linux/drivers/gpu/drm/radeon/mkregtable.c
<<
>>
Prefs
   1/* utility to create the register check tables
   2 * this includes inlined list.h safe for userspace.
   3 *
   4 * Copyright 2009 Jerome Glisse
   5 * Copyright 2009 Red Hat Inc.
   6 *
   7 * Authors:
   8 *      Jerome Glisse
   9 *      Dave Airlie
  10 */
  11
  12#include <sys/types.h>
  13#include <stdlib.h>
  14#include <string.h>
  15#include <stdio.h>
  16#include <regex.h>
  17#include <libgen.h>
  18
  19#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
  20/**
  21 * container_of - cast a member of a structure out to the containing structure
  22 * @ptr:    the pointer to the member.
  23 * @type:   the type of the container struct this is embedded in.
  24 * @member: the name of the member within the struct.
  25 *
  26 */
  27#define container_of(ptr, type, member) ({          \
  28        const typeof(((type *)0)->member)*__mptr = (ptr);    \
  29                     (type *)((char *)__mptr - offsetof(type, member)); })
  30
  31/*
  32 * Simple doubly linked list implementation.
  33 *
  34 * Some of the internal functions ("__xxx") are useful when
  35 * manipulating whole lists rather than single entries, as
  36 * sometimes we already know the next/prev entries and we can
  37 * generate better code by using them directly rather than
  38 * using the generic single-entry routines.
  39 */
  40
  41struct list_head {
  42        struct list_head *next, *prev;
  43};
  44
  45#define LIST_HEAD_INIT(name) { &(name), &(name) }
  46
  47#define LIST_HEAD(name) \
  48        struct list_head name = LIST_HEAD_INIT(name)
  49
  50static inline void INIT_LIST_HEAD(struct list_head *list)
  51{
  52        list->next = list;
  53        list->prev = list;
  54}
  55
  56/*
  57 * Insert a new entry between two known consecutive entries.
  58 *
  59 * This is only for internal list manipulation where we know
  60 * the prev/next entries already!
  61 */
  62#ifndef CONFIG_DEBUG_LIST
  63static inline void __list_add(struct list_head *new,
  64                              struct list_head *prev, struct list_head *next)
  65{
  66        next->prev = new;
  67        new->next = next;
  68        new->prev = prev;
  69        prev->next = new;
  70}
  71#else
  72extern void __list_add(struct list_head *new,
  73                       struct list_head *prev, struct list_head *next);
  74#endif
  75
  76/**
  77 * list_add - add a new entry
  78 * @new: new entry to be added
  79 * @head: list head to add it after
  80 *
  81 * Insert a new entry after the specified head.
  82 * This is good for implementing stacks.
  83 */
  84static inline void list_add(struct list_head *new, struct list_head *head)
  85{
  86        __list_add(new, head, head->next);
  87}
  88
  89/**
  90 * list_add_tail - add a new entry
  91 * @new: new entry to be added
  92 * @head: list head to add it before
  93 *
  94 * Insert a new entry before the specified head.
  95 * This is useful for implementing queues.
  96 */
  97static inline void list_add_tail(struct list_head *new, struct list_head *head)
  98{
  99        __list_add(new, head->prev, head);
 100}
 101
 102/*
 103 * Delete a list entry by making the prev/next entries
 104 * point to each other.
 105 *
 106 * This is only for internal list manipulation where we know
 107 * the prev/next entries already!
 108 */
 109static inline void __list_del(struct list_head *prev, struct list_head *next)
 110{
 111        next->prev = prev;
 112        prev->next = next;
 113}
 114
 115/**
 116 * list_del - deletes entry from list.
 117 * @entry: the element to delete from the list.
 118 * Note: list_empty() on entry does not return true after this, the entry is
 119 * in an undefined state.
 120 */
 121#ifndef CONFIG_DEBUG_LIST
 122static inline void list_del(struct list_head *entry)
 123{
 124        __list_del(entry->prev, entry->next);
 125        entry->next = (void *)0xDEADBEEF;
 126        entry->prev = (void *)0xBEEFDEAD;
 127}
 128#else
 129extern void list_del(struct list_head *entry);
 130#endif
 131
 132/**
 133 * list_replace - replace old entry by new one
 134 * @old : the element to be replaced
 135 * @new : the new element to insert
 136 *
 137 * If @old was empty, it will be overwritten.
 138 */
 139static inline void list_replace(struct list_head *old, struct list_head *new)
 140{
 141        new->next = old->next;
 142        new->next->prev = new;
 143        new->prev = old->prev;
 144        new->prev->next = new;
 145}
 146
 147static inline void list_replace_init(struct list_head *old,
 148                                     struct list_head *new)
 149{
 150        list_replace(old, new);
 151        INIT_LIST_HEAD(old);
 152}
 153
 154/**
 155 * list_del_init - deletes entry from list and reinitialize it.
 156 * @entry: the element to delete from the list.
 157 */
 158static inline void list_del_init(struct list_head *entry)
 159{
 160        __list_del(entry->prev, entry->next);
 161        INIT_LIST_HEAD(entry);
 162}
 163
 164/**
 165 * list_move - delete from one list and add as another's head
 166 * @list: the entry to move
 167 * @head: the head that will precede our entry
 168 */
 169static inline void list_move(struct list_head *list, struct list_head *head)
 170{
 171        __list_del(list->prev, list->next);
 172        list_add(list, head);
 173}
 174
 175/**
 176 * list_move_tail - delete from one list and add as another's tail
 177 * @list: the entry to move
 178 * @head: the head that will follow our entry
 179 */
 180static inline void list_move_tail(struct list_head *list,
 181                                  struct list_head *head)
 182{
 183        __list_del(list->prev, list->next);
 184        list_add_tail(list, head);
 185}
 186
 187/**
 188 * list_is_last - tests whether @list is the last entry in list @head
 189 * @list: the entry to test
 190 * @head: the head of the list
 191 */
 192static inline int list_is_last(const struct list_head *list,
 193                               const struct list_head *head)
 194{
 195        return list->next == head;
 196}
 197
 198/**
 199 * list_empty - tests whether a list is empty
 200 * @head: the list to test.
 201 */
 202static inline int list_empty(const struct list_head *head)
 203{
 204        return head->next == head;
 205}
 206
 207/**
 208 * list_empty_careful - tests whether a list is empty and not being modified
 209 * @head: the list to test
 210 *
 211 * Description:
 212 * tests whether a list is empty _and_ checks that no other CPU might be
 213 * in the process of modifying either member (next or prev)
 214 *
 215 * NOTE: using list_empty_careful() without synchronization
 216 * can only be safe if the only activity that can happen
 217 * to the list entry is list_del_init(). Eg. it cannot be used
 218 * if another CPU could re-list_add() it.
 219 */
 220static inline int list_empty_careful(const struct list_head *head)
 221{
 222        struct list_head *next = head->next;
 223        return (next == head) && (next == head->prev);
 224}
 225
 226/**
 227 * list_is_singular - tests whether a list has just one entry.
 228 * @head: the list to test.
 229 */
 230static inline int list_is_singular(const struct list_head *head)
 231{
 232        return !list_empty(head) && (head->next == head->prev);
 233}
 234
 235static inline void __list_cut_position(struct list_head *list,
 236                                       struct list_head *head,
 237                                       struct list_head *entry)
 238{
 239        struct list_head *new_first = entry->next;
 240        list->next = head->next;
 241        list->next->prev = list;
 242        list->prev = entry;
 243        entry->next = list;
 244        head->next = new_first;
 245        new_first->prev = head;
 246}
 247
 248/**
 249 * list_cut_position - cut a list into two
 250 * @list: a new list to add all removed entries
 251 * @head: a list with entries
 252 * @entry: an entry within head, could be the head itself
 253 *      and if so we won't cut the list
 254 *
 255 * This helper moves the initial part of @head, up to and
 256 * including @entry, from @head to @list. You should
 257 * pass on @entry an element you know is on @head. @list
 258 * should be an empty list or a list you do not care about
 259 * losing its data.
 260 *
 261 */
 262static inline void list_cut_position(struct list_head *list,
 263                                     struct list_head *head,
 264                                     struct list_head *entry)
 265{
 266        if (list_empty(head))
 267                return;
 268        if (list_is_singular(head) && (head->next != entry && head != entry))
 269                return;
 270        if (entry == head)
 271                INIT_LIST_HEAD(list);
 272        else
 273                __list_cut_position(list, head, entry);
 274}
 275
 276static inline void __list_splice(const struct list_head *list,
 277                                 struct list_head *prev, struct list_head *next)
 278{
 279        struct list_head *first = list->next;
 280        struct list_head *last = list->prev;
 281
 282        first->prev = prev;
 283        prev->next = first;
 284
 285        last->next = next;
 286        next->prev = last;
 287}
 288
 289/**
 290 * list_splice - join two lists, this is designed for stacks
 291 * @list: the new list to add.
 292 * @head: the place to add it in the first list.
 293 */
 294static inline void list_splice(const struct list_head *list,
 295                               struct list_head *head)
 296{
 297        if (!list_empty(list))
 298                __list_splice(list, head, head->next);
 299}
 300
 301/**
 302 * list_splice_tail - join two lists, each list being a queue
 303 * @list: the new list to add.
 304 * @head: the place to add it in the first list.
 305 */
 306static inline void list_splice_tail(struct list_head *list,
 307                                    struct list_head *head)
 308{
 309        if (!list_empty(list))
 310                __list_splice(list, head->prev, head);
 311}
 312
 313/**
 314 * list_splice_init - join two lists and reinitialise the emptied list.
 315 * @list: the new list to add.
 316 * @head: the place to add it in the first list.
 317 *
 318 * The list at @list is reinitialised
 319 */
 320static inline void list_splice_init(struct list_head *list,
 321                                    struct list_head *head)
 322{
 323        if (!list_empty(list)) {
 324                __list_splice(list, head, head->next);
 325                INIT_LIST_HEAD(list);
 326        }
 327}
 328
 329/**
 330 * list_splice_tail_init - join two lists and reinitialise the emptied list
 331 * @list: the new list to add.
 332 * @head: the place to add it in the first list.
 333 *
 334 * Each of the lists is a queue.
 335 * The list at @list is reinitialised
 336 */
 337static inline void list_splice_tail_init(struct list_head *list,
 338                                         struct list_head *head)
 339{
 340        if (!list_empty(list)) {
 341                __list_splice(list, head->prev, head);
 342                INIT_LIST_HEAD(list);
 343        }
 344}
 345
 346/**
 347 * list_entry - get the struct for this entry
 348 * @ptr:        the &struct list_head pointer.
 349 * @type:       the type of the struct this is embedded in.
 350 * @member:     the name of the list_struct within the struct.
 351 */
 352#define list_entry(ptr, type, member) \
 353        container_of(ptr, type, member)
 354
 355/**
 356 * list_first_entry - get the first element from a list
 357 * @ptr:        the list head to take the element from.
 358 * @type:       the type of the struct this is embedded in.
 359 * @member:     the name of the list_struct within the struct.
 360 *
 361 * Note, that list is expected to be not empty.
 362 */
 363#define list_first_entry(ptr, type, member) \
 364        list_entry((ptr)->next, type, member)
 365
 366/**
 367 * list_for_each        -       iterate over a list
 368 * @pos:        the &struct list_head to use as a loop cursor.
 369 * @head:       the head for your list.
 370 */
 371#define list_for_each(pos, head) \
 372        for (pos = (head)->next; prefetch(pos->next), pos != (head); \
 373                pos = pos->next)
 374
 375/**
 376 * list_for_each_prev   -       iterate over a list backwards
 377 * @pos:        the &struct list_head to use as a loop cursor.
 378 * @head:       the head for your list.
 379 */
 380#define list_for_each_prev(pos, head) \
 381        for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
 382                pos = pos->prev)
 383
 384/**
 385 * list_for_each_safe - iterate over a list safe against removal of list entry
 386 * @pos:        the &struct list_head to use as a loop cursor.
 387 * @n:          another &struct list_head to use as temporary storage
 388 * @head:       the head for your list.
 389 */
 390#define list_for_each_safe(pos, n, head) \
 391        for (pos = (head)->next, n = pos->next; pos != (head); \
 392                pos = n, n = pos->next)
 393
 394/**
 395 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 396 * @pos:        the &struct list_head to use as a loop cursor.
 397 * @n:          another &struct list_head to use as temporary storage
 398 * @head:       the head for your list.
 399 */
 400#define list_for_each_prev_safe(pos, n, head) \
 401        for (pos = (head)->prev, n = pos->prev; \
 402             prefetch(pos->prev), pos != (head); \
 403             pos = n, n = pos->prev)
 404
 405/**
 406 * list_for_each_entry  -       iterate over list of given type
 407 * @pos:        the type * to use as a loop cursor.
 408 * @head:       the head for your list.
 409 * @member:     the name of the list_struct within the struct.
 410 */
 411#define list_for_each_entry(pos, head, member)                          \
 412        for (pos = list_entry((head)->next, typeof(*pos), member);      \
 413             &pos->member != (head);    \
 414             pos = list_entry(pos->member.next, typeof(*pos), member))
 415
 416/**
 417 * list_for_each_entry_reverse - iterate backwards over list of given type.
 418 * @pos:        the type * to use as a loop cursor.
 419 * @head:       the head for your list.
 420 * @member:     the name of the list_struct within the struct.
 421 */
 422#define list_for_each_entry_reverse(pos, head, member)                  \
 423        for (pos = list_entry((head)->prev, typeof(*pos), member);      \
 424             prefetch(pos->member.prev), &pos->member != (head);        \
 425             pos = list_entry(pos->member.prev, typeof(*pos), member))
 426
 427/**
 428 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 429 * @pos:        the type * to use as a start point
 430 * @head:       the head of the list
 431 * @member:     the name of the list_struct within the struct.
 432 *
 433 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 434 */
 435#define list_prepare_entry(pos, head, member) \
 436        ((pos) ? : list_entry(head, typeof(*pos), member))
 437
 438/**
 439 * list_for_each_entry_continue - continue iteration over list of given type
 440 * @pos:        the type * to use as a loop cursor.
 441 * @head:       the head for your list.
 442 * @member:     the name of the list_struct within the struct.
 443 *
 444 * Continue to iterate over list of given type, continuing after
 445 * the current position.
 446 */
 447#define list_for_each_entry_continue(pos, head, member)                 \
 448        for (pos = list_entry(pos->member.next, typeof(*pos), member);  \
 449             prefetch(pos->member.next), &pos->member != (head);        \
 450             pos = list_entry(pos->member.next, typeof(*pos), member))
 451
 452/**
 453 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 454 * @pos:        the type * to use as a loop cursor.
 455 * @head:       the head for your list.
 456 * @member:     the name of the list_struct within the struct.
 457 *
 458 * Start to iterate over list of given type backwards, continuing after
 459 * the current position.
 460 */
 461#define list_for_each_entry_continue_reverse(pos, head, member)         \
 462        for (pos = list_entry(pos->member.prev, typeof(*pos), member);  \
 463             prefetch(pos->member.prev), &pos->member != (head);        \
 464             pos = list_entry(pos->member.prev, typeof(*pos), member))
 465
 466/**
 467 * list_for_each_entry_from - iterate over list of given type from the current point
 468 * @pos:        the type * to use as a loop cursor.
 469 * @head:       the head for your list.
 470 * @member:     the name of the list_struct within the struct.
 471 *
 472 * Iterate over list of given type, continuing from current position.
 473 */
 474#define list_for_each_entry_from(pos, head, member)                     \
 475        for (; prefetch(pos->member.next), &pos->member != (head);      \
 476             pos = list_entry(pos->member.next, typeof(*pos), member))
 477
 478/**
 479 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 480 * @pos:        the type * to use as a loop cursor.
 481 * @n:          another type * to use as temporary storage
 482 * @head:       the head for your list.
 483 * @member:     the name of the list_struct within the struct.
 484 */
 485#define list_for_each_entry_safe(pos, n, head, member)                  \
 486        for (pos = list_entry((head)->next, typeof(*pos), member),      \
 487                n = list_entry(pos->member.next, typeof(*pos), member); \
 488             &pos->member != (head);                                    \
 489             pos = n, n = list_entry(n->member.next, typeof(*n), member))
 490
 491/**
 492 * list_for_each_entry_safe_continue
 493 * @pos:        the type * to use as a loop cursor.
 494 * @n:          another type * to use as temporary storage
 495 * @head:       the head for your list.
 496 * @member:     the name of the list_struct within the struct.
 497 *
 498 * Iterate over list of given type, continuing after current point,
 499 * safe against removal of list entry.
 500 */
 501#define list_for_each_entry_safe_continue(pos, n, head, member)                 \
 502        for (pos = list_entry(pos->member.next, typeof(*pos), member),          \
 503                n = list_entry(pos->member.next, typeof(*pos), member);         \
 504             &pos->member != (head);                                            \
 505             pos = n, n = list_entry(n->member.next, typeof(*n), member))
 506
 507/**
 508 * list_for_each_entry_safe_from
 509 * @pos:        the type * to use as a loop cursor.
 510 * @n:          another type * to use as temporary storage
 511 * @head:       the head for your list.
 512 * @member:     the name of the list_struct within the struct.
 513 *
 514 * Iterate over list of given type from current point, safe against
 515 * removal of list entry.
 516 */
 517#define list_for_each_entry_safe_from(pos, n, head, member)                     \
 518        for (n = list_entry(pos->member.next, typeof(*pos), member);            \
 519             &pos->member != (head);                                            \
 520             pos = n, n = list_entry(n->member.next, typeof(*n), member))
 521
 522/**
 523 * list_for_each_entry_safe_reverse
 524 * @pos:        the type * to use as a loop cursor.
 525 * @n:          another type * to use as temporary storage
 526 * @head:       the head for your list.
 527 * @member:     the name of the list_struct within the struct.
 528 *
 529 * Iterate backwards over list of given type, safe against removal
 530 * of list entry.
 531 */
 532#define list_for_each_entry_safe_reverse(pos, n, head, member)          \
 533        for (pos = list_entry((head)->prev, typeof(*pos), member),      \
 534                n = list_entry(pos->member.prev, typeof(*pos), member); \
 535             &pos->member != (head);                                    \
 536             pos = n, n = list_entry(n->member.prev, typeof(*n), member))
 537
 538struct offset {
 539        struct list_head list;
 540        unsigned offset;
 541};
 542
 543struct table {
 544        struct list_head offsets;
 545        unsigned offset_max;
 546        unsigned nentry;
 547        unsigned *table;
 548        char *gpu_prefix;
 549};
 550
 551static struct offset *offset_new(unsigned o)
 552{
 553        struct offset *offset;
 554
 555        offset = (struct offset *)malloc(sizeof(struct offset));
 556        if (offset) {
 557                INIT_LIST_HEAD(&offset->list);
 558                offset->offset = o;
 559        }
 560        return offset;
 561}
 562
 563static void table_offset_add(struct table *t, struct offset *offset)
 564{
 565        list_add_tail(&offset->list, &t->offsets);
 566}
 567
 568static void table_init(struct table *t)
 569{
 570        INIT_LIST_HEAD(&t->offsets);
 571        t->offset_max = 0;
 572        t->nentry = 0;
 573        t->table = NULL;
 574}
 575
 576static void table_print(struct table *t)
 577{
 578        unsigned nlloop, i, j, n, c, id;
 579
 580        nlloop = (t->nentry + 3) / 4;
 581        c = t->nentry;
 582        printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix,
 583               t->nentry);
 584        for (i = 0, id = 0; i < nlloop; i++) {
 585                n = 4;
 586                if (n > c)
 587                        n = c;
 588                c -= n;
 589                for (j = 0; j < n; j++) {
 590                        if (j == 0)
 591                                printf("\t");
 592                        else
 593                                printf(" ");
 594                        printf("0x%08X,", t->table[id++]);
 595                }
 596                printf("\n");
 597        }
 598        printf("};\n");
 599}
 600
 601static int table_build(struct table *t)
 602{
 603        struct offset *offset;
 604        unsigned i, m;
 605
 606        t->nentry = ((t->offset_max >> 2) + 31) / 32;
 607        t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry);
 608        if (t->table == NULL)
 609                return -1;
 610        memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
 611        list_for_each_entry(offset, &t->offsets, list) {
 612                i = (offset->offset >> 2) / 32;
 613                m = (offset->offset >> 2) & 31;
 614                m = 1 << m;
 615                t->table[i] ^= m;
 616        }
 617        return 0;
 618}
 619
 620static char gpu_name[10];
 621static int parser_auth(struct table *t, const char *filename)
 622{
 623        FILE *file;
 624        regex_t mask_rex;
 625        regmatch_t match[4];
 626        char buf[1024];
 627        size_t end;
 628        int len;
 629        int done = 0;
 630        int r;
 631        unsigned o;
 632        struct offset *offset;
 633        char last_reg_s[10];
 634        int last_reg;
 635
 636        if (regcomp
 637            (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
 638                fprintf(stderr, "Failed to compile regular expression\n");
 639                return -1;
 640        }
 641        file = fopen(filename, "r");
 642        if (file == NULL) {
 643                fprintf(stderr, "Failed to open: %s\n", filename);
 644                return -1;
 645        }
 646        fseek(file, 0, SEEK_END);
 647        end = ftell(file);
 648        fseek(file, 0, SEEK_SET);
 649
 650        /* get header */
 651        if (fgets(buf, 1024, file) == NULL) {
 652                fclose(file);
 653                return -1;
 654        }
 655
 656        /* first line will contain the last register
 657         * and gpu name */
 658        sscanf(buf, "%s %s", gpu_name, last_reg_s);
 659        t->gpu_prefix = gpu_name;
 660        last_reg = strtol(last_reg_s, NULL, 16);
 661
 662        do {
 663                if (fgets(buf, 1024, file) == NULL) {
 664                        fclose(file);
 665                        return -1;
 666                }
 667                len = strlen(buf);
 668                if (ftell(file) == end)
 669                        done = 1;
 670                if (len) {
 671                        r = regexec(&mask_rex, buf, 4, match, 0);
 672                        if (r == REG_NOMATCH) {
 673                        } else if (r) {
 674                                fprintf(stderr,
 675                                        "Error matching regular expression %d in %s\n",
 676                                        r, filename);
 677                                fclose(file);
 678                                return -1;
 679                        } else {
 680                                buf[match[0].rm_eo] = 0;
 681                                buf[match[1].rm_eo] = 0;
 682                                buf[match[2].rm_eo] = 0;
 683                                o = strtol(&buf[match[1].rm_so], NULL, 16);
 684                                offset = offset_new(o);
 685                                table_offset_add(t, offset);
 686                                if (o > t->offset_max)
 687                                        t->offset_max = o;
 688                        }
 689                }
 690        } while (!done);
 691        fclose(file);
 692        if (t->offset_max < last_reg)
 693                t->offset_max = last_reg;
 694        return table_build(t);
 695}
 696
 697int main(int argc, char *argv[])
 698{
 699        struct table t;
 700
 701        if (argc != 2) {
 702                fprintf(stderr, "Usage: %s <authfile>\n", argv[0]);
 703                exit(1);
 704        }
 705        table_init(&t);
 706        if (parser_auth(&t, argv[1])) {
 707                fprintf(stderr, "Failed to parse file %s\n", argv[1]);
 708                return -1;
 709        }
 710        table_print(&t);
 711        return 0;
 712}
 713