 */
 498static void fsldma_free_desc_list(struct fsldma_chan *chan,
 499                                  struct list_head *list)
 500{
 501        struct fsl_desc_sw *desc, *_desc;
 502
 503        list_for_each_entry_safe(desc, _desc, list, node) {
 504                list_del(&desc->node);
 505#ifdef FSL_DMA_LD_DEBUG
 506                chan_dbg(chan, "LD %p free\n", desc);
 507#endif
 508                dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 509        }
 510}
 511
 512static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 513                                          struct list_head *list)
 514{
 515        struct fsl_desc_sw *desc, *_desc;
 516
 517        list_for_each_entry_safe_reverse(desc, _desc, list, node) {
 518                list_del(&desc->node);
 519#ifdef FSL_DMA_LD_DEBUG
 520                chan_dbg(chan, "LD %p free\n", desc);
 521#endif
 522                dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 523        }
 524}
 525
 526/**
 527 * fsl_dma_free_chan_resources - Free all resources of the channel.
 528 * @chan : Freescale DMA channel
 529 */
 530static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 531{
 532        struct fsldma_chan *chan = to_fsl_chan(dchan);
 533        unsigned long flags;
 534
 535        chan_dbg(chan, "free all channel resources\n");
 536        spin_lock_irqsave(&chan->desc_lock, flags);
 537        fsldma_free_desc_list(chan, &chan->ld_pending);
 538        fsldma_free_desc_list(chan, &chan->ld_running);
 539        spin_unlock_irqrestore(&chan->desc_lock, flags);
 540
 541        dma_pool_destroy(chan->desc_pool);
 542        chan->desc_pool = NULL;
 543}
 544
 545static struct dma_async_tx_descriptor *
 546fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
 547{
 548        struct fsldma_chan *chan;
 549        struct fsl_desc_sw *new;
 550
 551        if (!dchan)
 552                return NULL;
 553
 554        chan = to_fsl_chan(dchan);
 555
 556        new = fsl_dma_alloc_descriptor(chan);
 557        if (!new) {
 558                chan_err(chan, "%s\n", msg_ld_oom);
 559                return NULL;
 560        }
 561
 562        new->async_tx.cookie = -EBUSY;
 563        new->async_tx.flags = flags;
 564
 565        /* Insert the link descriptor to the LD ring */
 566        list_add_tail(&new->node, &new->tx_list);
 567
 568        /* Set End-of-link to the last link descriptor of new list */
 569        set_ld_eol(chan, new);
 570
 571        return &new->async_tx;
 572}
 573
 574static struct dma_async_tx_descriptor *
 575fsl_dma_prep_memcpy(struct dma_chan *dchan,
 576        dma_addr_t dma_dst, dma_addr_t dma_src,
 577        size_t len, unsigned long flags)
 578{
 579        struct fsldma_chan *chan;
 580        struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 581        size_t copy;
 582
 583        if (!dchan)
 584                return NULL;
 585
 586        if (!len)
 587                return NULL;
 588
 589        chan = to_fsl_chan(dchan);
 590
 591        do {
 592
 593                /* Allocate the link descriptor from DMA pool */
 594                new = fsl_dma_alloc_descriptor(chan);
 595                if (!new) {
 596                        chan_err(chan, "%s\n", msg_ld_oom);
 597                        goto fail;
 598                }
 599
 600                copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 601
 602                set_desc_cnt(chan, &new->hw, copy);
 603                set_desc_src(chan, &new->hw, dma_src);
 604                set_desc_dst(chan, &new->hw, dma_dst);
 605
 606                if (!first)
 607                        first = new;
 608                else
 609                        set_desc_next(chan, &prev->hw, new->async_tx.phys);
 610
 611                new->async_tx.cookie = 0;
 612                async_tx_ack(&new->async_tx);
 613
 614                prev = new;
 615                len -= copy;
 616                dma_src += copy;
 617                dma_dst += copy;
 618
 619                /* Insert the link descriptor to the LD ring */
 620                list_add_tail(&new->node, &first->tx_list);
 621        } while (len);
 622
 623        new->async_tx.flags = flags; /* client is in control of this ack */
 624        new->async_tx.cookie = -EBUSY;
 625
 626        /* Set End-of-link to the last link descriptor of new list */
 627        set_ld_eol(chan, new);
 628
 629        return &first->async_tx;
 630
 631fail:
 632        if (!first)
 633                return NULL;
 634
 635        fsldma_free_desc_list_reverse(chan, &first->tx_list);
 636        return NULL;
 637}
 638
 639static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
 640        struct scatterlist *dst_sg, unsigned int dst_nents,
 641        struct scatterlist *src_sg, unsigned int src_nents,
 642        unsigned long flags)
 643{
 644        struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
 645        struct fsldma_chan *chan = to_fsl_chan(dchan);
 646        size_t dst_avail, src_avail;
 647        dma_addr_t dst, src;
 648        size_t len;
 649
 650        /* basic sanity checks */
 651        if (dst_nents == 0 || src_nents == 0)
 652                return NULL;
 653
 654        if (dst_sg == NULL || src_sg == NULL)
 655                return NULL;
 656
 657        /*
 658         * TODO: should we check that both scatterlists have the same
 659         * TODO: number of bytes in total? Is that really an error?
 660         */
 661
 662        /* get prepared for the loop */
 663        dst_avail = sg_dma_len(dst_sg);
 664        src_avail = sg_dma_len(src_sg);
 665
 666        /* run until we are out of scatterlist entries */
 667        while (true) {
 668
 669                /* create the largest transaction possible */
 670                len = min_t(size_t, src_avail, dst_avail);
 671                len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
 672                if (len == 0)
 673                        goto fetch;
 674
 675                dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
 676                src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
 677
 678                /* allocate and populate the descriptor */
 679                new = fsl_dma_alloc_descriptor(chan);
 680                if (!new) {
 681                        chan_err(chan, "%s\n", msg_ld_oom);
 682                        goto fail;
 683                }
 684
 685                set_desc_cnt(chan, &new->hw, len);
 686                set_desc_src(chan, &new->hw, src);
 687                set_desc_dst(chan, &new->hw, dst);
 688
 689                if (!first)
 690                        first = new;
 691                else
 692                        set_desc_next(chan, &prev->hw, new->async_tx.phys);
 693
 694                new->async_tx.cookie = 0;
 695                async_tx_ack(&new->async_tx);
 696                prev = new;
 697
 698                /* Insert the link descriptor to the LD ring */
 699                list_add_tail(&new->node, &first->tx_list);
 700
 701                /* update metadata */
 702                dst_avail -= len;
 703                src_avail -= len;
 704
 705fetch:
 706                /* fetch the next dst scatterlist entry */
 707                if (dst_avail == 0) {
 708
 709                        /* no more entries: we're done */
 710                        if (dst_nents == 0)
 711                                break;
 712
 713                        /* fetch the next entry: if there are no more: done */
 714                        dst_sg = sg_next(dst_sg);
 715                        if (dst_sg == NULL)
 716                                break;
 717
 718                        dst_nents--;
 719                        dst_avail = sg_dma_len(dst_sg);
 720                }
 721
 722                /* fetch the next src scatterlist entry */
 723                if (src_avail == 0) {
 724
 725                        /* no more entries: we're done */
 726                        if (src_nents == 0)
 727                                break;
 728
 729                        /* fetch the next entry: if there are no more: done */
 730                        src_sg = sg_next(src_sg);
 731                        if (src_sg == NULL)
 732                                break;
 733
 734                        src_nents--;
 735                        src_avail = sg_dma_len(src_sg);
 736                }
 737        }
 738
 739        new->async_tx.flags = flags; /* client is in control of this ack */
 740        new->async_tx.cookie = -EBUSY;
 741
 742        /* Set End-of-link to the last link descriptor of new list */
 743        set_ld_eol(chan, new);
 744
 745        return &first->async_tx;
 746
 747fail:
 748        if (!first)
 749                return NULL;
 750
 751        fsldma_free_desc_list_reverse(chan, &first->tx_list);
 752        return NULL;
 753}
 754
 755/**
 756 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 757 * @chan: DMA channel
 758 * @sgl: scatterlist to transfer to/from
 759 * @sg_len: number of entries in @scatterlist
 760 * @direction: DMA direction
 761 * @flags: DMAEngine flags
 762 * @context: transaction context (ignored)
 763 *
 764 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
 765 * DMA_SLAVE API, this gets the device-specific information from the
 766 * chan->private variable.
 767 */
 768static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
 769        struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
 770        enum dma_transfer_direction direction, unsigned long flags,
 771        void *context)
 772{
 773        /*
 774         * This operation is not supported on the Freescale DMA controller
 775         *
 776         * However, we need to provide the function pointer to allow the
 777         * device_control() method to work.
 778         */
 779        return NULL;
 780}
 781
 782static int fsl_dma_device_control(struct dma_chan *dchan,
 783                                  enum dma_ctrl_cmd cmd, unsigned long arg)
 784{
 785        struct dma_slave_config *config;
 786        struct fsldma_chan *chan;
 787        unsigned long flags;
 788        int size;
 789
 790        if (!dchan)
 791                return -EINVAL;
 792
 793        chan = to_fsl_chan(dchan);
 794
 795        switch (cmd) {
 796        case DMA_TERMINATE_ALL:
 797                spin_lock_irqsave(&chan->desc_lock, flags);
 798
 799                /* Halt the DMA engine */
 800                dma_halt(chan);
 801
 802                /* Remove and free all of the descriptors in the LD queue */
 803                fsldma_free_desc_list(chan, &chan->ld_pending);
 804                fsldma_free_desc_list(chan, &chan->ld_running);
 805                chan->idle = true;
 806
 807                spin_unlock_irqrestore(&chan->desc_lock, flags);
 808                return 0;
 809
 810        case DMA_SLAVE_CONFIG:
 811                config = (struct dma_slave_config *)arg;
 812
 813                /* make sure the channel supports setting burst size */
 814                if (!chan->set_request_count)
 815                        return -ENXIO;
 816
 817                /* we set the controller burst size depending on direction */
 818                if (config->direction == DMA_MEM_TO_DEV)
 819                        size = config->dst_addr_width * config->dst_maxburst;
 820                else
 821                        size = config->src_addr_width * config->src_maxburst;
 822
 823                chan->set_request_count(chan, size);
 824                return 0;
 825
 826        case FSLDMA_EXTERNAL_START:
 827
 828                /* make sure the channel supports external start */
 829                if (!chan->toggle_ext_start)
 830                        return -ENXIO;
 831
 832                chan->toggle_ext_start(chan, arg);
 833                return 0;
 834
 835        default:
 836                return -ENXIO;
 837        }
 838
 839        return 0;
 840}
 841
 842/**
 843 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
 844 * @chan: Freescale DMA channel
 845 * @desc: descriptor to cleanup and free
 846 *
 847 * This function is used on a descriptor which has been executed by the DMA
 848 * controller. It will run any callbacks, submit any dependencies, and then
 849 * free the descriptor.
 850 */
 851static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
 852                                      struct fsl_desc_sw *desc)
 853{
 854        struct dma_async_tx_descriptor *txd = &desc->async_tx;
 855        struct device *dev = chan->common.device->dev;
 856        dma_addr_t src = get_desc_src(chan, desc);
 857        dma_addr_t dst = get_desc_dst(chan, desc);
 858        u32 len = get_desc_cnt(chan, desc);
 859
 860        /* Run the link descriptor callback function */
 861        if (txd->callback) {
 862#ifdef FSL_DMA_LD_DEBUG
 863                chan_dbg(chan, "LD %p callback\n", desc);
 864#endif
 865                txd->callback(txd->callback_param);
 866        }
 867
 868        /* Run any dependencies */
 869        dma_run_dependencies(txd);
 870
 871        /* Unmap the dst buffer, if requested */
 872        if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
 873                if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
 874                        dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
 875                else
 876                        dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
 877        }
 878
 879        /* Unmap the src buffer, if requested */
 880        if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
 881                if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
 882                        dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
 883                else
 884                        dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
 885        }
 886
 887#ifdef FSL_DMA_LD_DEBUG
 888        chan_dbg(chan, "LD %p free\n", desc);
 889#endif
 890        dma_pool_free(chan->desc_pool, desc, txd->phys);
 891}
 892
 893/**
 894 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 895 * @chan : Freescale DMA channel
 896 *
 897 * HARDWARE STATE: idle
 898 * LOCKING: must hold chan->desc_lock
 899 */
 900static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 901{
 902        struct fsl_desc_sw *desc;
 903
 904        /*
 905         * If the list of pending descriptors is empty, then we
 906         * don't need to do any work at all
 907         */
 908        if (list_empty(&chan->ld_pending)) {
 909                chan_dbg(chan, "no pending LDs\n");
 910                return;
 911        }
 912
 913        /*
 914         * The DMA controller is not idle, which means that the interrupt
 915         * handler will start any queued transactions when it runs after
 916         * this transaction finishes
 917         */
 918        if (!chan->idle) {
 919                chan_dbg(chan, "DMA controller still busy\n");
 920                return;
 921        }
 922
 923        /*
 924         * If there are some link descriptors which have not been
 925         * transferred, we need to start the controller
 926         */
 927
 928        /*
 929         * Move all elements from the queue of pending transactions
 930         * onto the list of running transactions
 931         */
 932        chan_dbg(chan, "idle, starting controller\n");
 933        desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 934        list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 935
 936        /*
 937         * The 85xx DMA controller doesn't clear the channel start bit
 938         * automatically at the end of a transfer. Therefore we must clear
 939         * it in software before starting the transfer.
 940         */
 941        if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 942                u32 mode;
 943
 944                mode = DMA_IN(chan, &chan->regs->mr, 32);
 945                mode &= ~FSL_DMA_MR_CS;
 946                DMA_OUT(chan, &chan->regs->mr, mode, 32);
 947        }
 948
 949        /*
 950         * Program the descriptor's address into the DMA controller,
 951         * then start the DMA transaction
 952         */
 953        set_cdar(chan, desc->async_tx.phys);
 954        get_cdar(chan);
 955
 956        dma_start(chan);
 957        chan->idle = false;
 958}
 959
 960/**
 961 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 962 * @chan : Freescale DMA channel
 963 */
 964static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 965{
 966        struct fsldma_chan *chan = to_fsl_chan(dchan);
 967        unsigned long flags;
 968
 969        spin_lock_irqsave(&chan->desc_lock, flags);
 970        fsl_chan_xfer_ld_queue(chan);
 971        spin_unlock_irqrestore(&chan->desc_lock, flags);
 972}
 973
 974/**
 975 * fsl_tx_status - Determine the DMA status
 976 * @chan : Freescale DMA channel
 977 */
 978static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 979                                        dma_cookie_t cookie,
 980                                        struct dma_tx_state *txstate)
 981{
 982        struct fsldma_chan *chan = to_fsl_chan(dchan);
 983        enum dma_status ret;
 984        unsigned long flags;
 985
 986        spin_lock_irqsave(&chan->desc_lock, flags);
 987        ret = dma_cookie_status(dchan, cookie, txstate);
 988        spin_unlock_irqrestore(&chan->desc_lock, flags);
 989
 990        return ret;
 991}
 992
 993/*----------------------------------------------------------------------------*/
 994/* Interrupt Handling                                                         */
 995/*----------------------------------------------------------------------------*/
 996
 997static irqreturn_t fsldma_chan_irq(int irq, void *data)
 998{
 999        struct fsldma_chan *chan = data;
1000        u32 stat;
1001
1002        /* save and clear the status register */
1003        stat = get_sr(chan);
1004        set_sr(chan, stat);
1005        chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1006
1007        /* check that this was really our device */
1008        stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1009        if (!stat)
1010                return IRQ_NONE;
1011
1012        if (stat & FSL_DMA_SR_TE)
1013                chan_err(chan, "Transfer Error!\n");
1014
1015        /*
1016         * Programming Error
1017         * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1018         * trigger a PE interrupt.
1019         */
1020        if (stat & FSL_DMA_SR_PE) {
1021                chan_dbg(chan, "irq: Programming Error INT\n");
1022                stat &= ~FSL_DMA_SR_PE;
1023                if (get_bcr(chan) != 0)
1024                        chan_err(chan, "Programming Error!\n");
1025        }
1026
1027        /*
1028         * For MPC8349, EOCDI event need to update cookie
1029         * and start the next transfer if it exist.
1030         */
1031        if (stat & FSL_DMA_SR_EOCDI) {
1032                chan_dbg(chan, "irq: End-of-Chain link INT\n");
1033                stat &= ~FSL_DMA_SR_EOCDI;
1034        }
1035
1036        /*
1037         * If it current transfer is the end-of-transfer,
1038         * we should clear the Channel Start bit for
1039         * prepare next transfer.
1040         */
1041        if (stat & FSL_DMA_SR_EOLNI) {
1042                chan_dbg(chan, "irq: End-of-link INT\n");
1043                stat &= ~FSL_DMA_SR_EOLNI;
1044        }
1045
1046        /* check that the DMA controller is really idle */
1047        if (!dma_is_idle(chan))
1048                chan_err(chan, "irq: controller not idle!\n");
1049
1050        /* check that we handled all of the bits */
1051        if (stat)
1052                chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1053
1054        /*
1055         * Schedule the tasklet to handle all cleanup of the current
1056         * transaction. It will start a new transaction if there is
1057         * one pending.
1058         */
1059        tasklet_schedule(&chan->tasklet);
1060        chan_dbg(chan, "irq: Exit\n");
1061        return IRQ_HANDLED;
1062}
1063
1064static void dma_do_tasklet(unsigned long data)
1065{
1066        struct fsldma_chan *chan = (struct fsldma_chan *)data;
1067        struct fsl_desc_sw *desc, *_desc;
1068        LIST_HEAD(ld_cleanup);
1069        unsigned long flags;
1070
1071        chan_dbg(chan, "tasklet entry\n");
1072
1073        spin_lock_irqsave(&chan->desc_lock, flags);
1074
1075        /* update the cookie if we have some descriptors to cleanup */
1076        if (!list_empty(&chan->ld_running)) {
1077                dma_cookie_t cookie;
1078
1079                desc = to_fsl_desc(chan->ld_running.prev);
1080                cookie = desc->async_tx.cookie;
1081                dma_cookie_complete(&desc->async_tx);
1082
1083                chan_dbg(chan, "completed_cookie=%d\n", cookie);
1084        }
1085
1086        /*
1087         * move the descriptors to a temporary list so we can drop the lock
1088         * during the entire cleanup operation
1089         */
1090        list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1091
1092        /* the hardware is now idle and ready for more */
1093        chan->idle = true;
1094
1095        /*
1096         * Start any pending transactions automatically
1097         *
1098         * In the ideal case, we keep the DMA controller busy while we go
1099         * ahead and free the descriptors below.
1100         */
1101        fsl_chan_xfer_ld_queue(chan);
1102        spin_unlock_irqrestore(&chan->desc_lock, flags);
1103
1104        /* Run the callback for each descriptor, in order */
1105        list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1106
1107                /* Remove from the list of transactions */
1108                list_del(&desc->node);
1109
1110                /* Run all cleanup for this descriptor */
1111                fsldma_cleanup_descriptor(chan, desc);
1112        }
1113
1114        chan_dbg(chan, "tasklet exit\n");
1115}
1116
1117static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1118{
1119        struct fsldma_device *fdev = data;
1120        struct fsldma_chan *chan;
1121        unsigned int handled = 0;
1122        u32 gsr, mask;
1123        int i;
1124
1125        gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1126                                                   : in_le32(fdev->regs);
1127        mask = 0xff000000;
1128        dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1129
1130        for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1131                chan = fdev->chan[i];
1132                if (!chan)
1133                        continue;
1134
1135                if (gsr & mask) {
1136                        dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1137                        fsldma_chan_irq(irq, chan);
1138                        handled++;
1139                }
1140
1141                gsr &= ~mask;
1142                mask >>= 8;
1143        }
1144
1145        return IRQ_RETVAL(handled);
1146}
1147
1148static void fsldma_free_irqs(struct fsldma_device *fdev)
1149{
1150        struct fsldma_chan *chan;
1151        int i;
1152
1153        if (fdev->irq != NO_IRQ) {
1154                dev_dbg(fdev->dev, "free per-controller IRQ\n");
1155                free_irq(fdev->irq, fdev);
1156                return;
1157        }
1158
1159        for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1160                chan = fdev->chan[i];
1161                if (chan && chan->irq != NO_IRQ) {
1162                        chan_dbg(chan, "free per-channel IRQ\n");
1163                        free_irq(chan->irq, chan);
1164                }
1165        }
1166}
1167
1168static int fsldma_request_irqs(struct fsldma_device *fdev)
1169{
1170        struct fsldma_chan *chan;
1171        int ret;
1172        int i;
1173
1174        /* if we have a per-controller IRQ, use that */
1175        if (fdev->irq != NO_IRQ) {
1176                dev_dbg(fdev->dev, "request per-controller IRQ\n");
1177                ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1178                                  "fsldma-controller", fdev);
1179                return ret;
1180        }
1181
1182        /* no per-controller IRQ, use the per-channel IRQs */
1183        for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1184                chan = fdev->chan[i];
1185                if (!chan)
1186                        continue;
1187
1188                if (chan->irq == NO_IRQ) {
1189                        chan_err(chan, "interrupts property missing in device tree\n");
1190                        ret = -ENODEV;
1191                        goto out_unwind;
1192                }
1193
1194                chan_dbg(chan, "request per-channel IRQ\n");
1195                ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1196                                  "fsldma-chan", chan);
1197                if (ret) {
1198                        chan_err(chan, "unable to request per-channel IRQ\n");
1199                        goto out_unwind;
1200                }
1201        }
1202
1203        return 0;
1204
1205out_unwind:
1206        for (/* none */; i >= 0; i--) {
1207                chan = fdev->chan[i];
1208                if (!chan)
1209                        continue;
1210
1211                if (chan->irq == NO_IRQ)
1212                        continue;
1213
1214                free_irq(chan->irq, chan);
1215        }
1216
1217        return ret;
1218}
1219
1220/*----------------------------------------------------------------------------*/
1221/* OpenFirmware Subsystem                                                     */
1222/*----------------------------------------------------------------------------*/
1223
1224static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1225        struct device_node *node, u32 feature, const char *compatible)
1226{
1227        struct fsldma_chan *chan;
1228        struct resource res;
1229        int err;
1230
1231        /* alloc channel */
1232        chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1233        if (!chan) {
1234                dev_err(fdev->dev, "no free memory for DMA channels!\n");
1235                err = -ENOMEM;
1236                goto out_return;
1237        }
1238
1239        /* ioremap registers for use */
1240        chan->regs = of_iomap(node, 0);
1241        if (!chan->regs) {
1242                dev_err(fdev->dev, "unable to ioremap registers\n");
1243                err = -ENOMEM;
1244                goto out_free_chan;
1245        }
1246
1247        err = of_address_to_resource(node, 0, &res);
1248        if (err) {
1249                dev_err(fdev->dev, "unable to find 'reg' property\n");
1250                goto out_iounmap_regs;
1251        }
1252
1253        chan->feature = feature;
1254        if (!fdev->feature)
1255                fdev->feature = chan->feature;
1256
1257        /*
1258         * If the DMA device's feature is different than the feature
1259         * of its channels, report the bug
1260         */
1261        WARN_ON(fdev->feature != chan->feature);
1262
1263        chan->dev = fdev->dev;
1264        chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1265        if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1266                dev_err(fdev->dev, "too many channels for device\n");
1267                err = -EINVAL;
1268                goto out_iounmap_regs;
1269        }
1270
1271        fdev->chan[chan->id] = chan;
1272        tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1273        snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1274
1275        /* Initialize the channel */
1276        dma_init(chan);
1277
1278        /* Clear cdar registers */
1279        set_cdar(chan, 0);
1280
1281        switch (chan->feature & FSL_DMA_IP_MASK) {
1282        case FSL_DMA_IP_85XX:
1283                chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1284        case FSL_DMA_IP_83XX:
1285                chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1286                chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1287                chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1288                chan->set_request_count = fsl_chan_set_request_count;
1289        }
1290
1291        spin_lock_init(&chan->desc_lock);
1292        INIT_LIST_HEAD(&chan->ld_pending);
1293        INIT_LIST_HEAD(&chan->ld_running);
1294        chan->idle = true;
1295
1296        chan->common.device = &fdev->common;
1297        dma_cookie_init(&chan->common);
1298
1299        /* find the IRQ line, if it exists in the device tree */
1300        chan->irq = irq_of_parse_and_map(node, 0);
1301
1302        /* Add the channel to DMA device channel list */
1303        list_add_tail(&chan->common.device_node, &fdev->common.channels);
1304        fdev->common.chancnt++;
1305
1306        dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1307                 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1308
1309        return 0;
1310
1311out_iounmap_regs:
1312        iounmap(chan->regs);
1313out_free_chan:
1314        kfree(chan);
1315out_return:
1316        return err;
1317}
1318
1319static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1320{
1321        irq_dispose_mapping(chan->irq);
1322        list_del(&chan->common.device_node);
1323        iounmap(chan->regs);
1324        kfree(chan);
1325}
1326
1327static int fsldma_of_probe(struct platform_device *op)
1328{
1329        struct fsldma_device *fdev;
1330        struct device_node *child;
1331        int err;
1332
1333        fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1334        if (!fdev) {
1335                dev_err(&op->dev, "No enough memory for 'priv'\n");
1336                err = -ENOMEM;
1337                goto out_return;
1338        }
1339
1340        fdev->dev = &op->dev;
1341        INIT_LIST_HEAD(&fdev->common.channels);
1342
1343        /* ioremap the registers for use */
1344        fdev->regs = of_iomap(op->dev.of_node, 0);
1345        if (!fdev->regs) {
1346                dev_err(&op->dev, "unable to ioremap registers\n");
1347                err = -ENOMEM;
1348                goto out_free_fdev;
1349        }
1350
1351        /* map the channel IRQ if it exists, but don't hookup the handler yet */
1352        fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1353
1354        dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1355        dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1356        dma_cap_set(DMA_SG, fdev->common.cap_mask);
1357        dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1358        fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1359        fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1360        fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1361        fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1362        fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1363        fdev->common.device_tx_status = fsl_tx_status;
1364        fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1365        fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1366        fdev->common.device_control = fsl_dma_device_control;
1367        fdev->common.dev = &op->dev;
1368
1369        dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1370
1371        platform_set_drvdata(op, fdev);
1372
1373        /*
1374         * We cannot use of_platform_bus_probe() because there is no
1375         * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1376         * channel object.
1377         */
1378        for_each_child_of_node(op->dev.of_node, child) {
1379                if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1380                        fsl_dma_chan_probe(fdev, child,
1381                                FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1382                                "fsl,eloplus-dma-channel");
1383                }
1384
1385                if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1386                        fsl_dma_chan_probe(fdev, child,
1387                                FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1388                                "fsl,elo-dma-channel");
1389                }
1390        }
1391
1392        /*
1393         * Hookup the IRQ handler(s)
1394         *
1395         * If we have a per-controller interrupt, we prefer that to the
1396         * per-channel interrupts to reduce the number of shared interrupt
1397         * handlers on the same IRQ line
1398         */
1399        err = fsldma_request_irqs(fdev);
1400        if (err) {
1401                dev_err(fdev->dev, "unable to request IRQs\n");
1402                goto out_free_fdev;
1403        }
1404
1405        dma_async_device_register(&fdev->common);
1406        return 0;
1407
1408out_free_fdev:
1409        irq_dispose_mapping(fdev->irq);
1410        kfree(fdev);
1411out_return:
1412        return err;
1413}
1414
1415static int fsldma_of_remove(struct platform_device *op)
1416{
1417        struct fsldma_device *fdev;
1418        unsigned int i;
1419
1420        fdev = platform_get_drvdata(op);
1421        dma_async_device_unregister(&fdev->common);
1422
1423        fsldma_free_irqs(fdev);
1424
1425        for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1426                if (fdev->chan[i])
1427                        fsl_dma_chan_remove(fdev->chan[i]);
1428        }
1429
1430        iounmap(fdev->regs);
1431        kfree(fdev);
1432
1433        return 0;
1434}
1435
1436static const struct of_device_id fsldma_of_ids[] = {
1437        { .compatible = "fsl,eloplus-dma", },
1438        { .compatible = "fsl,elo-dma", },
1439        {}
1440};
1441
1442static struct platform_driver fsldma_of_driver = {
1443        .driver = {
1444                .name = "fsl-elo-dma",
1445                .owner = THIS_MODULE,
1446                .of_match_table = fsldma_of_ids,
1447        },
1448        .probe = fsldma_of_probe,
1449        .remove = fsldma_of_remove,
1450};
1451
1452/*----------------------------------------------------------------------------*/
1453/* Module Init / Exit                                                         */
1454/*----------------------------------------------------------------------------*/
1455
1456static __init int fsldma_init(void)
1457{
1458        pr_info("Freescale Elo / Elo Plus DMA driver\n");
1459        return platform_driver_register(&fsldma_of_driver);
1460}
1461
1462static void __exit fsldma_exit(void)
1463{
1464        platform_driver_unregister(&fsldma_of_driver);
1465}
1466
1467subsys_initcall(fsldma_init);
1468module_exit(fsldma_exit);
1469
1470MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1471MODULE_LICENSE("GPL");
1472