linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1/*
   2 * bcache setup/teardown code, and some metadata io - read a superblock and
   3 * figure out what to do with it.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "request.h"
  13#include "writeback.h"
  14
  15#include <linux/blkdev.h>
  16#include <linux/buffer_head.h>
  17#include <linux/debugfs.h>
  18#include <linux/genhd.h>
  19#include <linux/kthread.h>
  20#include <linux/module.h>
  21#include <linux/random.h>
  22#include <linux/reboot.h>
  23#include <linux/sysfs.h>
  24
  25MODULE_LICENSE("GPL");
  26MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  27
  28static const char bcache_magic[] = {
  29        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  30        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  31};
  32
  33static const char invalid_uuid[] = {
  34        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  35        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  36};
  37
  38/* Default is -1; we skip past it for struct cached_dev's cache mode */
  39const char * const bch_cache_modes[] = {
  40        "default",
  41        "writethrough",
  42        "writeback",
  43        "writearound",
  44        "none",
  45        NULL
  46};
  47
  48struct uuid_entry_v0 {
  49        uint8_t         uuid[16];
  50        uint8_t         label[32];
  51        uint32_t        first_reg;
  52        uint32_t        last_reg;
  53        uint32_t        invalidated;
  54        uint32_t        pad;
  55};
  56
  57static struct kobject *bcache_kobj;
  58struct mutex bch_register_lock;
  59LIST_HEAD(bch_cache_sets);
  60static LIST_HEAD(uncached_devices);
  61
  62static int bcache_major, bcache_minor;
  63static wait_queue_head_t unregister_wait;
  64struct workqueue_struct *bcache_wq;
  65
  66#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  67
  68static void bio_split_pool_free(struct bio_split_pool *p)
  69{
  70        if (p->bio_split_hook)
  71                mempool_destroy(p->bio_split_hook);
  72
  73        if (p->bio_split)
  74                bioset_free(p->bio_split);
  75}
  76
  77static int bio_split_pool_init(struct bio_split_pool *p)
  78{
  79        p->bio_split = bioset_create(4, 0);
  80        if (!p->bio_split)
  81                return -ENOMEM;
  82
  83        p->bio_split_hook = mempool_create_kmalloc_pool(4,
  84                                sizeof(struct bio_split_hook));
  85        if (!p->bio_split_hook)
  86                return -ENOMEM;
  87
  88        return 0;
  89}
  90
  91/* Superblock */
  92
  93static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  94                              struct page **res)
  95{
  96        const char *err;
  97        struct cache_sb *s;
  98        struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  99        unsigned i;
 100
 101        if (!bh)
 102                return "IO error";
 103
 104        s = (struct cache_sb *) bh->b_data;
 105
 106        sb->offset              = le64_to_cpu(s->offset);
 107        sb->version             = le64_to_cpu(s->version);
 108
 109        memcpy(sb->magic,       s->magic, 16);
 110        memcpy(sb->uuid,        s->uuid, 16);
 111        memcpy(sb->set_uuid,    s->set_uuid, 16);
 112        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
 113
 114        sb->flags               = le64_to_cpu(s->flags);
 115        sb->seq                 = le64_to_cpu(s->seq);
 116        sb->last_mount          = le32_to_cpu(s->last_mount);
 117        sb->first_bucket        = le16_to_cpu(s->first_bucket);
 118        sb->keys                = le16_to_cpu(s->keys);
 119
 120        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
 121                sb->d[i] = le64_to_cpu(s->d[i]);
 122
 123        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
 124                 sb->version, sb->flags, sb->seq, sb->keys);
 125
 126        err = "Not a bcache superblock";
 127        if (sb->offset != SB_SECTOR)
 128                goto err;
 129
 130        if (memcmp(sb->magic, bcache_magic, 16))
 131                goto err;
 132
 133        err = "Too many journal buckets";
 134        if (sb->keys > SB_JOURNAL_BUCKETS)
 135                goto err;
 136
 137        err = "Bad checksum";
 138        if (s->csum != csum_set(s))
 139                goto err;
 140
 141        err = "Bad UUID";
 142        if (bch_is_zero(sb->uuid, 16))
 143                goto err;
 144
 145        sb->block_size  = le16_to_cpu(s->block_size);
 146
 147        err = "Superblock block size smaller than device block size";
 148        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 149                goto err;
 150
 151        switch (sb->version) {
 152        case BCACHE_SB_VERSION_BDEV:
 153                sb->data_offset = BDEV_DATA_START_DEFAULT;
 154                break;
 155        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 156                sb->data_offset = le64_to_cpu(s->data_offset);
 157
 158                err = "Bad data offset";
 159                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 160                        goto err;
 161
 162                break;
 163        case BCACHE_SB_VERSION_CDEV:
 164        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 165                sb->nbuckets    = le64_to_cpu(s->nbuckets);
 166                sb->block_size  = le16_to_cpu(s->block_size);
 167                sb->bucket_size = le16_to_cpu(s->bucket_size);
 168
 169                sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 170                sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 171
 172                err = "Too many buckets";
 173                if (sb->nbuckets > LONG_MAX)
 174                        goto err;
 175
 176                err = "Not enough buckets";
 177                if (sb->nbuckets < 1 << 7)
 178                        goto err;
 179
 180                err = "Bad block/bucket size";
 181                if (!is_power_of_2(sb->block_size) ||
 182                    sb->block_size > PAGE_SECTORS ||
 183                    !is_power_of_2(sb->bucket_size) ||
 184                    sb->bucket_size < PAGE_SECTORS)
 185                        goto err;
 186
 187                err = "Invalid superblock: device too small";
 188                if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
 189                        goto err;
 190
 191                err = "Bad UUID";
 192                if (bch_is_zero(sb->set_uuid, 16))
 193                        goto err;
 194
 195                err = "Bad cache device number in set";
 196                if (!sb->nr_in_set ||
 197                    sb->nr_in_set <= sb->nr_this_dev ||
 198                    sb->nr_in_set > MAX_CACHES_PER_SET)
 199                        goto err;
 200
 201                err = "Journal buckets not sequential";
 202                for (i = 0; i < sb->keys; i++)
 203                        if (sb->d[i] != sb->first_bucket + i)
 204                                goto err;
 205
 206                err = "Too many journal buckets";
 207                if (sb->first_bucket + sb->keys > sb->nbuckets)
 208                        goto err;
 209
 210                err = "Invalid superblock: first bucket comes before end of super";
 211                if (sb->first_bucket * sb->bucket_size < 16)
 212                        goto err;
 213
 214                break;
 215        default:
 216                err = "Unsupported superblock version";
 217                goto err;
 218        }
 219
 220        sb->last_mount = get_seconds();
 221        err = NULL;
 222
 223        get_page(bh->b_page);
 224        *res = bh->b_page;
 225err:
 226        put_bh(bh);
 227        return err;
 228}
 229
 230static void write_bdev_super_endio(struct bio *bio, int error)
 231{
 232        struct cached_dev *dc = bio->bi_private;
 233        /* XXX: error checking */
 234
 235        closure_put(&dc->sb_write.cl);
 236}
 237
 238static void __write_super(struct cache_sb *sb, struct bio *bio)
 239{
 240        struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
 241        unsigned i;
 242
 243        bio->bi_sector  = SB_SECTOR;
 244        bio->bi_rw      = REQ_SYNC|REQ_META;
 245        bio->bi_size    = SB_SIZE;
 246        bch_bio_map(bio, NULL);
 247
 248        out->offset             = cpu_to_le64(sb->offset);
 249        out->version            = cpu_to_le64(sb->version);
 250
 251        memcpy(out->uuid,       sb->uuid, 16);
 252        memcpy(out->set_uuid,   sb->set_uuid, 16);
 253        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 254
 255        out->flags              = cpu_to_le64(sb->flags);
 256        out->seq                = cpu_to_le64(sb->seq);
 257
 258        out->last_mount         = cpu_to_le32(sb->last_mount);
 259        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 260        out->keys               = cpu_to_le16(sb->keys);
 261
 262        for (i = 0; i < sb->keys; i++)
 263                out->d[i] = cpu_to_le64(sb->d[i]);
 264
 265        out->csum = csum_set(out);
 266
 267        pr_debug("ver %llu, flags %llu, seq %llu",
 268                 sb->version, sb->flags, sb->seq);
 269
 270        submit_bio(REQ_WRITE, bio);
 271}
 272
 273void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 274{
 275        struct closure *cl = &dc->sb_write.cl;
 276        struct bio *bio = &dc->sb_bio;
 277
 278        closure_lock(&dc->sb_write, parent);
 279
 280        bio_reset(bio);
 281        bio->bi_bdev    = dc->bdev;
 282        bio->bi_end_io  = write_bdev_super_endio;
 283        bio->bi_private = dc;
 284
 285        closure_get(cl);
 286        __write_super(&dc->sb, bio);
 287
 288        closure_return(cl);
 289}
 290
 291static void write_super_endio(struct bio *bio, int error)
 292{
 293        struct cache *ca = bio->bi_private;
 294
 295        bch_count_io_errors(ca, error, "writing superblock");
 296        closure_put(&ca->set->sb_write.cl);
 297}
 298
 299void bcache_write_super(struct cache_set *c)
 300{
 301        struct closure *cl = &c->sb_write.cl;
 302        struct cache *ca;
 303        unsigned i;
 304
 305        closure_lock(&c->sb_write, &c->cl);
 306
 307        c->sb.seq++;
 308
 309        for_each_cache(ca, c, i) {
 310                struct bio *bio = &ca->sb_bio;
 311
 312                ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 313                ca->sb.seq              = c->sb.seq;
 314                ca->sb.last_mount       = c->sb.last_mount;
 315
 316                SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 317
 318                bio_reset(bio);
 319                bio->bi_bdev    = ca->bdev;
 320                bio->bi_end_io  = write_super_endio;
 321                bio->bi_private = ca;
 322
 323                closure_get(cl);
 324                __write_super(&ca->sb, bio);
 325        }
 326
 327        closure_return(cl);
 328}
 329
 330/* UUID io */
 331
 332static void uuid_endio(struct bio *bio, int error)
 333{
 334        struct closure *cl = bio->bi_private;
 335        struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
 336
 337        cache_set_err_on(error, c, "accessing uuids");
 338        bch_bbio_free(bio, c);
 339        closure_put(cl);
 340}
 341
 342static void uuid_io(struct cache_set *c, unsigned long rw,
 343                    struct bkey *k, struct closure *parent)
 344{
 345        struct closure *cl = &c->uuid_write.cl;
 346        struct uuid_entry *u;
 347        unsigned i;
 348        char buf[80];
 349
 350        BUG_ON(!parent);
 351        closure_lock(&c->uuid_write, parent);
 352
 353        for (i = 0; i < KEY_PTRS(k); i++) {
 354                struct bio *bio = bch_bbio_alloc(c);
 355
 356                bio->bi_rw      = REQ_SYNC|REQ_META|rw;
 357                bio->bi_size    = KEY_SIZE(k) << 9;
 358
 359                bio->bi_end_io  = uuid_endio;
 360                bio->bi_private = cl;
 361                bch_bio_map(bio, c->uuids);
 362
 363                bch_submit_bbio(bio, c, k, i);
 364
 365                if (!(rw & WRITE))
 366                        break;
 367        }
 368
 369        bch_bkey_to_text(buf, sizeof(buf), k);
 370        pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
 371
 372        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 373                if (!bch_is_zero(u->uuid, 16))
 374                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 375                                 u - c->uuids, u->uuid, u->label,
 376                                 u->first_reg, u->last_reg, u->invalidated);
 377
 378        closure_return(cl);
 379}
 380
 381static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 382{
 383        struct bkey *k = &j->uuid_bucket;
 384
 385        if (__bch_ptr_invalid(c, 1, k))
 386                return "bad uuid pointer";
 387
 388        bkey_copy(&c->uuid_bucket, k);
 389        uuid_io(c, READ_SYNC, k, cl);
 390
 391        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 392                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 393                struct uuid_entry       *u1 = (void *) c->uuids;
 394                int i;
 395
 396                closure_sync(cl);
 397
 398                /*
 399                 * Since the new uuid entry is bigger than the old, we have to
 400                 * convert starting at the highest memory address and work down
 401                 * in order to do it in place
 402                 */
 403
 404                for (i = c->nr_uuids - 1;
 405                     i >= 0;
 406                     --i) {
 407                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 408                        memcpy(u1[i].label,     u0[i].label, 32);
 409
 410                        u1[i].first_reg         = u0[i].first_reg;
 411                        u1[i].last_reg          = u0[i].last_reg;
 412                        u1[i].invalidated       = u0[i].invalidated;
 413
 414                        u1[i].flags     = 0;
 415                        u1[i].sectors   = 0;
 416                }
 417        }
 418
 419        return NULL;
 420}
 421
 422static int __uuid_write(struct cache_set *c)
 423{
 424        BKEY_PADDED(key) k;
 425        struct closure cl;
 426        closure_init_stack(&cl);
 427
 428        lockdep_assert_held(&bch_register_lock);
 429
 430        if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
 431                return 1;
 432
 433        SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 434        uuid_io(c, REQ_WRITE, &k.key, &cl);
 435        closure_sync(&cl);
 436
 437        bkey_copy(&c->uuid_bucket, &k.key);
 438        __bkey_put(c, &k.key);
 439        return 0;
 440}
 441
 442int bch_uuid_write(struct cache_set *c)
 443{
 444        int ret = __uuid_write(c);
 445
 446        if (!ret)
 447                bch_journal_meta(c, NULL);
 448
 449        return ret;
 450}
 451
 452static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 453{
 454        struct uuid_entry *u;
 455
 456        for (u = c->uuids;
 457             u < c->uuids + c->nr_uuids; u++)
 458                if (!memcmp(u->uuid, uuid, 16))
 459                        return u;
 460
 461        return NULL;
 462}
 463
 464static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 465{
 466        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 467        return uuid_find(c, zero_uuid);
 468}
 469
 470/*
 471 * Bucket priorities/gens:
 472 *
 473 * For each bucket, we store on disk its
 474   * 8 bit gen
 475   * 16 bit priority
 476 *
 477 * See alloc.c for an explanation of the gen. The priority is used to implement
 478 * lru (and in the future other) cache replacement policies; for most purposes
 479 * it's just an opaque integer.
 480 *
 481 * The gens and the priorities don't have a whole lot to do with each other, and
 482 * it's actually the gens that must be written out at specific times - it's no
 483 * big deal if the priorities don't get written, if we lose them we just reuse
 484 * buckets in suboptimal order.
 485 *
 486 * On disk they're stored in a packed array, and in as many buckets are required
 487 * to fit them all. The buckets we use to store them form a list; the journal
 488 * header points to the first bucket, the first bucket points to the second
 489 * bucket, et cetera.
 490 *
 491 * This code is used by the allocation code; periodically (whenever it runs out
 492 * of buckets to allocate from) the allocation code will invalidate some
 493 * buckets, but it can't use those buckets until their new gens are safely on
 494 * disk.
 495 */
 496
 497static void prio_endio(struct bio *bio, int error)
 498{
 499        struct cache *ca = bio->bi_private;
 500
 501        cache_set_err_on(error, ca->set, "accessing priorities");
 502        bch_bbio_free(bio, ca->set);
 503        closure_put(&ca->prio);
 504}
 505
 506static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
 507{
 508        struct closure *cl = &ca->prio;
 509        struct bio *bio = bch_bbio_alloc(ca->set);
 510
 511        closure_init_stack(cl);
 512
 513        bio->bi_sector  = bucket * ca->sb.bucket_size;
 514        bio->bi_bdev    = ca->bdev;
 515        bio->bi_rw      = REQ_SYNC|REQ_META|rw;
 516        bio->bi_size    = bucket_bytes(ca);
 517
 518        bio->bi_end_io  = prio_endio;
 519        bio->bi_private = ca;
 520        bch_bio_map(bio, ca->disk_buckets);
 521
 522        closure_bio_submit(bio, &ca->prio, ca);
 523        closure_sync(cl);
 524}
 525
 526#define buckets_free(c) "free %zu, free_inc %zu, unused %zu",           \
 527        fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
 528
 529void bch_prio_write(struct cache *ca)
 530{
 531        int i;
 532        struct bucket *b;
 533        struct closure cl;
 534
 535        closure_init_stack(&cl);
 536
 537        lockdep_assert_held(&ca->set->bucket_lock);
 538
 539        for (b = ca->buckets;
 540             b < ca->buckets + ca->sb.nbuckets; b++)
 541                b->disk_gen = b->gen;
 542
 543        ca->disk_buckets->seq++;
 544
 545        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 546                        &ca->meta_sectors_written);
 547
 548        pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 549                 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 550
 551        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 552                long bucket;
 553                struct prio_set *p = ca->disk_buckets;
 554                struct bucket_disk *d = p->data;
 555                struct bucket_disk *end = d + prios_per_bucket(ca);
 556
 557                for (b = ca->buckets + i * prios_per_bucket(ca);
 558                     b < ca->buckets + ca->sb.nbuckets && d < end;
 559                     b++, d++) {
 560                        d->prio = cpu_to_le16(b->prio);
 561                        d->gen = b->gen;
 562                }
 563
 564                p->next_bucket  = ca->prio_buckets[i + 1];
 565                p->magic        = pset_magic(ca);
 566                p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 567
 568                bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
 569                BUG_ON(bucket == -1);
 570
 571                mutex_unlock(&ca->set->bucket_lock);
 572                prio_io(ca, bucket, REQ_WRITE);
 573                mutex_lock(&ca->set->bucket_lock);
 574
 575                ca->prio_buckets[i] = bucket;
 576                atomic_dec_bug(&ca->buckets[bucket].pin);
 577        }
 578
 579        mutex_unlock(&ca->set->bucket_lock);
 580
 581        bch_journal_meta(ca->set, &cl);
 582        closure_sync(&cl);
 583
 584        mutex_lock(&ca->set->bucket_lock);
 585
 586        ca->need_save_prio = 0;
 587
 588        /*
 589         * Don't want the old priorities to get garbage collected until after we
 590         * finish writing the new ones, and they're journalled
 591         */
 592        for (i = 0; i < prio_buckets(ca); i++)
 593                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 594}
 595
 596static void prio_read(struct cache *ca, uint64_t bucket)
 597{
 598        struct prio_set *p = ca->disk_buckets;
 599        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 600        struct bucket *b;
 601        unsigned bucket_nr = 0;
 602
 603        for (b = ca->buckets;
 604             b < ca->buckets + ca->sb.nbuckets;
 605             b++, d++) {
 606                if (d == end) {
 607                        ca->prio_buckets[bucket_nr] = bucket;
 608                        ca->prio_last_buckets[bucket_nr] = bucket;
 609                        bucket_nr++;
 610
 611                        prio_io(ca, bucket, READ_SYNC);
 612
 613                        if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 614                                pr_warn("bad csum reading priorities");
 615
 616                        if (p->magic != pset_magic(ca))
 617                                pr_warn("bad magic reading priorities");
 618
 619                        bucket = p->next_bucket;
 620                        d = p->data;
 621                }
 622
 623                b->prio = le16_to_cpu(d->prio);
 624                b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
 625        }
 626}
 627
 628/* Bcache device */
 629
 630static int open_dev(struct block_device *b, fmode_t mode)
 631{
 632        struct bcache_device *d = b->bd_disk->private_data;
 633        if (atomic_read(&d->closing))
 634                return -ENXIO;
 635
 636        closure_get(&d->cl);
 637        return 0;
 638}
 639
 640static void release_dev(struct gendisk *b, fmode_t mode)
 641{
 642        struct bcache_device *d = b->private_data;
 643        closure_put(&d->cl);
 644}
 645
 646static int ioctl_dev(struct block_device *b, fmode_t mode,
 647                     unsigned int cmd, unsigned long arg)
 648{
 649        struct bcache_device *d = b->bd_disk->private_data;
 650        return d->ioctl(d, mode, cmd, arg);
 651}
 652
 653static const struct block_device_operations bcache_ops = {
 654        .open           = open_dev,
 655        .release        = release_dev,
 656        .ioctl          = ioctl_dev,
 657        .owner          = THIS_MODULE,
 658};
 659
 660void bcache_device_stop(struct bcache_device *d)
 661{
 662        if (!atomic_xchg(&d->closing, 1))
 663                closure_queue(&d->cl);
 664}
 665
 666static void bcache_device_unlink(struct bcache_device *d)
 667{
 668        unsigned i;
 669        struct cache *ca;
 670
 671        sysfs_remove_link(&d->c->kobj, d->name);
 672        sysfs_remove_link(&d->kobj, "cache");
 673
 674        for_each_cache(ca, d->c, i)
 675                bd_unlink_disk_holder(ca->bdev, d->disk);
 676}
 677
 678static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 679                               const char *name)
 680{
 681        unsigned i;
 682        struct cache *ca;
 683
 684        for_each_cache(ca, d->c, i)
 685                bd_link_disk_holder(ca->bdev, d->disk);
 686
 687        snprintf(d->name, BCACHEDEVNAME_SIZE,
 688                 "%s%u", name, d->id);
 689
 690        WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
 691             sysfs_create_link(&c->kobj, &d->kobj, d->name),
 692             "Couldn't create device <-> cache set symlinks");
 693}
 694
 695static void bcache_device_detach(struct bcache_device *d)
 696{
 697        lockdep_assert_held(&bch_register_lock);
 698
 699        if (atomic_read(&d->detaching)) {
 700                struct uuid_entry *u = d->c->uuids + d->id;
 701
 702                SET_UUID_FLASH_ONLY(u, 0);
 703                memcpy(u->uuid, invalid_uuid, 16);
 704                u->invalidated = cpu_to_le32(get_seconds());
 705                bch_uuid_write(d->c);
 706
 707                atomic_set(&d->detaching, 0);
 708        }
 709
 710        if (!d->flush_done)
 711                bcache_device_unlink(d);
 712
 713        d->c->devices[d->id] = NULL;
 714        closure_put(&d->c->caching);
 715        d->c = NULL;
 716}
 717
 718static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 719                                 unsigned id)
 720{
 721        BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
 722
 723        d->id = id;
 724        d->c = c;
 725        c->devices[id] = d;
 726
 727        closure_get(&c->caching);
 728}
 729
 730static void bcache_device_free(struct bcache_device *d)
 731{
 732        lockdep_assert_held(&bch_register_lock);
 733
 734        pr_info("%s stopped", d->disk->disk_name);
 735
 736        if (d->c)
 737                bcache_device_detach(d);
 738        if (d->disk && d->disk->flags & GENHD_FL_UP)
 739                del_gendisk(d->disk);
 740        if (d->disk && d->disk->queue)
 741                blk_cleanup_queue(d->disk->queue);
 742        if (d->disk)
 743                put_disk(d->disk);
 744
 745        bio_split_pool_free(&d->bio_split_hook);
 746        if (d->unaligned_bvec)
 747                mempool_destroy(d->unaligned_bvec);
 748        if (d->bio_split)
 749                bioset_free(d->bio_split);
 750        if (is_vmalloc_addr(d->stripe_sectors_dirty))
 751                vfree(d->stripe_sectors_dirty);
 752        else
 753                kfree(d->stripe_sectors_dirty);
 754
 755        closure_debug_destroy(&d->cl);
 756}
 757
 758static int bcache_device_init(struct bcache_device *d, unsigned block_size,
 759                              sector_t sectors)
 760{
 761        struct request_queue *q;
 762        size_t n;
 763
 764        if (!d->stripe_size_bits)
 765                d->stripe_size_bits = 31;
 766
 767        d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >>
 768                d->stripe_size_bits;
 769
 770        if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
 771                return -ENOMEM;
 772
 773        n = d->nr_stripes * sizeof(atomic_t);
 774        d->stripe_sectors_dirty = n < PAGE_SIZE << 6
 775                ? kzalloc(n, GFP_KERNEL)
 776                : vzalloc(n);
 777        if (!d->stripe_sectors_dirty)
 778                return -ENOMEM;
 779
 780        if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
 781            !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
 782                                sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
 783            bio_split_pool_init(&d->bio_split_hook) ||
 784            !(d->disk = alloc_disk(1)) ||
 785            !(q = blk_alloc_queue(GFP_KERNEL)))
 786                return -ENOMEM;
 787
 788        set_capacity(d->disk, sectors);
 789        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
 790
 791        d->disk->major          = bcache_major;
 792        d->disk->first_minor    = bcache_minor++;
 793        d->disk->fops           = &bcache_ops;
 794        d->disk->private_data   = d;
 795
 796        blk_queue_make_request(q, NULL);
 797        d->disk->queue                  = q;
 798        q->queuedata                    = d;
 799        q->backing_dev_info.congested_data = d;
 800        q->limits.max_hw_sectors        = UINT_MAX;
 801        q->limits.max_sectors           = UINT_MAX;
 802        q->limits.max_segment_size      = UINT_MAX;
 803        q->limits.max_segments          = BIO_MAX_PAGES;
 804        q->limits.max_discard_sectors   = UINT_MAX;
 805        q->limits.io_min                = block_size;
 806        q->limits.logical_block_size    = block_size;
 807        q->limits.physical_block_size   = block_size;
 808        set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
 809        set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
 810
 811        blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
 812
 813        return 0;
 814}
 815
 816/* Cached device */
 817
 818static void calc_cached_dev_sectors(struct cache_set *c)
 819{
 820        uint64_t sectors = 0;
 821        struct cached_dev *dc;
 822
 823        list_for_each_entry(dc, &c->cached_devs, list)
 824                sectors += bdev_sectors(dc->bdev);
 825
 826        c->cached_dev_sectors = sectors;
 827}
 828
 829void bch_cached_dev_run(struct cached_dev *dc)
 830{
 831        struct bcache_device *d = &dc->disk;
 832        char buf[SB_LABEL_SIZE + 1];
 833        char *env[] = {
 834                "DRIVER=bcache",
 835                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 836                NULL,
 837                NULL,
 838        };
 839
 840        memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
 841        buf[SB_LABEL_SIZE] = '\0';
 842        env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
 843
 844        if (atomic_xchg(&dc->running, 1))
 845                return;
 846
 847        if (!d->c &&
 848            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 849                struct closure cl;
 850                closure_init_stack(&cl);
 851
 852                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 853                bch_write_bdev_super(dc, &cl);
 854                closure_sync(&cl);
 855        }
 856
 857        add_disk(d->disk);
 858        bd_link_disk_holder(dc->bdev, dc->disk.disk);
 859        /* won't show up in the uevent file, use udevadm monitor -e instead
 860         * only class / kset properties are persistent */
 861        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 862        kfree(env[1]);
 863        kfree(env[2]);
 864
 865        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 866            sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
 867                pr_debug("error creating sysfs link");
 868}
 869
 870static void cached_dev_detach_finish(struct work_struct *w)
 871{
 872        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
 873        char buf[BDEVNAME_SIZE];
 874        struct closure cl;
 875        closure_init_stack(&cl);
 876
 877        BUG_ON(!atomic_read(&dc->disk.detaching));
 878        BUG_ON(atomic_read(&dc->count));
 879
 880        mutex_lock(&bch_register_lock);
 881
 882        memset(&dc->sb.set_uuid, 0, 16);
 883        SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 884
 885        bch_write_bdev_super(dc, &cl);
 886        closure_sync(&cl);
 887
 888        bcache_device_detach(&dc->disk);
 889        list_move(&dc->list, &uncached_devices);
 890
 891        mutex_unlock(&bch_register_lock);
 892
 893        pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
 894
 895        /* Drop ref we took in cached_dev_detach() */
 896        closure_put(&dc->disk.cl);
 897}
 898
 899void bch_cached_dev_detach(struct cached_dev *dc)
 900{
 901        lockdep_assert_held(&bch_register_lock);
 902
 903        if (atomic_read(&dc->disk.closing))
 904                return;
 905
 906        if (atomic_xchg(&dc->disk.detaching, 1))
 907                return;
 908
 909        /*
 910         * Block the device from being closed and freed until we're finished
 911         * detaching
 912         */
 913        closure_get(&dc->disk.cl);
 914
 915        bch_writeback_queue(dc);
 916        cached_dev_put(dc);
 917}
 918
 919int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
 920{
 921        uint32_t rtime = cpu_to_le32(get_seconds());
 922        struct uuid_entry *u;
 923        char buf[BDEVNAME_SIZE];
 924
 925        bdevname(dc->bdev, buf);
 926
 927        if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
 928                return -ENOENT;
 929
 930        if (dc->disk.c) {
 931                pr_err("Can't attach %s: already attached", buf);
 932                return -EINVAL;
 933        }
 934
 935        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
 936                pr_err("Can't attach %s: shutting down", buf);
 937                return -EINVAL;
 938        }
 939
 940        if (dc->sb.block_size < c->sb.block_size) {
 941                /* Will die */
 942                pr_err("Couldn't attach %s: block size less than set's block size",
 943                       buf);
 944                return -EINVAL;
 945        }
 946
 947        u = uuid_find(c, dc->sb.uuid);
 948
 949        if (u &&
 950            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
 951             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
 952                memcpy(u->uuid, invalid_uuid, 16);
 953                u->invalidated = cpu_to_le32(get_seconds());
 954                u = NULL;
 955        }
 956
 957        if (!u) {
 958                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
 959                        pr_err("Couldn't find uuid for %s in set", buf);
 960                        return -ENOENT;
 961                }
 962
 963                u = uuid_find_empty(c);
 964                if (!u) {
 965                        pr_err("Not caching %s, no room for UUID", buf);
 966                        return -EINVAL;
 967                }
 968        }
 969
 970        /* Deadlocks since we're called via sysfs...
 971        sysfs_remove_file(&dc->kobj, &sysfs_attach);
 972         */
 973
 974        if (bch_is_zero(u->uuid, 16)) {
 975                struct closure cl;
 976                closure_init_stack(&cl);
 977
 978                memcpy(u->uuid, dc->sb.uuid, 16);
 979                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
 980                u->first_reg = u->last_reg = rtime;
 981                bch_uuid_write(c);
 982
 983                memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
 984                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 985
 986                bch_write_bdev_super(dc, &cl);
 987                closure_sync(&cl);
 988        } else {
 989                u->last_reg = rtime;
 990                bch_uuid_write(c);
 991        }
 992
 993        bcache_device_attach(&dc->disk, c, u - c->uuids);
 994        list_move(&dc->list, &c->cached_devs);
 995        calc_cached_dev_sectors(c);
 996
 997        smp_wmb();
 998        /*
 999         * dc->c must be set before dc->count != 0 - paired with the mb in
1000         * cached_dev_get()
1001         */
1002        atomic_set(&dc->count, 1);
1003
1004        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1005                bch_sectors_dirty_init(dc);
1006                atomic_set(&dc->has_dirty, 1);
1007                atomic_inc(&dc->count);
1008                bch_writeback_queue(dc);
1009        }
1010
1011        bch_cached_dev_run(dc);
1012        bcache_device_link(&dc->disk, c, "bdev");
1013
1014        pr_info("Caching %s as %s on set %pU",
1015                bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1016                dc->disk.c->sb.set_uuid);
1017        return 0;
1018}
1019
1020void bch_cached_dev_release(struct kobject *kobj)
1021{
1022        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1023                                             disk.kobj);
1024        kfree(dc);
1025        module_put(THIS_MODULE);
1026}
1027
1028static void cached_dev_free(struct closure *cl)
1029{
1030        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1031
1032        cancel_delayed_work_sync(&dc->writeback_rate_update);
1033
1034        mutex_lock(&bch_register_lock);
1035
1036        if (atomic_read(&dc->running))
1037                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1038        bcache_device_free(&dc->disk);
1039        list_del(&dc->list);
1040
1041        mutex_unlock(&bch_register_lock);
1042
1043        if (!IS_ERR_OR_NULL(dc->bdev)) {
1044                if (dc->bdev->bd_disk)
1045                        blk_sync_queue(bdev_get_queue(dc->bdev));
1046
1047                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1048        }
1049
1050        wake_up(&unregister_wait);
1051
1052        kobject_put(&dc->disk.kobj);
1053}
1054
1055static void cached_dev_flush(struct closure *cl)
1056{
1057        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1058        struct bcache_device *d = &dc->disk;
1059
1060        mutex_lock(&bch_register_lock);
1061        d->flush_done = 1;
1062
1063        if (d->c)
1064                bcache_device_unlink(d);
1065
1066        mutex_unlock(&bch_register_lock);
1067
1068        bch_cache_accounting_destroy(&dc->accounting);
1069        kobject_del(&d->kobj);
1070
1071        continue_at(cl, cached_dev_free, system_wq);
1072}
1073
1074static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1075{
1076        int ret;
1077        struct io *io;
1078        struct request_queue *q = bdev_get_queue(dc->bdev);
1079
1080        __module_get(THIS_MODULE);
1081        INIT_LIST_HEAD(&dc->list);
1082        closure_init(&dc->disk.cl, NULL);
1083        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1084        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1085        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1086        closure_init_unlocked(&dc->sb_write);
1087        INIT_LIST_HEAD(&dc->io_lru);
1088        spin_lock_init(&dc->io_lock);
1089        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1090
1091        dc->sequential_merge            = true;
1092        dc->sequential_cutoff           = 4 << 20;
1093
1094        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1095                list_add(&io->lru, &dc->io_lru);
1096                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1097        }
1098
1099        ret = bcache_device_init(&dc->disk, block_size,
1100                         dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1101        if (ret)
1102                return ret;
1103
1104        set_capacity(dc->disk.disk,
1105                     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1106
1107        dc->disk.disk->queue->backing_dev_info.ra_pages =
1108                max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1109                    q->backing_dev_info.ra_pages);
1110
1111        bch_cached_dev_request_init(dc);
1112        bch_cached_dev_writeback_init(dc);
1113        return 0;
1114}
1115
1116/* Cached device - bcache superblock */
1117
1118static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1119                                 struct block_device *bdev,
1120                                 struct cached_dev *dc)
1121{
1122        char name[BDEVNAME_SIZE];
1123        const char *err = "cannot allocate memory";
1124        struct cache_set *c;
1125
1126        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1127        dc->bdev = bdev;
1128        dc->bdev->bd_holder = dc;
1129
1130        bio_init(&dc->sb_bio);
1131        dc->sb_bio.bi_max_vecs  = 1;
1132        dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1133        dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1134        get_page(sb_page);
1135
1136        if (cached_dev_init(dc, sb->block_size << 9))
1137                goto err;
1138
1139        err = "error creating kobject";
1140        if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1141                        "bcache"))
1142                goto err;
1143        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1144                goto err;
1145
1146        pr_info("registered backing device %s", bdevname(bdev, name));
1147
1148        list_add(&dc->list, &uncached_devices);
1149        list_for_each_entry(c, &bch_cache_sets, list)
1150                bch_cached_dev_attach(dc, c);
1151
1152        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1153            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1154                bch_cached_dev_run(dc);
1155
1156        return;
1157err:
1158        pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1159        bcache_device_stop(&dc->disk);
1160}
1161
1162/* Flash only volumes */
1163
1164void bch_flash_dev_release(struct kobject *kobj)
1165{
1166        struct bcache_device *d = container_of(kobj, struct bcache_device,
1167                                               kobj);
1168        kfree(d);
1169}
1170
1171static void flash_dev_free(struct closure *cl)
1172{
1173        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1174        bcache_device_free(d);
1175        kobject_put(&d->kobj);
1176}
1177
1178static void flash_dev_flush(struct closure *cl)
1179{
1180        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1181
1182        bcache_device_unlink(d);
1183        kobject_del(&d->kobj);
1184        continue_at(cl, flash_dev_free, system_wq);
1185}
1186
1187static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1188{
1189        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1190                                          GFP_KERNEL);
1191        if (!d)
1192                return -ENOMEM;
1193
1194        closure_init(&d->cl, NULL);
1195        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1196
1197        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1198
1199        if (bcache_device_init(d, block_bytes(c), u->sectors))
1200                goto err;
1201
1202        bcache_device_attach(d, c, u - c->uuids);
1203        bch_flash_dev_request_init(d);
1204        add_disk(d->disk);
1205
1206        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1207                goto err;
1208
1209        bcache_device_link(d, c, "volume");
1210
1211        return 0;
1212err:
1213        kobject_put(&d->kobj);
1214        return -ENOMEM;
1215}
1216
1217static int flash_devs_run(struct cache_set *c)
1218{
1219        int ret = 0;
1220        struct uuid_entry *u;
1221
1222        for (u = c->uuids;
1223             u < c->uuids + c->nr_uuids && !ret;
1224             u++)
1225                if (UUID_FLASH_ONLY(u))
1226                        ret = flash_dev_run(c, u);
1227
1228        return ret;
1229}
1230
1231int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1232{
1233        struct uuid_entry *u;
1234
1235        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1236                return -EINTR;
1237
1238        u = uuid_find_empty(c);
1239        if (!u) {
1240                pr_err("Can't create volume, no room for UUID");
1241                return -EINVAL;
1242        }
1243
1244        get_random_bytes(u->uuid, 16);
1245        memset(u->label, 0, 32);
1246        u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1247
1248        SET_UUID_FLASH_ONLY(u, 1);
1249        u->sectors = size >> 9;
1250
1251        bch_uuid_write(c);
1252
1253        return flash_dev_run(c, u);
1254}
1255
1256/* Cache set */
1257
1258__printf(2, 3)
1259bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1260{
1261        va_list args;
1262
1263        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1264                return false;
1265
1266        /* XXX: we can be called from atomic context
1267        acquire_console_sem();
1268        */
1269
1270        printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1271
1272        va_start(args, fmt);
1273        vprintk(fmt, args);
1274        va_end(args);
1275
1276        printk(", disabling caching\n");
1277
1278        bch_cache_set_unregister(c);
1279        return true;
1280}
1281
1282void bch_cache_set_release(struct kobject *kobj)
1283{
1284        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1285        kfree(c);
1286        module_put(THIS_MODULE);
1287}
1288
1289static void cache_set_free(struct closure *cl)
1290{
1291        struct cache_set *c = container_of(cl, struct cache_set, cl);
1292        struct cache *ca;
1293        unsigned i;
1294
1295        if (!IS_ERR_OR_NULL(c->debug))
1296                debugfs_remove(c->debug);
1297
1298        bch_open_buckets_free(c);
1299        bch_btree_cache_free(c);
1300        bch_journal_free(c);
1301
1302        for_each_cache(ca, c, i)
1303                if (ca)
1304                        kobject_put(&ca->kobj);
1305
1306        free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1307        free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1308
1309        if (c->bio_split)
1310                bioset_free(c->bio_split);
1311        if (c->fill_iter)
1312                mempool_destroy(c->fill_iter);
1313        if (c->bio_meta)
1314                mempool_destroy(c->bio_meta);
1315        if (c->search)
1316                mempool_destroy(c->search);
1317        kfree(c->devices);
1318
1319        mutex_lock(&bch_register_lock);
1320        list_del(&c->list);
1321        mutex_unlock(&bch_register_lock);
1322
1323        pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1324        wake_up(&unregister_wait);
1325
1326        closure_debug_destroy(&c->cl);
1327        kobject_put(&c->kobj);
1328}
1329
1330static void cache_set_flush(struct closure *cl)
1331{
1332        struct cache_set *c = container_of(cl, struct cache_set, caching);
1333        struct cache *ca;
1334        struct btree *b;
1335        unsigned i;
1336
1337        bch_cache_accounting_destroy(&c->accounting);
1338
1339        kobject_put(&c->internal);
1340        kobject_del(&c->kobj);
1341
1342        if (!IS_ERR_OR_NULL(c->root))
1343                list_add(&c->root->list, &c->btree_cache);
1344
1345        /* Should skip this if we're unregistering because of an error */
1346        list_for_each_entry(b, &c->btree_cache, list)
1347                if (btree_node_dirty(b))
1348                        bch_btree_node_write(b, NULL);
1349
1350        for_each_cache(ca, c, i)
1351                if (ca->alloc_thread)
1352                        kthread_stop(ca->alloc_thread);
1353
1354        closure_return(cl);
1355}
1356
1357static void __cache_set_unregister(struct closure *cl)
1358{
1359        struct cache_set *c = container_of(cl, struct cache_set, caching);
1360        struct cached_dev *dc;
1361        size_t i;
1362
1363        mutex_lock(&bch_register_lock);
1364
1365        for (i = 0; i < c->nr_uuids; i++)
1366                if (c->devices[i]) {
1367                        if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1368                            test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1369                                dc = container_of(c->devices[i],
1370                                                  struct cached_dev, disk);
1371                                bch_cached_dev_detach(dc);
1372                        } else {
1373                                bcache_device_stop(c->devices[i]);
1374                        }
1375                }
1376
1377        mutex_unlock(&bch_register_lock);
1378
1379        continue_at(cl, cache_set_flush, system_wq);
1380}
1381
1382void bch_cache_set_stop(struct cache_set *c)
1383{
1384        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1385                closure_queue(&c->caching);
1386}
1387
1388void bch_cache_set_unregister(struct cache_set *c)
1389{
1390        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1391        bch_cache_set_stop(c);
1392}
1393
1394#define alloc_bucket_pages(gfp, c)                      \
1395        ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1396
1397struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1398{
1399        int iter_size;
1400        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1401        if (!c)
1402                return NULL;
1403
1404        __module_get(THIS_MODULE);
1405        closure_init(&c->cl, NULL);
1406        set_closure_fn(&c->cl, cache_set_free, system_wq);
1407
1408        closure_init(&c->caching, &c->cl);
1409        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1410
1411        /* Maybe create continue_at_noreturn() and use it here? */
1412        closure_set_stopped(&c->cl);
1413        closure_put(&c->cl);
1414
1415        kobject_init(&c->kobj, &bch_cache_set_ktype);
1416        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1417
1418        bch_cache_accounting_init(&c->accounting, &c->cl);
1419
1420        memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1421        c->sb.block_size        = sb->block_size;
1422        c->sb.bucket_size       = sb->bucket_size;
1423        c->sb.nr_in_set         = sb->nr_in_set;
1424        c->sb.last_mount        = sb->last_mount;
1425        c->bucket_bits          = ilog2(sb->bucket_size);
1426        c->block_bits           = ilog2(sb->block_size);
1427        c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1428
1429        c->btree_pages          = c->sb.bucket_size / PAGE_SECTORS;
1430        if (c->btree_pages > BTREE_MAX_PAGES)
1431                c->btree_pages = max_t(int, c->btree_pages / 4,
1432                                       BTREE_MAX_PAGES);
1433
1434        c->sort_crit_factor = int_sqrt(c->btree_pages);
1435
1436        mutex_init(&c->bucket_lock);
1437        mutex_init(&c->sort_lock);
1438        spin_lock_init(&c->sort_time_lock);
1439        closure_init_unlocked(&c->sb_write);
1440        closure_init_unlocked(&c->uuid_write);
1441        spin_lock_init(&c->btree_read_time_lock);
1442        bch_moving_init_cache_set(c);
1443
1444        INIT_LIST_HEAD(&c->list);
1445        INIT_LIST_HEAD(&c->cached_devs);
1446        INIT_LIST_HEAD(&c->btree_cache);
1447        INIT_LIST_HEAD(&c->btree_cache_freeable);
1448        INIT_LIST_HEAD(&c->btree_cache_freed);
1449        INIT_LIST_HEAD(&c->data_buckets);
1450
1451        c->search = mempool_create_slab_pool(32, bch_search_cache);
1452        if (!c->search)
1453                goto err;
1454
1455        iter_size = (sb->bucket_size / sb->block_size + 1) *
1456                sizeof(struct btree_iter_set);
1457
1458        if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1459            !(c->bio_meta = mempool_create_kmalloc_pool(2,
1460                                sizeof(struct bbio) + sizeof(struct bio_vec) *
1461                                bucket_pages(c))) ||
1462            !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1463            !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1464            !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1465            !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1466            bch_journal_alloc(c) ||
1467            bch_btree_cache_alloc(c) ||
1468            bch_open_buckets_alloc(c))
1469                goto err;
1470
1471        c->congested_read_threshold_us  = 2000;
1472        c->congested_write_threshold_us = 20000;
1473        c->error_limit  = 8 << IO_ERROR_SHIFT;
1474
1475        return c;
1476err:
1477        bch_cache_set_unregister(c);
1478        return NULL;
1479}
1480
1481static void run_cache_set(struct cache_set *c)
1482{
1483        const char *err = "cannot allocate memory";
1484        struct cached_dev *dc, *t;
1485        struct cache *ca;
1486        unsigned i;
1487
1488        struct btree_op op;
1489        bch_btree_op_init_stack(&op);
1490        op.lock = SHRT_MAX;
1491
1492        for_each_cache(ca, c, i)
1493                c->nbuckets += ca->sb.nbuckets;
1494
1495        if (CACHE_SYNC(&c->sb)) {
1496                LIST_HEAD(journal);
1497                struct bkey *k;
1498                struct jset *j;
1499
1500                err = "cannot allocate memory for journal";
1501                if (bch_journal_read(c, &journal, &op))
1502                        goto err;
1503
1504                pr_debug("btree_journal_read() done");
1505
1506                err = "no journal entries found";
1507                if (list_empty(&journal))
1508                        goto err;
1509
1510                j = &list_entry(journal.prev, struct journal_replay, list)->j;
1511
1512                err = "IO error reading priorities";
1513                for_each_cache(ca, c, i)
1514                        prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1515
1516                /*
1517                 * If prio_read() fails it'll call cache_set_error and we'll
1518                 * tear everything down right away, but if we perhaps checked
1519                 * sooner we could avoid journal replay.
1520                 */
1521
1522                k = &j->btree_root;
1523
1524                err = "bad btree root";
1525                if (__bch_ptr_invalid(c, j->btree_level + 1, k))
1526                        goto err;
1527
1528                err = "error reading btree root";
1529                c->root = bch_btree_node_get(c, k, j->btree_level, &op);
1530                if (IS_ERR_OR_NULL(c->root))
1531                        goto err;
1532
1533                list_del_init(&c->root->list);
1534                rw_unlock(true, c->root);
1535
1536                err = uuid_read(c, j, &op.cl);
1537                if (err)
1538                        goto err;
1539
1540                err = "error in recovery";
1541                if (bch_btree_check(c, &op))
1542                        goto err;
1543
1544                bch_journal_mark(c, &journal);
1545                bch_btree_gc_finish(c);
1546                pr_debug("btree_check() done");
1547
1548                /*
1549                 * bcache_journal_next() can't happen sooner, or
1550                 * btree_gc_finish() will give spurious errors about last_gc >
1551                 * gc_gen - this is a hack but oh well.
1552                 */
1553                bch_journal_next(&c->journal);
1554
1555                err = "error starting allocator thread";
1556                for_each_cache(ca, c, i)
1557                        if (bch_cache_allocator_start(ca))
1558                                goto err;
1559
1560                /*
1561                 * First place it's safe to allocate: btree_check() and
1562                 * btree_gc_finish() have to run before we have buckets to
1563                 * allocate, and bch_bucket_alloc_set() might cause a journal
1564                 * entry to be written so bcache_journal_next() has to be called
1565                 * first.
1566                 *
1567                 * If the uuids were in the old format we have to rewrite them
1568                 * before the next journal entry is written:
1569                 */
1570                if (j->version < BCACHE_JSET_VERSION_UUID)
1571                        __uuid_write(c);
1572
1573                bch_journal_replay(c, &journal, &op);
1574        } else {
1575                pr_notice("invalidating existing data");
1576                /* Don't want invalidate_buckets() to queue a gc yet */
1577                closure_lock(&c->gc, NULL);
1578
1579                for_each_cache(ca, c, i) {
1580                        unsigned j;
1581
1582                        ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1583                                              2, SB_JOURNAL_BUCKETS);
1584
1585                        for (j = 0; j < ca->sb.keys; j++)
1586                                ca->sb.d[j] = ca->sb.first_bucket + j;
1587                }
1588
1589                bch_btree_gc_finish(c);
1590
1591                err = "error starting allocator thread";
1592                for_each_cache(ca, c, i)
1593                        if (bch_cache_allocator_start(ca))
1594                                goto err;
1595
1596                mutex_lock(&c->bucket_lock);
1597                for_each_cache(ca, c, i)
1598                        bch_prio_write(ca);
1599                mutex_unlock(&c->bucket_lock);
1600
1601                err = "cannot allocate new UUID bucket";
1602                if (__uuid_write(c))
1603                        goto err_unlock_gc;
1604
1605                err = "cannot allocate new btree root";
1606                c->root = bch_btree_node_alloc(c, 0, &op.cl);
1607                if (IS_ERR_OR_NULL(c->root))
1608                        goto err_unlock_gc;
1609
1610                bkey_copy_key(&c->root->key, &MAX_KEY);
1611                bch_btree_node_write(c->root, &op.cl);
1612
1613                bch_btree_set_root(c->root);
1614                rw_unlock(true, c->root);
1615
1616                /*
1617                 * We don't want to write the first journal entry until
1618                 * everything is set up - fortunately journal entries won't be
1619                 * written until the SET_CACHE_SYNC() here:
1620                 */
1621                SET_CACHE_SYNC(&c->sb, true);
1622
1623                bch_journal_next(&c->journal);
1624                bch_journal_meta(c, &op.cl);
1625
1626                /* Unlock */
1627                closure_set_stopped(&c->gc.cl);
1628                closure_put(&c->gc.cl);
1629        }
1630
1631        closure_sync(&op.cl);
1632        c->sb.last_mount = get_seconds();
1633        bcache_write_super(c);
1634
1635        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1636                bch_cached_dev_attach(dc, c);
1637
1638        flash_devs_run(c);
1639
1640        return;
1641err_unlock_gc:
1642        closure_set_stopped(&c->gc.cl);
1643        closure_put(&c->gc.cl);
1644err:
1645        closure_sync(&op.cl);
1646        /* XXX: test this, it's broken */
1647        bch_cache_set_error(c, err);
1648}
1649
1650static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1651{
1652        return ca->sb.block_size        == c->sb.block_size &&
1653                ca->sb.bucket_size      == c->sb.block_size &&
1654                ca->sb.nr_in_set        == c->sb.nr_in_set;
1655}
1656
1657static const char *register_cache_set(struct cache *ca)
1658{
1659        char buf[12];
1660        const char *err = "cannot allocate memory";
1661        struct cache_set *c;
1662
1663        list_for_each_entry(c, &bch_cache_sets, list)
1664                if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1665                        if (c->cache[ca->sb.nr_this_dev])
1666                                return "duplicate cache set member";
1667
1668                        if (!can_attach_cache(ca, c))
1669                                return "cache sb does not match set";
1670
1671                        if (!CACHE_SYNC(&ca->sb))
1672                                SET_CACHE_SYNC(&c->sb, false);
1673
1674                        goto found;
1675                }
1676
1677        c = bch_cache_set_alloc(&ca->sb);
1678        if (!c)
1679                return err;
1680
1681        err = "error creating kobject";
1682        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1683            kobject_add(&c->internal, &c->kobj, "internal"))
1684                goto err;
1685
1686        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1687                goto err;
1688
1689        bch_debug_init_cache_set(c);
1690
1691        list_add(&c->list, &bch_cache_sets);
1692found:
1693        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1694        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1695            sysfs_create_link(&c->kobj, &ca->kobj, buf))
1696                goto err;
1697
1698        if (ca->sb.seq > c->sb.seq) {
1699                c->sb.version           = ca->sb.version;
1700                memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1701                c->sb.flags             = ca->sb.flags;
1702                c->sb.seq               = ca->sb.seq;
1703                pr_debug("set version = %llu", c->sb.version);
1704        }
1705
1706        ca->set = c;
1707        ca->set->cache[ca->sb.nr_this_dev] = ca;
1708        c->cache_by_alloc[c->caches_loaded++] = ca;
1709
1710        if (c->caches_loaded == c->sb.nr_in_set)
1711                run_cache_set(c);
1712
1713        return NULL;
1714err:
1715        bch_cache_set_unregister(c);
1716        return err;
1717}
1718
1719/* Cache device */
1720
1721void bch_cache_release(struct kobject *kobj)
1722{
1723        struct cache *ca = container_of(kobj, struct cache, kobj);
1724
1725        if (ca->set)
1726                ca->set->cache[ca->sb.nr_this_dev] = NULL;
1727
1728        bch_cache_allocator_exit(ca);
1729
1730        bio_split_pool_free(&ca->bio_split_hook);
1731
1732        free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1733        kfree(ca->prio_buckets);
1734        vfree(ca->buckets);
1735
1736        free_heap(&ca->heap);
1737        free_fifo(&ca->unused);
1738        free_fifo(&ca->free_inc);
1739        free_fifo(&ca->free);
1740
1741        if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1742                put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1743
1744        if (!IS_ERR_OR_NULL(ca->bdev)) {
1745                blk_sync_queue(bdev_get_queue(ca->bdev));
1746                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1747        }
1748
1749        kfree(ca);
1750        module_put(THIS_MODULE);
1751}
1752
1753static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1754{
1755        size_t free;
1756        struct bucket *b;
1757
1758        __module_get(THIS_MODULE);
1759        kobject_init(&ca->kobj, &bch_cache_ktype);
1760
1761        INIT_LIST_HEAD(&ca->discards);
1762
1763        bio_init(&ca->journal.bio);
1764        ca->journal.bio.bi_max_vecs = 8;
1765        ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1766
1767        free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1768        free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1769
1770        if (!init_fifo(&ca->free,       free, GFP_KERNEL) ||
1771            !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1772            !init_fifo(&ca->unused,     free << 2, GFP_KERNEL) ||
1773            !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1774            !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1775                                          ca->sb.nbuckets)) ||
1776            !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1777                                          2, GFP_KERNEL)) ||
1778            !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1779            bio_split_pool_init(&ca->bio_split_hook))
1780                return -ENOMEM;
1781
1782        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1783
1784        for_each_bucket(b, ca)
1785                atomic_set(&b->pin, 0);
1786
1787        if (bch_cache_allocator_init(ca))
1788                goto err;
1789
1790        return 0;
1791err:
1792        kobject_put(&ca->kobj);
1793        return -ENOMEM;
1794}
1795
1796static void register_cache(struct cache_sb *sb, struct page *sb_page,
1797                                  struct block_device *bdev, struct cache *ca)
1798{
1799        char name[BDEVNAME_SIZE];
1800        const char *err = "cannot allocate memory";
1801
1802        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1803        ca->bdev = bdev;
1804        ca->bdev->bd_holder = ca;
1805
1806        bio_init(&ca->sb_bio);
1807        ca->sb_bio.bi_max_vecs  = 1;
1808        ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1809        ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1810        get_page(sb_page);
1811
1812        if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1813                ca->discard = CACHE_DISCARD(&ca->sb);
1814
1815        if (cache_alloc(sb, ca) != 0)
1816                goto err;
1817
1818        err = "error creating kobject";
1819        if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1820                goto err;
1821
1822        err = register_cache_set(ca);
1823        if (err)
1824                goto err;
1825
1826        pr_info("registered cache device %s", bdevname(bdev, name));
1827        return;
1828err:
1829        pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1830        kobject_put(&ca->kobj);
1831}
1832
1833/* Global interfaces/init */
1834
1835static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1836                               const char *, size_t);
1837
1838kobj_attribute_write(register,          register_bcache);
1839kobj_attribute_write(register_quiet,    register_bcache);
1840
1841static bool bch_is_open_backing(struct block_device *bdev) {
1842        struct cache_set *c, *tc;
1843        struct cached_dev *dc, *t;
1844
1845        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1846                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1847                        if (dc->bdev == bdev)
1848                                return true;
1849        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1850                if (dc->bdev == bdev)
1851                        return true;
1852        return false;
1853}
1854
1855static bool bch_is_open_cache(struct block_device *bdev) {
1856        struct cache_set *c, *tc;
1857        struct cache *ca;
1858        unsigned i;
1859
1860        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1861                for_each_cache(ca, c, i)
1862                        if (ca->bdev == bdev)
1863                                return true;
1864        return false;
1865}
1866
1867static bool bch_is_open(struct block_device *bdev) {
1868        return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1869}
1870
1871static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1872                               const char *buffer, size_t size)
1873{
1874        ssize_t ret = size;
1875        const char *err = "cannot allocate memory";
1876        char *path = NULL;
1877        struct cache_sb *sb = NULL;
1878        struct block_device *bdev = NULL;
1879        struct page *sb_page = NULL;
1880
1881        if (!try_module_get(THIS_MODULE))
1882                return -EBUSY;
1883
1884        mutex_lock(&bch_register_lock);
1885
1886        if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1887            !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1888                goto err;
1889
1890        err = "failed to open device";
1891        bdev = blkdev_get_by_path(strim(path),
1892                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1893                                  sb);
1894        if (IS_ERR(bdev)) {
1895                if (bdev == ERR_PTR(-EBUSY)) {
1896                        bdev = lookup_bdev(strim(path));
1897                        if (!IS_ERR(bdev) && bch_is_open(bdev))
1898                                err = "device already registered";
1899                        else
1900                                err = "device busy";
1901                }
1902                goto err;
1903        }
1904
1905        err = "failed to set blocksize";
1906        if (set_blocksize(bdev, 4096))
1907                goto err_close;
1908
1909        err = read_super(sb, bdev, &sb_page);
1910        if (err)
1911                goto err_close;
1912
1913        if (SB_IS_BDEV(sb)) {
1914                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1915                if (!dc)
1916                        goto err_close;
1917
1918                register_bdev(sb, sb_page, bdev, dc);
1919        } else {
1920                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1921                if (!ca)
1922                        goto err_close;
1923
1924                register_cache(sb, sb_page, bdev, ca);
1925        }
1926out:
1927        if (sb_page)
1928                put_page(sb_page);
1929        kfree(sb);
1930        kfree(path);
1931        mutex_unlock(&bch_register_lock);
1932        module_put(THIS_MODULE);
1933        return ret;
1934
1935err_close:
1936        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1937err:
1938        if (attr != &ksysfs_register_quiet)
1939                pr_info("error opening %s: %s", path, err);
1940        ret = -EINVAL;
1941        goto out;
1942}
1943
1944static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1945{
1946        if (code == SYS_DOWN ||
1947            code == SYS_HALT ||
1948            code == SYS_POWER_OFF) {
1949                DEFINE_WAIT(wait);
1950                unsigned long start = jiffies;
1951                bool stopped = false;
1952
1953                struct cache_set *c, *tc;
1954                struct cached_dev *dc, *tdc;
1955
1956                mutex_lock(&bch_register_lock);
1957
1958                if (list_empty(&bch_cache_sets) &&
1959                    list_empty(&uncached_devices))
1960                        goto out;
1961
1962                pr_info("Stopping all devices:");
1963
1964                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1965                        bch_cache_set_stop(c);
1966
1967                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1968                        bcache_device_stop(&dc->disk);
1969
1970                /* What's a condition variable? */
1971                while (1) {
1972                        long timeout = start + 2 * HZ - jiffies;
1973
1974                        stopped = list_empty(&bch_cache_sets) &&
1975                                list_empty(&uncached_devices);
1976
1977                        if (timeout < 0 || stopped)
1978                                break;
1979
1980                        prepare_to_wait(&unregister_wait, &wait,
1981                                        TASK_UNINTERRUPTIBLE);
1982
1983                        mutex_unlock(&bch_register_lock);
1984                        schedule_timeout(timeout);
1985                        mutex_lock(&bch_register_lock);
1986                }
1987
1988                finish_wait(&unregister_wait, &wait);
1989
1990                if (stopped)
1991                        pr_info("All devices stopped");
1992                else
1993                        pr_notice("Timeout waiting for devices to be closed");
1994out:
1995                mutex_unlock(&bch_register_lock);
1996        }
1997
1998        return NOTIFY_DONE;
1999}
2000
2001static struct notifier_block reboot = {
2002        .notifier_call  = bcache_reboot,
2003        .priority       = INT_MAX, /* before any real devices */
2004};
2005
2006static void bcache_exit(void)
2007{
2008        bch_debug_exit();
2009        bch_writeback_exit();
2010        bch_request_exit();
2011        bch_btree_exit();
2012        if (bcache_kobj)
2013                kobject_put(bcache_kobj);
2014        if (bcache_wq)
2015                destroy_workqueue(bcache_wq);
2016        unregister_blkdev(bcache_major, "bcache");
2017        unregister_reboot_notifier(&reboot);
2018}
2019
2020static int __init bcache_init(void)
2021{
2022        static const struct attribute *files[] = {
2023                &ksysfs_register.attr,
2024                &ksysfs_register_quiet.attr,
2025                NULL
2026        };
2027
2028        mutex_init(&bch_register_lock);
2029        init_waitqueue_head(&unregister_wait);
2030        register_reboot_notifier(&reboot);
2031        closure_debug_init();
2032
2033        bcache_major = register_blkdev(0, "bcache");
2034        if (bcache_major < 0)
2035                return bcache_major;
2036
2037        if (!(bcache_wq = create_workqueue("bcache")) ||
2038            !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2039            sysfs_create_files(bcache_kobj, files) ||
2040            bch_btree_init() ||
2041            bch_request_init() ||
2042            bch_writeback_init() ||
2043            bch_debug_init(bcache_kobj))
2044                goto err;
2045
2046        return 0;
2047err:
2048        bcache_exit();
2049        return -ENOMEM;
2050}
2051
2052module_exit(bcache_exit);
2053module_init(bcache_init);
2054