linux/drivers/dma/ppc4xx/adma.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2006-2009 DENX Software Engineering.
   3 *
   4 * Author: Yuri Tikhonov <yur@emcraft.com>
   5 *
   6 * Further porting to arch/powerpc by
   7 *      Anatolij Gustschin <agust@denx.de>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * You should have received a copy of the GNU General Public License along with
  20 * this program; if not, write to the Free Software Foundation, Inc., 59
  21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  22 *
  23 * The full GNU General Public License is included in this distribution in the
  24 * file called COPYING.
  25 */
  26
  27/*
  28 * This driver supports the asynchrounous DMA copy and RAID engines available
  29 * on the AMCC PPC440SPe Processors.
  30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  31 * ADMA driver written by D.Williams.
  32 */
  33
  34#include <linux/init.h>
  35#include <linux/module.h>
  36#include <linux/async_tx.h>
  37#include <linux/delay.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/spinlock.h>
  40#include <linux/interrupt.h>
  41#include <linux/slab.h>
  42#include <linux/uaccess.h>
  43#include <linux/proc_fs.h>
  44#include <linux/of.h>
  45#include <linux/of_platform.h>
  46#include <asm/dcr.h>
  47#include <asm/dcr-regs.h>
  48#include "adma.h"
  49#include "../dmaengine.h"
  50
  51enum ppc_adma_init_code {
  52        PPC_ADMA_INIT_OK = 0,
  53        PPC_ADMA_INIT_MEMRES,
  54        PPC_ADMA_INIT_MEMREG,
  55        PPC_ADMA_INIT_ALLOC,
  56        PPC_ADMA_INIT_COHERENT,
  57        PPC_ADMA_INIT_CHANNEL,
  58        PPC_ADMA_INIT_IRQ1,
  59        PPC_ADMA_INIT_IRQ2,
  60        PPC_ADMA_INIT_REGISTER
  61};
  62
  63static char *ppc_adma_errors[] = {
  64        [PPC_ADMA_INIT_OK] = "ok",
  65        [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
  66        [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
  67        [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
  68                                "structure",
  69        [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
  70                                   "hardware descriptors",
  71        [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
  72        [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
  73        [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
  74        [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
  75};
  76
  77static enum ppc_adma_init_code
  78ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
  79
  80struct ppc_dma_chan_ref {
  81        struct dma_chan *chan;
  82        struct list_head node;
  83};
  84
  85/* The list of channels exported by ppc440spe ADMA */
  86struct list_head
  87ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
  88
  89/* This flag is set when want to refetch the xor chain in the interrupt
  90 * handler
  91 */
  92static u32 do_xor_refetch;
  93
  94/* Pointer to DMA0, DMA1 CP/CS FIFO */
  95static void *ppc440spe_dma_fifo_buf;
  96
  97/* Pointers to last submitted to DMA0, DMA1 CDBs */
  98static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
  99static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
 100
 101/* Pointer to last linked and submitted xor CB */
 102static struct ppc440spe_adma_desc_slot *xor_last_linked;
 103static struct ppc440spe_adma_desc_slot *xor_last_submit;
 104
 105/* This array is used in data-check operations for storing a pattern */
 106static char ppc440spe_qword[16];
 107
 108static atomic_t ppc440spe_adma_err_irq_ref;
 109static dcr_host_t ppc440spe_mq_dcr_host;
 110static unsigned int ppc440spe_mq_dcr_len;
 111
 112/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
 113 * the block size in transactions, then we do not allow to activate more than
 114 * only one RXOR transactions simultaneously. So use this var to store
 115 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
 116 * set) or not (PPC440SPE_RXOR_RUN is clear).
 117 */
 118static unsigned long ppc440spe_rxor_state;
 119
 120/* These are used in enable & check routines
 121 */
 122static u32 ppc440spe_r6_enabled;
 123static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
 124static struct completion ppc440spe_r6_test_comp;
 125
 126static int ppc440spe_adma_dma2rxor_prep_src(
 127                struct ppc440spe_adma_desc_slot *desc,
 128                struct ppc440spe_rxor *cursor, int index,
 129                int src_cnt, u32 addr);
 130static void ppc440spe_adma_dma2rxor_set_src(
 131                struct ppc440spe_adma_desc_slot *desc,
 132                int index, dma_addr_t addr);
 133static void ppc440spe_adma_dma2rxor_set_mult(
 134                struct ppc440spe_adma_desc_slot *desc,
 135                int index, u8 mult);
 136
 137#ifdef ADMA_LL_DEBUG
 138#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
 139#else
 140#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
 141#endif
 142
 143static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
 144{
 145        struct dma_cdb *cdb;
 146        struct xor_cb *cb;
 147        int i;
 148
 149        switch (chan->device->id) {
 150        case 0:
 151        case 1:
 152                cdb = block;
 153
 154                pr_debug("CDB at %p [%d]:\n"
 155                        "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
 156                        "\t sg1u 0x%08x sg1l 0x%08x\n"
 157                        "\t sg2u 0x%08x sg2l 0x%08x\n"
 158                        "\t sg3u 0x%08x sg3l 0x%08x\n",
 159                        cdb, chan->device->id,
 160                        cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
 161                        le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
 162                        le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
 163                        le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
 164                );
 165                break;
 166        case 2:
 167                cb = block;
 168
 169                pr_debug("CB at %p [%d]:\n"
 170                        "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
 171                        "\t cbtah 0x%08x cbtal 0x%08x\n"
 172                        "\t cblah 0x%08x cblal 0x%08x\n",
 173                        cb, chan->device->id,
 174                        cb->cbc, cb->cbbc, cb->cbs,
 175                        cb->cbtah, cb->cbtal,
 176                        cb->cblah, cb->cblal);
 177                for (i = 0; i < 16; i++) {
 178                        if (i && !cb->ops[i].h && !cb->ops[i].l)
 179                                continue;
 180                        pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
 181                                i, cb->ops[i].h, cb->ops[i].l);
 182                }
 183                break;
 184        }
 185}
 186
 187static void print_cb_list(struct ppc440spe_adma_chan *chan,
 188                          struct ppc440spe_adma_desc_slot *iter)
 189{
 190        for (; iter; iter = iter->hw_next)
 191                print_cb(chan, iter->hw_desc);
 192}
 193
 194static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
 195                             unsigned int src_cnt)
 196{
 197        int i;
 198
 199        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 200        for (i = 0; i < src_cnt; i++)
 201                pr_debug("\t0x%016llx ", src[i]);
 202        pr_debug("dst:\n\t0x%016llx\n", dst);
 203}
 204
 205static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
 206                            unsigned int src_cnt)
 207{
 208        int i;
 209
 210        pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 211        for (i = 0; i < src_cnt; i++)
 212                pr_debug("\t0x%016llx ", src[i]);
 213        pr_debug("dst: ");
 214        for (i = 0; i < 2; i++)
 215                pr_debug("\t0x%016llx ", dst[i]);
 216}
 217
 218static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
 219                                    unsigned int src_cnt,
 220                                    const unsigned char *scf)
 221{
 222        int i;
 223
 224        pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
 225        if (scf) {
 226                for (i = 0; i < src_cnt; i++)
 227                        pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
 228        } else {
 229                for (i = 0; i < src_cnt; i++)
 230                        pr_debug("\t0x%016llx(no) ", src[i]);
 231        }
 232
 233        pr_debug("dst: ");
 234        for (i = 0; i < 2; i++)
 235                pr_debug("\t0x%016llx ", src[src_cnt + i]);
 236}
 237
 238/******************************************************************************
 239 * Command (Descriptor) Blocks low-level routines
 240 ******************************************************************************/
 241/**
 242 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
 243 * pseudo operation
 244 */
 245static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
 246                                          struct ppc440spe_adma_chan *chan)
 247{
 248        struct xor_cb *p;
 249
 250        switch (chan->device->id) {
 251        case PPC440SPE_XOR_ID:
 252                p = desc->hw_desc;
 253                memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 254                /* NOP with Command Block Complete Enable */
 255                p->cbc = XOR_CBCR_CBCE_BIT;
 256                break;
 257        case PPC440SPE_DMA0_ID:
 258        case PPC440SPE_DMA1_ID:
 259                memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 260                /* NOP with interrupt */
 261                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 262                break;
 263        default:
 264                printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
 265                                __func__);
 266                break;
 267        }
 268}
 269
 270/**
 271 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
 272 * pseudo operation
 273 */
 274static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
 275{
 276        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 277        desc->hw_next = NULL;
 278        desc->src_cnt = 0;
 279        desc->dst_cnt = 1;
 280}
 281
 282/**
 283 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
 284 */
 285static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
 286                                         int src_cnt, unsigned long flags)
 287{
 288        struct xor_cb *hw_desc = desc->hw_desc;
 289
 290        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 291        desc->hw_next = NULL;
 292        desc->src_cnt = src_cnt;
 293        desc->dst_cnt = 1;
 294
 295        hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
 296        if (flags & DMA_PREP_INTERRUPT)
 297                /* Enable interrupt on completion */
 298                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 299}
 300
 301/**
 302 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
 303 * operation in DMA2 controller
 304 */
 305static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
 306                int dst_cnt, int src_cnt, unsigned long flags)
 307{
 308        struct xor_cb *hw_desc = desc->hw_desc;
 309
 310        memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 311        desc->hw_next = NULL;
 312        desc->src_cnt = src_cnt;
 313        desc->dst_cnt = dst_cnt;
 314        memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
 315        desc->descs_per_op = 0;
 316
 317        hw_desc->cbc = XOR_CBCR_TGT_BIT;
 318        if (flags & DMA_PREP_INTERRUPT)
 319                /* Enable interrupt on completion */
 320                hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 321}
 322
 323#define DMA_CTRL_FLAGS_LAST     DMA_PREP_FENCE
 324#define DMA_PREP_ZERO_P         (DMA_CTRL_FLAGS_LAST << 1)
 325#define DMA_PREP_ZERO_Q         (DMA_PREP_ZERO_P << 1)
 326
 327/**
 328 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
 329 * with DMA0/1
 330 */
 331static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
 332                                int dst_cnt, int src_cnt, unsigned long flags,
 333                                unsigned long op)
 334{
 335        struct dma_cdb *hw_desc;
 336        struct ppc440spe_adma_desc_slot *iter;
 337        u8 dopc;
 338
 339        /* Common initialization of a PQ descriptors chain */
 340        set_bits(op, &desc->flags);
 341        desc->src_cnt = src_cnt;
 342        desc->dst_cnt = dst_cnt;
 343
 344        /* WXOR MULTICAST if both P and Q are being computed
 345         * MV_SG1_SG2 if Q only
 346         */
 347        dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
 348                DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
 349
 350        list_for_each_entry(iter, &desc->group_list, chain_node) {
 351                hw_desc = iter->hw_desc;
 352                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 353
 354                if (likely(!list_is_last(&iter->chain_node,
 355                                &desc->group_list))) {
 356                        /* set 'next' pointer */
 357                        iter->hw_next = list_entry(iter->chain_node.next,
 358                                struct ppc440spe_adma_desc_slot, chain_node);
 359                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 360                } else {
 361                        /* this is the last descriptor.
 362                         * this slot will be pasted from ADMA level
 363                         * each time it wants to configure parameters
 364                         * of the transaction (src, dst, ...)
 365                         */
 366                        iter->hw_next = NULL;
 367                        if (flags & DMA_PREP_INTERRUPT)
 368                                set_bit(PPC440SPE_DESC_INT, &iter->flags);
 369                        else
 370                                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 371                }
 372        }
 373
 374        /* Set OPS depending on WXOR/RXOR type of operation */
 375        if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
 376                /* This is a WXOR only chain:
 377                 * - first descriptors are for zeroing destinations
 378                 *   if PPC440SPE_ZERO_P/Q set;
 379                 * - descriptors remained are for GF-XOR operations.
 380                 */
 381                iter = list_first_entry(&desc->group_list,
 382                                        struct ppc440spe_adma_desc_slot,
 383                                        chain_node);
 384
 385                if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
 386                        hw_desc = iter->hw_desc;
 387                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 388                        iter = list_first_entry(&iter->chain_node,
 389                                        struct ppc440spe_adma_desc_slot,
 390                                        chain_node);
 391                }
 392
 393                if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
 394                        hw_desc = iter->hw_desc;
 395                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 396                        iter = list_first_entry(&iter->chain_node,
 397                                        struct ppc440spe_adma_desc_slot,
 398                                        chain_node);
 399                }
 400
 401                list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 402                        hw_desc = iter->hw_desc;
 403                        hw_desc->opc = dopc;
 404                }
 405        } else {
 406                /* This is either RXOR-only or mixed RXOR/WXOR */
 407
 408                /* The first 1 or 2 slots in chain are always RXOR,
 409                 * if need to calculate P & Q, then there are two
 410                 * RXOR slots; if only P or only Q, then there is one
 411                 */
 412                iter = list_first_entry(&desc->group_list,
 413                                        struct ppc440spe_adma_desc_slot,
 414                                        chain_node);
 415                hw_desc = iter->hw_desc;
 416                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 417
 418                if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
 419                        iter = list_first_entry(&iter->chain_node,
 420                                                struct ppc440spe_adma_desc_slot,
 421                                                chain_node);
 422                        hw_desc = iter->hw_desc;
 423                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 424                }
 425
 426                /* The remaining descs (if any) are WXORs */
 427                if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
 428                        iter = list_first_entry(&iter->chain_node,
 429                                                struct ppc440spe_adma_desc_slot,
 430                                                chain_node);
 431                        list_for_each_entry_from(iter, &desc->group_list,
 432                                                chain_node) {
 433                                hw_desc = iter->hw_desc;
 434                                hw_desc->opc = dopc;
 435                        }
 436                }
 437        }
 438}
 439
 440/**
 441 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
 442 * for PQ_ZERO_SUM operation
 443 */
 444static void ppc440spe_desc_init_dma01pqzero_sum(
 445                                struct ppc440spe_adma_desc_slot *desc,
 446                                int dst_cnt, int src_cnt)
 447{
 448        struct dma_cdb *hw_desc;
 449        struct ppc440spe_adma_desc_slot *iter;
 450        int i = 0;
 451        u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
 452                                   DMA_CDB_OPC_MV_SG1_SG2;
 453        /*
 454         * Initialize starting from 2nd or 3rd descriptor dependent
 455         * on dst_cnt. First one or two slots are for cloning P
 456         * and/or Q to chan->pdest and/or chan->qdest as we have
 457         * to preserve original P/Q.
 458         */
 459        iter = list_first_entry(&desc->group_list,
 460                                struct ppc440spe_adma_desc_slot, chain_node);
 461        iter = list_entry(iter->chain_node.next,
 462                          struct ppc440spe_adma_desc_slot, chain_node);
 463
 464        if (dst_cnt > 1) {
 465                iter = list_entry(iter->chain_node.next,
 466                                  struct ppc440spe_adma_desc_slot, chain_node);
 467        }
 468        /* initialize each source descriptor in chain */
 469        list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 470                hw_desc = iter->hw_desc;
 471                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 472                iter->src_cnt = 0;
 473                iter->dst_cnt = 0;
 474
 475                /* This is a ZERO_SUM operation:
 476                 * - <src_cnt> descriptors starting from 2nd or 3rd
 477                 *   descriptor are for GF-XOR operations;
 478                 * - remaining <dst_cnt> descriptors are for checking the result
 479                 */
 480                if (i++ < src_cnt)
 481                        /* MV_SG1_SG2 if only Q is being verified
 482                         * MULTICAST if both P and Q are being verified
 483                         */
 484                        hw_desc->opc = dopc;
 485                else
 486                        /* DMA_CDB_OPC_DCHECK128 operation */
 487                        hw_desc->opc = DMA_CDB_OPC_DCHECK128;
 488
 489                if (likely(!list_is_last(&iter->chain_node,
 490                                         &desc->group_list))) {
 491                        /* set 'next' pointer */
 492                        iter->hw_next = list_entry(iter->chain_node.next,
 493                                                struct ppc440spe_adma_desc_slot,
 494                                                chain_node);
 495                } else {
 496                        /* this is the last descriptor.
 497                         * this slot will be pasted from ADMA level
 498                         * each time it wants to configure parameters
 499                         * of the transaction (src, dst, ...)
 500                         */
 501                        iter->hw_next = NULL;
 502                        /* always enable interrupt generation since we get
 503                         * the status of pqzero from the handler
 504                         */
 505                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
 506                }
 507        }
 508        desc->src_cnt = src_cnt;
 509        desc->dst_cnt = dst_cnt;
 510}
 511
 512/**
 513 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
 514 */
 515static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
 516                                        unsigned long flags)
 517{
 518        struct dma_cdb *hw_desc = desc->hw_desc;
 519
 520        memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 521        desc->hw_next = NULL;
 522        desc->src_cnt = 1;
 523        desc->dst_cnt = 1;
 524
 525        if (flags & DMA_PREP_INTERRUPT)
 526                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 527        else
 528                clear_bit(PPC440SPE_DESC_INT, &desc->flags);
 529
 530        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 531}
 532
 533/**
 534 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
 535 */
 536static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
 537                                        int value, unsigned long flags)
 538{
 539        struct dma_cdb *hw_desc = desc->hw_desc;
 540
 541        memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 542        desc->hw_next = NULL;
 543        desc->src_cnt = 1;
 544        desc->dst_cnt = 1;
 545
 546        if (flags & DMA_PREP_INTERRUPT)
 547                set_bit(PPC440SPE_DESC_INT, &desc->flags);
 548        else
 549                clear_bit(PPC440SPE_DESC_INT, &desc->flags);
 550
 551        hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
 552        hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
 553        hw_desc->opc = DMA_CDB_OPC_DFILL128;
 554}
 555
 556/**
 557 * ppc440spe_desc_set_src_addr - set source address into the descriptor
 558 */
 559static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
 560                                        struct ppc440spe_adma_chan *chan,
 561                                        int src_idx, dma_addr_t addrh,
 562                                        dma_addr_t addrl)
 563{
 564        struct dma_cdb *dma_hw_desc;
 565        struct xor_cb *xor_hw_desc;
 566        phys_addr_t addr64, tmplow, tmphi;
 567
 568        switch (chan->device->id) {
 569        case PPC440SPE_DMA0_ID:
 570        case PPC440SPE_DMA1_ID:
 571                if (!addrh) {
 572                        addr64 = addrl;
 573                        tmphi = (addr64 >> 32);
 574                        tmplow = (addr64 & 0xFFFFFFFF);
 575                } else {
 576                        tmphi = addrh;
 577                        tmplow = addrl;
 578                }
 579                dma_hw_desc = desc->hw_desc;
 580                dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
 581                dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
 582                break;
 583        case PPC440SPE_XOR_ID:
 584                xor_hw_desc = desc->hw_desc;
 585                xor_hw_desc->ops[src_idx].l = addrl;
 586                xor_hw_desc->ops[src_idx].h |= addrh;
 587                break;
 588        }
 589}
 590
 591/**
 592 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
 593 */
 594static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
 595                        struct ppc440spe_adma_chan *chan, u32 mult_index,
 596                        int sg_index, unsigned char mult_value)
 597{
 598        struct dma_cdb *dma_hw_desc;
 599        struct xor_cb *xor_hw_desc;
 600        u32 *psgu;
 601
 602        switch (chan->device->id) {
 603        case PPC440SPE_DMA0_ID:
 604        case PPC440SPE_DMA1_ID:
 605                dma_hw_desc = desc->hw_desc;
 606
 607                switch (sg_index) {
 608                /* for RXOR operations set multiplier
 609                 * into source cued address
 610                 */
 611                case DMA_CDB_SG_SRC:
 612                        psgu = &dma_hw_desc->sg1u;
 613                        break;
 614                /* for WXOR operations set multiplier
 615                 * into destination cued address(es)
 616                 */
 617                case DMA_CDB_SG_DST1:
 618                        psgu = &dma_hw_desc->sg2u;
 619                        break;
 620                case DMA_CDB_SG_DST2:
 621                        psgu = &dma_hw_desc->sg3u;
 622                        break;
 623                default:
 624                        BUG();
 625                }
 626
 627                *psgu |= cpu_to_le32(mult_value << mult_index);
 628                break;
 629        case PPC440SPE_XOR_ID:
 630                xor_hw_desc = desc->hw_desc;
 631                break;
 632        default:
 633                BUG();
 634        }
 635}
 636
 637/**
 638 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
 639 */
 640static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
 641                                struct ppc440spe_adma_chan *chan,
 642                                dma_addr_t addrh, dma_addr_t addrl,
 643                                u32 dst_idx)
 644{
 645        struct dma_cdb *dma_hw_desc;
 646        struct xor_cb *xor_hw_desc;
 647        phys_addr_t addr64, tmphi, tmplow;
 648        u32 *psgu, *psgl;
 649
 650        switch (chan->device->id) {
 651        case PPC440SPE_DMA0_ID:
 652        case PPC440SPE_DMA1_ID:
 653                if (!addrh) {
 654                        addr64 = addrl;
 655                        tmphi = (addr64 >> 32);
 656                        tmplow = (addr64 & 0xFFFFFFFF);
 657                } else {
 658                        tmphi = addrh;
 659                        tmplow = addrl;
 660                }
 661                dma_hw_desc = desc->hw_desc;
 662
 663                psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
 664                psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
 665
 666                *psgl = cpu_to_le32((u32)tmplow);
 667                *psgu |= cpu_to_le32((u32)tmphi);
 668                break;
 669        case PPC440SPE_XOR_ID:
 670                xor_hw_desc = desc->hw_desc;
 671                xor_hw_desc->cbtal = addrl;
 672                xor_hw_desc->cbtah |= addrh;
 673                break;
 674        }
 675}
 676
 677/**
 678 * ppc440spe_desc_set_byte_count - set number of data bytes involved
 679 * into the operation
 680 */
 681static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
 682                                struct ppc440spe_adma_chan *chan,
 683                                u32 byte_count)
 684{
 685        struct dma_cdb *dma_hw_desc;
 686        struct xor_cb *xor_hw_desc;
 687
 688        switch (chan->device->id) {
 689        case PPC440SPE_DMA0_ID:
 690        case PPC440SPE_DMA1_ID:
 691                dma_hw_desc = desc->hw_desc;
 692                dma_hw_desc->cnt = cpu_to_le32(byte_count);
 693                break;
 694        case PPC440SPE_XOR_ID:
 695                xor_hw_desc = desc->hw_desc;
 696                xor_hw_desc->cbbc = byte_count;
 697                break;
 698        }
 699}
 700
 701/**
 702 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
 703 */
 704static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
 705{
 706        /* assume that byte_count is aligned on the 512-boundary;
 707         * thus write it directly to the register (bits 23:31 are
 708         * reserved there).
 709         */
 710        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
 711}
 712
 713/**
 714 * ppc440spe_desc_set_dcheck - set CHECK pattern
 715 */
 716static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
 717                                struct ppc440spe_adma_chan *chan, u8 *qword)
 718{
 719        struct dma_cdb *dma_hw_desc;
 720
 721        switch (chan->device->id) {
 722        case PPC440SPE_DMA0_ID:
 723        case PPC440SPE_DMA1_ID:
 724                dma_hw_desc = desc->hw_desc;
 725                iowrite32(qword[0], &dma_hw_desc->sg3l);
 726                iowrite32(qword[4], &dma_hw_desc->sg3u);
 727                iowrite32(qword[8], &dma_hw_desc->sg2l);
 728                iowrite32(qword[12], &dma_hw_desc->sg2u);
 729                break;
 730        default:
 731                BUG();
 732        }
 733}
 734
 735/**
 736 * ppc440spe_xor_set_link - set link address in xor CB
 737 */
 738static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
 739                                struct ppc440spe_adma_desc_slot *next_desc)
 740{
 741        struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
 742
 743        if (unlikely(!next_desc || !(next_desc->phys))) {
 744                printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
 745                        __func__, next_desc,
 746                        next_desc ? next_desc->phys : 0);
 747                BUG();
 748        }
 749
 750        xor_hw_desc->cbs = 0;
 751        xor_hw_desc->cblal = next_desc->phys;
 752        xor_hw_desc->cblah = 0;
 753        xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
 754}
 755
 756/**
 757 * ppc440spe_desc_set_link - set the address of descriptor following this
 758 * descriptor in chain
 759 */
 760static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
 761                                struct ppc440spe_adma_desc_slot *prev_desc,
 762                                struct ppc440spe_adma_desc_slot *next_desc)
 763{
 764        unsigned long flags;
 765        struct ppc440spe_adma_desc_slot *tail = next_desc;
 766
 767        if (unlikely(!prev_desc || !next_desc ||
 768                (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
 769                /* If previous next is overwritten something is wrong.
 770                 * though we may refetch from append to initiate list
 771                 * processing; in this case - it's ok.
 772                 */
 773                printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
 774                        "prev->hw_next=0x%p\n", __func__, prev_desc,
 775                        next_desc, prev_desc ? prev_desc->hw_next : 0);
 776                BUG();
 777        }
 778
 779        local_irq_save(flags);
 780
 781        /* do s/w chaining both for DMA and XOR descriptors */
 782        prev_desc->hw_next = next_desc;
 783
 784        switch (chan->device->id) {
 785        case PPC440SPE_DMA0_ID:
 786        case PPC440SPE_DMA1_ID:
 787                break;
 788        case PPC440SPE_XOR_ID:
 789                /* bind descriptor to the chain */
 790                while (tail->hw_next)
 791                        tail = tail->hw_next;
 792                xor_last_linked = tail;
 793
 794                if (prev_desc == xor_last_submit)
 795                        /* do not link to the last submitted CB */
 796                        break;
 797                ppc440spe_xor_set_link(prev_desc, next_desc);
 798                break;
 799        }
 800
 801        local_irq_restore(flags);
 802}
 803
 804/**
 805 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
 806 */
 807static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
 808                                struct ppc440spe_adma_chan *chan, int src_idx)
 809{
 810        struct dma_cdb *dma_hw_desc;
 811        struct xor_cb *xor_hw_desc;
 812
 813        switch (chan->device->id) {
 814        case PPC440SPE_DMA0_ID:
 815        case PPC440SPE_DMA1_ID:
 816                dma_hw_desc = desc->hw_desc;
 817                /* May have 0, 1, 2, or 3 sources */
 818                switch (dma_hw_desc->opc) {
 819                case DMA_CDB_OPC_NO_OP:
 820                case DMA_CDB_OPC_DFILL128:
 821                        return 0;
 822                case DMA_CDB_OPC_DCHECK128:
 823                        if (unlikely(src_idx)) {
 824                                printk(KERN_ERR "%s: try to get %d source for"
 825                                    " DCHECK128\n", __func__, src_idx);
 826                                BUG();
 827                        }
 828                        return le32_to_cpu(dma_hw_desc->sg1l);
 829                case DMA_CDB_OPC_MULTICAST:
 830                case DMA_CDB_OPC_MV_SG1_SG2:
 831                        if (unlikely(src_idx > 2)) {
 832                                printk(KERN_ERR "%s: try to get %d source from"
 833                                    " DMA descr\n", __func__, src_idx);
 834                                BUG();
 835                        }
 836                        if (src_idx) {
 837                                if (le32_to_cpu(dma_hw_desc->sg1u) &
 838                                    DMA_CUED_XOR_WIN_MSK) {
 839                                        u8 region;
 840
 841                                        if (src_idx == 1)
 842                                                return le32_to_cpu(
 843                                                    dma_hw_desc->sg1l) +
 844                                                        desc->unmap_len;
 845
 846                                        region = (le32_to_cpu(
 847                                            dma_hw_desc->sg1u)) >>
 848                                                DMA_CUED_REGION_OFF;
 849
 850                                        region &= DMA_CUED_REGION_MSK;
 851                                        switch (region) {
 852                                        case DMA_RXOR123:
 853                                                return le32_to_cpu(
 854                                                    dma_hw_desc->sg1l) +
 855                                                        (desc->unmap_len << 1);
 856                                        case DMA_RXOR124:
 857                                                return le32_to_cpu(
 858                                                    dma_hw_desc->sg1l) +
 859                                                        (desc->unmap_len * 3);
 860                                        case DMA_RXOR125:
 861                                                return le32_to_cpu(
 862                                                    dma_hw_desc->sg1l) +
 863                                                        (desc->unmap_len << 2);
 864                                        default:
 865                                                printk(KERN_ERR
 866                                                    "%s: try to"
 867                                                    " get src3 for region %02x"
 868                                                    "PPC440SPE_DESC_RXOR12?\n",
 869                                                    __func__, region);
 870                                                BUG();
 871                                        }
 872                                } else {
 873                                        printk(KERN_ERR
 874                                                "%s: try to get %d"
 875                                                " source for non-cued descr\n",
 876                                                __func__, src_idx);
 877                                        BUG();
 878                                }
 879                        }
 880                        return le32_to_cpu(dma_hw_desc->sg1l);
 881                default:
 882                        printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
 883                                __func__, dma_hw_desc->opc);
 884                        BUG();
 885                }
 886                return le32_to_cpu(dma_hw_desc->sg1l);
 887        case PPC440SPE_XOR_ID:
 888                /* May have up to 16 sources */
 889                xor_hw_desc = desc->hw_desc;
 890                return xor_hw_desc->ops[src_idx].l;
 891        }
 892        return 0;
 893}
 894
 895/**
 896 * ppc440spe_desc_get_dest_addr - extract the destination address from the
 897 * descriptor
 898 */
 899static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
 900                                struct ppc440spe_adma_chan *chan, int idx)
 901{
 902        struct dma_cdb *dma_hw_desc;
 903        struct xor_cb *xor_hw_desc;
 904
 905        switch (chan->device->id) {
 906        case PPC440SPE_DMA0_ID:
 907        case PPC440SPE_DMA1_ID:
 908                dma_hw_desc = desc->hw_desc;
 909
 910                if (likely(!idx))
 911                        return le32_to_cpu(dma_hw_desc->sg2l);
 912                return le32_to_cpu(dma_hw_desc->sg3l);
 913        case PPC440SPE_XOR_ID:
 914                xor_hw_desc = desc->hw_desc;
 915                return xor_hw_desc->cbtal;
 916        }
 917        return 0;
 918}
 919
 920/**
 921 * ppc440spe_desc_get_src_num - extract the number of source addresses from
 922 * the descriptor
 923 */
 924static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
 925                                struct ppc440spe_adma_chan *chan)
 926{
 927        struct dma_cdb *dma_hw_desc;
 928        struct xor_cb *xor_hw_desc;
 929
 930        switch (chan->device->id) {
 931        case PPC440SPE_DMA0_ID:
 932        case PPC440SPE_DMA1_ID:
 933                dma_hw_desc = desc->hw_desc;
 934
 935                switch (dma_hw_desc->opc) {
 936                case DMA_CDB_OPC_NO_OP:
 937                case DMA_CDB_OPC_DFILL128:
 938                        return 0;
 939                case DMA_CDB_OPC_DCHECK128:
 940                        return 1;
 941                case DMA_CDB_OPC_MV_SG1_SG2:
 942                case DMA_CDB_OPC_MULTICAST:
 943                        /*
 944                         * Only for RXOR operations we have more than
 945                         * one source
 946                         */
 947                        if (le32_to_cpu(dma_hw_desc->sg1u) &
 948                            DMA_CUED_XOR_WIN_MSK) {
 949                                /* RXOR op, there are 2 or 3 sources */
 950                                if (((le32_to_cpu(dma_hw_desc->sg1u) >>
 951                                    DMA_CUED_REGION_OFF) &
 952                                      DMA_CUED_REGION_MSK) == DMA_RXOR12) {
 953                                        /* RXOR 1-2 */
 954                                        return 2;
 955                                } else {
 956                                        /* RXOR 1-2-3/1-2-4/1-2-5 */
 957                                        return 3;
 958                                }
 959                        }
 960                        return 1;
 961                default:
 962                        printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
 963                                __func__, dma_hw_desc->opc);
 964                        BUG();
 965                }
 966        case PPC440SPE_XOR_ID:
 967                /* up to 16 sources */
 968                xor_hw_desc = desc->hw_desc;
 969                return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
 970        default:
 971                BUG();
 972        }
 973        return 0;
 974}
 975
 976/**
 977 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
 978 * this descriptor
 979 */
 980static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
 981                                struct ppc440spe_adma_chan *chan)
 982{
 983        struct dma_cdb *dma_hw_desc;
 984
 985        switch (chan->device->id) {
 986        case PPC440SPE_DMA0_ID:
 987        case PPC440SPE_DMA1_ID:
 988                /* May be 1 or 2 destinations */
 989                dma_hw_desc = desc->hw_desc;
 990                switch (dma_hw_desc->opc) {
 991                case DMA_CDB_OPC_NO_OP:
 992                case DMA_CDB_OPC_DCHECK128:
 993                        return 0;
 994                case DMA_CDB_OPC_MV_SG1_SG2:
 995                case DMA_CDB_OPC_DFILL128:
 996                        return 1;
 997                case DMA_CDB_OPC_MULTICAST:
 998                        if (desc->dst_cnt == 2)
 999                                return 2;
1000                        else
1001                                return 1;
1002                default:
1003                        printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1004                                __func__, dma_hw_desc->opc);
1005                        BUG();
1006                }
1007        case PPC440SPE_XOR_ID:
1008                /* Always only 1 destination */
1009                return 1;
1010        default:
1011                BUG();
1012        }
1013        return 0;
1014}
1015
1016/**
1017 * ppc440spe_desc_get_link - get the address of the descriptor that
1018 * follows this one
1019 */
1020static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1021                                        struct ppc440spe_adma_chan *chan)
1022{
1023        if (!desc->hw_next)
1024                return 0;
1025
1026        return desc->hw_next->phys;
1027}
1028
1029/**
1030 * ppc440spe_desc_is_aligned - check alignment
1031 */
1032static inline int ppc440spe_desc_is_aligned(
1033        struct ppc440spe_adma_desc_slot *desc, int num_slots)
1034{
1035        return (desc->idx & (num_slots - 1)) ? 0 : 1;
1036}
1037
1038/**
1039 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1040 * XOR operation
1041 */
1042static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1043                        int *slots_per_op)
1044{
1045        int slot_cnt;
1046
1047        /* each XOR descriptor provides up to 16 source operands */
1048        slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1049
1050        if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1051                return slot_cnt;
1052
1053        printk(KERN_ERR "%s: len %d > max %d !!\n",
1054                __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1055        BUG();
1056        return slot_cnt;
1057}
1058
1059/**
1060 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1061 * DMA2 PQ operation
1062 */
1063static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1064                int src_cnt, size_t len)
1065{
1066        signed long long order = 0;
1067        int state = 0;
1068        int addr_count = 0;
1069        int i;
1070        for (i = 1; i < src_cnt; i++) {
1071                dma_addr_t cur_addr = srcs[i];
1072                dma_addr_t old_addr = srcs[i-1];
1073                switch (state) {
1074                case 0:
1075                        if (cur_addr == old_addr + len) {
1076                                /* direct RXOR */
1077                                order = 1;
1078                                state = 1;
1079                                if (i == src_cnt-1)
1080                                        addr_count++;
1081                        } else if (old_addr == cur_addr + len) {
1082                                /* reverse RXOR */
1083                                order = -1;
1084                                state = 1;
1085                                if (i == src_cnt-1)
1086                                        addr_count++;
1087                        } else {
1088                                state = 3;
1089                        }
1090                        break;
1091                case 1:
1092                        if (i == src_cnt-2 || (order == -1
1093                                && cur_addr != old_addr - len)) {
1094                                order = 0;
1095                                state = 0;
1096                                addr_count++;
1097                        } else if (cur_addr == old_addr + len*order) {
1098                                state = 2;
1099                                if (i == src_cnt-1)
1100                                        addr_count++;
1101                        } else if (cur_addr == old_addr + 2*len) {
1102                                state = 2;
1103                                if (i == src_cnt-1)
1104                                        addr_count++;
1105                        } else if (cur_addr == old_addr + 3*len) {
1106                                state = 2;
1107                                if (i == src_cnt-1)
1108                                        addr_count++;
1109                        } else {
1110                                order = 0;
1111                                state = 0;
1112                                addr_count++;
1113                        }
1114                        break;
1115                case 2:
1116                        order = 0;
1117                        state = 0;
1118                        addr_count++;
1119                                break;
1120                }
1121                if (state == 3)
1122                        break;
1123        }
1124        if (src_cnt <= 1 || (state != 1 && state != 2)) {
1125                pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1126                        __func__, src_cnt, state, addr_count, order);
1127                for (i = 0; i < src_cnt; i++)
1128                        pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1129                BUG();
1130        }
1131
1132        return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1133}
1134
1135
1136/******************************************************************************
1137 * ADMA channel low-level routines
1138 ******************************************************************************/
1139
1140static u32
1141ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1142static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1143
1144/**
1145 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1146 */
1147static void ppc440spe_adma_device_clear_eot_status(
1148                                        struct ppc440spe_adma_chan *chan)
1149{
1150        struct dma_regs *dma_reg;
1151        struct xor_regs *xor_reg;
1152        u8 *p = chan->device->dma_desc_pool_virt;
1153        struct dma_cdb *cdb;
1154        u32 rv, i;
1155
1156        switch (chan->device->id) {
1157        case PPC440SPE_DMA0_ID:
1158        case PPC440SPE_DMA1_ID:
1159                /* read FIFO to ack */
1160                dma_reg = chan->device->dma_reg;
1161                while ((rv = ioread32(&dma_reg->csfpl))) {
1162                        i = rv & DMA_CDB_ADDR_MSK;
1163                        cdb = (struct dma_cdb *)&p[i -
1164                            (u32)chan->device->dma_desc_pool];
1165
1166                        /* Clear opcode to ack. This is necessary for
1167                         * ZeroSum operations only
1168                         */
1169                        cdb->opc = 0;
1170
1171                        if (test_bit(PPC440SPE_RXOR_RUN,
1172                            &ppc440spe_rxor_state)) {
1173                                /* probably this is a completed RXOR op,
1174                                 * get pointer to CDB using the fact that
1175                                 * physical and virtual addresses of CDB
1176                                 * in pools have the same offsets
1177                                 */
1178                                if (le32_to_cpu(cdb->sg1u) &
1179                                    DMA_CUED_XOR_BASE) {
1180                                        /* this is a RXOR */
1181                                        clear_bit(PPC440SPE_RXOR_RUN,
1182                                                  &ppc440spe_rxor_state);
1183                                }
1184                        }
1185
1186                        if (rv & DMA_CDB_STATUS_MSK) {
1187                                /* ZeroSum check failed
1188                                 */
1189                                struct ppc440spe_adma_desc_slot *iter;
1190                                dma_addr_t phys = rv & ~DMA_CDB_MSK;
1191
1192                                /*
1193                                 * Update the status of corresponding
1194                                 * descriptor.
1195                                 */
1196                                list_for_each_entry(iter, &chan->chain,
1197                                    chain_node) {
1198                                        if (iter->phys == phys)
1199                                                break;
1200                                }
1201                                /*
1202                                 * if cannot find the corresponding
1203                                 * slot it's a bug
1204                                 */
1205                                BUG_ON(&iter->chain_node == &chan->chain);
1206
1207                                if (iter->xor_check_result) {
1208                                        if (test_bit(PPC440SPE_DESC_PCHECK,
1209                                                     &iter->flags)) {
1210                                                *iter->xor_check_result |=
1211                                                        SUM_CHECK_P_RESULT;
1212                                        } else
1213                                        if (test_bit(PPC440SPE_DESC_QCHECK,
1214                                                     &iter->flags)) {
1215                                                *iter->xor_check_result |=
1216                                                        SUM_CHECK_Q_RESULT;
1217                                        } else
1218                                                BUG();
1219                                }
1220                        }
1221                }
1222
1223                rv = ioread32(&dma_reg->dsts);
1224                if (rv) {
1225                        pr_err("DMA%d err status: 0x%x\n",
1226                               chan->device->id, rv);
1227                        /* write back to clear */
1228                        iowrite32(rv, &dma_reg->dsts);
1229                }
1230                break;
1231        case PPC440SPE_XOR_ID:
1232                /* reset status bits to ack */
1233                xor_reg = chan->device->xor_reg;
1234                rv = ioread32be(&xor_reg->sr);
1235                iowrite32be(rv, &xor_reg->sr);
1236
1237                if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1238                        if (rv & XOR_IE_RPTIE_BIT) {
1239                                /* Read PLB Timeout Error.
1240                                 * Try to resubmit the CB
1241                                 */
1242                                u32 val = ioread32be(&xor_reg->ccbalr);
1243
1244                                iowrite32be(val, &xor_reg->cblalr);
1245
1246                                val = ioread32be(&xor_reg->crsr);
1247                                iowrite32be(val | XOR_CRSR_XAE_BIT,
1248                                            &xor_reg->crsr);
1249                        } else
1250                                pr_err("XOR ERR 0x%x status\n", rv);
1251                        break;
1252                }
1253
1254                /*  if the XORcore is idle, but there are unprocessed CBs
1255                 * then refetch the s/w chain here
1256                 */
1257                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1258                    do_xor_refetch)
1259                        ppc440spe_chan_append(chan);
1260                break;
1261        }
1262}
1263
1264/**
1265 * ppc440spe_chan_is_busy - get the channel status
1266 */
1267static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1268{
1269        struct dma_regs *dma_reg;
1270        struct xor_regs *xor_reg;
1271        int busy = 0;
1272
1273        switch (chan->device->id) {
1274        case PPC440SPE_DMA0_ID:
1275        case PPC440SPE_DMA1_ID:
1276                dma_reg = chan->device->dma_reg;
1277                /*  if command FIFO's head and tail pointers are equal and
1278                 * status tail is the same as command, then channel is free
1279                 */
1280                if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1281                    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1282                        busy = 1;
1283                break;
1284        case PPC440SPE_XOR_ID:
1285                /* use the special status bit for the XORcore
1286                 */
1287                xor_reg = chan->device->xor_reg;
1288                busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1289                break;
1290        }
1291
1292        return busy;
1293}
1294
1295/**
1296 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1297 */
1298static void ppc440spe_chan_set_first_xor_descriptor(
1299                                struct ppc440spe_adma_chan *chan,
1300                                struct ppc440spe_adma_desc_slot *next_desc)
1301{
1302        struct xor_regs *xor_reg = chan->device->xor_reg;
1303
1304        if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1305                printk(KERN_INFO "%s: Warn: XORcore is running "
1306                        "when try to set the first CDB!\n",
1307                        __func__);
1308
1309        xor_last_submit = xor_last_linked = next_desc;
1310
1311        iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1312
1313        iowrite32be(next_desc->phys, &xor_reg->cblalr);
1314        iowrite32be(0, &xor_reg->cblahr);
1315        iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1316                    &xor_reg->cbcr);
1317
1318        chan->hw_chain_inited = 1;
1319}
1320
1321/**
1322 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1323 * called with irqs disabled
1324 */
1325static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1326                struct ppc440spe_adma_desc_slot *desc)
1327{
1328        u32 pcdb;
1329        struct dma_regs *dma_reg = chan->device->dma_reg;
1330
1331        pcdb = desc->phys;
1332        if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1333                pcdb |= DMA_CDB_NO_INT;
1334
1335        chan_last_sub[chan->device->id] = desc;
1336
1337        ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1338
1339        iowrite32(pcdb, &dma_reg->cpfpl);
1340}
1341
1342/**
1343 * ppc440spe_chan_append - update the h/w chain in the channel
1344 */
1345static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1346{
1347        struct xor_regs *xor_reg;
1348        struct ppc440spe_adma_desc_slot *iter;
1349        struct xor_cb *xcb;
1350        u32 cur_desc;
1351        unsigned long flags;
1352
1353        local_irq_save(flags);
1354
1355        switch (chan->device->id) {
1356        case PPC440SPE_DMA0_ID:
1357        case PPC440SPE_DMA1_ID:
1358                cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1359
1360                if (likely(cur_desc)) {
1361                        iter = chan_last_sub[chan->device->id];
1362                        BUG_ON(!iter);
1363                } else {
1364                        /* first peer */
1365                        iter = chan_first_cdb[chan->device->id];
1366                        BUG_ON(!iter);
1367                        ppc440spe_dma_put_desc(chan, iter);
1368                        chan->hw_chain_inited = 1;
1369                }
1370
1371                /* is there something new to append */
1372                if (!iter->hw_next)
1373                        break;
1374
1375                /* flush descriptors from the s/w queue to fifo */
1376                list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1377                        ppc440spe_dma_put_desc(chan, iter);
1378                        if (!iter->hw_next)
1379                                break;
1380                }
1381                break;
1382        case PPC440SPE_XOR_ID:
1383                /* update h/w links and refetch */
1384                if (!xor_last_submit->hw_next)
1385                        break;
1386
1387                xor_reg = chan->device->xor_reg;
1388                /* the last linked CDB has to generate an interrupt
1389                 * that we'd be able to append the next lists to h/w
1390                 * regardless of the XOR engine state at the moment of
1391                 * appending of these next lists
1392                 */
1393                xcb = xor_last_linked->hw_desc;
1394                xcb->cbc |= XOR_CBCR_CBCE_BIT;
1395
1396                if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1397                        /* XORcore is idle. Refetch now */
1398                        do_xor_refetch = 0;
1399                        ppc440spe_xor_set_link(xor_last_submit,
1400                                xor_last_submit->hw_next);
1401
1402                        ADMA_LL_DBG(print_cb_list(chan,
1403                                xor_last_submit->hw_next));
1404
1405                        xor_last_submit = xor_last_linked;
1406                        iowrite32be(ioread32be(&xor_reg->crsr) |
1407                                    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1408                                    &xor_reg->crsr);
1409                } else {
1410                        /* XORcore is running. Refetch later in the handler */
1411                        do_xor_refetch = 1;
1412                }
1413
1414                break;
1415        }
1416
1417        local_irq_restore(flags);
1418}
1419
1420/**
1421 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1422 */
1423static u32
1424ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1425{
1426        struct dma_regs *dma_reg;
1427        struct xor_regs *xor_reg;
1428
1429        if (unlikely(!chan->hw_chain_inited))
1430                /* h/w descriptor chain is not initialized yet */
1431                return 0;
1432
1433        switch (chan->device->id) {
1434        case PPC440SPE_DMA0_ID:
1435        case PPC440SPE_DMA1_ID:
1436                dma_reg = chan->device->dma_reg;
1437                return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1438        case PPC440SPE_XOR_ID:
1439                xor_reg = chan->device->xor_reg;
1440                return ioread32be(&xor_reg->ccbalr);
1441        }
1442        return 0;
1443}
1444
1445/**
1446 * ppc440spe_chan_run - enable the channel
1447 */
1448static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1449{
1450        struct xor_regs *xor_reg;
1451
1452        switch (chan->device->id) {
1453        case PPC440SPE_DMA0_ID:
1454        case PPC440SPE_DMA1_ID:
1455                /* DMAs are always enabled, do nothing */
1456                break;
1457        case PPC440SPE_XOR_ID:
1458                /* drain write buffer */
1459                xor_reg = chan->device->xor_reg;
1460
1461                /* fetch descriptor pointed to in <link> */
1462                iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1463                            &xor_reg->crsr);
1464                break;
1465        }
1466}
1467
1468/******************************************************************************
1469 * ADMA device level
1470 ******************************************************************************/
1471
1472static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1473static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1474
1475static dma_cookie_t
1476ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1477
1478static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1479                                    dma_addr_t addr, int index);
1480static void
1481ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1482                                  dma_addr_t addr, int index);
1483
1484static void
1485ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1486                           dma_addr_t *paddr, unsigned long flags);
1487static void
1488ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1489                          dma_addr_t addr, int index);
1490static void
1491ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1492                               unsigned char mult, int index, int dst_pos);
1493static void
1494ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1495                                   dma_addr_t paddr, dma_addr_t qaddr);
1496
1497static struct page *ppc440spe_rxor_srcs[32];
1498
1499/**
1500 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1501 */
1502static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1503{
1504        int i, order = 0, state = 0;
1505        int idx = 0;
1506
1507        if (unlikely(!(src_cnt > 1)))
1508                return 0;
1509
1510        BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1511
1512        /* Skip holes in the source list before checking */
1513        for (i = 0; i < src_cnt; i++) {
1514                if (!srcs[i])
1515                        continue;
1516                ppc440spe_rxor_srcs[idx++] = srcs[i];
1517        }
1518        src_cnt = idx;
1519
1520        for (i = 1; i < src_cnt; i++) {
1521                char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1522                char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1523
1524                switch (state) {
1525                case 0:
1526                        if (cur_addr == old_addr + len) {
1527                                /* direct RXOR */
1528                                order = 1;
1529                                state = 1;
1530                        } else if (old_addr == cur_addr + len) {
1531                                /* reverse RXOR */
1532                                order = -1;
1533                                state = 1;
1534                        } else
1535                                goto out;
1536                        break;
1537                case 1:
1538                        if ((i == src_cnt - 2) ||
1539                            (order == -1 && cur_addr != old_addr - len)) {
1540                                order = 0;
1541                                state = 0;
1542                        } else if ((cur_addr == old_addr + len * order) ||
1543                                   (cur_addr == old_addr + 2 * len) ||
1544                                   (cur_addr == old_addr + 3 * len)) {
1545                                state = 2;
1546                        } else {
1547                                order = 0;
1548                                state = 0;
1549                        }
1550                        break;
1551                case 2:
1552                        order = 0;
1553                        state = 0;
1554                        break;
1555                }
1556        }
1557
1558out:
1559        if (state == 1 || state == 2)
1560                return 1;
1561
1562        return 0;
1563}
1564
1565/**
1566 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1567 *      the operation given on this channel. It's assumed that 'chan' is
1568 *      capable to process 'cap' type of operation.
1569 * @chan: channel to use
1570 * @cap: type of transaction
1571 * @dst_lst: array of destination pointers
1572 * @dst_cnt: number of destination operands
1573 * @src_lst: array of source pointers
1574 * @src_cnt: number of source operands
1575 * @src_sz: size of each source operand
1576 */
1577static int ppc440spe_adma_estimate(struct dma_chan *chan,
1578        enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1579        struct page **src_lst, int src_cnt, size_t src_sz)
1580{
1581        int ef = 1;
1582
1583        if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1584                /* If RAID-6 capabilities were not activated don't try
1585                 * to use them
1586                 */
1587                if (unlikely(!ppc440spe_r6_enabled))
1588                        return -1;
1589        }
1590        /*  In the current implementation of ppc440spe ADMA driver it
1591         * makes sense to pick out only pq case, because it may be
1592         * processed:
1593         * (1) either using Biskup method on DMA2;
1594         * (2) or on DMA0/1.
1595         *  Thus we give a favour to (1) if the sources are suitable;
1596         * else let it be processed on one of the DMA0/1 engines.
1597         *  In the sum_product case where destination is also the
1598         * source process it on DMA0/1 only.
1599         */
1600        if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1601
1602                if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1603                        ef = 0; /* sum_product case, process on DMA0/1 */
1604                else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1605                        ef = 3; /* override (DMA0/1 + idle) */
1606                else
1607                        ef = 0; /* can't process on DMA2 if !rxor */
1608        }
1609
1610        /* channel idleness increases the priority */
1611        if (likely(ef) &&
1612            !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1613                ef++;
1614
1615        return ef;
1616}
1617
1618struct dma_chan *
1619ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1620        struct page **dst_lst, int dst_cnt, struct page **src_lst,
1621        int src_cnt, size_t src_sz)
1622{
1623        struct dma_chan *best_chan = NULL;
1624        struct ppc_dma_chan_ref *ref;
1625        int best_rank = -1;
1626
1627        if (unlikely(!src_sz))
1628                return NULL;
1629        if (src_sz > PAGE_SIZE) {
1630                /*
1631                 * should a user of the api ever pass > PAGE_SIZE requests
1632                 * we sort out cases where temporary page-sized buffers
1633                 * are used.
1634                 */
1635                switch (cap) {
1636                case DMA_PQ:
1637                        if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1638                                return NULL;
1639                        if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1640                                return NULL;
1641                        break;
1642                case DMA_PQ_VAL:
1643                case DMA_XOR_VAL:
1644                        return NULL;
1645                default:
1646                        break;
1647                }
1648        }
1649
1650        list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1651                if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1652                        int rank;
1653
1654                        rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1655                                        dst_cnt, src_lst, src_cnt, src_sz);
1656                        if (rank > best_rank) {
1657                                best_rank = rank;
1658                                best_chan = ref->chan;
1659                        }
1660                }
1661        }
1662
1663        return best_chan;
1664}
1665EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1666
1667/**
1668 * ppc440spe_get_group_entry - get group entry with index idx
1669 * @tdesc: is the last allocated slot in the group.
1670 */
1671static struct ppc440spe_adma_desc_slot *
1672ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1673{
1674        struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1675        int i = 0;
1676
1677        if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1678                printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1679                        __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1680                BUG();
1681        }
1682
1683        list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1684                if (i++ == entry_idx)
1685                        break;
1686        }
1687        return iter;
1688}
1689
1690/**
1691 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1692 * @slot: Slot to free
1693 * Caller must hold &ppc440spe_chan->lock while calling this function
1694 */
1695static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1696                                      struct ppc440spe_adma_chan *chan)
1697{
1698        int stride = slot->slots_per_op;
1699
1700        while (stride--) {
1701                slot->slots_per_op = 0;
1702                slot = list_entry(slot->slot_node.next,
1703                                struct ppc440spe_adma_desc_slot,
1704                                slot_node);
1705        }
1706}
1707
1708static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1709                                 struct ppc440spe_adma_desc_slot *desc)
1710{
1711        u32 src_cnt, dst_cnt;
1712        dma_addr_t addr;
1713
1714        /*
1715         * get the number of sources & destination
1716         * included in this descriptor and unmap
1717         * them all
1718         */
1719        src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1720        dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1721
1722        /* unmap destinations */
1723        if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1724                while (dst_cnt--) {
1725                        addr = ppc440spe_desc_get_dest_addr(
1726                                desc, chan, dst_cnt);
1727                        dma_unmap_page(chan->device->dev,
1728                                        addr, desc->unmap_len,
1729                                        DMA_FROM_DEVICE);
1730                }
1731        }
1732
1733        /* unmap sources */
1734        if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1735                while (src_cnt--) {
1736                        addr = ppc440spe_desc_get_src_addr(
1737                                desc, chan, src_cnt);
1738                        dma_unmap_page(chan->device->dev,
1739                                        addr, desc->unmap_len,
1740                                        DMA_TO_DEVICE);
1741                }
1742        }
1743}
1744
1745/**
1746 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1747 * upon completion
1748 */
1749static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1750                struct ppc440spe_adma_desc_slot *desc,
1751                struct ppc440spe_adma_chan *chan,
1752                dma_cookie_t cookie)
1753{
1754        int i;
1755
1756        BUG_ON(desc->async_tx.cookie < 0);
1757        if (desc->async_tx.cookie > 0) {
1758                cookie = desc->async_tx.cookie;
1759                desc->async_tx.cookie = 0;
1760
1761                /* call the callback (must not sleep or submit new
1762                 * operations to this channel)
1763                 */
1764                if (desc->async_tx.callback)
1765                        desc->async_tx.callback(
1766                                desc->async_tx.callback_param);
1767
1768                /* unmap dma addresses
1769                 * (unmap_single vs unmap_page?)
1770                 *
1771                 * actually, ppc's dma_unmap_page() functions are empty, so
1772                 * the following code is just for the sake of completeness
1773                 */
1774                if (chan && chan->needs_unmap && desc->group_head &&
1775                     desc->unmap_len) {
1776                        struct ppc440spe_adma_desc_slot *unmap =
1777                                                        desc->group_head;
1778                        /* assume 1 slot per op always */
1779                        u32 slot_count = unmap->slot_cnt;
1780
1781                        /* Run through the group list and unmap addresses */
1782                        for (i = 0; i < slot_count; i++) {
1783                                BUG_ON(!unmap);
1784                                ppc440spe_adma_unmap(chan, unmap);
1785                                unmap = unmap->hw_next;
1786                        }
1787                }
1788        }
1789
1790        /* run dependent operations */
1791        dma_run_dependencies(&desc->async_tx);
1792
1793        return cookie;
1794}
1795
1796/**
1797 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1798 */
1799static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1800                struct ppc440spe_adma_chan *chan)
1801{
1802        /* the client is allowed to attach dependent operations
1803         * until 'ack' is set
1804         */
1805        if (!async_tx_test_ack(&desc->async_tx))
1806                return 0;
1807
1808        /* leave the last descriptor in the chain
1809         * so we can append to it
1810         */
1811        if (list_is_last(&desc->chain_node, &chan->chain) ||
1812            desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1813                return 1;
1814
1815        if (chan->device->id != PPC440SPE_XOR_ID) {
1816                /* our DMA interrupt handler clears opc field of
1817                 * each processed descriptor. For all types of
1818                 * operations except for ZeroSum we do not actually
1819                 * need ack from the interrupt handler. ZeroSum is a
1820                 * special case since the result of this operation
1821                 * is available from the handler only, so if we see
1822                 * such type of descriptor (which is unprocessed yet)
1823                 * then leave it in chain.
1824                 */
1825                struct dma_cdb *cdb = desc->hw_desc;
1826                if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1827                        return 1;
1828        }
1829
1830        dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1831                desc->phys, desc->idx, desc->slots_per_op);
1832
1833        list_del(&desc->chain_node);
1834        ppc440spe_adma_free_slots(desc, chan);
1835        return 0;
1836}
1837
1838/**
1839 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1840 *      which runs through the channel CDBs list until reach the descriptor
1841 *      currently processed. When routine determines that all CDBs of group
1842 *      are completed then corresponding callbacks (if any) are called and slots
1843 *      are freed.
1844 */
1845static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1846{
1847        struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1848        dma_cookie_t cookie = 0;
1849        u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1850        int busy = ppc440spe_chan_is_busy(chan);
1851        int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1852
1853        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1854                chan->device->id, __func__);
1855
1856        if (!current_desc) {
1857                /*  There were no transactions yet, so
1858                 * nothing to clean
1859                 */
1860                return;
1861        }
1862
1863        /* free completed slots from the chain starting with
1864         * the oldest descriptor
1865         */
1866        list_for_each_entry_safe(iter, _iter, &chan->chain,
1867                                        chain_node) {
1868                dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1869                    "busy: %d this_desc: %#llx next_desc: %#x "
1870                    "cur: %#x ack: %d\n",
1871                    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1872                    ppc440spe_desc_get_link(iter, chan), current_desc,
1873                    async_tx_test_ack(&iter->async_tx));
1874                prefetch(_iter);
1875                prefetch(&_iter->async_tx);
1876
1877                /* do not advance past the current descriptor loaded into the
1878                 * hardware channel,subsequent descriptors are either in process
1879                 * or have not been submitted
1880                 */
1881                if (seen_current)
1882                        break;
1883
1884                /* stop the search if we reach the current descriptor and the
1885                 * channel is busy, or if it appears that the current descriptor
1886                 * needs to be re-read (i.e. has been appended to)
1887                 */
1888                if (iter->phys == current_desc) {
1889                        BUG_ON(seen_current++);
1890                        if (busy || ppc440spe_desc_get_link(iter, chan)) {
1891                                /* not all descriptors of the group have
1892                                 * been completed; exit.
1893                                 */
1894                                break;
1895                        }
1896                }
1897
1898                /* detect the start of a group transaction */
1899                if (!slot_cnt && !slots_per_op) {
1900                        slot_cnt = iter->slot_cnt;
1901                        slots_per_op = iter->slots_per_op;
1902                        if (slot_cnt <= slots_per_op) {
1903                                slot_cnt = 0;
1904                                slots_per_op = 0;
1905                        }
1906                }
1907
1908                if (slot_cnt) {
1909                        if (!group_start)
1910                                group_start = iter;
1911                        slot_cnt -= slots_per_op;
1912                }
1913
1914                /* all the members of a group are complete */
1915                if (slots_per_op != 0 && slot_cnt == 0) {
1916                        struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1917                        int end_of_chain = 0;
1918
1919                        /* clean up the group */
1920                        slot_cnt = group_start->slot_cnt;
1921                        grp_iter = group_start;
1922                        list_for_each_entry_safe_from(grp_iter, _grp_iter,
1923                                &chan->chain, chain_node) {
1924
1925                                cookie = ppc440spe_adma_run_tx_complete_actions(
1926                                        grp_iter, chan, cookie);
1927
1928                                slot_cnt -= slots_per_op;
1929                                end_of_chain = ppc440spe_adma_clean_slot(
1930                                    grp_iter, chan);
1931                                if (end_of_chain && slot_cnt) {
1932                                        /* Should wait for ZeroSum completion */
1933                                        if (cookie > 0)
1934                                                chan->common.completed_cookie = cookie;
1935                                        return;
1936                                }
1937
1938                                if (slot_cnt == 0 || end_of_chain)
1939                                        break;
1940                        }
1941
1942                        /* the group should be complete at this point */
1943                        BUG_ON(slot_cnt);
1944
1945                        slots_per_op = 0;
1946                        group_start = NULL;
1947                        if (end_of_chain)
1948                                break;
1949                        else
1950                                continue;
1951                } else if (slots_per_op) /* wait for group completion */
1952                        continue;
1953
1954                cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1955                    cookie);
1956
1957                if (ppc440spe_adma_clean_slot(iter, chan))
1958                        break;
1959        }
1960
1961        BUG_ON(!seen_current);
1962
1963        if (cookie > 0) {
1964                chan->common.completed_cookie = cookie;
1965                pr_debug("\tcompleted cookie %d\n", cookie);
1966        }
1967
1968}
1969
1970/**
1971 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1972 */
1973static void ppc440spe_adma_tasklet(unsigned long data)
1974{
1975        struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1976
1977        spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1978        __ppc440spe_adma_slot_cleanup(chan);
1979        spin_unlock(&chan->lock);
1980}
1981
1982/**
1983 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1984 */
1985static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1986{
1987        spin_lock_bh(&chan->lock);
1988        __ppc440spe_adma_slot_cleanup(chan);
1989        spin_unlock_bh(&chan->lock);
1990}
1991
1992/**
1993 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1994 */
1995static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1996                struct ppc440spe_adma_chan *chan, int num_slots,
1997                int slots_per_op)
1998{
1999        struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
2000        struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2001        struct list_head chain = LIST_HEAD_INIT(chain);
2002        int slots_found, retry = 0;
2003
2004
2005        BUG_ON(!num_slots || !slots_per_op);
2006        /* start search from the last allocated descrtiptor
2007         * if a contiguous allocation can not be found start searching
2008         * from the beginning of the list
2009         */
2010retry:
2011        slots_found = 0;
2012        if (retry == 0)
2013                iter = chan->last_used;
2014        else
2015                iter = list_entry(&chan->all_slots,
2016                                  struct ppc440spe_adma_desc_slot,
2017                                  slot_node);
2018        list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2019            slot_node) {
2020                prefetch(_iter);
2021                prefetch(&_iter->async_tx);
2022                if (iter->slots_per_op) {
2023                        slots_found = 0;
2024                        continue;
2025                }
2026
2027                /* start the allocation if the slot is correctly aligned */
2028                if (!slots_found++)
2029                        alloc_start = iter;
2030
2031                if (slots_found == num_slots) {
2032                        struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2033                        struct ppc440spe_adma_desc_slot *last_used = NULL;
2034
2035                        iter = alloc_start;
2036                        while (num_slots) {
2037                                int i;
2038                                /* pre-ack all but the last descriptor */
2039                                if (num_slots != slots_per_op)
2040                                        async_tx_ack(&iter->async_tx);
2041
2042                                list_add_tail(&iter->chain_node, &chain);
2043                                alloc_tail = iter;
2044                                iter->async_tx.cookie = 0;
2045                                iter->hw_next = NULL;
2046                                iter->flags = 0;
2047                                iter->slot_cnt = num_slots;
2048                                iter->xor_check_result = NULL;
2049                                for (i = 0; i < slots_per_op; i++) {
2050                                        iter->slots_per_op = slots_per_op - i;
2051                                        last_used = iter;
2052                                        iter = list_entry(iter->slot_node.next,
2053                                                struct ppc440spe_adma_desc_slot,
2054                                                slot_node);
2055                                }
2056                                num_slots -= slots_per_op;
2057                        }
2058                        alloc_tail->group_head = alloc_start;
2059                        alloc_tail->async_tx.cookie = -EBUSY;
2060                        list_splice(&chain, &alloc_tail->group_list);
2061                        chan->last_used = last_used;
2062                        return alloc_tail;
2063                }
2064        }
2065        if (!retry++)
2066                goto retry;
2067
2068        /* try to free some slots if the allocation fails */
2069        tasklet_schedule(&chan->irq_tasklet);
2070        return NULL;
2071}
2072
2073/**
2074 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
2075 */
2076static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2077{
2078        struct ppc440spe_adma_chan *ppc440spe_chan;
2079        struct ppc440spe_adma_desc_slot *slot = NULL;
2080        char *hw_desc;
2081        int i, db_sz;
2082        int init;
2083
2084        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2085        init = ppc440spe_chan->slots_allocated ? 0 : 1;
2086        chan->chan_id = ppc440spe_chan->device->id;
2087
2088        /* Allocate descriptor slots */
2089        i = ppc440spe_chan->slots_allocated;
2090        if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2091                db_sz = sizeof(struct dma_cdb);
2092        else
2093                db_sz = sizeof(struct xor_cb);
2094
2095        for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2096                slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2097                               GFP_KERNEL);
2098                if (!slot) {
2099                        printk(KERN_INFO "SPE ADMA Channel only initialized"
2100                                " %d descriptor slots", i--);
2101                        break;
2102                }
2103
2104                hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2105                slot->hw_desc = (void *) &hw_desc[i * db_sz];
2106                dma_async_tx_descriptor_init(&slot->async_tx, chan);
2107                slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2108                INIT_LIST_HEAD(&slot->chain_node);
2109                INIT_LIST_HEAD(&slot->slot_node);
2110                INIT_LIST_HEAD(&slot->group_list);
2111                slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2112                slot->idx = i;
2113
2114                spin_lock_bh(&ppc440spe_chan->lock);
2115                ppc440spe_chan->slots_allocated++;
2116                list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2117                spin_unlock_bh(&ppc440spe_chan->lock);
2118        }
2119
2120        if (i && !ppc440spe_chan->last_used) {
2121                ppc440spe_chan->last_used =
2122                        list_entry(ppc440spe_chan->all_slots.next,
2123                                struct ppc440spe_adma_desc_slot,
2124                                slot_node);
2125        }
2126
2127        dev_dbg(ppc440spe_chan->device->common.dev,
2128                "ppc440spe adma%d: allocated %d descriptor slots\n",
2129                ppc440spe_chan->device->id, i);
2130
2131        /* initialize the channel and the chain with a null operation */
2132        if (init) {
2133                switch (ppc440spe_chan->device->id) {
2134                case PPC440SPE_DMA0_ID:
2135                case PPC440SPE_DMA1_ID:
2136                        ppc440spe_chan->hw_chain_inited = 0;
2137                        /* Use WXOR for self-testing */
2138                        if (!ppc440spe_r6_tchan)
2139                                ppc440spe_r6_tchan = ppc440spe_chan;
2140                        break;
2141                case PPC440SPE_XOR_ID:
2142                        ppc440spe_chan_start_null_xor(ppc440spe_chan);
2143                        break;
2144                default:
2145                        BUG();
2146                }
2147                ppc440spe_chan->needs_unmap = 1;
2148        }
2149
2150        return (i > 0) ? i : -ENOMEM;
2151}
2152
2153/**
2154 * ppc440spe_rxor_set_region_data -
2155 */
2156static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2157        u8 xor_arg_no, u32 mask)
2158{
2159        struct xor_cb *xcb = desc->hw_desc;
2160
2161        xcb->ops[xor_arg_no].h |= mask;
2162}
2163
2164/**
2165 * ppc440spe_rxor_set_src -
2166 */
2167static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2168        u8 xor_arg_no, dma_addr_t addr)
2169{
2170        struct xor_cb *xcb = desc->hw_desc;
2171
2172        xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2173        xcb->ops[xor_arg_no].l = addr;
2174}
2175
2176/**
2177 * ppc440spe_rxor_set_mult -
2178 */
2179static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2180        u8 xor_arg_no, u8 idx, u8 mult)
2181{
2182        struct xor_cb *xcb = desc->hw_desc;
2183
2184        xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2185}
2186
2187/**
2188 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2189 *      has been achieved
2190 */
2191static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2192{
2193        dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2194                chan->device->id, chan->pending);
2195
2196        if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2197                chan->pending = 0;
2198                ppc440spe_chan_append(chan);
2199        }
2200}
2201
2202/**
2203 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2204 *      (it's not necessary that descriptors will be submitted to the h/w
2205 *      chains too right now)
2206 */
2207static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2208{
2209        struct ppc440spe_adma_desc_slot *sw_desc;
2210        struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2211        struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2212        int slot_cnt;
2213        int slots_per_op;
2214        dma_cookie_t cookie;
2215
2216        sw_desc = tx_to_ppc440spe_adma_slot(tx);
2217
2218        group_start = sw_desc->group_head;
2219        slot_cnt = group_start->slot_cnt;
2220        slots_per_op = group_start->slots_per_op;
2221
2222        spin_lock_bh(&chan->lock);
2223        cookie = dma_cookie_assign(tx);
2224
2225        if (unlikely(list_empty(&chan->chain))) {
2226                /* first peer */
2227                list_splice_init(&sw_desc->group_list, &chan->chain);
2228                chan_first_cdb[chan->device->id] = group_start;
2229        } else {
2230                /* isn't first peer, bind CDBs to chain */
2231                old_chain_tail = list_entry(chan->chain.prev,
2232                                        struct ppc440spe_adma_desc_slot,
2233                                        chain_node);
2234                list_splice_init(&sw_desc->group_list,
2235                    &old_chain_tail->chain_node);
2236                /* fix up the hardware chain */
2237                ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2238        }
2239
2240        /* increment the pending count by the number of operations */
2241        chan->pending += slot_cnt / slots_per_op;
2242        ppc440spe_adma_check_threshold(chan);
2243        spin_unlock_bh(&chan->lock);
2244
2245        dev_dbg(chan->device->common.dev,
2246                "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2247                chan->device->id, __func__,
2248                sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2249
2250        return cookie;
2251}
2252
2253/**
2254 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2255 */
2256static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2257                struct dma_chan *chan, unsigned long flags)
2258{
2259        struct ppc440spe_adma_chan *ppc440spe_chan;
2260        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2261        int slot_cnt, slots_per_op;
2262
2263        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2264
2265        dev_dbg(ppc440spe_chan->device->common.dev,
2266                "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2267                __func__);
2268
2269        spin_lock_bh(&ppc440spe_chan->lock);
2270        slot_cnt = slots_per_op = 1;
2271        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2272                        slots_per_op);
2273        if (sw_desc) {
2274                group_start = sw_desc->group_head;
2275                ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2276                group_start->unmap_len = 0;
2277                sw_desc->async_tx.flags = flags;
2278        }
2279        spin_unlock_bh(&ppc440spe_chan->lock);
2280
2281        return sw_desc ? &sw_desc->async_tx : NULL;
2282}
2283
2284/**
2285 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2286 */
2287static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2288                struct dma_chan *chan, dma_addr_t dma_dest,
2289                dma_addr_t dma_src, size_t len, unsigned long flags)
2290{
2291        struct ppc440spe_adma_chan *ppc440spe_chan;
2292        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2293        int slot_cnt, slots_per_op;
2294
2295        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2296
2297        if (unlikely(!len))
2298                return NULL;
2299
2300        BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2301
2302        spin_lock_bh(&ppc440spe_chan->lock);
2303
2304        dev_dbg(ppc440spe_chan->device->common.dev,
2305                "ppc440spe adma%d: %s len: %u int_en %d\n",
2306                ppc440spe_chan->device->id, __func__, len,
2307                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2308        slot_cnt = slots_per_op = 1;
2309        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2310                slots_per_op);
2311        if (sw_desc) {
2312                group_start = sw_desc->group_head;
2313                ppc440spe_desc_init_memcpy(group_start, flags);
2314                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2315                ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2316                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2317                sw_desc->unmap_len = len;
2318                sw_desc->async_tx.flags = flags;
2319        }
2320        spin_unlock_bh(&ppc440spe_chan->lock);
2321
2322        return sw_desc ? &sw_desc->async_tx : NULL;
2323}
2324
2325/**
2326 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2327 */
2328static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2329                struct dma_chan *chan, dma_addr_t dma_dest,
2330                dma_addr_t *dma_src, u32 src_cnt, size_t len,
2331                unsigned long flags)
2332{
2333        struct ppc440spe_adma_chan *ppc440spe_chan;
2334        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2335        int slot_cnt, slots_per_op;
2336
2337        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2338
2339        ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2340                                     dma_dest, dma_src, src_cnt));
2341        if (unlikely(!len))
2342                return NULL;
2343        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2344
2345        dev_dbg(ppc440spe_chan->device->common.dev,
2346                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2347                ppc440spe_chan->device->id, __func__, src_cnt, len,
2348                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2349
2350        spin_lock_bh(&ppc440spe_chan->lock);
2351        slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2352        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2353                        slots_per_op);
2354        if (sw_desc) {
2355                group_start = sw_desc->group_head;
2356                ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2357                ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2358                while (src_cnt--)
2359                        ppc440spe_adma_memcpy_xor_set_src(group_start,
2360                                dma_src[src_cnt], src_cnt);
2361                ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2362                sw_desc->unmap_len = len;
2363                sw_desc->async_tx.flags = flags;
2364        }
2365        spin_unlock_bh(&ppc440spe_chan->lock);
2366
2367        return sw_desc ? &sw_desc->async_tx : NULL;
2368}
2369
2370static inline void
2371ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2372                                int src_cnt);
2373static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2374
2375/**
2376 * ppc440spe_adma_init_dma2rxor_slot -
2377 */
2378static void ppc440spe_adma_init_dma2rxor_slot(
2379                struct ppc440spe_adma_desc_slot *desc,
2380                dma_addr_t *src, int src_cnt)
2381{
2382        int i;
2383
2384        /* initialize CDB */
2385        for (i = 0; i < src_cnt; i++) {
2386                ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2387                                                 desc->src_cnt, (u32)src[i]);
2388        }
2389}
2390
2391/**
2392 * ppc440spe_dma01_prep_mult -
2393 * for Q operation where destination is also the source
2394 */
2395static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2396                struct ppc440spe_adma_chan *ppc440spe_chan,
2397                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2398                const unsigned char *scf, size_t len, unsigned long flags)
2399{
2400        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2401        unsigned long op = 0;
2402        int slot_cnt;
2403
2404        set_bit(PPC440SPE_DESC_WXOR, &op);
2405        slot_cnt = 2;
2406
2407        spin_lock_bh(&ppc440spe_chan->lock);
2408
2409        /* use WXOR, each descriptor occupies one slot */
2410        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2411        if (sw_desc) {
2412                struct ppc440spe_adma_chan *chan;
2413                struct ppc440spe_adma_desc_slot *iter;
2414                struct dma_cdb *hw_desc;
2415
2416                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2417                set_bits(op, &sw_desc->flags);
2418                sw_desc->src_cnt = src_cnt;
2419                sw_desc->dst_cnt = dst_cnt;
2420                /* First descriptor, zero data in the destination and copy it
2421                 * to q page using MULTICAST transfer.
2422                 */
2423                iter = list_first_entry(&sw_desc->group_list,
2424                                        struct ppc440spe_adma_desc_slot,
2425                                        chain_node);
2426                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2427                /* set 'next' pointer */
2428                iter->hw_next = list_entry(iter->chain_node.next,
2429                                           struct ppc440spe_adma_desc_slot,
2430                                           chain_node);
2431                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2432                hw_desc = iter->hw_desc;
2433                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2434
2435                ppc440spe_desc_set_dest_addr(iter, chan,
2436                                             DMA_CUED_XOR_BASE, dst[0], 0);
2437                ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2438                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2439                                            src[0]);
2440                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2441                iter->unmap_len = len;
2442
2443                /*
2444                 * Second descriptor, multiply data from the q page
2445                 * and store the result in real destination.
2446                 */
2447                iter = list_first_entry(&iter->chain_node,
2448                                        struct ppc440spe_adma_desc_slot,
2449                                        chain_node);
2450                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2451                iter->hw_next = NULL;
2452                if (flags & DMA_PREP_INTERRUPT)
2453                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2454                else
2455                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2456
2457                hw_desc = iter->hw_desc;
2458                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2459                ppc440spe_desc_set_src_addr(iter, chan, 0,
2460                                            DMA_CUED_XOR_HB, dst[1]);
2461                ppc440spe_desc_set_dest_addr(iter, chan,
2462                                             DMA_CUED_XOR_BASE, dst[0], 0);
2463
2464                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2465                                            DMA_CDB_SG_DST1, scf[0]);
2466                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2467                iter->unmap_len = len;
2468                sw_desc->async_tx.flags = flags;
2469        }
2470
2471        spin_unlock_bh(&ppc440spe_chan->lock);
2472
2473        return sw_desc;
2474}
2475
2476/**
2477 * ppc440spe_dma01_prep_sum_product -
2478 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2479 * the source.
2480 */
2481static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2482                struct ppc440spe_adma_chan *ppc440spe_chan,
2483                dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2484                const unsigned char *scf, size_t len, unsigned long flags)
2485{
2486        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2487        unsigned long op = 0;
2488        int slot_cnt;
2489
2490        set_bit(PPC440SPE_DESC_WXOR, &op);
2491        slot_cnt = 3;
2492
2493        spin_lock_bh(&ppc440spe_chan->lock);
2494
2495        /* WXOR, each descriptor occupies one slot */
2496        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2497        if (sw_desc) {
2498                struct ppc440spe_adma_chan *chan;
2499                struct ppc440spe_adma_desc_slot *iter;
2500                struct dma_cdb *hw_desc;
2501
2502                chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2503                set_bits(op, &sw_desc->flags);
2504                sw_desc->src_cnt = src_cnt;
2505                sw_desc->dst_cnt = 1;
2506                /* 1st descriptor, src[1] data to q page and zero destination */
2507                iter = list_first_entry(&sw_desc->group_list,
2508                                        struct ppc440spe_adma_desc_slot,
2509                                        chain_node);
2510                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2511                iter->hw_next = list_entry(iter->chain_node.next,
2512                                           struct ppc440spe_adma_desc_slot,
2513                                           chain_node);
2514                clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2515                hw_desc = iter->hw_desc;
2516                hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2517
2518                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2519                                             *dst, 0);
2520                ppc440spe_desc_set_dest_addr(iter, chan, 0,
2521                                             ppc440spe_chan->qdest, 1);
2522                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2523                                            src[1]);
2524                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2525                iter->unmap_len = len;
2526
2527                /* 2nd descriptor, multiply src[1] data and store the
2528                 * result in destination */
2529                iter = list_first_entry(&iter->chain_node,
2530                                        struct ppc440spe_adma_desc_slot,
2531                                        chain_node);
2532                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2533                /* set 'next' pointer */
2534                iter->hw_next = list_entry(iter->chain_node.next,
2535                                           struct ppc440spe_adma_desc_slot,
2536                                           chain_node);
2537                if (flags & DMA_PREP_INTERRUPT)
2538                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2539                else
2540                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2541
2542                hw_desc = iter->hw_desc;
2543                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2544                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2545                                            ppc440spe_chan->qdest);
2546                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2547                                             *dst, 0);
2548                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2549                                            DMA_CDB_SG_DST1, scf[1]);
2550                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2551                iter->unmap_len = len;
2552
2553                /*
2554                 * 3rd descriptor, multiply src[0] data and xor it
2555                 * with destination
2556                 */
2557                iter = list_first_entry(&iter->chain_node,
2558                                        struct ppc440spe_adma_desc_slot,
2559                                        chain_node);
2560                memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2561                iter->hw_next = NULL;
2562                if (flags & DMA_PREP_INTERRUPT)
2563                        set_bit(PPC440SPE_DESC_INT, &iter->flags);
2564                else
2565                        clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2566
2567                hw_desc = iter->hw_desc;
2568                hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2569                ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2570                                            src[0]);
2571                ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2572                                             *dst, 0);
2573                ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2574                                            DMA_CDB_SG_DST1, scf[0]);
2575                ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2576                iter->unmap_len = len;
2577                sw_desc->async_tx.flags = flags;
2578        }
2579
2580        spin_unlock_bh(&ppc440spe_chan->lock);
2581
2582        return sw_desc;
2583}
2584
2585static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2586                struct ppc440spe_adma_chan *ppc440spe_chan,
2587                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2588                const unsigned char *scf, size_t len, unsigned long flags)
2589{
2590        int slot_cnt;
2591        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2592        unsigned long op = 0;
2593        unsigned char mult = 1;
2594
2595        pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2596                 __func__, dst_cnt, src_cnt, len);
2597        /*  select operations WXOR/RXOR depending on the
2598         * source addresses of operators and the number
2599         * of destinations (RXOR support only Q-parity calculations)
2600         */
2601        set_bit(PPC440SPE_DESC_WXOR, &op);
2602        if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2603                /* no active RXOR;
2604                 * do RXOR if:
2605                 * - there are more than 1 source,
2606                 * - len is aligned on 512-byte boundary,
2607                 * - source addresses fit to one of 4 possible regions.
2608                 */
2609                if (src_cnt > 1 &&
2610                    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2611                    (src[0] + len) == src[1]) {
2612                        /* may do RXOR R1 R2 */
2613                        set_bit(PPC440SPE_DESC_RXOR, &op);
2614                        if (src_cnt != 2) {
2615                                /* may try to enhance region of RXOR */
2616                                if ((src[1] + len) == src[2]) {
2617                                        /* do RXOR R1 R2 R3 */
2618                                        set_bit(PPC440SPE_DESC_RXOR123,
2619                                                &op);
2620                                } else if ((src[1] + len * 2) == src[2]) {
2621                                        /* do RXOR R1 R2 R4 */
2622                                        set_bit(PPC440SPE_DESC_RXOR124, &op);
2623                                } else if ((src[1] + len * 3) == src[2]) {
2624                                        /* do RXOR R1 R2 R5 */
2625                                        set_bit(PPC440SPE_DESC_RXOR125,
2626                                                &op);
2627                                } else {
2628                                        /* do RXOR R1 R2 */
2629                                        set_bit(PPC440SPE_DESC_RXOR12,
2630                                                &op);
2631                                }
2632                        } else {
2633                                /* do RXOR R1 R2 */
2634                                set_bit(PPC440SPE_DESC_RXOR12, &op);
2635                        }
2636                }
2637
2638                if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2639                        /* can not do this operation with RXOR */
2640                        clear_bit(PPC440SPE_RXOR_RUN,
2641                                &ppc440spe_rxor_state);
2642                } else {
2643                        /* can do; set block size right now */
2644                        ppc440spe_desc_set_rxor_block_size(len);
2645                }
2646        }
2647
2648        /* Number of necessary slots depends on operation type selected */
2649        if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2650                /*  This is a WXOR only chain. Need descriptors for each
2651                 * source to GF-XOR them with WXOR, and need descriptors
2652                 * for each destination to zero them with WXOR
2653                 */
2654                slot_cnt = src_cnt;
2655
2656                if (flags & DMA_PREP_ZERO_P) {
2657                        slot_cnt++;
2658                        set_bit(PPC440SPE_ZERO_P, &op);
2659                }
2660                if (flags & DMA_PREP_ZERO_Q) {
2661                        slot_cnt++;
2662                        set_bit(PPC440SPE_ZERO_Q, &op);
2663                }
2664        } else {
2665                /*  Need 1/2 descriptor for RXOR operation, and
2666                 * need (src_cnt - (2 or 3)) for WXOR of sources
2667                 * remained (if any)
2668                 */
2669                slot_cnt = dst_cnt;
2670
2671                if (flags & DMA_PREP_ZERO_P)
2672                        set_bit(PPC440SPE_ZERO_P, &op);
2673                if (flags & DMA_PREP_ZERO_Q)
2674                        set_bit(PPC440SPE_ZERO_Q, &op);
2675
2676                if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2677                        slot_cnt += src_cnt - 2;
2678                else
2679                        slot_cnt += src_cnt - 3;
2680
2681                /*  Thus we have either RXOR only chain or
2682                 * mixed RXOR/WXOR
2683                 */
2684                if (slot_cnt == dst_cnt)
2685                        /* RXOR only chain */
2686                        clear_bit(PPC440SPE_DESC_WXOR, &op);
2687        }
2688
2689        spin_lock_bh(&ppc440spe_chan->lock);
2690        /* for both RXOR/WXOR each descriptor occupies one slot */
2691        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2692        if (sw_desc) {
2693                ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2694                                flags, op);
2695
2696                /* setup dst/src/mult */
2697                pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2698                         __func__, dst[0], dst[1]);
2699                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2700                while (src_cnt--) {
2701                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2702                                                  src_cnt);
2703
2704                        /* NOTE: "Multi = 0 is equivalent to = 1" as it
2705                         * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2706                         * doesn't work for RXOR with DMA0/1! Instead, multi=0
2707                         * leads to zeroing source data after RXOR.
2708                         * So, for P case set-up mult=1 explicitly.
2709                         */
2710                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2711                                mult = scf[src_cnt];
2712                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2713                                mult, src_cnt,  dst_cnt - 1);
2714                }
2715
2716                /* Setup byte count foreach slot just allocated */
2717                sw_desc->async_tx.flags = flags;
2718                list_for_each_entry(iter, &sw_desc->group_list,
2719                                chain_node) {
2720                        ppc440spe_desc_set_byte_count(iter,
2721                                ppc440spe_chan, len);
2722                        iter->unmap_len = len;
2723                }
2724        }
2725        spin_unlock_bh(&ppc440spe_chan->lock);
2726
2727        return sw_desc;
2728}
2729
2730static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2731                struct ppc440spe_adma_chan *ppc440spe_chan,
2732                dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2733                const unsigned char *scf, size_t len, unsigned long flags)
2734{
2735        int slot_cnt, descs_per_op;
2736        struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2737        unsigned long op = 0;
2738        unsigned char mult = 1;
2739
2740        BUG_ON(!dst_cnt);
2741        /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2742                 __func__, dst_cnt, src_cnt, len);*/
2743
2744        spin_lock_bh(&ppc440spe_chan->lock);
2745        descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2746        if (descs_per_op < 0) {
2747                spin_unlock_bh(&ppc440spe_chan->lock);
2748                return NULL;
2749        }
2750
2751        /* depending on number of sources we have 1 or 2 RXOR chains */
2752        slot_cnt = descs_per_op * dst_cnt;
2753
2754        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2755        if (sw_desc) {
2756                op = slot_cnt;
2757                sw_desc->async_tx.flags = flags;
2758                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2759                        ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2760                                --op ? 0 : flags);
2761                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2762                                len);
2763                        iter->unmap_len = len;
2764
2765                        ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2766                        iter->rxor_cursor.len = len;
2767                        iter->descs_per_op = descs_per_op;
2768                }
2769                op = 0;
2770                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2771                        op++;
2772                        if (op % descs_per_op == 0)
2773                                ppc440spe_adma_init_dma2rxor_slot(iter, src,
2774                                                                  src_cnt);
2775                        if (likely(!list_is_last(&iter->chain_node,
2776                                                 &sw_desc->group_list))) {
2777                                /* set 'next' pointer */
2778                                iter->hw_next =
2779                                        list_entry(iter->chain_node.next,
2780                                                struct ppc440spe_adma_desc_slot,
2781                                                chain_node);
2782                                ppc440spe_xor_set_link(iter, iter->hw_next);
2783                        } else {
2784                                /* this is the last descriptor. */
2785                                iter->hw_next = NULL;
2786                        }
2787                }
2788
2789                /* fixup head descriptor */
2790                sw_desc->dst_cnt = dst_cnt;
2791                if (flags & DMA_PREP_ZERO_P)
2792                        set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2793                if (flags & DMA_PREP_ZERO_Q)
2794                        set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2795
2796                /* setup dst/src/mult */
2797                ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2798
2799                while (src_cnt--) {
2800                        /* handle descriptors (if dst_cnt == 2) inside
2801                         * the ppc440spe_adma_pq_set_srcxxx() functions
2802                         */
2803                        ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2804                                                  src_cnt);
2805                        if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2806                                mult = scf[src_cnt];
2807                        ppc440spe_adma_pq_set_src_mult(sw_desc,
2808                                        mult, src_cnt, dst_cnt - 1);
2809                }
2810        }
2811        spin_unlock_bh(&ppc440spe_chan->lock);
2812        ppc440spe_desc_set_rxor_block_size(len);
2813        return sw_desc;
2814}
2815
2816/**
2817 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2818 */
2819static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2820                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2821                unsigned int src_cnt, const unsigned char *scf,
2822                size_t len, unsigned long flags)
2823{
2824        struct ppc440spe_adma_chan *ppc440spe_chan;
2825        struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2826        int dst_cnt = 0;
2827
2828        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2829
2830        ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2831                                    dst, src, src_cnt));
2832        BUG_ON(!len);
2833        BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2834        BUG_ON(!src_cnt);
2835
2836        if (src_cnt == 1 && dst[1] == src[0]) {
2837                dma_addr_t dest[2];
2838
2839                /* dst[1] is real destination (Q) */
2840                dest[0] = dst[1];
2841                /* this is the page to multicast source data to */
2842                dest[1] = ppc440spe_chan->qdest;
2843                sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2844                                dest, 2, src, src_cnt, scf, len, flags);
2845                return sw_desc ? &sw_desc->async_tx : NULL;
2846        }
2847
2848        if (src_cnt == 2 && dst[1] == src[1]) {
2849                sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2850                                        &dst[1], src, 2, scf, len, flags);
2851                return sw_desc ? &sw_desc->async_tx : NULL;
2852        }
2853
2854        if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2855                BUG_ON(!dst[0]);
2856                dst_cnt++;
2857                flags |= DMA_PREP_ZERO_P;
2858        }
2859
2860        if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2861                BUG_ON(!dst[1]);
2862                dst_cnt++;
2863                flags |= DMA_PREP_ZERO_Q;
2864        }
2865
2866        BUG_ON(!dst_cnt);
2867
2868        dev_dbg(ppc440spe_chan->device->common.dev,
2869                "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2870                ppc440spe_chan->device->id, __func__, src_cnt, len,
2871                flags & DMA_PREP_INTERRUPT ? 1 : 0);
2872
2873        switch (ppc440spe_chan->device->id) {
2874        case PPC440SPE_DMA0_ID:
2875        case PPC440SPE_DMA1_ID:
2876                sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2877                                dst, dst_cnt, src, src_cnt, scf,
2878                                len, flags);
2879                break;
2880
2881        case PPC440SPE_XOR_ID:
2882                sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2883                                dst, dst_cnt, src, src_cnt, scf,
2884                                len, flags);
2885                break;
2886        }
2887
2888        return sw_desc ? &sw_desc->async_tx : NULL;
2889}
2890
2891/**
2892 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2893 * a PQ_ZERO_SUM operation
2894 */
2895static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2896                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2897                unsigned int src_cnt, const unsigned char *scf, size_t len,
2898                enum sum_check_flags *pqres, unsigned long flags)
2899{
2900        struct ppc440spe_adma_chan *ppc440spe_chan;
2901        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2902        dma_addr_t pdest, qdest;
2903        int slot_cnt, slots_per_op, idst, dst_cnt;
2904
2905        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2906
2907        if (flags & DMA_PREP_PQ_DISABLE_P)
2908                pdest = 0;
2909        else
2910                pdest = pq[0];
2911
2912        if (flags & DMA_PREP_PQ_DISABLE_Q)
2913                qdest = 0;
2914        else
2915                qdest = pq[1];
2916
2917        ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2918                                            src, src_cnt, scf));
2919
2920        /* Always use WXOR for P/Q calculations (two destinations).
2921         * Need 1 or 2 extra slots to verify results are zero.
2922         */
2923        idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2924
2925        /* One additional slot per destination to clone P/Q
2926         * before calculation (we have to preserve destinations).
2927         */
2928        slot_cnt = src_cnt + dst_cnt * 2;
2929        slots_per_op = 1;
2930
2931        spin_lock_bh(&ppc440spe_chan->lock);
2932        sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2933                                             slots_per_op);
2934        if (sw_desc) {
2935                ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2936
2937                /* Setup byte count for each slot just allocated */
2938                sw_desc->async_tx.flags = flags;
2939                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2940                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2941                                                      len);
2942                        iter->unmap_len = len;
2943                }
2944
2945                if (pdest) {
2946                        struct dma_cdb *hw_desc;
2947                        struct ppc440spe_adma_chan *chan;
2948
2949                        iter = sw_desc->group_head;
2950                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2951                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2952                        iter->hw_next = list_entry(iter->chain_node.next,
2953                                                struct ppc440spe_adma_desc_slot,
2954                                                chain_node);
2955                        hw_desc = iter->hw_desc;
2956                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2957                        iter->src_cnt = 0;
2958                        iter->dst_cnt = 0;
2959                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2960                                                     ppc440spe_chan->pdest, 0);
2961                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2962                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2963                                                      len);
2964                        iter->unmap_len = 0;
2965                        /* override pdest to preserve original P */
2966                        pdest = ppc440spe_chan->pdest;
2967                }
2968                if (qdest) {
2969                        struct dma_cdb *hw_desc;
2970                        struct ppc440spe_adma_chan *chan;
2971
2972                        iter = list_first_entry(&sw_desc->group_list,
2973                                                struct ppc440spe_adma_desc_slot,
2974                                                chain_node);
2975                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2976
2977                        if (pdest) {
2978                                iter = list_entry(iter->chain_node.next,
2979                                                struct ppc440spe_adma_desc_slot,
2980                                                chain_node);
2981                        }
2982
2983                        memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2984                        iter->hw_next = list_entry(iter->chain_node.next,
2985                                                struct ppc440spe_adma_desc_slot,
2986                                                chain_node);
2987                        hw_desc = iter->hw_desc;
2988                        hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2989                        iter->src_cnt = 0;
2990                        iter->dst_cnt = 0;
2991                        ppc440spe_desc_set_dest_addr(iter, chan, 0,
2992                                                     ppc440spe_chan->qdest, 0);
2993                        ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2994                        ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2995                                                      len);
2996                        iter->unmap_len = 0;
2997                        /* override qdest to preserve original Q */
2998                        qdest = ppc440spe_chan->qdest;
2999                }
3000
3001                /* Setup destinations for P/Q ops */
3002                ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3003
3004                /* Setup zero QWORDs into DCHECK CDBs */
3005                idst = dst_cnt;
3006                list_for_each_entry_reverse(iter, &sw_desc->group_list,
3007                                            chain_node) {
3008                        /*
3009                         * The last CDB corresponds to Q-parity check,
3010                         * the one before last CDB corresponds
3011                         * P-parity check
3012                         */
3013                        if (idst == DMA_DEST_MAX_NUM) {
3014                                if (idst == dst_cnt) {
3015                                        set_bit(PPC440SPE_DESC_QCHECK,
3016                                                &iter->flags);
3017                                } else {
3018                                        set_bit(PPC440SPE_DESC_PCHECK,
3019                                                &iter->flags);
3020                                }
3021                        } else {
3022                                if (qdest) {
3023                                        set_bit(PPC440SPE_DESC_QCHECK,
3024                                                &iter->flags);
3025                                } else {
3026                                        set_bit(PPC440SPE_DESC_PCHECK,
3027                                                &iter->flags);
3028                                }
3029                        }
3030                        iter->xor_check_result = pqres;
3031
3032                        /*
3033                         * set it to zero, if check fail then result will
3034                         * be updated
3035                         */
3036                        *iter->xor_check_result = 0;
3037                        ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3038                                ppc440spe_qword);
3039
3040                        if (!(--dst_cnt))
3041                                break;
3042                }
3043
3044                /* Setup sources and mults for P/Q ops */
3045                list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3046                                                     chain_node) {
3047                        struct ppc440spe_adma_chan *chan;
3048                        u32 mult_dst;
3049
3050                        chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3051                        ppc440spe_desc_set_src_addr(iter, chan, 0,
3052                                                    DMA_CUED_XOR_HB,
3053                                                    src[src_cnt - 1]);
3054                        if (qdest) {
3055                                mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3056                                                           DMA_CDB_SG_DST1;
3057                                ppc440spe_desc_set_src_mult(iter, chan,
3058                                                            DMA_CUED_MULT1_OFF,
3059                                                            mult_dst,
3060                                                            scf[src_cnt - 1]);
3061                        }
3062                        if (!(--src_cnt))
3063                                break;
3064                }
3065        }
3066        spin_unlock_bh(&ppc440spe_chan->lock);
3067        return sw_desc ? &sw_desc->async_tx : NULL;
3068}
3069
3070/**
3071 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3072 * XOR ZERO_SUM operation
3073 */
3074static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3075                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3076                size_t len, enum sum_check_flags *result, unsigned long flags)
3077{
3078        struct dma_async_tx_descriptor *tx;
3079        dma_addr_t pq[2];
3080
3081        /* validate P, disable Q */
3082        pq[0] = src[0];
3083        pq[1] = 0;
3084        flags |= DMA_PREP_PQ_DISABLE_Q;
3085
3086        tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3087                                                src_cnt - 1, 0, len,
3088                                                result, flags);
3089        return tx;
3090}
3091
3092/**
3093 * ppc440spe_adma_set_dest - set destination address into descriptor
3094 */
3095static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3096                dma_addr_t addr, int index)
3097{
3098        struct ppc440spe_adma_chan *chan;
3099
3100        BUG_ON(index >= sw_desc->dst_cnt);
3101
3102        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3103
3104        switch (chan->device->id) {
3105        case PPC440SPE_DMA0_ID:
3106        case PPC440SPE_DMA1_ID:
3107                /* to do: support transfers lengths >
3108                 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3109                 */
3110                ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3111                        chan, 0, addr, index);
3112                break;
3113        case PPC440SPE_XOR_ID:
3114                sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3115                ppc440spe_desc_set_dest_addr(sw_desc,
3116                        chan, 0, addr, index);
3117                break;
3118        }
3119}
3120
3121static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3122                struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3123{
3124        /*  To clear destinations update the descriptor
3125         * (P or Q depending on index) as follows:
3126         * addr is destination (0 corresponds to SG2):
3127         */
3128        ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3129
3130        /* ... and the addr is source: */
3131        ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3132
3133        /* addr is always SG2 then the mult is always DST1 */
3134        ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3135                                    DMA_CDB_SG_DST1, 1);
3136}
3137
3138/**
3139 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3140 * for the PQXOR operation
3141 */
3142static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3143                dma_addr_t *addrs, unsigned long flags)
3144{
3145        struct ppc440spe_adma_desc_slot *iter;
3146        struct ppc440spe_adma_chan *chan;
3147        dma_addr_t paddr, qaddr;
3148        dma_addr_t addr = 0, ppath, qpath;
3149        int index = 0, i;
3150
3151        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3152
3153        if (flags & DMA_PREP_PQ_DISABLE_P)
3154                paddr = 0;
3155        else
3156                paddr = addrs[0];
3157
3158        if (flags & DMA_PREP_PQ_DISABLE_Q)
3159                qaddr = 0;
3160        else
3161                qaddr = addrs[1];
3162
3163        if (!paddr || !qaddr)
3164                addr = paddr ? paddr : qaddr;
3165
3166        switch (chan->device->id) {
3167        case PPC440SPE_DMA0_ID:
3168        case PPC440SPE_DMA1_ID:
3169                /* walk through the WXOR source list and set P/Q-destinations
3170                 * for each slot:
3171                 */
3172                if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3173                        /* This is WXOR-only chain; may have 1/2 zero descs */
3174                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3175                                index++;
3176                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3177                                index++;
3178
3179                        iter = ppc440spe_get_group_entry(sw_desc, index);
3180                        if (addr) {
3181                                /* one destination */
3182                                list_for_each_entry_from(iter,
3183                                        &sw_desc->group_list, chain_node)
3184                                        ppc440spe_desc_set_dest_addr(iter, chan,
3185                                                DMA_CUED_XOR_BASE, addr, 0);
3186                        } else {
3187                                /* two destinations */
3188                                list_for_each_entry_from(iter,
3189                                        &sw_desc->group_list, chain_node) {
3190                                        ppc440spe_desc_set_dest_addr(iter, chan,
3191                                                DMA_CUED_XOR_BASE, paddr, 0);
3192                                        ppc440spe_desc_set_dest_addr(iter, chan,
3193                                                DMA_CUED_XOR_BASE, qaddr, 1);
3194                                }
3195                        }
3196
3197                        if (index) {
3198                                /*  To clear destinations update the descriptor
3199                                 * (1st,2nd, or both depending on flags)
3200                                 */
3201                                index = 0;
3202                                if (test_bit(PPC440SPE_ZERO_P,
3203                                                &sw_desc->flags)) {
3204                                        iter = ppc440spe_get_group_entry(
3205                                                        sw_desc, index++);
3206                                        ppc440spe_adma_pq_zero_op(iter, chan,
3207                                                        paddr);
3208                                }
3209
3210                                if (test_bit(PPC440SPE_ZERO_Q,
3211                                                &sw_desc->flags)) {
3212                                        iter = ppc440spe_get_group_entry(
3213                                                        sw_desc, index++);
3214                                        ppc440spe_adma_pq_zero_op(iter, chan,
3215                                                        qaddr);
3216                                }
3217
3218                                return;
3219                        }
3220                } else {
3221                        /* This is RXOR-only or RXOR/WXOR mixed chain */
3222
3223                        /* If we want to include destination into calculations,
3224                         * then make dest addresses cued with mult=1 (XOR).
3225                         */
3226                        ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3227                                        DMA_CUED_XOR_HB :
3228                                        DMA_CUED_XOR_BASE |
3229                                                (1 << DMA_CUED_MULT1_OFF);
3230                        qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3231                                        DMA_CUED_XOR_HB :
3232                                        DMA_CUED_XOR_BASE |
3233                                                (1 << DMA_CUED_MULT1_OFF);
3234
3235                        /* Setup destination(s) in RXOR slot(s) */
3236                        iter = ppc440spe_get_group_entry(sw_desc, index++);
3237                        ppc440spe_desc_set_dest_addr(iter, chan,
3238                                                paddr ? ppath : qpath,
3239                                                paddr ? paddr : qaddr, 0);
3240                        if (!addr) {
3241                                /* two destinations */
3242                                iter = ppc440spe_get_group_entry(sw_desc,
3243                                                                 index++);
3244                                ppc440spe_desc_set_dest_addr(iter, chan,
3245                                                qpath, qaddr, 0);
3246                        }
3247
3248                        if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3249                                /* Setup destination(s) in remaining WXOR
3250                                 * slots
3251                                 */
3252                                iter = ppc440spe_get_group_entry(sw_desc,
3253                                                                 index);
3254                                if (addr) {
3255                                        /* one destination */
3256                                        list_for_each_entry_from(iter,
3257                                            &sw_desc->group_list,
3258                                            chain_node)
3259                                                ppc440spe_desc_set_dest_addr(
3260                                                        iter, chan,
3261                                                        DMA_CUED_XOR_BASE,
3262                                                        addr, 0);
3263
3264                                } else {
3265                                        /* two destinations */
3266                                        list_for_each_entry_from(iter,
3267                                            &sw_desc->group_list,
3268                                            chain_node) {
3269                                                ppc440spe_desc_set_dest_addr(
3270                                                        iter, chan,
3271                                                        DMA_CUED_XOR_BASE,
3272                                                        paddr, 0);
3273                                                ppc440spe_desc_set_dest_addr(
3274                                                        iter, chan,
3275                                                        DMA_CUED_XOR_BASE,
3276                                                        qaddr, 1);
3277                                        }
3278                                }
3279                        }
3280
3281                }
3282                break;
3283
3284        case PPC440SPE_XOR_ID:
3285                /* DMA2 descriptors have only 1 destination, so there are
3286                 * two chains - one for each dest.
3287                 * If we want to include destination into calculations,
3288                 * then make dest addresses cued with mult=1 (XOR).
3289                 */
3290                ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3291                                DMA_CUED_XOR_HB :
3292                                DMA_CUED_XOR_BASE |
3293                                        (1 << DMA_CUED_MULT1_OFF);
3294
3295                qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3296                                DMA_CUED_XOR_HB :
3297                                DMA_CUED_XOR_BASE |
3298                                        (1 << DMA_CUED_MULT1_OFF);
3299
3300                iter = ppc440spe_get_group_entry(sw_desc, 0);
3301                for (i = 0; i < sw_desc->descs_per_op; i++) {
3302                        ppc440spe_desc_set_dest_addr(iter, chan,
3303                                paddr ? ppath : qpath,
3304                                paddr ? paddr : qaddr, 0);
3305                        iter = list_entry(iter->chain_node.next,
3306                                          struct ppc440spe_adma_desc_slot,
3307                                          chain_node);
3308                }
3309
3310                if (!addr) {
3311                        /* Two destinations; setup Q here */
3312                        iter = ppc440spe_get_group_entry(sw_desc,
3313                                sw_desc->descs_per_op);
3314                        for (i = 0; i < sw_desc->descs_per_op; i++) {
3315                                ppc440spe_desc_set_dest_addr(iter,
3316                                        chan, qpath, qaddr, 0);
3317                                iter = list_entry(iter->chain_node.next,
3318                                                struct ppc440spe_adma_desc_slot,
3319                                                chain_node);
3320                        }
3321                }
3322
3323                break;
3324        }
3325}
3326
3327/**
3328 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3329 * for the PQ_ZERO_SUM operation
3330 */
3331static void ppc440spe_adma_pqzero_sum_set_dest(
3332                struct ppc440spe_adma_desc_slot *sw_desc,
3333                dma_addr_t paddr, dma_addr_t qaddr)
3334{
3335        struct ppc440spe_adma_desc_slot *iter, *end;
3336        struct ppc440spe_adma_chan *chan;
3337        dma_addr_t addr = 0;
3338        int idx;
3339
3340        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3341
3342        /* walk through the WXOR source list and set P/Q-destinations
3343         * for each slot
3344         */
3345        idx = (paddr && qaddr) ? 2 : 1;
3346        /* set end */
3347        list_for_each_entry_reverse(end, &sw_desc->group_list,
3348                                    chain_node) {
3349                if (!(--idx))
3350                        break;
3351        }
3352        /* set start */
3353        idx = (paddr && qaddr) ? 2 : 1;
3354        iter = ppc440spe_get_group_entry(sw_desc, idx);
3355
3356        if (paddr && qaddr) {
3357                /* two destinations */
3358                list_for_each_entry_from(iter, &sw_desc->group_list,
3359                                         chain_node) {
3360                        if (unlikely(iter == end))
3361                                break;
3362                        ppc440spe_desc_set_dest_addr(iter, chan,
3363                                                DMA_CUED_XOR_BASE, paddr, 0);
3364                        ppc440spe_desc_set_dest_addr(iter, chan,
3365                                                DMA_CUED_XOR_BASE, qaddr, 1);
3366                }
3367        } else {
3368                /* one destination */
3369                addr = paddr ? paddr : qaddr;
3370                list_for_each_entry_from(iter, &sw_desc->group_list,
3371                                         chain_node) {
3372                        if (unlikely(iter == end))
3373                                break;
3374                        ppc440spe_desc_set_dest_addr(iter, chan,
3375                                                DMA_CUED_XOR_BASE, addr, 0);
3376                }
3377        }
3378
3379        /*  The remaining descriptors are DATACHECK. These have no need in
3380         * destination. Actually, these destinations are used there
3381         * as sources for check operation. So, set addr as source.
3382         */
3383        ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3384
3385        if (!addr) {
3386                end = list_entry(end->chain_node.next,
3387                                 struct ppc440spe_adma_desc_slot, chain_node);
3388                ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3389        }
3390}
3391
3392/**
3393 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3394 */
3395static inline void ppc440spe_desc_set_xor_src_cnt(
3396                        struct ppc440spe_adma_desc_slot *desc,
3397                        int src_cnt)
3398{
3399        struct xor_cb *hw_desc = desc->hw_desc;
3400
3401        hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3402        hw_desc->cbc |= src_cnt;
3403}
3404
3405/**
3406 * ppc440spe_adma_pq_set_src - set source address into descriptor
3407 */
3408static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3409                dma_addr_t addr, int index)
3410{
3411        struct ppc440spe_adma_chan *chan;
3412        dma_addr_t haddr = 0;
3413        struct ppc440spe_adma_desc_slot *iter = NULL;
3414
3415        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3416
3417        switch (chan->device->id) {
3418        case PPC440SPE_DMA0_ID:
3419        case PPC440SPE_DMA1_ID:
3420                /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3421                 */
3422                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3423                        /* RXOR-only or RXOR/WXOR operation */
3424                        int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3425                                &sw_desc->flags) ?  2 : 3;
3426
3427                        if (index == 0) {
3428                                /* 1st slot (RXOR) */
3429                                /* setup sources region (R1-2-3, R1-2-4,
3430                                 * or R1-2-5)
3431                                 */
3432                                if (test_bit(PPC440SPE_DESC_RXOR12,
3433                                                &sw_desc->flags))
3434                                        haddr = DMA_RXOR12 <<
3435                                                DMA_CUED_REGION_OFF;
3436                                else if (test_bit(PPC440SPE_DESC_RXOR123,
3437                                    &sw_desc->flags))
3438                                        haddr = DMA_RXOR123 <<
3439                                                DMA_CUED_REGION_OFF;
3440                                else if (test_bit(PPC440SPE_DESC_RXOR124,
3441                                    &sw_desc->flags))
3442                                        haddr = DMA_RXOR124 <<
3443                                                DMA_CUED_REGION_OFF;
3444                                else if (test_bit(PPC440SPE_DESC_RXOR125,
3445                                    &sw_desc->flags))
3446                                        haddr = DMA_RXOR125 <<
3447                                                DMA_CUED_REGION_OFF;
3448                                else
3449                                        BUG();
3450                                haddr |= DMA_CUED_XOR_BASE;
3451                                iter = ppc440spe_get_group_entry(sw_desc, 0);
3452                        } else if (index < iskip) {
3453                                /* 1st slot (RXOR)
3454                                 * shall actually set source address only once
3455                                 * instead of first <iskip>
3456                                 */
3457                                iter = NULL;
3458                        } else {
3459                                /* 2nd/3d and next slots (WXOR);
3460                                 * skip first slot with RXOR
3461                                 */
3462                                haddr = DMA_CUED_XOR_HB;
3463                                iter = ppc440spe_get_group_entry(sw_desc,
3464                                    index - iskip + sw_desc->dst_cnt);
3465                        }
3466                } else {
3467                        int znum = 0;
3468
3469                        /* WXOR-only operation; skip first slots with
3470                         * zeroing destinations
3471                         */
3472                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3473                                znum++;
3474                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3475                                znum++;
3476
3477                        haddr = DMA_CUED_XOR_HB;
3478                        iter = ppc440spe_get_group_entry(sw_desc,
3479                                        index + znum);
3480                }
3481
3482                if (likely(iter)) {
3483                        ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3484
3485                        if (!index &&
3486                            test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3487                            sw_desc->dst_cnt == 2) {
3488                                /* if we have two destinations for RXOR, then
3489                                 * setup source in the second descr too
3490                                 */
3491                                iter = ppc440spe_get_group_entry(sw_desc, 1);
3492                                ppc440spe_desc_set_src_addr(iter, chan, 0,
3493                                        haddr, addr);
3494                        }
3495                }
3496                break;
3497
3498        case PPC440SPE_XOR_ID:
3499                /* DMA2 may do Biskup */
3500                iter = sw_desc->group_head;
3501                if (iter->dst_cnt == 2) {
3502                        /* both P & Q calculations required; set P src here */
3503                        ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3504
3505                        /* this is for Q */
3506                        iter = ppc440spe_get_group_entry(sw_desc,
3507                                sw_desc->descs_per_op);
3508                }
3509                ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3510                break;
3511        }
3512}
3513
3514/**
3515 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3516 */
3517static void ppc440spe_adma_memcpy_xor_set_src(
3518                struct ppc440spe_adma_desc_slot *sw_desc,
3519                dma_addr_t addr, int index)
3520{
3521        struct ppc440spe_adma_chan *chan;
3522
3523        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3524        sw_desc = sw_desc->group_head;
3525
3526        if (likely(sw_desc))
3527                ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3528}
3529
3530/**
3531 * ppc440spe_adma_dma2rxor_inc_addr  -
3532 */
3533static void ppc440spe_adma_dma2rxor_inc_addr(
3534                struct ppc440spe_adma_desc_slot *desc,
3535                struct ppc440spe_rxor *cursor, int index, int src_cnt)
3536{
3537        cursor->addr_count++;
3538        if (index == src_cnt - 1) {
3539                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3540        } else if (cursor->addr_count == XOR_MAX_OPS) {
3541                ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3542                cursor->addr_count = 0;
3543                cursor->desc_count++;
3544        }
3545}
3546
3547/**
3548 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3549 */
3550static int ppc440spe_adma_dma2rxor_prep_src(
3551                struct ppc440spe_adma_desc_slot *hdesc,
3552                struct ppc440spe_rxor *cursor, int index,
3553                int src_cnt, u32 addr)
3554{
3555        int rval = 0;
3556        u32 sign;
3557        struct ppc440spe_adma_desc_slot *desc = hdesc;
3558        int i;
3559
3560        for (i = 0; i < cursor->desc_count; i++) {
3561                desc = list_entry(hdesc->chain_node.next,
3562                                  struct ppc440spe_adma_desc_slot,
3563                                  chain_node);
3564        }
3565
3566        switch (cursor->state) {
3567        case 0:
3568                if (addr == cursor->addrl + cursor->len) {
3569                        /* direct RXOR */
3570                        cursor->state = 1;
3571                        cursor->xor_count++;
3572                        if (index == src_cnt-1) {
3573                                ppc440spe_rxor_set_region(desc,
3574                                        cursor->addr_count,
3575                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3576                                ppc440spe_adma_dma2rxor_inc_addr(
3577                                        desc, cursor, index, src_cnt);
3578                        }
3579                } else if (cursor->addrl == addr + cursor->len) {
3580                        /* reverse RXOR */
3581                        cursor->state = 1;
3582                        cursor->xor_count++;
3583                        set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3584                        if (index == src_cnt-1) {
3585                                ppc440spe_rxor_set_region(desc,
3586                                        cursor->addr_count,
3587                                        DMA_RXOR12 << DMA_CUED_REGION_OFF);
3588                                ppc440spe_adma_dma2rxor_inc_addr(
3589                                        desc, cursor, index, src_cnt);
3590                        }
3591                } else {
3592                        printk(KERN_ERR "Cannot build "
3593                                "DMA2 RXOR command block.\n");
3594                        BUG();
3595                }
3596                break;
3597        case 1:
3598                sign = test_bit(cursor->addr_count,
3599                                desc->reverse_flags)
3600                        ? -1 : 1;
3601                if (index == src_cnt-2 || (sign == -1
3602                        && addr != cursor->addrl - 2*cursor->len)) {
3603                        cursor->state = 0;
3604                        cursor->xor_count = 1;
3605                        cursor->addrl = addr;
3606                        ppc440spe_rxor_set_region(desc,
3607                                cursor->addr_count,
3608                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3609                        ppc440spe_adma_dma2rxor_inc_addr(
3610                                desc, cursor, index, src_cnt);
3611                } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3612                        cursor->state = 2;
3613                        cursor->xor_count = 0;
3614                        ppc440spe_rxor_set_region(desc,
3615                                cursor->addr_count,
3616                                DMA_RXOR123 << DMA_CUED_REGION_OFF);
3617                        if (index == src_cnt-1) {
3618                                ppc440spe_adma_dma2rxor_inc_addr(
3619                                        desc, cursor, index, src_cnt);
3620                        }
3621                } else if (addr == cursor->addrl + 3*cursor->len) {
3622                        cursor->state = 2;
3623                        cursor->xor_count = 0;
3624                        ppc440spe_rxor_set_region(desc,
3625                                cursor->addr_count,
3626                                DMA_RXOR124 << DMA_CUED_REGION_OFF);
3627                        if (index == src_cnt-1) {
3628                                ppc440spe_adma_dma2rxor_inc_addr(
3629                                        desc, cursor, index, src_cnt);
3630                        }
3631                } else if (addr == cursor->addrl + 4*cursor->len) {
3632                        cursor->state = 2;
3633                        cursor->xor_count = 0;
3634                        ppc440spe_rxor_set_region(desc,
3635                                cursor->addr_count,
3636                                DMA_RXOR125 << DMA_CUED_REGION_OFF);
3637                        if (index == src_cnt-1) {
3638                                ppc440spe_adma_dma2rxor_inc_addr(
3639                                        desc, cursor, index, src_cnt);
3640                        }
3641                } else {
3642                        cursor->state = 0;
3643                        cursor->xor_count = 1;
3644                        cursor->addrl = addr;
3645                        ppc440spe_rxor_set_region(desc,
3646                                cursor->addr_count,
3647                                DMA_RXOR12 << DMA_CUED_REGION_OFF);
3648                        ppc440spe_adma_dma2rxor_inc_addr(
3649                                desc, cursor, index, src_cnt);
3650                }
3651                break;
3652        case 2:
3653                cursor->state = 0;
3654                cursor->addrl = addr;
3655                cursor->xor_count++;
3656                if (index) {
3657                        ppc440spe_adma_dma2rxor_inc_addr(
3658                                desc, cursor, index, src_cnt);
3659                }
3660                break;
3661        }
3662
3663        return rval;
3664}
3665
3666/**
3667 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3668 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3669 */
3670static void ppc440spe_adma_dma2rxor_set_src(
3671                struct ppc440spe_adma_desc_slot *desc,
3672                int index, dma_addr_t addr)
3673{
3674        struct xor_cb *xcb = desc->hw_desc;
3675        int k = 0, op = 0, lop = 0;
3676
3677        /* get the RXOR operand which corresponds to index addr */
3678        while (op <= index) {
3679                lop = op;
3680                if (k == XOR_MAX_OPS) {
3681                        k = 0;
3682                        desc = list_entry(desc->chain_node.next,
3683                                struct ppc440spe_adma_desc_slot, chain_node);
3684                        xcb = desc->hw_desc;
3685
3686                }
3687                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3688                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3689                        op += 2;
3690                else
3691                        op += 3;
3692        }
3693
3694        BUG_ON(k < 1);
3695
3696        if (test_bit(k-1, desc->reverse_flags)) {
3697                /* reverse operand order; put last op in RXOR group */
3698                if (index == op - 1)
3699                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3700        } else {
3701                /* direct operand order; put first op in RXOR group */
3702                if (index == lop)
3703                        ppc440spe_rxor_set_src(desc, k - 1, addr);
3704        }
3705}
3706
3707/**
3708 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3709 *      ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3710 */
3711static void ppc440spe_adma_dma2rxor_set_mult(
3712                struct ppc440spe_adma_desc_slot *desc,
3713                int index, u8 mult)
3714{
3715        struct xor_cb *xcb = desc->hw_desc;
3716        int k = 0, op = 0, lop = 0;
3717
3718        /* get the RXOR operand which corresponds to index mult */
3719        while (op <= index) {
3720                lop = op;
3721                if (k == XOR_MAX_OPS) {
3722                        k = 0;
3723                        desc = list_entry(desc->chain_node.next,
3724                                          struct ppc440spe_adma_desc_slot,
3725                                          chain_node);
3726                        xcb = desc->hw_desc;
3727
3728                }
3729                if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3730                    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3731                        op += 2;
3732                else
3733                        op += 3;
3734        }
3735
3736        BUG_ON(k < 1);
3737        if (test_bit(k-1, desc->reverse_flags)) {
3738                /* reverse order */
3739                ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3740        } else {
3741                /* direct order */
3742                ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3743        }
3744}
3745
3746/**
3747 * ppc440spe_init_rxor_cursor -
3748 */
3749static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3750{
3751        memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3752        cursor->state = 2;
3753}
3754
3755/**
3756 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3757 * descriptor for the PQXOR operation
3758 */
3759static void ppc440spe_adma_pq_set_src_mult(
3760                struct ppc440spe_adma_desc_slot *sw_desc,
3761                unsigned char mult, int index, int dst_pos)
3762{
3763        struct ppc440spe_adma_chan *chan;
3764        u32 mult_idx, mult_dst;
3765        struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3766
3767        chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3768
3769        switch (chan->device->id) {
3770        case PPC440SPE_DMA0_ID:
3771        case PPC440SPE_DMA1_ID:
3772                if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3773                        int region = test_bit(PPC440SPE_DESC_RXOR12,
3774                                        &sw_desc->flags) ? 2 : 3;
3775
3776                        if (index < region) {
3777                                /* RXOR multipliers */
3778                                iter = ppc440spe_get_group_entry(sw_desc,
3779                                        sw_desc->dst_cnt - 1);
3780                                if (sw_desc->dst_cnt == 2)
3781                                        iter1 = ppc440spe_get_group_entry(
3782                                                        sw_desc, 0);
3783
3784                                mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3785                                mult_dst = DMA_CDB_SG_SRC;
3786                        } else {
3787                                /* WXOR multiplier */
3788                                iter = ppc440spe_get_group_entry(sw_desc,
3789                                                        index - region +
3790                                                        sw_desc->dst_cnt);
3791                                mult_idx = DMA_CUED_MULT1_OFF;
3792                                mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3793                                                     DMA_CDB_SG_DST1;
3794                        }
3795                } else {
3796                        int znum = 0;
3797
3798                        /* WXOR-only;
3799                         * skip first slots with destinations (if ZERO_DST has
3800                         * place)
3801                         */
3802                        if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3803                                znum++;
3804                        if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3805                                znum++;
3806
3807                        iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3808                        mult_idx = DMA_CUED_MULT1_OFF;
3809                        mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3810                }
3811
3812                if (likely(iter)) {
3813                        ppc440spe_desc_set_src_mult(iter, chan,
3814                                mult_idx, mult_dst, mult);
3815
3816                        if (unlikely(iter1)) {
3817                                /* if we have two destinations for RXOR, then
3818                                 * we've just set Q mult. Set-up P now.
3819                                 */
3820                                ppc440spe_desc_set_src_mult(iter1, chan,
3821                                        mult_idx, mult_dst, 1);
3822                        }
3823
3824                }
3825                break;
3826
3827        case PPC440SPE_XOR_ID:
3828                iter = sw_desc->group_head;
3829                if (sw_desc->dst_cnt == 2) {
3830                        /* both P & Q calculations required; set P mult here */
3831                        ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3832
3833                        /* and then set Q mult */
3834                        iter = ppc440spe_get_group_entry(sw_desc,
3835                               sw_desc->descs_per_op);
3836                }
3837                ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3838                break;
3839        }
3840}
3841
3842/**
3843 * ppc440spe_adma_free_chan_resources - free the resources allocated
3844 */
3845static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3846{
3847        struct ppc440spe_adma_chan *ppc440spe_chan;
3848        struct ppc440spe_adma_desc_slot *iter, *_iter;
3849        int in_use_descs = 0;
3850
3851        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3852        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3853
3854        spin_lock_bh(&ppc440spe_chan->lock);
3855        list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3856                                        chain_node) {
3857                in_use_descs++;
3858                list_del(&iter->chain_node);
3859        }
3860        list_for_each_entry_safe_reverse(iter, _iter,
3861                        &ppc440spe_chan->all_slots, slot_node) {
3862                list_del(&iter->slot_node);
3863                kfree(iter);
3864                ppc440spe_chan->slots_allocated--;
3865        }
3866        ppc440spe_chan->last_used = NULL;
3867
3868        dev_dbg(ppc440spe_chan->device->common.dev,
3869                "ppc440spe adma%d %s slots_allocated %d\n",
3870                ppc440spe_chan->device->id,
3871                __func__, ppc440spe_chan->slots_allocated);
3872        spin_unlock_bh(&ppc440spe_chan->lock);
3873
3874        /* one is ok since we left it on there on purpose */
3875        if (in_use_descs > 1)
3876                printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3877                        in_use_descs - 1);
3878}
3879
3880/**
3881 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3882 * @chan: ADMA channel handle
3883 * @cookie: ADMA transaction identifier
3884 * @txstate: a holder for the current state of the channel
3885 */
3886static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3887                        dma_cookie_t cookie, struct dma_tx_state *txstate)
3888{
3889        struct ppc440spe_adma_chan *ppc440spe_chan;
3890        enum dma_status ret;
3891
3892        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3893        ret = dma_cookie_status(chan, cookie, txstate);
3894        if (ret == DMA_SUCCESS)
3895                return ret;
3896
3897        ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3898
3899        return dma_cookie_status(chan, cookie, txstate);
3900}
3901
3902/**
3903 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3904 */
3905static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3906{
3907        struct ppc440spe_adma_chan *chan = data;
3908
3909        dev_dbg(chan->device->common.dev,
3910                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3911
3912        tasklet_schedule(&chan->irq_tasklet);
3913        ppc440spe_adma_device_clear_eot_status(chan);
3914
3915        return IRQ_HANDLED;
3916}
3917
3918/**
3919 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3920 *      do the same things as a eot handler
3921 */
3922static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3923{
3924        struct ppc440spe_adma_chan *chan = data;
3925
3926        dev_dbg(chan->device->common.dev,
3927                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3928
3929        tasklet_schedule(&chan->irq_tasklet);
3930        ppc440spe_adma_device_clear_eot_status(chan);
3931
3932        return IRQ_HANDLED;
3933}
3934
3935/**
3936 * ppc440spe_test_callback - called when test operation has been done
3937 */
3938static void ppc440spe_test_callback(void *unused)
3939{
3940        complete(&ppc440spe_r6_test_comp);
3941}
3942
3943/**
3944 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3945 */
3946static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3947{
3948        struct ppc440spe_adma_chan *ppc440spe_chan;
3949
3950        ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3951        dev_dbg(ppc440spe_chan->device->common.dev,
3952                "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3953                __func__, ppc440spe_chan->pending);
3954
3955        if (ppc440spe_chan->pending) {
3956                ppc440spe_chan->pending = 0;
3957                ppc440spe_chan_append(ppc440spe_chan);
3958        }
3959}
3960
3961/**
3962 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3963 *      use FIFOs (as opposite to chains used in XOR) so this is a XOR
3964 *      specific operation)
3965 */
3966static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3967{
3968        struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3969        dma_cookie_t cookie;
3970        int slot_cnt, slots_per_op;
3971
3972        dev_dbg(chan->device->common.dev,
3973                "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3974
3975        spin_lock_bh(&chan->lock);
3976        slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3977        sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3978        if (sw_desc) {
3979                group_start = sw_desc->group_head;
3980                list_splice_init(&sw_desc->group_list, &chan->chain);
3981                async_tx_ack(&sw_desc->async_tx);
3982                ppc440spe_desc_init_null_xor(group_start);
3983
3984                cookie = dma_cookie_assign(&sw_desc->async_tx);
3985
3986                /* initialize the completed cookie to be less than
3987                 * the most recently used cookie
3988                 */
3989                chan->common.completed_cookie = cookie - 1;
3990
3991                /* channel should not be busy */
3992                BUG_ON(ppc440spe_chan_is_busy(chan));
3993
3994                /* set the descriptor address */
3995                ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3996
3997                /* run the descriptor */
3998                ppc440spe_chan_run(chan);
3999        } else
4000                printk(KERN_ERR "ppc440spe adma%d"
4001                        " failed to allocate null descriptor\n",
4002                        chan->device->id);
4003        spin_unlock_bh(&chan->lock);
4004}
4005
4006/**
4007 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4008 *      For this we just perform one WXOR operation with the same source
4009 *      and destination addresses, the GF-multiplier is 1; so if RAID-6
4010 *      capabilities are enabled then we'll get src/dst filled with zero.
4011 */
4012static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4013{
4014        struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4015        struct page *pg;
4016        char *a;
4017        dma_addr_t dma_addr, addrs[2];
4018        unsigned long op = 0;
4019        int rval = 0;
4020
4021        set_bit(PPC440SPE_DESC_WXOR, &op);
4022
4023        pg = alloc_page(GFP_KERNEL);
4024        if (!pg)
4025                return -ENOMEM;
4026
4027        spin_lock_bh(&chan->lock);
4028        sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4029        if (sw_desc) {
4030                /* 1 src, 1 dsr, int_ena, WXOR */
4031                ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4032                list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4033                        ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4034                        iter->unmap_len = PAGE_SIZE;
4035                }
4036        } else {
4037                rval = -EFAULT;
4038                spin_unlock_bh(&chan->lock);
4039                goto exit;
4040        }
4041        spin_unlock_bh(&chan->lock);
4042
4043        /* Fill the test page with ones */
4044        memset(page_address(pg), 0xFF, PAGE_SIZE);
4045        dma_addr = dma_map_page(chan->device->dev, pg, 0,
4046                                PAGE_SIZE, DMA_BIDIRECTIONAL);
4047
4048        /* Setup addresses */
4049        ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4050        ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4051        addrs[0] = dma_addr;
4052        addrs[1] = 0;
4053        ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4054
4055        async_tx_ack(&sw_desc->async_tx);
4056        sw_desc->async_tx.callback = ppc440spe_test_callback;
4057        sw_desc->async_tx.callback_param = NULL;
4058
4059        init_completion(&ppc440spe_r6_test_comp);
4060
4061        ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4062        ppc440spe_adma_issue_pending(&chan->common);
4063
4064        wait_for_completion(&ppc440spe_r6_test_comp);
4065
4066        /* Now check if the test page is zeroed */
4067        a = page_address(pg);
4068        if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4069                /* page is zero - RAID-6 enabled */
4070                rval = 0;
4071        } else {
4072                /* RAID-6 was not enabled */
4073                rval = -EINVAL;
4074        }
4075exit:
4076        __free_page(pg);
4077        return rval;
4078}
4079
4080static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4081{
4082        switch (adev->id) {
4083        case PPC440SPE_DMA0_ID:
4084        case PPC440SPE_DMA1_ID:
4085                dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4086                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4087                dma_cap_set(DMA_PQ, adev->common.cap_mask);
4088                dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4089                dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4090                break;
4091        case PPC440SPE_XOR_ID:
4092                dma_cap_set(DMA_XOR, adev->common.cap_mask);
4093                dma_cap_set(DMA_PQ, adev->common.cap_mask);
4094                dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4095                adev->common.cap_mask = adev->common.cap_mask;
4096                break;
4097        }
4098
4099        /* Set base routines */
4100        adev->common.device_alloc_chan_resources =
4101                                ppc440spe_adma_alloc_chan_resources;
4102        adev->common.device_free_chan_resources =
4103                                ppc440spe_adma_free_chan_resources;
4104        adev->common.device_tx_status = ppc440spe_adma_tx_status;
4105        adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4106
4107        /* Set prep routines based on capability */
4108        if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4109                adev->common.device_prep_dma_memcpy =
4110                        ppc440spe_adma_prep_dma_memcpy;
4111        }
4112        if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4113                adev->common.max_xor = XOR_MAX_OPS;
4114                adev->common.device_prep_dma_xor =
4115                        ppc440spe_adma_prep_dma_xor;
4116        }
4117        if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4118                switch (adev->id) {
4119                case PPC440SPE_DMA0_ID:
4120                        dma_set_maxpq(&adev->common,
4121                                DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4122                        break;
4123                case PPC440SPE_DMA1_ID:
4124                        dma_set_maxpq(&adev->common,
4125                                DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4126                        break;
4127                case PPC440SPE_XOR_ID:
4128                        adev->common.max_pq = XOR_MAX_OPS * 3;
4129                        break;
4130                }
4131                adev->common.device_prep_dma_pq =
4132                        ppc440spe_adma_prep_dma_pq;
4133        }
4134        if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4135                switch (adev->id) {
4136                case PPC440SPE_DMA0_ID:
4137                        adev->common.max_pq = DMA0_FIFO_SIZE /
4138                                                sizeof(struct dma_cdb);
4139                        break;
4140                case PPC440SPE_DMA1_ID:
4141                        adev->common.max_pq = DMA1_FIFO_SIZE /
4142                                                sizeof(struct dma_cdb);
4143                        break;
4144                }
4145                adev->common.device_prep_dma_pq_val =
4146                        ppc440spe_adma_prep_dma_pqzero_sum;
4147        }
4148        if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4149                switch (adev->id) {
4150                case PPC440SPE_DMA0_ID:
4151                        adev->common.max_xor = DMA0_FIFO_SIZE /
4152                                                sizeof(struct dma_cdb);
4153                        break;
4154                case PPC440SPE_DMA1_ID:
4155                        adev->common.max_xor = DMA1_FIFO_SIZE /
4156                                                sizeof(struct dma_cdb);
4157                        break;
4158                }
4159                adev->common.device_prep_dma_xor_val =
4160                        ppc440spe_adma_prep_dma_xor_zero_sum;
4161        }
4162        if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4163                adev->common.device_prep_dma_interrupt =
4164                        ppc440spe_adma_prep_dma_interrupt;
4165        }
4166        pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4167          "( %s%s%s%s%s%s%s)\n",
4168          dev_name(adev->dev),
4169          dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4170          dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4171          dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4172          dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4173          dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4174          dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4175}
4176
4177static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4178                                     struct ppc440spe_adma_chan *chan,
4179                                     int *initcode)
4180{
4181        struct platform_device *ofdev;
4182        struct device_node *np;
4183        int ret;
4184
4185        ofdev = container_of(adev->dev, struct platform_device, dev);
4186        np = ofdev->dev.of_node;
4187        if (adev->id != PPC440SPE_XOR_ID) {
4188                adev->err_irq = irq_of_parse_and_map(np, 1);
4189                if (adev->err_irq == NO_IRQ) {
4190                        dev_warn(adev->dev, "no err irq resource?\n");
4191                        *initcode = PPC_ADMA_INIT_IRQ2;
4192                        adev->err_irq = -ENXIO;
4193                } else
4194                        atomic_inc(&ppc440spe_adma_err_irq_ref);
4195        } else {
4196                adev->err_irq = -ENXIO;
4197        }
4198
4199        adev->irq = irq_of_parse_and_map(np, 0);
4200        if (adev->irq == NO_IRQ) {
4201                dev_err(adev->dev, "no irq resource\n");
4202                *initcode = PPC_ADMA_INIT_IRQ1;
4203                ret = -ENXIO;
4204                goto err_irq_map;
4205        }
4206        dev_dbg(adev->dev, "irq %d, err irq %d\n",
4207                adev->irq, adev->err_irq);
4208
4209        ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4210                          0, dev_driver_string(adev->dev), chan);
4211        if (ret) {
4212                dev_err(adev->dev, "can't request irq %d\n",
4213                        adev->irq);
4214                *initcode = PPC_ADMA_INIT_IRQ1;
4215                ret = -EIO;
4216                goto err_req1;
4217        }
4218
4219        /* only DMA engines have a separate error IRQ
4220         * so it's Ok if err_irq < 0 in XOR engine case.
4221         */
4222        if (adev->err_irq > 0) {
4223                /* both DMA engines share common error IRQ */
4224                ret = request_irq(adev->err_irq,
4225                                  ppc440spe_adma_err_handler,
4226                                  IRQF_SHARED,
4227                                  dev_driver_string(adev->dev),
4228                                  chan);
4229                if (ret) {
4230                        dev_err(adev->dev, "can't request irq %d\n",
4231                                adev->err_irq);
4232                        *initcode = PPC_ADMA_INIT_IRQ2;
4233                        ret = -EIO;
4234                        goto err_req2;
4235                }
4236        }
4237
4238        if (adev->id == PPC440SPE_XOR_ID) {
4239                /* enable XOR engine interrupts */
4240                iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4241                            XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4242                            &adev->xor_reg->ier);
4243        } else {
4244                u32 mask, enable;
4245
4246                np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4247                if (!np) {
4248                        pr_err("%s: can't find I2O device tree node\n",
4249                                __func__);
4250                        ret = -ENODEV;
4251                        goto err_req2;
4252                }
4253                adev->i2o_reg = of_iomap(np, 0);
4254                if (!adev->i2o_reg) {
4255                        pr_err("%s: failed to map I2O registers\n", __func__);
4256                        of_node_put(np);
4257                        ret = -EINVAL;
4258                        goto err_req2;
4259                }
4260                of_node_put(np);
4261                /* Unmask 'CS FIFO Attention' interrupts and
4262                 * enable generating interrupts on errors
4263                 */
4264                enable = (adev->id == PPC440SPE_DMA0_ID) ?
4265                         ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4266                         ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4267                mask = ioread32(&adev->i2o_reg->iopim) & enable;
4268                iowrite32(mask, &adev->i2o_reg->iopim);
4269        }
4270        return 0;
4271
4272err_req2:
4273        free_irq(adev->irq, chan);
4274err_req1:
4275        irq_dispose_mapping(adev->irq);
4276err_irq_map:
4277        if (adev->err_irq > 0) {
4278                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4279                        irq_dispose_mapping(adev->err_irq);
4280        }
4281        return ret;
4282}
4283
4284static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4285                                        struct ppc440spe_adma_chan *chan)
4286{
4287        u32 mask, disable;
4288
4289        if (adev->id == PPC440SPE_XOR_ID) {
4290                /* disable XOR engine interrupts */
4291                mask = ioread32be(&adev->xor_reg->ier);
4292                mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4293                          XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4294                iowrite32be(mask, &adev->xor_reg->ier);
4295        } else {
4296                /* disable DMAx engine interrupts */
4297                disable = (adev->id == PPC440SPE_DMA0_ID) ?
4298                          (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4299                          (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4300                mask = ioread32(&adev->i2o_reg->iopim) | disable;
4301                iowrite32(mask, &adev->i2o_reg->iopim);
4302        }
4303        free_irq(adev->irq, chan);
4304        irq_dispose_mapping(adev->irq);
4305        if (adev->err_irq > 0) {
4306                free_irq(adev->err_irq, chan);
4307                if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4308                        irq_dispose_mapping(adev->err_irq);
4309                        iounmap(adev->i2o_reg);
4310                }
4311        }
4312}
4313
4314/**
4315 * ppc440spe_adma_probe - probe the asynch device
4316 */
4317static int ppc440spe_adma_probe(struct platform_device *ofdev)
4318{
4319        struct device_node *np = ofdev->dev.of_node;
4320        struct resource res;
4321        struct ppc440spe_adma_device *adev;
4322        struct ppc440spe_adma_chan *chan;
4323        struct ppc_dma_chan_ref *ref, *_ref;
4324        int ret = 0, initcode = PPC_ADMA_INIT_OK;
4325        const u32 *idx;
4326        int len;
4327        void *regs;
4328        u32 id, pool_size;
4329
4330        if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4331                id = PPC440SPE_XOR_ID;
4332                /* As far as the XOR engine is concerned, it does not
4333                 * use FIFOs but uses linked list. So there is no dependency
4334                 * between pool size to allocate and the engine configuration.
4335                 */
4336                pool_size = PAGE_SIZE << 1;
4337        } else {
4338                /* it is DMA0 or DMA1 */
4339                idx = of_get_property(np, "cell-index", &len);
4340                if (!idx || (len != sizeof(u32))) {
4341                        dev_err(&ofdev->dev, "Device node %s has missing "
4342                                "or invalid cell-index property\n",
4343                                np->full_name);
4344                        return -EINVAL;
4345                }
4346                id = *idx;
4347                /* DMA0,1 engines use FIFO to maintain CDBs, so we
4348                 * should allocate the pool accordingly to size of this
4349                 * FIFO. Thus, the pool size depends on the FIFO depth:
4350                 * how much CDBs pointers the FIFO may contain then so
4351                 * much CDBs we should provide in the pool.
4352                 * That is
4353                 *   CDB size = 32B;
4354                 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4355                 *   Pool size = CDBs number * CDB size =
4356                 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4357                 */
4358                pool_size = (id == PPC440SPE_DMA0_ID) ?
4359                            DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4360                pool_size <<= 2;
4361        }
4362
4363        if (of_address_to_resource(np, 0, &res)) {
4364                dev_err(&ofdev->dev, "failed to get memory resource\n");
4365                initcode = PPC_ADMA_INIT_MEMRES;
4366                ret = -ENODEV;
4367                goto out;
4368        }
4369
4370        if (!request_mem_region(res.start, resource_size(&res),
4371                                dev_driver_string(&ofdev->dev))) {
4372                dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4373                        &res);
4374                initcode = PPC_ADMA_INIT_MEMREG;
4375                ret = -EBUSY;
4376                goto out;
4377        }
4378
4379        /* create a device */
4380        adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4381        if (!adev) {
4382                dev_err(&ofdev->dev, "failed to allocate device\n");
4383                initcode = PPC_ADMA_INIT_ALLOC;
4384                ret = -ENOMEM;
4385                goto err_adev_alloc;
4386        }
4387
4388        adev->id = id;
4389        adev->pool_size = pool_size;
4390        /* allocate coherent memory for hardware descriptors */
4391        adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4392                                        adev->pool_size, &adev->dma_desc_pool,
4393                                        GFP_KERNEL);
4394        if (adev->dma_desc_pool_virt == NULL) {
4395                dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4396                        "memory for hardware descriptors\n",
4397                        adev->pool_size);
4398                initcode = PPC_ADMA_INIT_COHERENT;
4399                ret = -ENOMEM;
4400                goto err_dma_alloc;
4401        }
4402        dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4403                adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4404
4405        regs = ioremap(res.start, resource_size(&res));
4406        if (!regs) {
4407                dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4408                goto err_regs_alloc;
4409        }
4410
4411        if (adev->id == PPC440SPE_XOR_ID) {
4412                adev->xor_reg = regs;
4413                /* Reset XOR */
4414                iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4415                iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4416        } else {
4417                size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4418                                   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4419                adev->dma_reg = regs;
4420                /* DMAx_FIFO_SIZE is defined in bytes,
4421                 * <fsiz> - is defined in number of CDB pointers (8byte).
4422                 * DMA FIFO Length = CSlength + CPlength, where
4423                 * CSlength = CPlength = (fsiz + 1) * 8.
4424                 */
4425                iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4426                          &adev->dma_reg->fsiz);
4427                /* Configure DMA engine */
4428                iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4429                          &adev->dma_reg->cfg);
4430                /* Clear Status */
4431                iowrite32(~0, &adev->dma_reg->dsts);
4432        }
4433
4434        adev->dev = &ofdev->dev;
4435        adev->common.dev = &ofdev->dev;
4436        INIT_LIST_HEAD(&adev->common.channels);
4437        platform_set_drvdata(ofdev, adev);
4438
4439        /* create a channel */
4440        chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4441        if (!chan) {
4442                dev_err(&ofdev->dev, "can't allocate channel structure\n");
4443                initcode = PPC_ADMA_INIT_CHANNEL;
4444                ret = -ENOMEM;
4445                goto err_chan_alloc;
4446        }
4447
4448        spin_lock_init(&chan->lock);
4449        INIT_LIST_HEAD(&chan->chain);
4450        INIT_LIST_HEAD(&chan->all_slots);
4451        chan->device = adev;
4452        chan->common.device = &adev->common;
4453        dma_cookie_init(&chan->common);
4454        list_add_tail(&chan->common.device_node, &adev->common.channels);
4455        tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4456                     (unsigned long)chan);
4457
4458        /* allocate and map helper pages for async validation or
4459         * async_mult/async_sum_product operations on DMA0/1.
4460         */
4461        if (adev->id != PPC440SPE_XOR_ID) {
4462                chan->pdest_page = alloc_page(GFP_KERNEL);
4463                chan->qdest_page = alloc_page(GFP_KERNEL);
4464                if (!chan->pdest_page ||
4465                    !chan->qdest_page) {
4466                        if (chan->pdest_page)
4467                                __free_page(chan->pdest_page);
4468                        if (chan->qdest_page)
4469                                __free_page(chan->qdest_page);
4470                        ret = -ENOMEM;
4471                        goto err_page_alloc;
4472                }
4473                chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4474                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4475                chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4476                                           PAGE_SIZE, DMA_BIDIRECTIONAL);
4477        }
4478
4479        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4480        if (ref) {
4481                ref->chan = &chan->common;
4482                INIT_LIST_HEAD(&ref->node);
4483                list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4484        } else {
4485                dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4486                ret = -ENOMEM;
4487                goto err_ref_alloc;
4488        }
4489
4490        ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4491        if (ret)
4492                goto err_irq;
4493
4494        ppc440spe_adma_init_capabilities(adev);
4495
4496        ret = dma_async_device_register(&adev->common);
4497        if (ret) {
4498                initcode = PPC_ADMA_INIT_REGISTER;
4499                dev_err(&ofdev->dev, "failed to register dma device\n");
4500                goto err_dev_reg;
4501        }
4502
4503        goto out;
4504
4505err_dev_reg:
4506        ppc440spe_adma_release_irqs(adev, chan);
4507err_irq:
4508        list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4509                if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4510                        list_del(&ref->node);
4511                        kfree(ref);
4512                }
4513        }
4514err_ref_alloc:
4515        if (adev->id != PPC440SPE_XOR_ID) {
4516                dma_unmap_page(&ofdev->dev, chan->pdest,
4517                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4518                dma_unmap_page(&ofdev->dev, chan->qdest,
4519                               PAGE_SIZE, DMA_BIDIRECTIONAL);
4520                __free_page(chan->pdest_page);
4521                __free_page(chan->qdest_page);
4522        }
4523err_page_alloc:
4524        kfree(chan);
4525err_chan_alloc:
4526        if (adev->id == PPC440SPE_XOR_ID)
4527                iounmap(adev->xor_reg);
4528        else
4529                iounmap(adev->dma_reg);
4530err_regs_alloc:
4531        dma_free_coherent(adev->dev, adev->pool_size,
4532                          adev->dma_desc_pool_virt,
4533                          adev->dma_desc_pool);
4534err_dma_alloc:
4535        kfree(adev);
4536err_adev_alloc:
4537        release_mem_region(res.start, resource_size(&res));
4538out:
4539        if (id < PPC440SPE_ADMA_ENGINES_NUM)
4540                ppc440spe_adma_devices[id] = initcode;
4541
4542        return ret;
4543}
4544
4545/**
4546 * ppc440spe_adma_remove - remove the asynch device
4547 */
4548static int ppc440spe_adma_remove(struct platform_device *ofdev)
4549{
4550        struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4551        struct device_node *np = ofdev->dev.of_node;
4552        struct resource res;
4553        struct dma_chan *chan, *_chan;
4554        struct ppc_dma_chan_ref *ref, *_ref;
4555        struct ppc440spe_adma_chan *ppc440spe_chan;
4556
4557        if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4558                ppc440spe_adma_devices[adev->id] = -1;
4559
4560        dma_async_device_unregister(&adev->common);
4561
4562        list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4563                                 device_node) {
4564                ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4565                ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4566                tasklet_kill(&ppc440spe_chan->irq_tasklet);
4567                if (adev->id != PPC440SPE_XOR_ID) {
4568                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4569                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4570                        dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4571                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
4572                        __free_page(ppc440spe_chan->pdest_page);
4573                        __free_page(ppc440spe_chan->qdest_page);
4574                }
4575                list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4576                                         node) {
4577                        if (ppc440spe_chan ==
4578                            to_ppc440spe_adma_chan(ref->chan)) {
4579                                list_del(&ref->node);
4580                                kfree(ref);
4581                        }
4582                }
4583                list_del(&chan->device_node);
4584                kfree(ppc440spe_chan);
4585        }
4586
4587        dma_free_coherent(adev->dev, adev->pool_size,
4588                          adev->dma_desc_pool_virt, adev->dma_desc_pool);
4589        if (adev->id == PPC440SPE_XOR_ID)
4590                iounmap(adev->xor_reg);
4591        else
4592                iounmap(adev->dma_reg);
4593        of_address_to_resource(np, 0, &res);
4594        release_mem_region(res.start, resource_size(&res));
4595        kfree(adev);
4596        return 0;
4597}
4598
4599/*
4600 * /sys driver interface to enable h/w RAID-6 capabilities
4601 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4602 * directory are "devices", "enable" and "poly".
4603 * "devices" shows available engines.
4604 * "enable" is used to enable RAID-6 capabilities or to check
4605 * whether these has been activated.
4606 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4607 */
4608
4609static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4610{
4611        ssize_t size = 0;
4612        int i;
4613
4614        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4615                if (ppc440spe_adma_devices[i] == -1)
4616                        continue;
4617                size += snprintf(buf + size, PAGE_SIZE - size,
4618                                 "PPC440SP(E)-ADMA.%d: %s\n", i,
4619                                 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4620        }
4621        return size;
4622}
4623
4624static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4625{
4626        return snprintf(buf, PAGE_SIZE,
4627                        "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4628                        ppc440spe_r6_enabled ? "EN" : "DIS");
4629}
4630
4631static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4632                                        const char *buf, size_t count)
4633{
4634        unsigned long val;
4635
4636        if (!count || count > 11)
4637                return -EINVAL;
4638
4639        if (!ppc440spe_r6_tchan)
4640                return -EFAULT;
4641
4642        /* Write a key */
4643        sscanf(buf, "%lx", &val);
4644        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4645        isync();
4646
4647        /* Verify whether it really works now */
4648        if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4649                pr_info("PPC440SP(e) RAID-6 has been activated "
4650                        "successfully\n");
4651                ppc440spe_r6_enabled = 1;
4652        } else {
4653                pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4654                        " Error key ?\n");
4655                ppc440spe_r6_enabled = 0;
4656        }
4657        return count;
4658}
4659
4660static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4661{
4662        ssize_t size = 0;
4663        u32 reg;
4664
4665#ifdef CONFIG_440SP
4666        /* 440SP has fixed polynomial */
4667        reg = 0x4d;
4668#else
4669        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4670        reg >>= MQ0_CFBHL_POLY;
4671        reg &= 0xFF;
4672#endif
4673
4674        size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4675                        "uses 0x1%02x polynomial.\n", reg);
4676        return size;
4677}
4678
4679static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4680                                      const char *buf, size_t count)
4681{
4682        unsigned long reg, val;
4683
4684#ifdef CONFIG_440SP
4685        /* 440SP uses default 0x14D polynomial only */
4686        return -EINVAL;
4687#endif
4688
4689        if (!count || count > 6)
4690                return -EINVAL;
4691
4692        /* e.g., 0x14D or 0x11D */
4693        sscanf(buf, "%lx", &val);
4694
4695        if (val & ~0x1FF)
4696                return -EINVAL;
4697
4698        val &= 0xFF;
4699        reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4700        reg &= ~(0xFF << MQ0_CFBHL_POLY);
4701        reg |= val << MQ0_CFBHL_POLY;
4702        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4703
4704        return count;
4705}
4706
4707static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4708static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4709                   store_ppc440spe_r6enable);
4710static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4711                   store_ppc440spe_r6poly);
4712
4713/*
4714 * Common initialisation for RAID engines; allocate memory for
4715 * DMAx FIFOs, perform configuration common for all DMA engines.
4716 * Further DMA engine specific configuration is done at probe time.
4717 */
4718static int ppc440spe_configure_raid_devices(void)
4719{
4720        struct device_node *np;
4721        struct resource i2o_res;
4722        struct i2o_regs __iomem *i2o_reg;
4723        dcr_host_t i2o_dcr_host;
4724        unsigned int dcr_base, dcr_len;
4725        int i, ret;
4726
4727        np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4728        if (!np) {
4729                pr_err("%s: can't find I2O device tree node\n",
4730                        __func__);
4731                return -ENODEV;
4732        }
4733
4734        if (of_address_to_resource(np, 0, &i2o_res)) {
4735                of_node_put(np);
4736                return -EINVAL;
4737        }
4738
4739        i2o_reg = of_iomap(np, 0);
4740        if (!i2o_reg) {
4741                pr_err("%s: failed to map I2O registers\n", __func__);
4742                of_node_put(np);
4743                return -EINVAL;
4744        }
4745
4746        /* Get I2O DCRs base */
4747        dcr_base = dcr_resource_start(np, 0);
4748        dcr_len = dcr_resource_len(np, 0);
4749        if (!dcr_base && !dcr_len) {
4750                pr_err("%s: can't get DCR registers base/len!\n",
4751                        np->full_name);
4752                of_node_put(np);
4753                iounmap(i2o_reg);
4754                return -ENODEV;
4755        }
4756
4757        i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4758        if (!DCR_MAP_OK(i2o_dcr_host)) {
4759                pr_err("%s: failed to map DCRs!\n", np->full_name);
4760                of_node_put(np);
4761                iounmap(i2o_reg);
4762                return -ENODEV;
4763        }
4764        of_node_put(np);
4765
4766        /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4767         * the base address of FIFO memory space.
4768         * Actually we need twice more physical memory than programmed in the
4769         * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4770         */
4771        ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4772                                         GFP_KERNEL);
4773        if (!ppc440spe_dma_fifo_buf) {
4774                pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4775                iounmap(i2o_reg);
4776                dcr_unmap(i2o_dcr_host, dcr_len);
4777                return -ENOMEM;
4778        }
4779
4780        /*
4781         * Configure h/w
4782         */
4783        /* Reset I2O/DMA */
4784        mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4785        mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4786
4787        /* Setup the base address of mmaped registers */
4788        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4789        dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4790                                                I2O_REG_ENABLE);
4791        dcr_unmap(i2o_dcr_host, dcr_len);
4792
4793        /* Setup FIFO memory space base address */
4794        iowrite32(0, &i2o_reg->ifbah);
4795        iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4796
4797        /* set zero FIFO size for I2O, so the whole
4798         * ppc440spe_dma_fifo_buf is used by DMAs.
4799         * DMAx_FIFOs will be configured while probe.
4800         */
4801        iowrite32(0, &i2o_reg->ifsiz);
4802        iounmap(i2o_reg);
4803
4804        /* To prepare WXOR/RXOR functionality we need access to
4805         * Memory Queue Module DCRs (finally it will be enabled
4806         * via /sys interface of the ppc440spe ADMA driver).
4807         */
4808        np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4809        if (!np) {
4810                pr_err("%s: can't find MQ device tree node\n",
4811                        __func__);
4812                ret = -ENODEV;
4813                goto out_free;
4814        }
4815
4816        /* Get MQ DCRs base */
4817        dcr_base = dcr_resource_start(np, 0);
4818        dcr_len = dcr_resource_len(np, 0);
4819        if (!dcr_base && !dcr_len) {
4820                pr_err("%s: can't get DCR registers base/len!\n",
4821                        np->full_name);
4822                ret = -ENODEV;
4823                goto out_mq;
4824        }
4825
4826        ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4827        if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4828                pr_err("%s: failed to map DCRs!\n", np->full_name);
4829                ret = -ENODEV;
4830                goto out_mq;
4831        }
4832        of_node_put(np);
4833        ppc440spe_mq_dcr_len = dcr_len;
4834
4835        /* Set HB alias */
4836        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4837
4838        /* Set:
4839         * - LL transaction passing limit to 1;
4840         * - Memory controller cycle limit to 1;
4841         * - Galois Polynomial to 0x14d (default)
4842         */
4843        dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4844                  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4845                  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4846
4847        atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4848        for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4849                ppc440spe_adma_devices[i] = -1;
4850
4851        return 0;
4852
4853out_mq:
4854        of_node_put(np);
4855out_free:
4856        kfree(ppc440spe_dma_fifo_buf);
4857        return ret;
4858}
4859
4860static const struct of_device_id ppc440spe_adma_of_match[] = {
4861        { .compatible   = "ibm,dma-440spe", },
4862        { .compatible   = "amcc,xor-accelerator", },
4863        {},
4864};
4865MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4866
4867static struct platform_driver ppc440spe_adma_driver = {
4868        .probe = ppc440spe_adma_probe,
4869        .remove = ppc440spe_adma_remove,
4870        .driver = {
4871                .name = "PPC440SP(E)-ADMA",
4872                .owner = THIS_MODULE,
4873                .of_match_table = ppc440spe_adma_of_match,
4874        },
4875};
4876
4877static __init int ppc440spe_adma_init(void)
4878{
4879        int ret;
4880
4881        ret = ppc440spe_configure_raid_devices();
4882        if (ret)
4883                return ret;
4884
4885        ret = platform_driver_register(&ppc440spe_adma_driver);
4886        if (ret) {
4887                pr_err("%s: failed to register platform driver\n",
4888                        __func__);
4889                goto out_reg;
4890        }
4891
4892        /* Initialization status */
4893        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4894                                 &driver_attr_devices);
4895        if (ret)
4896                goto out_dev;
4897
4898        /* RAID-6 h/w enable entry */
4899        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4900                                 &driver_attr_enable);
4901        if (ret)
4902                goto out_en;
4903
4904        /* GF polynomial to use */
4905        ret = driver_create_file(&ppc440spe_adma_driver.driver,
4906                                 &driver_attr_poly);
4907        if (!ret)
4908                return ret;
4909
4910        driver_remove_file(&ppc440spe_adma_driver.driver,
4911                           &driver_attr_enable);
4912out_en:
4913        driver_remove_file(&ppc440spe_adma_driver.driver,
4914                           &driver_attr_devices);
4915out_dev:
4916        /* User will not be able to enable h/w RAID-6 */
4917        pr_err("%s: failed to create RAID-6 driver interface\n",
4918                __func__);
4919        platform_driver_unregister(&ppc440spe_adma_driver);
4920out_reg:
4921        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4922        kfree(ppc440spe_dma_fifo_buf);
4923        return ret;
4924}
4925
4926static void __exit ppc440spe_adma_exit(void)
4927{
4928        driver_remove_file(&ppc440spe_adma_driver.driver,
4929                           &driver_attr_poly);
4930        driver_remove_file(&ppc440spe_adma_driver.driver,
4931                           &driver_attr_enable);
4932        driver_remove_file(&ppc440spe_adma_driver.driver,
4933                           &driver_attr_devices);
4934        platform_driver_unregister(&ppc440spe_adma_driver);
4935        dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4936        kfree(ppc440spe_dma_fifo_buf);
4937}
4938
4939arch_initcall(ppc440spe_adma_init);
4940module_exit(ppc440spe_adma_exit);
4941
4942MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4943MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4944MODULE_LICENSE("GPL");
4945