linux/drivers/gpu/drm/ttm/ttm_page_alloc_dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#define pr_fmt(fmt) "[TTM] " fmt
  37
  38#include <linux/dma-mapping.h>
  39#include <linux/list.h>
  40#include <linux/seq_file.h> /* for seq_printf */
  41#include <linux/slab.h>
  42#include <linux/spinlock.h>
  43#include <linux/highmem.h>
  44#include <linux/mm_types.h>
  45#include <linux/module.h>
  46#include <linux/mm.h>
  47#include <linux/atomic.h>
  48#include <linux/device.h>
  49#include <linux/kthread.h>
  50#include <drm/ttm/ttm_bo_driver.h>
  51#include <drm/ttm/ttm_page_alloc.h>
  52#ifdef TTM_HAS_AGP
  53#include <asm/agp.h>
  54#endif
  55
  56#define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
  57#define SMALL_ALLOCATION                4
  58#define FREE_ALL_PAGES                  (~0U)
  59/* times are in msecs */
  60#define IS_UNDEFINED                    (0)
  61#define IS_WC                           (1<<1)
  62#define IS_UC                           (1<<2)
  63#define IS_CACHED                       (1<<3)
  64#define IS_DMA32                        (1<<4)
  65
  66enum pool_type {
  67        POOL_IS_UNDEFINED,
  68        POOL_IS_WC = IS_WC,
  69        POOL_IS_UC = IS_UC,
  70        POOL_IS_CACHED = IS_CACHED,
  71        POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
  72        POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
  73        POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
  74};
  75/*
  76 * The pool structure. There are usually six pools:
  77 *  - generic (not restricted to DMA32):
  78 *      - write combined, uncached, cached.
  79 *  - dma32 (up to 2^32 - so up 4GB):
  80 *      - write combined, uncached, cached.
  81 * for each 'struct device'. The 'cached' is for pages that are actively used.
  82 * The other ones can be shrunk by the shrinker API if neccessary.
  83 * @pools: The 'struct device->dma_pools' link.
  84 * @type: Type of the pool
  85 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
  86 * used with irqsave/irqrestore variants because pool allocator maybe called
  87 * from delayed work.
  88 * @inuse_list: Pool of pages that are in use. The order is very important and
  89 *   it is in the order that the TTM pages that are put back are in.
  90 * @free_list: Pool of pages that are free to be used. No order requirements.
  91 * @dev: The device that is associated with these pools.
  92 * @size: Size used during DMA allocation.
  93 * @npages_free: Count of available pages for re-use.
  94 * @npages_in_use: Count of pages that are in use.
  95 * @nfrees: Stats when pool is shrinking.
  96 * @nrefills: Stats when the pool is grown.
  97 * @gfp_flags: Flags to pass for alloc_page.
  98 * @name: Name of the pool.
  99 * @dev_name: Name derieved from dev - similar to how dev_info works.
 100 *   Used during shutdown as the dev_info during release is unavailable.
 101 */
 102struct dma_pool {
 103        struct list_head pools; /* The 'struct device->dma_pools link */
 104        enum pool_type type;
 105        spinlock_t lock;
 106        struct list_head inuse_list;
 107        struct list_head free_list;
 108        struct device *dev;
 109        unsigned size;
 110        unsigned npages_free;
 111        unsigned npages_in_use;
 112        unsigned long nfrees; /* Stats when shrunk. */
 113        unsigned long nrefills; /* Stats when grown. */
 114        gfp_t gfp_flags;
 115        char name[13]; /* "cached dma32" */
 116        char dev_name[64]; /* Constructed from dev */
 117};
 118
 119/*
 120 * The accounting page keeping track of the allocated page along with
 121 * the DMA address.
 122 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 123 * @vaddr: The virtual address of the page
 124 * @dma: The bus address of the page. If the page is not allocated
 125 *   via the DMA API, it will be -1.
 126 */
 127struct dma_page {
 128        struct list_head page_list;
 129        void *vaddr;
 130        struct page *p;
 131        dma_addr_t dma;
 132};
 133
 134/*
 135 * Limits for the pool. They are handled without locks because only place where
 136 * they may change is in sysfs store. They won't have immediate effect anyway
 137 * so forcing serialization to access them is pointless.
 138 */
 139
 140struct ttm_pool_opts {
 141        unsigned        alloc_size;
 142        unsigned        max_size;
 143        unsigned        small;
 144};
 145
 146/*
 147 * Contains the list of all of the 'struct device' and their corresponding
 148 * DMA pools. Guarded by _mutex->lock.
 149 * @pools: The link to 'struct ttm_pool_manager->pools'
 150 * @dev: The 'struct device' associated with the 'pool'
 151 * @pool: The 'struct dma_pool' associated with the 'dev'
 152 */
 153struct device_pools {
 154        struct list_head pools;
 155        struct device *dev;
 156        struct dma_pool *pool;
 157};
 158
 159/*
 160 * struct ttm_pool_manager - Holds memory pools for fast allocation
 161 *
 162 * @lock: Lock used when adding/removing from pools
 163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 164 * @options: Limits for the pool.
 165 * @npools: Total amount of pools in existence.
 166 * @shrinker: The structure used by [un|]register_shrinker
 167 */
 168struct ttm_pool_manager {
 169        struct mutex            lock;
 170        struct list_head        pools;
 171        struct ttm_pool_opts    options;
 172        unsigned                npools;
 173        struct shrinker         mm_shrink;
 174        struct kobject          kobj;
 175};
 176
 177static struct ttm_pool_manager *_manager;
 178
 179static struct attribute ttm_page_pool_max = {
 180        .name = "pool_max_size",
 181        .mode = S_IRUGO | S_IWUSR
 182};
 183static struct attribute ttm_page_pool_small = {
 184        .name = "pool_small_allocation",
 185        .mode = S_IRUGO | S_IWUSR
 186};
 187static struct attribute ttm_page_pool_alloc_size = {
 188        .name = "pool_allocation_size",
 189        .mode = S_IRUGO | S_IWUSR
 190};
 191
 192static struct attribute *ttm_pool_attrs[] = {
 193        &ttm_page_pool_max,
 194        &ttm_page_pool_small,
 195        &ttm_page_pool_alloc_size,
 196        NULL
 197};
 198
 199static void ttm_pool_kobj_release(struct kobject *kobj)
 200{
 201        struct ttm_pool_manager *m =
 202                container_of(kobj, struct ttm_pool_manager, kobj);
 203        kfree(m);
 204}
 205
 206static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 207                              const char *buffer, size_t size)
 208{
 209        struct ttm_pool_manager *m =
 210                container_of(kobj, struct ttm_pool_manager, kobj);
 211        int chars;
 212        unsigned val;
 213        chars = sscanf(buffer, "%u", &val);
 214        if (chars == 0)
 215                return size;
 216
 217        /* Convert kb to number of pages */
 218        val = val / (PAGE_SIZE >> 10);
 219
 220        if (attr == &ttm_page_pool_max)
 221                m->options.max_size = val;
 222        else if (attr == &ttm_page_pool_small)
 223                m->options.small = val;
 224        else if (attr == &ttm_page_pool_alloc_size) {
 225                if (val > NUM_PAGES_TO_ALLOC*8) {
 226                        pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 227                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 228                               NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 229                        return size;
 230                } else if (val > NUM_PAGES_TO_ALLOC) {
 231                        pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 232                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 233                }
 234                m->options.alloc_size = val;
 235        }
 236
 237        return size;
 238}
 239
 240static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 241                             char *buffer)
 242{
 243        struct ttm_pool_manager *m =
 244                container_of(kobj, struct ttm_pool_manager, kobj);
 245        unsigned val = 0;
 246
 247        if (attr == &ttm_page_pool_max)
 248                val = m->options.max_size;
 249        else if (attr == &ttm_page_pool_small)
 250                val = m->options.small;
 251        else if (attr == &ttm_page_pool_alloc_size)
 252                val = m->options.alloc_size;
 253
 254        val = val * (PAGE_SIZE >> 10);
 255
 256        return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 257}
 258
 259static const struct sysfs_ops ttm_pool_sysfs_ops = {
 260        .show = &ttm_pool_show,
 261        .store = &ttm_pool_store,
 262};
 263
 264static struct kobj_type ttm_pool_kobj_type = {
 265        .release = &ttm_pool_kobj_release,
 266        .sysfs_ops = &ttm_pool_sysfs_ops,
 267        .default_attrs = ttm_pool_attrs,
 268};
 269
 270#ifndef CONFIG_X86
 271static int set_pages_array_wb(struct page **pages, int addrinarray)
 272{
 273#ifdef TTM_HAS_AGP
 274        int i;
 275
 276        for (i = 0; i < addrinarray; i++)
 277                unmap_page_from_agp(pages[i]);
 278#endif
 279        return 0;
 280}
 281
 282static int set_pages_array_wc(struct page **pages, int addrinarray)
 283{
 284#ifdef TTM_HAS_AGP
 285        int i;
 286
 287        for (i = 0; i < addrinarray; i++)
 288                map_page_into_agp(pages[i]);
 289#endif
 290        return 0;
 291}
 292
 293static int set_pages_array_uc(struct page **pages, int addrinarray)
 294{
 295#ifdef TTM_HAS_AGP
 296        int i;
 297
 298        for (i = 0; i < addrinarray; i++)
 299                map_page_into_agp(pages[i]);
 300#endif
 301        return 0;
 302}
 303#endif /* for !CONFIG_X86 */
 304
 305static int ttm_set_pages_caching(struct dma_pool *pool,
 306                                 struct page **pages, unsigned cpages)
 307{
 308        int r = 0;
 309        /* Set page caching */
 310        if (pool->type & IS_UC) {
 311                r = set_pages_array_uc(pages, cpages);
 312                if (r)
 313                        pr_err("%s: Failed to set %d pages to uc!\n",
 314                               pool->dev_name, cpages);
 315        }
 316        if (pool->type & IS_WC) {
 317                r = set_pages_array_wc(pages, cpages);
 318                if (r)
 319                        pr_err("%s: Failed to set %d pages to wc!\n",
 320                               pool->dev_name, cpages);
 321        }
 322        return r;
 323}
 324
 325static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 326{
 327        dma_addr_t dma = d_page->dma;
 328        dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
 329
 330        kfree(d_page);
 331        d_page = NULL;
 332}
 333static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 334{
 335        struct dma_page *d_page;
 336
 337        d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 338        if (!d_page)
 339                return NULL;
 340
 341        d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
 342                                           &d_page->dma,
 343                                           pool->gfp_flags);
 344        if (d_page->vaddr)
 345                d_page->p = virt_to_page(d_page->vaddr);
 346        else {
 347                kfree(d_page);
 348                d_page = NULL;
 349        }
 350        return d_page;
 351}
 352static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 353{
 354        enum pool_type type = IS_UNDEFINED;
 355
 356        if (flags & TTM_PAGE_FLAG_DMA32)
 357                type |= IS_DMA32;
 358        if (cstate == tt_cached)
 359                type |= IS_CACHED;
 360        else if (cstate == tt_uncached)
 361                type |= IS_UC;
 362        else
 363                type |= IS_WC;
 364
 365        return type;
 366}
 367
 368static void ttm_pool_update_free_locked(struct dma_pool *pool,
 369                                        unsigned freed_pages)
 370{
 371        pool->npages_free -= freed_pages;
 372        pool->nfrees += freed_pages;
 373
 374}
 375
 376/* set memory back to wb and free the pages. */
 377static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 378                              struct page *pages[], unsigned npages)
 379{
 380        struct dma_page *d_page, *tmp;
 381
 382        /* Don't set WB on WB page pool. */
 383        if (npages && !(pool->type & IS_CACHED) &&
 384            set_pages_array_wb(pages, npages))
 385                pr_err("%s: Failed to set %d pages to wb!\n",
 386                       pool->dev_name, npages);
 387
 388        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 389                list_del(&d_page->page_list);
 390                __ttm_dma_free_page(pool, d_page);
 391        }
 392}
 393
 394static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 395{
 396        /* Don't set WB on WB page pool. */
 397        if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
 398                pr_err("%s: Failed to set %d pages to wb!\n",
 399                       pool->dev_name, 1);
 400
 401        list_del(&d_page->page_list);
 402        __ttm_dma_free_page(pool, d_page);
 403}
 404
 405/*
 406 * Free pages from pool.
 407 *
 408 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 409 * number of pages in one go.
 410 *
 411 * @pool: to free the pages from
 412 * @nr_free: If set to true will free all pages in pool
 413 **/
 414static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
 415{
 416        unsigned long irq_flags;
 417        struct dma_page *dma_p, *tmp;
 418        struct page **pages_to_free;
 419        struct list_head d_pages;
 420        unsigned freed_pages = 0,
 421                 npages_to_free = nr_free;
 422
 423        if (NUM_PAGES_TO_ALLOC < nr_free)
 424                npages_to_free = NUM_PAGES_TO_ALLOC;
 425#if 0
 426        if (nr_free > 1) {
 427                pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
 428                         pool->dev_name, pool->name, current->pid,
 429                         npages_to_free, nr_free);
 430        }
 431#endif
 432        pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
 433                        GFP_KERNEL);
 434
 435        if (!pages_to_free) {
 436                pr_err("%s: Failed to allocate memory for pool free operation\n",
 437                       pool->dev_name);
 438                return 0;
 439        }
 440        INIT_LIST_HEAD(&d_pages);
 441restart:
 442        spin_lock_irqsave(&pool->lock, irq_flags);
 443
 444        /* We picking the oldest ones off the list */
 445        list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 446                                         page_list) {
 447                if (freed_pages >= npages_to_free)
 448                        break;
 449
 450                /* Move the dma_page from one list to another. */
 451                list_move(&dma_p->page_list, &d_pages);
 452
 453                pages_to_free[freed_pages++] = dma_p->p;
 454                /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 455                if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 456
 457                        ttm_pool_update_free_locked(pool, freed_pages);
 458                        /**
 459                         * Because changing page caching is costly
 460                         * we unlock the pool to prevent stalling.
 461                         */
 462                        spin_unlock_irqrestore(&pool->lock, irq_flags);
 463
 464                        ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 465                                          freed_pages);
 466
 467                        INIT_LIST_HEAD(&d_pages);
 468
 469                        if (likely(nr_free != FREE_ALL_PAGES))
 470                                nr_free -= freed_pages;
 471
 472                        if (NUM_PAGES_TO_ALLOC >= nr_free)
 473                                npages_to_free = nr_free;
 474                        else
 475                                npages_to_free = NUM_PAGES_TO_ALLOC;
 476
 477                        freed_pages = 0;
 478
 479                        /* free all so restart the processing */
 480                        if (nr_free)
 481                                goto restart;
 482
 483                        /* Not allowed to fall through or break because
 484                         * following context is inside spinlock while we are
 485                         * outside here.
 486                         */
 487                        goto out;
 488
 489                }
 490        }
 491
 492        /* remove range of pages from the pool */
 493        if (freed_pages) {
 494                ttm_pool_update_free_locked(pool, freed_pages);
 495                nr_free -= freed_pages;
 496        }
 497
 498        spin_unlock_irqrestore(&pool->lock, irq_flags);
 499
 500        if (freed_pages)
 501                ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 502out:
 503        kfree(pages_to_free);
 504        return nr_free;
 505}
 506
 507static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 508{
 509        struct device_pools *p;
 510        struct dma_pool *pool;
 511
 512        if (!dev)
 513                return;
 514
 515        mutex_lock(&_manager->lock);
 516        list_for_each_entry_reverse(p, &_manager->pools, pools) {
 517                if (p->dev != dev)
 518                        continue;
 519                pool = p->pool;
 520                if (pool->type != type)
 521                        continue;
 522
 523                list_del(&p->pools);
 524                kfree(p);
 525                _manager->npools--;
 526                break;
 527        }
 528        list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 529                if (pool->type != type)
 530                        continue;
 531                /* Takes a spinlock.. */
 532                ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
 533                WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 534                /* This code path is called after _all_ references to the
 535                 * struct device has been dropped - so nobody should be
 536                 * touching it. In case somebody is trying to _add_ we are
 537                 * guarded by the mutex. */
 538                list_del(&pool->pools);
 539                kfree(pool);
 540                break;
 541        }
 542        mutex_unlock(&_manager->lock);
 543}
 544
 545/*
 546 * On free-ing of the 'struct device' this deconstructor is run.
 547 * Albeit the pool might have already been freed earlier.
 548 */
 549static void ttm_dma_pool_release(struct device *dev, void *res)
 550{
 551        struct dma_pool *pool = *(struct dma_pool **)res;
 552
 553        if (pool)
 554                ttm_dma_free_pool(dev, pool->type);
 555}
 556
 557static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 558{
 559        return *(struct dma_pool **)res == match_data;
 560}
 561
 562static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 563                                          enum pool_type type)
 564{
 565        char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
 566        enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
 567        struct device_pools *sec_pool = NULL;
 568        struct dma_pool *pool = NULL, **ptr;
 569        unsigned i;
 570        int ret = -ENODEV;
 571        char *p;
 572
 573        if (!dev)
 574                return NULL;
 575
 576        ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 577        if (!ptr)
 578                return NULL;
 579
 580        ret = -ENOMEM;
 581
 582        pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 583                            dev_to_node(dev));
 584        if (!pool)
 585                goto err_mem;
 586
 587        sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 588                                dev_to_node(dev));
 589        if (!sec_pool)
 590                goto err_mem;
 591
 592        INIT_LIST_HEAD(&sec_pool->pools);
 593        sec_pool->dev = dev;
 594        sec_pool->pool =  pool;
 595
 596        INIT_LIST_HEAD(&pool->free_list);
 597        INIT_LIST_HEAD(&pool->inuse_list);
 598        INIT_LIST_HEAD(&pool->pools);
 599        spin_lock_init(&pool->lock);
 600        pool->dev = dev;
 601        pool->npages_free = pool->npages_in_use = 0;
 602        pool->nfrees = 0;
 603        pool->gfp_flags = flags;
 604        pool->size = PAGE_SIZE;
 605        pool->type = type;
 606        pool->nrefills = 0;
 607        p = pool->name;
 608        for (i = 0; i < 5; i++) {
 609                if (type & t[i]) {
 610                        p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 611                                      "%s", n[i]);
 612                }
 613        }
 614        *p = 0;
 615        /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 616         * - the kobj->name has already been deallocated.*/
 617        snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 618                 dev_driver_string(dev), dev_name(dev));
 619        mutex_lock(&_manager->lock);
 620        /* You can get the dma_pool from either the global: */
 621        list_add(&sec_pool->pools, &_manager->pools);
 622        _manager->npools++;
 623        /* or from 'struct device': */
 624        list_add(&pool->pools, &dev->dma_pools);
 625        mutex_unlock(&_manager->lock);
 626
 627        *ptr = pool;
 628        devres_add(dev, ptr);
 629
 630        return pool;
 631err_mem:
 632        devres_free(ptr);
 633        kfree(sec_pool);
 634        kfree(pool);
 635        return ERR_PTR(ret);
 636}
 637
 638static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 639                                          enum pool_type type)
 640{
 641        struct dma_pool *pool, *tmp, *found = NULL;
 642
 643        if (type == IS_UNDEFINED)
 644                return found;
 645
 646        /* NB: We iterate on the 'struct dev' which has no spinlock, but
 647         * it does have a kref which we have taken. The kref is taken during
 648         * graphic driver loading - in the drm_pci_init it calls either
 649         * pci_dev_get or pci_register_driver which both end up taking a kref
 650         * on 'struct device'.
 651         *
 652         * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 653         * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 654         * thing is at that point of time there are no pages associated with the
 655         * driver so this function will not be called.
 656         */
 657        list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
 658                if (pool->type != type)
 659                        continue;
 660                found = pool;
 661                break;
 662        }
 663        return found;
 664}
 665
 666/*
 667 * Free pages the pages that failed to change the caching state. If there
 668 * are pages that have changed their caching state already put them to the
 669 * pool.
 670 */
 671static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 672                                                 struct list_head *d_pages,
 673                                                 struct page **failed_pages,
 674                                                 unsigned cpages)
 675{
 676        struct dma_page *d_page, *tmp;
 677        struct page *p;
 678        unsigned i = 0;
 679
 680        p = failed_pages[0];
 681        if (!p)
 682                return;
 683        /* Find the failed page. */
 684        list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 685                if (d_page->p != p)
 686                        continue;
 687                /* .. and then progress over the full list. */
 688                list_del(&d_page->page_list);
 689                __ttm_dma_free_page(pool, d_page);
 690                if (++i < cpages)
 691                        p = failed_pages[i];
 692                else
 693                        break;
 694        }
 695
 696}
 697
 698/*
 699 * Allocate 'count' pages, and put 'need' number of them on the
 700 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 701 * The full list of pages should also be on 'd_pages'.
 702 * We return zero for success, and negative numbers as errors.
 703 */
 704static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 705                                        struct list_head *d_pages,
 706                                        unsigned count)
 707{
 708        struct page **caching_array;
 709        struct dma_page *dma_p;
 710        struct page *p;
 711        int r = 0;
 712        unsigned i, cpages;
 713        unsigned max_cpages = min(count,
 714                        (unsigned)(PAGE_SIZE/sizeof(struct page *)));
 715
 716        /* allocate array for page caching change */
 717        caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
 718
 719        if (!caching_array) {
 720                pr_err("%s: Unable to allocate table for new pages\n",
 721                       pool->dev_name);
 722                return -ENOMEM;
 723        }
 724
 725        if (count > 1) {
 726                pr_debug("%s: (%s:%d) Getting %d pages\n",
 727                         pool->dev_name, pool->name, current->pid, count);
 728        }
 729
 730        for (i = 0, cpages = 0; i < count; ++i) {
 731                dma_p = __ttm_dma_alloc_page(pool);
 732                if (!dma_p) {
 733                        pr_err("%s: Unable to get page %u\n",
 734                               pool->dev_name, i);
 735
 736                        /* store already allocated pages in the pool after
 737                         * setting the caching state */
 738                        if (cpages) {
 739                                r = ttm_set_pages_caching(pool, caching_array,
 740                                                          cpages);
 741                                if (r)
 742                                        ttm_dma_handle_caching_state_failure(
 743                                                pool, d_pages, caching_array,
 744                                                cpages);
 745                        }
 746                        r = -ENOMEM;
 747                        goto out;
 748                }
 749                p = dma_p->p;
 750#ifdef CONFIG_HIGHMEM
 751                /* gfp flags of highmem page should never be dma32 so we
 752                 * we should be fine in such case
 753                 */
 754                if (!PageHighMem(p))
 755#endif
 756                {
 757                        caching_array[cpages++] = p;
 758                        if (cpages == max_cpages) {
 759                                /* Note: Cannot hold the spinlock */
 760                                r = ttm_set_pages_caching(pool, caching_array,
 761                                                 cpages);
 762                                if (r) {
 763                                        ttm_dma_handle_caching_state_failure(
 764                                                pool, d_pages, caching_array,
 765                                                cpages);
 766                                        goto out;
 767                                }
 768                                cpages = 0;
 769                        }
 770                }
 771                list_add(&dma_p->page_list, d_pages);
 772        }
 773
 774        if (cpages) {
 775                r = ttm_set_pages_caching(pool, caching_array, cpages);
 776                if (r)
 777                        ttm_dma_handle_caching_state_failure(pool, d_pages,
 778                                        caching_array, cpages);
 779        }
 780out:
 781        kfree(caching_array);
 782        return r;
 783}
 784
 785/*
 786 * @return count of pages still required to fulfill the request.
 787 */
 788static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 789                                         unsigned long *irq_flags)
 790{
 791        unsigned count = _manager->options.small;
 792        int r = pool->npages_free;
 793
 794        if (count > pool->npages_free) {
 795                struct list_head d_pages;
 796
 797                INIT_LIST_HEAD(&d_pages);
 798
 799                spin_unlock_irqrestore(&pool->lock, *irq_flags);
 800
 801                /* Returns how many more are neccessary to fulfill the
 802                 * request. */
 803                r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 804
 805                spin_lock_irqsave(&pool->lock, *irq_flags);
 806                if (!r) {
 807                        /* Add the fresh to the end.. */
 808                        list_splice(&d_pages, &pool->free_list);
 809                        ++pool->nrefills;
 810                        pool->npages_free += count;
 811                        r = count;
 812                } else {
 813                        struct dma_page *d_page;
 814                        unsigned cpages = 0;
 815
 816                        pr_err("%s: Failed to fill %s pool (r:%d)!\n",
 817                               pool->dev_name, pool->name, r);
 818
 819                        list_for_each_entry(d_page, &d_pages, page_list) {
 820                                cpages++;
 821                        }
 822                        list_splice_tail(&d_pages, &pool->free_list);
 823                        pool->npages_free += cpages;
 824                        r = cpages;
 825                }
 826        }
 827        return r;
 828}
 829
 830/*
 831 * @return count of pages still required to fulfill the request.
 832 * The populate list is actually a stack (not that is matters as TTM
 833 * allocates one page at a time.
 834 */
 835static int ttm_dma_pool_get_pages(struct dma_pool *pool,
 836                                  struct ttm_dma_tt *ttm_dma,
 837                                  unsigned index)
 838{
 839        struct dma_page *d_page;
 840        struct ttm_tt *ttm = &ttm_dma->ttm;
 841        unsigned long irq_flags;
 842        int count, r = -ENOMEM;
 843
 844        spin_lock_irqsave(&pool->lock, irq_flags);
 845        count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 846        if (count) {
 847                d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 848                ttm->pages[index] = d_page->p;
 849                ttm_dma->dma_address[index] = d_page->dma;
 850                list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 851                r = 0;
 852                pool->npages_in_use += 1;
 853                pool->npages_free -= 1;
 854        }
 855        spin_unlock_irqrestore(&pool->lock, irq_flags);
 856        return r;
 857}
 858
 859/*
 860 * On success pages list will hold count number of correctly
 861 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 862 */
 863int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 864{
 865        struct ttm_tt *ttm = &ttm_dma->ttm;
 866        struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
 867        struct dma_pool *pool;
 868        enum pool_type type;
 869        unsigned i;
 870        gfp_t gfp_flags;
 871        int ret;
 872
 873        if (ttm->state != tt_unpopulated)
 874                return 0;
 875
 876        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 877        if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 878                gfp_flags = GFP_USER | GFP_DMA32;
 879        else
 880                gfp_flags = GFP_HIGHUSER;
 881        if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 882                gfp_flags |= __GFP_ZERO;
 883
 884        pool = ttm_dma_find_pool(dev, type);
 885        if (!pool) {
 886                pool = ttm_dma_pool_init(dev, gfp_flags, type);
 887                if (IS_ERR_OR_NULL(pool)) {
 888                        return -ENOMEM;
 889                }
 890        }
 891
 892        INIT_LIST_HEAD(&ttm_dma->pages_list);
 893        for (i = 0; i < ttm->num_pages; ++i) {
 894                ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 895                if (ret != 0) {
 896                        ttm_dma_unpopulate(ttm_dma, dev);
 897                        return -ENOMEM;
 898                }
 899
 900                ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 901                                                false, false);
 902                if (unlikely(ret != 0)) {
 903                        ttm_dma_unpopulate(ttm_dma, dev);
 904                        return -ENOMEM;
 905                }
 906        }
 907
 908        if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 909                ret = ttm_tt_swapin(ttm);
 910                if (unlikely(ret != 0)) {
 911                        ttm_dma_unpopulate(ttm_dma, dev);
 912                        return ret;
 913                }
 914        }
 915
 916        ttm->state = tt_unbound;
 917        return 0;
 918}
 919EXPORT_SYMBOL_GPL(ttm_dma_populate);
 920
 921/* Get good estimation how many pages are free in pools */
 922static int ttm_dma_pool_get_num_unused_pages(void)
 923{
 924        struct device_pools *p;
 925        unsigned total = 0;
 926
 927        mutex_lock(&_manager->lock);
 928        list_for_each_entry(p, &_manager->pools, pools)
 929                total += p->pool->npages_free;
 930        mutex_unlock(&_manager->lock);
 931        return total;
 932}
 933
 934/* Put all pages in pages list to correct pool to wait for reuse */
 935void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 936{
 937        struct ttm_tt *ttm = &ttm_dma->ttm;
 938        struct dma_pool *pool;
 939        struct dma_page *d_page, *next;
 940        enum pool_type type;
 941        bool is_cached = false;
 942        unsigned count = 0, i, npages = 0;
 943        unsigned long irq_flags;
 944
 945        type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 946        pool = ttm_dma_find_pool(dev, type);
 947        if (!pool)
 948                return;
 949
 950        is_cached = (ttm_dma_find_pool(pool->dev,
 951                     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
 952
 953        /* make sure pages array match list and count number of pages */
 954        list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
 955                ttm->pages[count] = d_page->p;
 956                count++;
 957        }
 958
 959        spin_lock_irqsave(&pool->lock, irq_flags);
 960        pool->npages_in_use -= count;
 961        if (is_cached) {
 962                pool->nfrees += count;
 963        } else {
 964                pool->npages_free += count;
 965                list_splice(&ttm_dma->pages_list, &pool->free_list);
 966                npages = count;
 967                if (pool->npages_free > _manager->options.max_size) {
 968                        npages = pool->npages_free - _manager->options.max_size;
 969                        /* free at least NUM_PAGES_TO_ALLOC number of pages
 970                         * to reduce calls to set_memory_wb */
 971                        if (npages < NUM_PAGES_TO_ALLOC)
 972                                npages = NUM_PAGES_TO_ALLOC;
 973                }
 974        }
 975        spin_unlock_irqrestore(&pool->lock, irq_flags);
 976
 977        if (is_cached) {
 978                list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
 979                        ttm_mem_global_free_page(ttm->glob->mem_glob,
 980                                                 d_page->p);
 981                        ttm_dma_page_put(pool, d_page);
 982                }
 983        } else {
 984                for (i = 0; i < count; i++) {
 985                        ttm_mem_global_free_page(ttm->glob->mem_glob,
 986                                                 ttm->pages[i]);
 987                }
 988        }
 989
 990        INIT_LIST_HEAD(&ttm_dma->pages_list);
 991        for (i = 0; i < ttm->num_pages; i++) {
 992                ttm->pages[i] = NULL;
 993                ttm_dma->dma_address[i] = 0;
 994        }
 995
 996        /* shrink pool if necessary (only on !is_cached pools)*/
 997        if (npages)
 998                ttm_dma_page_pool_free(pool, npages);
 999        ttm->state = tt_unpopulated;
1000}
1001EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002
1003/**
1004 * Callback for mm to request pool to reduce number of page held.
1005 */
1006static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1007                                  struct shrink_control *sc)
1008{
1009        static atomic_t start_pool = ATOMIC_INIT(0);
1010        unsigned idx = 0;
1011        unsigned pool_offset = atomic_add_return(1, &start_pool);
1012        unsigned shrink_pages = sc->nr_to_scan;
1013        struct device_pools *p;
1014
1015        if (list_empty(&_manager->pools))
1016                return 0;
1017
1018        mutex_lock(&_manager->lock);
1019        pool_offset = pool_offset % _manager->npools;
1020        list_for_each_entry(p, &_manager->pools, pools) {
1021                unsigned nr_free;
1022
1023                if (!p->dev)
1024                        continue;
1025                if (shrink_pages == 0)
1026                        break;
1027                /* Do it in round-robin fashion. */
1028                if (++idx < pool_offset)
1029                        continue;
1030                nr_free = shrink_pages;
1031                shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1032                pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1033                         p->pool->dev_name, p->pool->name, current->pid,
1034                         nr_free, shrink_pages);
1035        }
1036        mutex_unlock(&_manager->lock);
1037        /* return estimated number of unused pages in pool */
1038        return ttm_dma_pool_get_num_unused_pages();
1039}
1040
1041static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1042{
1043        manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1044        manager->mm_shrink.seeks = 1;
1045        register_shrinker(&manager->mm_shrink);
1046}
1047
1048static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1049{
1050        unregister_shrinker(&manager->mm_shrink);
1051}
1052
1053int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1054{
1055        int ret = -ENOMEM;
1056
1057        WARN_ON(_manager);
1058
1059        pr_info("Initializing DMA pool allocator\n");
1060
1061        _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1062        if (!_manager)
1063                goto err;
1064
1065        mutex_init(&_manager->lock);
1066        INIT_LIST_HEAD(&_manager->pools);
1067
1068        _manager->options.max_size = max_pages;
1069        _manager->options.small = SMALL_ALLOCATION;
1070        _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1071
1072        /* This takes care of auto-freeing the _manager */
1073        ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1074                                   &glob->kobj, "dma_pool");
1075        if (unlikely(ret != 0)) {
1076                kobject_put(&_manager->kobj);
1077                goto err;
1078        }
1079        ttm_dma_pool_mm_shrink_init(_manager);
1080        return 0;
1081err:
1082        return ret;
1083}
1084
1085void ttm_dma_page_alloc_fini(void)
1086{
1087        struct device_pools *p, *t;
1088
1089        pr_info("Finalizing DMA pool allocator\n");
1090        ttm_dma_pool_mm_shrink_fini(_manager);
1091
1092        list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1093                dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1094                        current->pid);
1095                WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1096                        ttm_dma_pool_match, p->pool));
1097                ttm_dma_free_pool(p->dev, p->pool->type);
1098        }
1099        kobject_put(&_manager->kobj);
1100        _manager = NULL;
1101}
1102
1103int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1104{
1105        struct device_pools *p;
1106        struct dma_pool *pool = NULL;
1107        char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1108                     "name", "virt", "busaddr"};
1109
1110        if (!_manager) {
1111                seq_printf(m, "No pool allocator running.\n");
1112                return 0;
1113        }
1114        seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1115                   h[0], h[1], h[2], h[3], h[4], h[5]);
1116        mutex_lock(&_manager->lock);
1117        list_for_each_entry(p, &_manager->pools, pools) {
1118                struct device *dev = p->dev;
1119                if (!dev)
1120                        continue;
1121                pool = p->pool;
1122                seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1123                                pool->name, pool->nrefills,
1124                                pool->nfrees, pool->npages_in_use,
1125                                pool->npages_free,
1126                                pool->dev_name);
1127        }
1128        mutex_unlock(&_manager->lock);
1129        return 0;
1130}
1131EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1132