linux/drivers/media/dvb-frontends/drxd_hard.c
<<
>>
Prefs
   1/*
   2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
   3 *
   4 * Copyright (C) 2003-2007 Micronas
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * version 2 only, as published by the Free Software Foundation.
   9 *
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA
  21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/moduleparam.h>
  27#include <linux/init.h>
  28#include <linux/delay.h>
  29#include <linux/firmware.h>
  30#include <linux/i2c.h>
  31#include <asm/div64.h>
  32
  33#include "dvb_frontend.h"
  34#include "drxd.h"
  35#include "drxd_firm.h"
  36
  37#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  38#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  39
  40#define CHUNK_SIZE 48
  41
  42#define DRX_I2C_RMW           0x10
  43#define DRX_I2C_BROADCAST     0x20
  44#define DRX_I2C_CLEARCRC      0x80
  45#define DRX_I2C_SINGLE_MASTER 0xC0
  46#define DRX_I2C_MODEFLAGS     0xC0
  47#define DRX_I2C_FLAGS         0xF0
  48
  49#ifndef SIZEOF_ARRAY
  50#define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
  51#endif
  52
  53#define DEFAULT_LOCK_TIMEOUT    1100
  54
  55#define DRX_CHANNEL_AUTO 0
  56#define DRX_CHANNEL_HIGH 1
  57#define DRX_CHANNEL_LOW  2
  58
  59#define DRX_LOCK_MPEG  1
  60#define DRX_LOCK_FEC   2
  61#define DRX_LOCK_DEMOD 4
  62
  63/****************************************************************************/
  64
  65enum CSCDState {
  66        CSCD_INIT = 0,
  67        CSCD_SET,
  68        CSCD_SAVED
  69};
  70
  71enum CDrxdState {
  72        DRXD_UNINITIALIZED = 0,
  73        DRXD_STOPPED,
  74        DRXD_STARTED
  75};
  76
  77enum AGC_CTRL_MODE {
  78        AGC_CTRL_AUTO = 0,
  79        AGC_CTRL_USER,
  80        AGC_CTRL_OFF
  81};
  82
  83enum OperationMode {
  84        OM_Default,
  85        OM_DVBT_Diversity_Front,
  86        OM_DVBT_Diversity_End
  87};
  88
  89struct SCfgAgc {
  90        enum AGC_CTRL_MODE ctrlMode;
  91        u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  92        u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  93        u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  94        u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  95        u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
  96
  97        u16 R1;
  98        u16 R2;
  99        u16 R3;
 100};
 101
 102struct SNoiseCal {
 103        int cpOpt;
 104        short cpNexpOfs;
 105        short tdCal2k;
 106        short tdCal8k;
 107};
 108
 109enum app_env {
 110        APPENV_STATIC = 0,
 111        APPENV_PORTABLE = 1,
 112        APPENV_MOBILE = 2
 113};
 114
 115enum EIFFilter {
 116        IFFILTER_SAW = 0,
 117        IFFILTER_DISCRETE = 1
 118};
 119
 120struct drxd_state {
 121        struct dvb_frontend frontend;
 122        struct dvb_frontend_ops ops;
 123        struct dtv_frontend_properties props;
 124
 125        const struct firmware *fw;
 126        struct device *dev;
 127
 128        struct i2c_adapter *i2c;
 129        void *priv;
 130        struct drxd_config config;
 131
 132        int i2c_access;
 133        int init_done;
 134        struct mutex mutex;
 135
 136        u8 chip_adr;
 137        u16 hi_cfg_timing_div;
 138        u16 hi_cfg_bridge_delay;
 139        u16 hi_cfg_wakeup_key;
 140        u16 hi_cfg_ctrl;
 141
 142        u16 intermediate_freq;
 143        u16 osc_clock_freq;
 144
 145        enum CSCDState cscd_state;
 146        enum CDrxdState drxd_state;
 147
 148        u16 sys_clock_freq;
 149        s16 osc_clock_deviation;
 150        u16 expected_sys_clock_freq;
 151
 152        u16 insert_rs_byte;
 153        u16 enable_parallel;
 154
 155        int operation_mode;
 156
 157        struct SCfgAgc if_agc_cfg;
 158        struct SCfgAgc rf_agc_cfg;
 159
 160        struct SNoiseCal noise_cal;
 161
 162        u32 fe_fs_add_incr;
 163        u32 org_fe_fs_add_incr;
 164        u16 current_fe_if_incr;
 165
 166        u16 m_FeAgRegAgPwd;
 167        u16 m_FeAgRegAgAgcSio;
 168
 169        u16 m_EcOcRegOcModeLop;
 170        u16 m_EcOcRegSncSncLvl;
 171        u8 *m_InitAtomicRead;
 172        u8 *m_HiI2cPatch;
 173
 174        u8 *m_ResetCEFR;
 175        u8 *m_InitFE_1;
 176        u8 *m_InitFE_2;
 177        u8 *m_InitCP;
 178        u8 *m_InitCE;
 179        u8 *m_InitEQ;
 180        u8 *m_InitSC;
 181        u8 *m_InitEC;
 182        u8 *m_ResetECRAM;
 183        u8 *m_InitDiversityFront;
 184        u8 *m_InitDiversityEnd;
 185        u8 *m_DisableDiversity;
 186        u8 *m_StartDiversityFront;
 187        u8 *m_StartDiversityEnd;
 188
 189        u8 *m_DiversityDelay8MHZ;
 190        u8 *m_DiversityDelay6MHZ;
 191
 192        u8 *microcode;
 193        u32 microcode_length;
 194
 195        int type_A;
 196        int PGA;
 197        int diversity;
 198        int tuner_mirrors;
 199
 200        enum app_env app_env_default;
 201        enum app_env app_env_diversity;
 202
 203};
 204
 205/****************************************************************************/
 206/* I2C **********************************************************************/
 207/****************************************************************************/
 208
 209static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
 210{
 211        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
 212
 213        if (i2c_transfer(adap, &msg, 1) != 1)
 214                return -1;
 215        return 0;
 216}
 217
 218static int i2c_read(struct i2c_adapter *adap,
 219                    u8 adr, u8 *msg, int len, u8 *answ, int alen)
 220{
 221        struct i2c_msg msgs[2] = {
 222                {
 223                        .addr = adr, .flags = 0,
 224                        .buf = msg, .len = len
 225                }, {
 226                        .addr = adr, .flags = I2C_M_RD,
 227                        .buf = answ, .len = alen
 228                }
 229        };
 230        if (i2c_transfer(adap, msgs, 2) != 2)
 231                return -1;
 232        return 0;
 233}
 234
 235static inline u32 MulDiv32(u32 a, u32 b, u32 c)
 236{
 237        u64 tmp64;
 238
 239        tmp64 = (u64)a * (u64)b;
 240        do_div(tmp64, c);
 241
 242        return (u32) tmp64;
 243}
 244
 245static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
 246{
 247        u8 adr = state->config.demod_address;
 248        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 249                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 250        };
 251        u8 mm2[2];
 252        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
 253                return -1;
 254        if (data)
 255                *data = mm2[0] | (mm2[1] << 8);
 256        return mm2[0] | (mm2[1] << 8);
 257}
 258
 259static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
 260{
 261        u8 adr = state->config.demod_address;
 262        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 263                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 264        };
 265        u8 mm2[4];
 266
 267        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
 268                return -1;
 269        if (data)
 270                *data =
 271                    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
 272        return 0;
 273}
 274
 275static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
 276{
 277        u8 adr = state->config.demod_address;
 278        u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
 279                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 280                data & 0xff, (data >> 8) & 0xff
 281        };
 282
 283        if (i2c_write(state->i2c, adr, mm, 6) < 0)
 284                return -1;
 285        return 0;
 286}
 287
 288static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
 289{
 290        u8 adr = state->config.demod_address;
 291        u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
 292                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 293                data & 0xff, (data >> 8) & 0xff,
 294                (data >> 16) & 0xff, (data >> 24) & 0xff
 295        };
 296
 297        if (i2c_write(state->i2c, adr, mm, 8) < 0)
 298                return -1;
 299        return 0;
 300}
 301
 302static int write_chunk(struct drxd_state *state,
 303                       u32 reg, u8 *data, u32 len, u8 flags)
 304{
 305        u8 adr = state->config.demod_address;
 306        u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
 307                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 308        };
 309        int i;
 310
 311        for (i = 0; i < len; i++)
 312                mm[4 + i] = data[i];
 313        if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
 314                printk(KERN_ERR "error in write_chunk\n");
 315                return -1;
 316        }
 317        return 0;
 318}
 319
 320static int WriteBlock(struct drxd_state *state,
 321                      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
 322{
 323        while (BlockSize > 0) {
 324                u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
 325
 326                if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
 327                        return -1;
 328                pBlock += Chunk;
 329                Address += (Chunk >> 1);
 330                BlockSize -= Chunk;
 331        }
 332        return 0;
 333}
 334
 335static int WriteTable(struct drxd_state *state, u8 * pTable)
 336{
 337        int status = 0;
 338
 339        if (pTable == NULL)
 340                return 0;
 341
 342        while (!status) {
 343                u16 Length;
 344                u32 Address = pTable[0] | (pTable[1] << 8) |
 345                    (pTable[2] << 16) | (pTable[3] << 24);
 346
 347                if (Address == 0xFFFFFFFF)
 348                        break;
 349                pTable += sizeof(u32);
 350
 351                Length = pTable[0] | (pTable[1] << 8);
 352                pTable += sizeof(u16);
 353                if (!Length)
 354                        break;
 355                status = WriteBlock(state, Address, Length * 2, pTable, 0);
 356                pTable += (Length * 2);
 357        }
 358        return status;
 359}
 360
 361/****************************************************************************/
 362/****************************************************************************/
 363/****************************************************************************/
 364
 365static int ResetCEFR(struct drxd_state *state)
 366{
 367        return WriteTable(state, state->m_ResetCEFR);
 368}
 369
 370static int InitCP(struct drxd_state *state)
 371{
 372        return WriteTable(state, state->m_InitCP);
 373}
 374
 375static int InitCE(struct drxd_state *state)
 376{
 377        int status;
 378        enum app_env AppEnv = state->app_env_default;
 379
 380        do {
 381                status = WriteTable(state, state->m_InitCE);
 382                if (status < 0)
 383                        break;
 384
 385                if (state->operation_mode == OM_DVBT_Diversity_Front ||
 386                    state->operation_mode == OM_DVBT_Diversity_End) {
 387                        AppEnv = state->app_env_diversity;
 388                }
 389                if (AppEnv == APPENV_STATIC) {
 390                        status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
 391                        if (status < 0)
 392                                break;
 393                } else if (AppEnv == APPENV_PORTABLE) {
 394                        status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
 395                        if (status < 0)
 396                                break;
 397                } else if (AppEnv == APPENV_MOBILE && state->type_A) {
 398                        status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
 399                        if (status < 0)
 400                                break;
 401                } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
 402                        status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
 403                        if (status < 0)
 404                                break;
 405                }
 406
 407                /* start ce */
 408                status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
 409                if (status < 0)
 410                        break;
 411        } while (0);
 412        return status;
 413}
 414
 415static int StopOC(struct drxd_state *state)
 416{
 417        int status = 0;
 418        u16 ocSyncLvl = 0;
 419        u16 ocModeLop = state->m_EcOcRegOcModeLop;
 420        u16 dtoIncLop = 0;
 421        u16 dtoIncHip = 0;
 422
 423        do {
 424                /* Store output configuration */
 425                status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
 426                if (status < 0)
 427                        break;
 428                /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
 429                state->m_EcOcRegSncSncLvl = ocSyncLvl;
 430                /* m_EcOcRegOcModeLop = ocModeLop; */
 431
 432                /* Flush FIFO (byte-boundary) at fixed rate */
 433                status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
 434                if (status < 0)
 435                        break;
 436                status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
 437                if (status < 0)
 438                        break;
 439                status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
 440                if (status < 0)
 441                        break;
 442                status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
 443                if (status < 0)
 444                        break;
 445                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
 446                ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
 447                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 448                if (status < 0)
 449                        break;
 450                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 451                if (status < 0)
 452                        break;
 453
 454                msleep(1);
 455                /* Output pins to '0' */
 456                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
 457                if (status < 0)
 458                        break;
 459
 460                /* Force the OC out of sync */
 461                ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
 462                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
 463                if (status < 0)
 464                        break;
 465                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
 466                ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
 467                ocModeLop |= 0x2;       /* Magically-out-of-sync */
 468                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 469                if (status < 0)
 470                        break;
 471                status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
 472                if (status < 0)
 473                        break;
 474                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 475                if (status < 0)
 476                        break;
 477        } while (0);
 478
 479        return status;
 480}
 481
 482static int StartOC(struct drxd_state *state)
 483{
 484        int status = 0;
 485
 486        do {
 487                /* Stop OC */
 488                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 489                if (status < 0)
 490                        break;
 491
 492                /* Restore output configuration */
 493                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
 494                if (status < 0)
 495                        break;
 496                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
 497                if (status < 0)
 498                        break;
 499
 500                /* Output pins active again */
 501                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
 502                if (status < 0)
 503                        break;
 504
 505                /* Start OC */
 506                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 507                if (status < 0)
 508                        break;
 509        } while (0);
 510        return status;
 511}
 512
 513static int InitEQ(struct drxd_state *state)
 514{
 515        return WriteTable(state, state->m_InitEQ);
 516}
 517
 518static int InitEC(struct drxd_state *state)
 519{
 520        return WriteTable(state, state->m_InitEC);
 521}
 522
 523static int InitSC(struct drxd_state *state)
 524{
 525        return WriteTable(state, state->m_InitSC);
 526}
 527
 528static int InitAtomicRead(struct drxd_state *state)
 529{
 530        return WriteTable(state, state->m_InitAtomicRead);
 531}
 532
 533static int CorrectSysClockDeviation(struct drxd_state *state);
 534
 535static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
 536{
 537        u16 ScRaRamLock = 0;
 538        const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
 539                                    SC_RA_RAM_LOCK_FEC__M |
 540                                    SC_RA_RAM_LOCK_DEMOD__M);
 541        const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
 542                                   SC_RA_RAM_LOCK_DEMOD__M);
 543        const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
 544
 545        int status;
 546
 547        *pLockStatus = 0;
 548
 549        status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
 550        if (status < 0) {
 551                printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
 552                return status;
 553        }
 554
 555        if (state->drxd_state != DRXD_STARTED)
 556                return 0;
 557
 558        if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
 559                *pLockStatus |= DRX_LOCK_MPEG;
 560                CorrectSysClockDeviation(state);
 561        }
 562
 563        if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
 564                *pLockStatus |= DRX_LOCK_FEC;
 565
 566        if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
 567                *pLockStatus |= DRX_LOCK_DEMOD;
 568        return 0;
 569}
 570
 571/****************************************************************************/
 572
 573static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 574{
 575        int status;
 576
 577        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 578                return -1;
 579
 580        if (cfg->ctrlMode == AGC_CTRL_USER) {
 581                do {
 582                        u16 FeAgRegPm1AgcWri;
 583                        u16 FeAgRegAgModeLop;
 584
 585                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 586                        if (status < 0)
 587                                break;
 588                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 589                        FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
 590                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 591                        if (status < 0)
 592                                break;
 593
 594                        FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
 595                                                  FE_AG_REG_PM1_AGC_WRI__M);
 596                        status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
 597                        if (status < 0)
 598                                break;
 599                } while (0);
 600        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 601                if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
 602                    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
 603                    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
 604                    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
 605                    )
 606                        return -1;
 607                do {
 608                        u16 FeAgRegAgModeLop;
 609                        u16 FeAgRegEgcSetLvl;
 610                        u16 slope, offset;
 611
 612                        /* == Mode == */
 613
 614                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 615                        if (status < 0)
 616                                break;
 617                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 618                        FeAgRegAgModeLop |=
 619                            FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
 620                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 621                        if (status < 0)
 622                                break;
 623
 624                        /* == Settle level == */
 625
 626                        FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
 627                                                  FE_AG_REG_EGC_SET_LVL__M);
 628                        status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
 629                        if (status < 0)
 630                                break;
 631
 632                        /* == Min/Max == */
 633
 634                        slope = (u16) ((cfg->maxOutputLevel -
 635                                        cfg->minOutputLevel) / 2);
 636                        offset = (u16) ((cfg->maxOutputLevel +
 637                                         cfg->minOutputLevel) / 2 - 511);
 638
 639                        status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
 640                        if (status < 0)
 641                                break;
 642                        status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
 643                        if (status < 0)
 644                                break;
 645
 646                        /* == Speed == */
 647                        {
 648                                const u16 maxRur = 8;
 649                                const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
 650                                const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
 651                                        17, 18, 18, 19,
 652                                        20, 21, 22, 23,
 653                                        24, 26, 27, 28,
 654                                        29, 31
 655                                };
 656
 657                                u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
 658                                    (maxRur + 1);
 659                                u16 fineSpeed = (u16) (cfg->speed -
 660                                                       ((cfg->speed /
 661                                                         fineSteps) *
 662                                                        fineSteps));
 663                                u16 invRurCount = (u16) (cfg->speed /
 664                                                         fineSteps);
 665                                u16 rurCount;
 666                                if (invRurCount > maxRur) {
 667                                        rurCount = 0;
 668                                        fineSpeed += fineSteps;
 669                                } else {
 670                                        rurCount = maxRur - invRurCount;
 671                                }
 672
 673                                /*
 674                                   fastInc = default *
 675                                   (2^(fineSpeed/fineSteps))
 676                                   => range[default...2*default>
 677                                   slowInc = default *
 678                                   (2^(fineSpeed/fineSteps))
 679                                 */
 680                                {
 681                                        u16 fastIncrDec =
 682                                            fastIncrDecLUT[fineSpeed /
 683                                                           ((fineSteps /
 684                                                             (14 + 1)) + 1)];
 685                                        u16 slowIncrDec =
 686                                            slowIncrDecLUT[fineSpeed /
 687                                                           (fineSteps /
 688                                                            (3 + 1))];
 689
 690                                        status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
 691                                        if (status < 0)
 692                                                break;
 693                                        status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
 694                                        if (status < 0)
 695                                                break;
 696                                        status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
 697                                        if (status < 0)
 698                                                break;
 699                                        status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
 700                                        if (status < 0)
 701                                                break;
 702                                        status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
 703                                        if (status < 0)
 704                                                break;
 705                                }
 706                        }
 707                } while (0);
 708
 709        } else {
 710                /* No OFF mode for IF control */
 711                return -1;
 712        }
 713        return status;
 714}
 715
 716static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 717{
 718        int status = 0;
 719
 720        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 721                return -1;
 722
 723        if (cfg->ctrlMode == AGC_CTRL_USER) {
 724                do {
 725                        u16 AgModeLop = 0;
 726                        u16 level = (cfg->outputLevel);
 727
 728                        if (level == DRXD_FE_CTRL_MAX)
 729                                level++;
 730
 731                        status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
 732                        if (status < 0)
 733                                break;
 734
 735                        /*==== Mode ====*/
 736
 737                        /* Powerdown PD2, WRI source */
 738                        state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 739                        state->m_FeAgRegAgPwd |=
 740                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 741                        status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 742                        if (status < 0)
 743                                break;
 744
 745                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 746                        if (status < 0)
 747                                break;
 748                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 749                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 750                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 751                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 752                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 753                        if (status < 0)
 754                                break;
 755
 756                        /* enable AGC2 pin */
 757                        {
 758                                u16 FeAgRegAgAgcSio = 0;
 759                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 760                                if (status < 0)
 761                                        break;
 762                                FeAgRegAgAgcSio &=
 763                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 764                                FeAgRegAgAgcSio |=
 765                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 766                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 767                                if (status < 0)
 768                                        break;
 769                        }
 770
 771                } while (0);
 772        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 773                u16 AgModeLop = 0;
 774
 775                do {
 776                        u16 level;
 777                        /* Automatic control */
 778                        /* Powerup PD2, AGC2 as output, TGC source */
 779                        (state->m_FeAgRegAgPwd) &=
 780                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 781                        (state->m_FeAgRegAgPwd) |=
 782                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 783                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 784                        if (status < 0)
 785                                break;
 786
 787                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 788                        if (status < 0)
 789                                break;
 790                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 791                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 792                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 793                                      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
 794                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 795                        if (status < 0)
 796                                break;
 797                        /* Settle level */
 798                        level = (((cfg->settleLevel) >> 4) &
 799                                 FE_AG_REG_TGC_SET_LVL__M);
 800                        status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
 801                        if (status < 0)
 802                                break;
 803
 804                        /* Min/max: don't care */
 805
 806                        /* Speed: TODO */
 807
 808                        /* enable AGC2 pin */
 809                        {
 810                                u16 FeAgRegAgAgcSio = 0;
 811                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 812                                if (status < 0)
 813                                        break;
 814                                FeAgRegAgAgcSio &=
 815                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 816                                FeAgRegAgAgcSio |=
 817                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 818                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 819                                if (status < 0)
 820                                        break;
 821                        }
 822
 823                } while (0);
 824        } else {
 825                u16 AgModeLop = 0;
 826
 827                do {
 828                        /* No RF AGC control */
 829                        /* Powerdown PD2, AGC2 as output, WRI source */
 830                        (state->m_FeAgRegAgPwd) &=
 831                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 832                        (state->m_FeAgRegAgPwd) |=
 833                            FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
 834                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 835                        if (status < 0)
 836                                break;
 837
 838                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 839                        if (status < 0)
 840                                break;
 841                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 842                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 843                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 844                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 845                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 846                        if (status < 0)
 847                                break;
 848
 849                        /* set FeAgRegAgAgcSio AGC2 (RF) as input */
 850                        {
 851                                u16 FeAgRegAgAgcSio = 0;
 852                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 853                                if (status < 0)
 854                                        break;
 855                                FeAgRegAgAgcSio &=
 856                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 857                                FeAgRegAgAgcSio |=
 858                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
 859                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 860                                if (status < 0)
 861                                        break;
 862                        }
 863                } while (0);
 864        }
 865        return status;
 866}
 867
 868static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
 869{
 870        int status = 0;
 871
 872        *pValue = 0;
 873        if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
 874                u16 Value;
 875                status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
 876                Value &= FE_AG_REG_GC1_AGC_DAT__M;
 877                if (status >= 0) {
 878                        /*           3.3V
 879                           |
 880                           R1
 881                           |
 882                           Vin - R3 - * -- Vout
 883                           |
 884                           R2
 885                           |
 886                           GND
 887                         */
 888                        u32 R1 = state->if_agc_cfg.R1;
 889                        u32 R2 = state->if_agc_cfg.R2;
 890                        u32 R3 = state->if_agc_cfg.R3;
 891
 892                        u32 Vmax, Rpar, Vmin, Vout;
 893
 894                        if (R2 == 0 && (R1 == 0 || R3 == 0))
 895                                return 0;
 896
 897                        Vmax = (3300 * R2) / (R1 + R2);
 898                        Rpar = (R2 * R3) / (R3 + R2);
 899                        Vmin = (3300 * Rpar) / (R1 + Rpar);
 900                        Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
 901
 902                        *pValue = Vout;
 903                }
 904        }
 905        return status;
 906}
 907
 908static int load_firmware(struct drxd_state *state, const char *fw_name)
 909{
 910        const struct firmware *fw;
 911
 912        if (request_firmware(&fw, fw_name, state->dev) < 0) {
 913                printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
 914                return -EIO;
 915        }
 916
 917        state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
 918        if (state->microcode == NULL) {
 919                release_firmware(fw);
 920                printk(KERN_ERR "drxd: firmware load failure: no memory\n");
 921                return -ENOMEM;
 922        }
 923
 924        state->microcode_length = fw->size;
 925        release_firmware(fw);
 926        return 0;
 927}
 928
 929static int DownloadMicrocode(struct drxd_state *state,
 930                             const u8 *pMCImage, u32 Length)
 931{
 932        u8 *pSrc;
 933        u32 Address;
 934        u16 nBlocks;
 935        u16 BlockSize;
 936        u32 offset = 0;
 937        int i, status = 0;
 938
 939        pSrc = (u8 *) pMCImage;
 940        /* We're not using Flags */
 941        /* Flags = (pSrc[0] << 8) | pSrc[1]; */
 942        pSrc += sizeof(u16);
 943        offset += sizeof(u16);
 944        nBlocks = (pSrc[0] << 8) | pSrc[1];
 945        pSrc += sizeof(u16);
 946        offset += sizeof(u16);
 947
 948        for (i = 0; i < nBlocks; i++) {
 949                Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
 950                    (pSrc[2] << 8) | pSrc[3];
 951                pSrc += sizeof(u32);
 952                offset += sizeof(u32);
 953
 954                BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
 955                pSrc += sizeof(u16);
 956                offset += sizeof(u16);
 957
 958                /* We're not using Flags */
 959                /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
 960                pSrc += sizeof(u16);
 961                offset += sizeof(u16);
 962
 963                /* We're not using BlockCRC */
 964                /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
 965                pSrc += sizeof(u16);
 966                offset += sizeof(u16);
 967
 968                status = WriteBlock(state, Address, BlockSize,
 969                                    pSrc, DRX_I2C_CLEARCRC);
 970                if (status < 0)
 971                        break;
 972                pSrc += BlockSize;
 973                offset += BlockSize;
 974        }
 975
 976        return status;
 977}
 978
 979static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
 980{
 981        u32 nrRetries = 0;
 982        u16 waitCmd;
 983        int status;
 984
 985        status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
 986        if (status < 0)
 987                return status;
 988
 989        do {
 990                nrRetries += 1;
 991                if (nrRetries > DRXD_MAX_RETRIES) {
 992                        status = -1;
 993                        break;
 994                }
 995                status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
 996        } while (waitCmd != 0);
 997
 998        if (status >= 0)
 999                status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
1000        return status;
1001}
1002
1003static int HI_CfgCommand(struct drxd_state *state)
1004{
1005        int status = 0;
1006
1007        mutex_lock(&state->mutex);
1008        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1009        Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1010        Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1011        Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1012        Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1013
1014        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1015
1016        if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1017            HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1018                status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1019                                 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1020        else
1021                status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
1022        mutex_unlock(&state->mutex);
1023        return status;
1024}
1025
1026static int InitHI(struct drxd_state *state)
1027{
1028        state->hi_cfg_wakeup_key = (state->chip_adr);
1029        /* port/bridge/power down ctrl */
1030        state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1031        return HI_CfgCommand(state);
1032}
1033
1034static int HI_ResetCommand(struct drxd_state *state)
1035{
1036        int status;
1037
1038        mutex_lock(&state->mutex);
1039        status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1040                         HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1041        if (status == 0)
1042                status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
1043        mutex_unlock(&state->mutex);
1044        msleep(1);
1045        return status;
1046}
1047
1048static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1049{
1050        state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1051        if (bEnableBridge)
1052                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1053        else
1054                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1055
1056        return HI_CfgCommand(state);
1057}
1058
1059#define HI_TR_WRITE      0x9
1060#define HI_TR_READ       0xA
1061#define HI_TR_READ_WRITE 0xB
1062#define HI_TR_BROADCAST  0x4
1063
1064#if 0
1065static int AtomicReadBlock(struct drxd_state *state,
1066                           u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1067{
1068        int status;
1069        int i = 0;
1070
1071        /* Parameter check */
1072        if ((!pData) || ((DataSize & 1) != 0))
1073                return -1;
1074
1075        mutex_lock(&state->mutex);
1076
1077        do {
1078                /* Instruct HI to read n bytes */
1079                /* TODO use proper names forthese egisters */
1080                status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1081                if (status < 0)
1082                        break;
1083                status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1084                if (status < 0)
1085                        break;
1086                status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1087                if (status < 0)
1088                        break;
1089                status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1090                if (status < 0)
1091                        break;
1092                status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1093                if (status < 0)
1094                        break;
1095
1096                status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1097                if (status < 0)
1098                        break;
1099
1100        } while (0);
1101
1102        if (status >= 0) {
1103                for (i = 0; i < (DataSize / 2); i += 1) {
1104                        u16 word;
1105
1106                        status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1107                                        &word, 0);
1108                        if (status < 0)
1109                                break;
1110                        pData[2 * i] = (u8) (word & 0xFF);
1111                        pData[(2 * i) + 1] = (u8) (word >> 8);
1112                }
1113        }
1114        mutex_unlock(&state->mutex);
1115        return status;
1116}
1117
1118static int AtomicReadReg32(struct drxd_state *state,
1119                           u32 Addr, u32 *pData, u8 Flags)
1120{
1121        u8 buf[sizeof(u32)];
1122        int status;
1123
1124        if (!pData)
1125                return -1;
1126        status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1127        *pData = (((u32) buf[0]) << 0) +
1128            (((u32) buf[1]) << 8) +
1129            (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1130        return status;
1131}
1132#endif
1133
1134static int StopAllProcessors(struct drxd_state *state)
1135{
1136        return Write16(state, HI_COMM_EXEC__A,
1137                       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1138}
1139
1140static int EnableAndResetMB(struct drxd_state *state)
1141{
1142        if (state->type_A) {
1143                /* disable? monitor bus observe @ EC_OC */
1144                Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1145        }
1146
1147        /* do inverse broadcast, followed by explicit write to HI */
1148        Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1149        Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1150        return 0;
1151}
1152
1153static int InitCC(struct drxd_state *state)
1154{
1155        if (state->osc_clock_freq == 0 ||
1156            state->osc_clock_freq > 20000 ||
1157            (state->osc_clock_freq % 4000) != 0) {
1158                printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1159                return -1;
1160        }
1161
1162        Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1163        Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1164                CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1165        Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1166        Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1167        Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1168
1169        return 0;
1170}
1171
1172static int ResetECOD(struct drxd_state *state)
1173{
1174        int status = 0;
1175
1176        if (state->type_A)
1177                status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1178        else
1179                status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1180
1181        if (!(status < 0))
1182                status = WriteTable(state, state->m_ResetECRAM);
1183        if (!(status < 0))
1184                status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1185        return status;
1186}
1187
1188/* Configure PGA switch */
1189
1190static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1191{
1192        int status;
1193        u16 AgModeLop = 0;
1194        u16 AgModeHip = 0;
1195        do {
1196                if (pgaSwitch) {
1197                        /* PGA on */
1198                        /* fine gain */
1199                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1200                        if (status < 0)
1201                                break;
1202                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1203                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1204                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1205                        if (status < 0)
1206                                break;
1207
1208                        /* coarse gain */
1209                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1210                        if (status < 0)
1211                                break;
1212                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1213                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1214                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1215                        if (status < 0)
1216                                break;
1217
1218                        /* enable fine and coarse gain, enable AAF,
1219                           no ext resistor */
1220                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1221                        if (status < 0)
1222                                break;
1223                } else {
1224                        /* PGA off, bypass */
1225
1226                        /* fine gain */
1227                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1228                        if (status < 0)
1229                                break;
1230                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1231                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1232                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1233                        if (status < 0)
1234                                break;
1235
1236                        /* coarse gain */
1237                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1238                        if (status < 0)
1239                                break;
1240                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1241                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1242                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1243                        if (status < 0)
1244                                break;
1245
1246                        /* disable fine and coarse gain, enable AAF,
1247                           no ext resistor */
1248                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1249                        if (status < 0)
1250                                break;
1251                }
1252        } while (0);
1253        return status;
1254}
1255
1256static int InitFE(struct drxd_state *state)
1257{
1258        int status;
1259
1260        do {
1261                status = WriteTable(state, state->m_InitFE_1);
1262                if (status < 0)
1263                        break;
1264
1265                if (state->type_A) {
1266                        status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1267                                         FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1268                                         0);
1269                } else {
1270                        if (state->PGA)
1271                                status = SetCfgPga(state, 0);
1272                        else
1273                                status =
1274                                    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1275                                            B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1276                                            0);
1277                }
1278
1279                if (status < 0)
1280                        break;
1281                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1282                if (status < 0)
1283                        break;
1284                status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1285                if (status < 0)
1286                        break;
1287
1288                status = WriteTable(state, state->m_InitFE_2);
1289                if (status < 0)
1290                        break;
1291
1292        } while (0);
1293
1294        return status;
1295}
1296
1297static int InitFT(struct drxd_state *state)
1298{
1299        /*
1300           norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1301           SC stuff
1302         */
1303        return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1304}
1305
1306static int SC_WaitForReady(struct drxd_state *state)
1307{
1308        u16 curCmd;
1309        int i;
1310
1311        for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1312                int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1313                if (status == 0 || curCmd == 0)
1314                        return status;
1315        }
1316        return -1;
1317}
1318
1319static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1320{
1321        int status = 0;
1322        u16 errCode;
1323
1324        Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1325        SC_WaitForReady(state);
1326
1327        Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1328
1329        if (errCode == 0xFFFF) {
1330                printk(KERN_ERR "Command Error\n");
1331                status = -1;
1332        }
1333
1334        return status;
1335}
1336
1337static int SC_ProcStartCommand(struct drxd_state *state,
1338                               u16 subCmd, u16 param0, u16 param1)
1339{
1340        int status = 0;
1341        u16 scExec;
1342
1343        mutex_lock(&state->mutex);
1344        do {
1345                Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1346                if (scExec != 1) {
1347                        status = -1;
1348                        break;
1349                }
1350                SC_WaitForReady(state);
1351                Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1352                Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1353                Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1354
1355                SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1356        } while (0);
1357        mutex_unlock(&state->mutex);
1358        return status;
1359}
1360
1361static int SC_SetPrefParamCommand(struct drxd_state *state,
1362                                  u16 subCmd, u16 param0, u16 param1)
1363{
1364        int status;
1365
1366        mutex_lock(&state->mutex);
1367        do {
1368                status = SC_WaitForReady(state);
1369                if (status < 0)
1370                        break;
1371                status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1372                if (status < 0)
1373                        break;
1374                status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1375                if (status < 0)
1376                        break;
1377                status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1378                if (status < 0)
1379                        break;
1380
1381                status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1382                if (status < 0)
1383                        break;
1384        } while (0);
1385        mutex_unlock(&state->mutex);
1386        return status;
1387}
1388
1389#if 0
1390static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1391{
1392        int status = 0;
1393
1394        mutex_lock(&state->mutex);
1395        do {
1396                status = SC_WaitForReady(state);
1397                if (status < 0)
1398                        break;
1399                status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1400                if (status < 0)
1401                        break;
1402                status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1403                if (status < 0)
1404                        break;
1405        } while (0);
1406        mutex_unlock(&state->mutex);
1407        return status;
1408}
1409#endif
1410
1411static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1412{
1413        int status;
1414
1415        do {
1416                u16 EcOcRegIprInvMpg = 0;
1417                u16 EcOcRegOcModeLop = 0;
1418                u16 EcOcRegOcModeHip = 0;
1419                u16 EcOcRegOcMpgSio = 0;
1420
1421                /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1422
1423                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1424                        if (bEnableOutput) {
1425                                EcOcRegOcModeHip |=
1426                                    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1427                        } else
1428                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1429                        EcOcRegOcModeLop |=
1430                            EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1431                } else {
1432                        EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1433
1434                        if (bEnableOutput)
1435                                EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1436                        else
1437                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1438
1439                        /* Don't Insert RS Byte */
1440                        if (state->insert_rs_byte) {
1441                                EcOcRegOcModeLop &=
1442                                    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1443                                EcOcRegOcModeHip &=
1444                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1445                                EcOcRegOcModeHip |=
1446                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1447                        } else {
1448                                EcOcRegOcModeLop |=
1449                                    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1450                                EcOcRegOcModeHip &=
1451                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1452                                EcOcRegOcModeHip |=
1453                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1454                        }
1455
1456                        /* Mode = Parallel */
1457                        if (state->enable_parallel)
1458                                EcOcRegOcModeLop &=
1459                                    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1460                        else
1461                                EcOcRegOcModeLop |=
1462                                    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1463                }
1464                /* Invert Data */
1465                /* EcOcRegIprInvMpg |= 0x00FF; */
1466                EcOcRegIprInvMpg &= (~(0x00FF));
1467
1468                /* Invert Error ( we don't use the pin ) */
1469                /*  EcOcRegIprInvMpg |= 0x0100; */
1470                EcOcRegIprInvMpg &= (~(0x0100));
1471
1472                /* Invert Start ( we don't use the pin ) */
1473                /* EcOcRegIprInvMpg |= 0x0200; */
1474                EcOcRegIprInvMpg &= (~(0x0200));
1475
1476                /* Invert Valid ( we don't use the pin ) */
1477                /* EcOcRegIprInvMpg |= 0x0400; */
1478                EcOcRegIprInvMpg &= (~(0x0400));
1479
1480                /* Invert Clock */
1481                /* EcOcRegIprInvMpg |= 0x0800; */
1482                EcOcRegIprInvMpg &= (~(0x0800));
1483
1484                /* EcOcRegOcModeLop =0x05; */
1485                status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1486                if (status < 0)
1487                        break;
1488                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1489                if (status < 0)
1490                        break;
1491                status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1492                if (status < 0)
1493                        break;
1494                status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1495                if (status < 0)
1496                        break;
1497        } while (0);
1498        return status;
1499}
1500
1501static int SetDeviceTypeId(struct drxd_state *state)
1502{
1503        int status = 0;
1504        u16 deviceId = 0;
1505
1506        do {
1507                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508                if (status < 0)
1509                        break;
1510                /* TODO: why twice? */
1511                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1512                if (status < 0)
1513                        break;
1514                printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1515
1516                state->type_A = 0;
1517                state->PGA = 0;
1518                state->diversity = 0;
1519                if (deviceId == 0) {    /* on A2 only 3975 available */
1520                        state->type_A = 1;
1521                        printk(KERN_INFO "DRX3975D-A2\n");
1522                } else {
1523                        deviceId >>= 12;
1524                        printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1525                        switch (deviceId) {
1526                        case 4:
1527                                state->diversity = 1;
1528                        case 3:
1529                        case 7:
1530                                state->PGA = 1;
1531                                break;
1532                        case 6:
1533                                state->diversity = 1;
1534                        case 5:
1535                        case 8:
1536                                break;
1537                        default:
1538                                status = -1;
1539                                break;
1540                        }
1541                }
1542        } while (0);
1543
1544        if (status < 0)
1545                return status;
1546
1547        /* Init Table selection */
1548        state->m_InitAtomicRead = DRXD_InitAtomicRead;
1549        state->m_InitSC = DRXD_InitSC;
1550        state->m_ResetECRAM = DRXD_ResetECRAM;
1551        if (state->type_A) {
1552                state->m_ResetCEFR = DRXD_ResetCEFR;
1553                state->m_InitFE_1 = DRXD_InitFEA2_1;
1554                state->m_InitFE_2 = DRXD_InitFEA2_2;
1555                state->m_InitCP = DRXD_InitCPA2;
1556                state->m_InitCE = DRXD_InitCEA2;
1557                state->m_InitEQ = DRXD_InitEQA2;
1558                state->m_InitEC = DRXD_InitECA2;
1559                if (load_firmware(state, DRX_FW_FILENAME_A2))
1560                        return -EIO;
1561        } else {
1562                state->m_ResetCEFR = NULL;
1563                state->m_InitFE_1 = DRXD_InitFEB1_1;
1564                state->m_InitFE_2 = DRXD_InitFEB1_2;
1565                state->m_InitCP = DRXD_InitCPB1;
1566                state->m_InitCE = DRXD_InitCEB1;
1567                state->m_InitEQ = DRXD_InitEQB1;
1568                state->m_InitEC = DRXD_InitECB1;
1569                if (load_firmware(state, DRX_FW_FILENAME_B1))
1570                        return -EIO;
1571        }
1572        if (state->diversity) {
1573                state->m_InitDiversityFront = DRXD_InitDiversityFront;
1574                state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1575                state->m_DisableDiversity = DRXD_DisableDiversity;
1576                state->m_StartDiversityFront = DRXD_StartDiversityFront;
1577                state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1578                state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1579                state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1580        } else {
1581                state->m_InitDiversityFront = NULL;
1582                state->m_InitDiversityEnd = NULL;
1583                state->m_DisableDiversity = NULL;
1584                state->m_StartDiversityFront = NULL;
1585                state->m_StartDiversityEnd = NULL;
1586                state->m_DiversityDelay8MHZ = NULL;
1587                state->m_DiversityDelay6MHZ = NULL;
1588        }
1589
1590        return status;
1591}
1592
1593static int CorrectSysClockDeviation(struct drxd_state *state)
1594{
1595        int status;
1596        s32 incr = 0;
1597        s32 nomincr = 0;
1598        u32 bandwidth = 0;
1599        u32 sysClockInHz = 0;
1600        u32 sysClockFreq = 0;   /* in kHz */
1601        s16 oscClockDeviation;
1602        s16 Diff;
1603
1604        do {
1605                /* Retrieve bandwidth and incr, sanity check */
1606
1607                /* These accesses should be AtomicReadReg32, but that
1608                   causes trouble (at least for diversity */
1609                status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1610                if (status < 0)
1611                        break;
1612                status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1613                if (status < 0)
1614                        break;
1615
1616                if (state->type_A) {
1617                        if ((nomincr - incr < -500) || (nomincr - incr > 500))
1618                                break;
1619                } else {
1620                        if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1621                                break;
1622                }
1623
1624                switch (state->props.bandwidth_hz) {
1625                case 8000000:
1626                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1627                        break;
1628                case 7000000:
1629                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1630                        break;
1631                case 6000000:
1632                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1633                        break;
1634                default:
1635                        return -1;
1636                        break;
1637                }
1638
1639                /* Compute new sysclock value
1640                   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1641                incr += (1 << 23);
1642                sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1643                sysClockFreq = (u32) (sysClockInHz / 1000);
1644                /* rounding */
1645                if ((sysClockInHz % 1000) > 500)
1646                        sysClockFreq++;
1647
1648                /* Compute clock deviation in ppm */
1649                oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1650                                             (s32)
1651                                             (state->expected_sys_clock_freq)) *
1652                                            1000000L) /
1653                                           (s32)
1654                                           (state->expected_sys_clock_freq));
1655
1656                Diff = oscClockDeviation - state->osc_clock_deviation;
1657                /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1658                if (Diff >= -200 && Diff <= 200) {
1659                        state->sys_clock_freq = (u16) sysClockFreq;
1660                        if (oscClockDeviation != state->osc_clock_deviation) {
1661                                if (state->config.osc_deviation) {
1662                                        state->config.osc_deviation(state->priv,
1663                                                                    oscClockDeviation,
1664                                                                    1);
1665                                        state->osc_clock_deviation =
1666                                            oscClockDeviation;
1667                                }
1668                        }
1669                        /* switch OFF SRMM scan in SC */
1670                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1671                        if (status < 0)
1672                                break;
1673                        /* overrule FE_IF internal value for
1674                           proper re-locking */
1675                        status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1676                        if (status < 0)
1677                                break;
1678                        state->cscd_state = CSCD_SAVED;
1679                }
1680        } while (0);
1681
1682        return status;
1683}
1684
1685static int DRX_Stop(struct drxd_state *state)
1686{
1687        int status;
1688
1689        if (state->drxd_state != DRXD_STARTED)
1690                return 0;
1691
1692        do {
1693                if (state->cscd_state != CSCD_SAVED) {
1694                        u32 lock;
1695                        status = DRX_GetLockStatus(state, &lock);
1696                        if (status < 0)
1697                                break;
1698                }
1699
1700                status = StopOC(state);
1701                if (status < 0)
1702                        break;
1703
1704                state->drxd_state = DRXD_STOPPED;
1705
1706                status = ConfigureMPEGOutput(state, 0);
1707                if (status < 0)
1708                        break;
1709
1710                if (state->type_A) {
1711                        /* Stop relevant processors off the device */
1712                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1713                        if (status < 0)
1714                                break;
1715
1716                        status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717                        if (status < 0)
1718                                break;
1719                        status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720                        if (status < 0)
1721                                break;
1722                } else {
1723                        /* Stop all processors except HI & CC & FE */
1724                        status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725                        if (status < 0)
1726                                break;
1727                        status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728                        if (status < 0)
1729                                break;
1730                        status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1731                        if (status < 0)
1732                                break;
1733                        status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1734                        if (status < 0)
1735                                break;
1736                        status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1737                        if (status < 0)
1738                                break;
1739                        status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1740                        if (status < 0)
1741                                break;
1742                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1743                        if (status < 0)
1744                                break;
1745                }
1746
1747        } while (0);
1748        return status;
1749}
1750
1751#if 0   /* Currently unused */
1752static int SetOperationMode(struct drxd_state *state, int oMode)
1753{
1754        int status;
1755
1756        do {
1757                if (state->drxd_state != DRXD_STOPPED) {
1758                        status = -1;
1759                        break;
1760                }
1761
1762                if (oMode == state->operation_mode) {
1763                        status = 0;
1764                        break;
1765                }
1766
1767                if (oMode != OM_Default && !state->diversity) {
1768                        status = -1;
1769                        break;
1770                }
1771
1772                switch (oMode) {
1773                case OM_DVBT_Diversity_Front:
1774                        status = WriteTable(state, state->m_InitDiversityFront);
1775                        break;
1776                case OM_DVBT_Diversity_End:
1777                        status = WriteTable(state, state->m_InitDiversityEnd);
1778                        break;
1779                case OM_Default:
1780                        /* We need to check how to
1781                           get DRXD out of diversity */
1782                default:
1783                        status = WriteTable(state, state->m_DisableDiversity);
1784                        break;
1785                }
1786        } while (0);
1787
1788        if (!status)
1789                state->operation_mode = oMode;
1790        return status;
1791}
1792#endif
1793
1794static int StartDiversity(struct drxd_state *state)
1795{
1796        int status = 0;
1797        u16 rcControl;
1798
1799        do {
1800                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1801                        status = WriteTable(state, state->m_StartDiversityFront);
1802                        if (status < 0)
1803                                break;
1804                } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1805                        status = WriteTable(state, state->m_StartDiversityEnd);
1806                        if (status < 0)
1807                                break;
1808                        if (state->props.bandwidth_hz == 8000000) {
1809                                status = WriteTable(state, state->m_DiversityDelay8MHZ);
1810                                if (status < 0)
1811                                        break;
1812                        } else {
1813                                status = WriteTable(state, state->m_DiversityDelay6MHZ);
1814                                if (status < 0)
1815                                        break;
1816                        }
1817
1818                        status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1819                        if (status < 0)
1820                                break;
1821                        rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1822                        rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1823                            /*  combining enabled */
1824                            B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1825                            B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1826                            B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1827                        status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1828                        if (status < 0)
1829                                break;
1830                }
1831        } while (0);
1832        return status;
1833}
1834
1835static int SetFrequencyShift(struct drxd_state *state,
1836                             u32 offsetFreq, int channelMirrored)
1837{
1838        int negativeShift = (state->tuner_mirrors == channelMirrored);
1839
1840        /* Handle all mirroring
1841         *
1842         * Note: ADC mirroring (aliasing) is implictly handled by limiting
1843         * feFsRegAddInc to 28 bits below
1844         * (if the result before masking is more than 28 bits, this means
1845         *  that the ADC is mirroring.
1846         * The masking is in fact the aliasing of the ADC)
1847         *
1848         */
1849
1850        /* Compute register value, unsigned computation */
1851        state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1852                                         offsetFreq,
1853                                         1 << 28, state->sys_clock_freq);
1854        /* Remove integer part */
1855        state->fe_fs_add_incr &= 0x0FFFFFFFL;
1856        if (negativeShift)
1857                state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1858
1859        /* Save the frequency shift without tunerOffset compensation
1860           for CtrlGetChannel. */
1861        state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1862                                             1 << 28, state->sys_clock_freq);
1863        /* Remove integer part */
1864        state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1865        if (negativeShift)
1866                state->org_fe_fs_add_incr = ((1L << 28) -
1867                                             state->org_fe_fs_add_incr);
1868
1869        return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1870                       state->fe_fs_add_incr, 0);
1871}
1872
1873static int SetCfgNoiseCalibration(struct drxd_state *state,
1874                                  struct SNoiseCal *noiseCal)
1875{
1876        u16 beOptEna;
1877        int status = 0;
1878
1879        do {
1880                status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1881                if (status < 0)
1882                        break;
1883                if (noiseCal->cpOpt) {
1884                        beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1885                } else {
1886                        beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1887                        status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1888                        if (status < 0)
1889                                break;
1890                }
1891                status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1892                if (status < 0)
1893                        break;
1894
1895                if (!state->type_A) {
1896                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1897                        if (status < 0)
1898                                break;
1899                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1900                        if (status < 0)
1901                                break;
1902                }
1903        } while (0);
1904
1905        return status;
1906}
1907
1908static int DRX_Start(struct drxd_state *state, s32 off)
1909{
1910        struct dtv_frontend_properties *p = &state->props;
1911        int status;
1912
1913        u16 transmissionParams = 0;
1914        u16 operationMode = 0;
1915        u16 qpskTdTpsPwr = 0;
1916        u16 qam16TdTpsPwr = 0;
1917        u16 qam64TdTpsPwr = 0;
1918        u32 feIfIncr = 0;
1919        u32 bandwidth = 0;
1920        int mirrorFreqSpect;
1921
1922        u16 qpskSnCeGain = 0;
1923        u16 qam16SnCeGain = 0;
1924        u16 qam64SnCeGain = 0;
1925        u16 qpskIsGainMan = 0;
1926        u16 qam16IsGainMan = 0;
1927        u16 qam64IsGainMan = 0;
1928        u16 qpskIsGainExp = 0;
1929        u16 qam16IsGainExp = 0;
1930        u16 qam64IsGainExp = 0;
1931        u16 bandwidthParam = 0;
1932
1933        if (off < 0)
1934                off = (off - 500) / 1000;
1935        else
1936                off = (off + 500) / 1000;
1937
1938        do {
1939                if (state->drxd_state != DRXD_STOPPED)
1940                        return -1;
1941                status = ResetECOD(state);
1942                if (status < 0)
1943                        break;
1944                if (state->type_A) {
1945                        status = InitSC(state);
1946                        if (status < 0)
1947                                break;
1948                } else {
1949                        status = InitFT(state);
1950                        if (status < 0)
1951                                break;
1952                        status = InitCP(state);
1953                        if (status < 0)
1954                                break;
1955                        status = InitCE(state);
1956                        if (status < 0)
1957                                break;
1958                        status = InitEQ(state);
1959                        if (status < 0)
1960                                break;
1961                        status = InitSC(state);
1962                        if (status < 0)
1963                                break;
1964                }
1965
1966                /* Restore current IF & RF AGC settings */
1967
1968                status = SetCfgIfAgc(state, &state->if_agc_cfg);
1969                if (status < 0)
1970                        break;
1971                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1972                if (status < 0)
1973                        break;
1974
1975                mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1976
1977                switch (p->transmission_mode) {
1978                default:        /* Not set, detect it automatically */
1979                        operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1980                        /* fall through , try first guess DRX_FFTMODE_8K */
1981                case TRANSMISSION_MODE_8K:
1982                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1983                        if (state->type_A) {
1984                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1985                                if (status < 0)
1986                                        break;
1987                                qpskSnCeGain = 99;
1988                                qam16SnCeGain = 83;
1989                                qam64SnCeGain = 67;
1990                        }
1991                        break;
1992                case TRANSMISSION_MODE_2K:
1993                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1994                        if (state->type_A) {
1995                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1996                                if (status < 0)
1997                                        break;
1998                                qpskSnCeGain = 97;
1999                                qam16SnCeGain = 71;
2000                                qam64SnCeGain = 65;
2001                        }
2002                        break;
2003                }
2004
2005                switch (p->guard_interval) {
2006                case GUARD_INTERVAL_1_4:
2007                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2008                        break;
2009                case GUARD_INTERVAL_1_8:
2010                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2011                        break;
2012                case GUARD_INTERVAL_1_16:
2013                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2014                        break;
2015                case GUARD_INTERVAL_1_32:
2016                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2017                        break;
2018                default:        /* Not set, detect it automatically */
2019                        operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2020                        /* try first guess 1/4 */
2021                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2022                        break;
2023                }
2024
2025                switch (p->hierarchy) {
2026                case HIERARCHY_1:
2027                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2028                        if (state->type_A) {
2029                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2030                                if (status < 0)
2031                                        break;
2032                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2033                                if (status < 0)
2034                                        break;
2035
2036                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2037                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2038                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2039
2040                                qpskIsGainMan =
2041                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2042                                qam16IsGainMan =
2043                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2044                                qam64IsGainMan =
2045                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2046
2047                                qpskIsGainExp =
2048                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2049                                qam16IsGainExp =
2050                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2051                                qam64IsGainExp =
2052                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2053                        }
2054                        break;
2055
2056                case HIERARCHY_2:
2057                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2058                        if (state->type_A) {
2059                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2060                                if (status < 0)
2061                                        break;
2062                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2063                                if (status < 0)
2064                                        break;
2065
2066                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2067                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2068                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2069
2070                                qpskIsGainMan =
2071                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2072                                qam16IsGainMan =
2073                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2074                                qam64IsGainMan =
2075                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2076
2077                                qpskIsGainExp =
2078                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2079                                qam16IsGainExp =
2080                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2081                                qam64IsGainExp =
2082                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2083                        }
2084                        break;
2085                case HIERARCHY_4:
2086                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2087                        if (state->type_A) {
2088                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2089                                if (status < 0)
2090                                        break;
2091                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2092                                if (status < 0)
2093                                        break;
2094
2095                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2096                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2097                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2098
2099                                qpskIsGainMan =
2100                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2101                                qam16IsGainMan =
2102                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2103                                qam64IsGainMan =
2104                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2105
2106                                qpskIsGainExp =
2107                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2108                                qam16IsGainExp =
2109                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2110                                qam64IsGainExp =
2111                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2112                        }
2113                        break;
2114                case HIERARCHY_AUTO:
2115                default:
2116                        /* Not set, detect it automatically, start with none */
2117                        operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2118                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2119                        if (state->type_A) {
2120                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2121                                if (status < 0)
2122                                        break;
2123                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2124                                if (status < 0)
2125                                        break;
2126
2127                                qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2128                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2129                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2130
2131                                qpskIsGainMan =
2132                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2133                                qam16IsGainMan =
2134                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2135                                qam64IsGainMan =
2136                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2137
2138                                qpskIsGainExp =
2139                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2140                                qam16IsGainExp =
2141                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2142                                qam64IsGainExp =
2143                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2144                        }
2145                        break;
2146                }
2147                status = status;
2148                if (status < 0)
2149                        break;
2150
2151                switch (p->modulation) {
2152                default:
2153                        operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2154                        /* fall through , try first guess
2155                           DRX_CONSTELLATION_QAM64 */
2156                case QAM_64:
2157                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2158                        if (state->type_A) {
2159                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2160                                if (status < 0)
2161                                        break;
2162                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2163                                if (status < 0)
2164                                        break;
2165                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2166                                if (status < 0)
2167                                        break;
2168                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2169                                if (status < 0)
2170                                        break;
2171                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2172                                if (status < 0)
2173                                        break;
2174
2175                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2176                                if (status < 0)
2177                                        break;
2178                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2179                                if (status < 0)
2180                                        break;
2181                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2182                                if (status < 0)
2183                                        break;
2184                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2185                                if (status < 0)
2186                                        break;
2187                        }
2188                        break;
2189                case QPSK:
2190                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2191                        if (state->type_A) {
2192                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2193                                if (status < 0)
2194                                        break;
2195                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2196                                if (status < 0)
2197                                        break;
2198                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2199                                if (status < 0)
2200                                        break;
2201                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2202                                if (status < 0)
2203                                        break;
2204                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2205                                if (status < 0)
2206                                        break;
2207
2208                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2209                                if (status < 0)
2210                                        break;
2211                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2212                                if (status < 0)
2213                                        break;
2214                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2215                                if (status < 0)
2216                                        break;
2217                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2218                                if (status < 0)
2219                                        break;
2220                        }
2221                        break;
2222
2223                case QAM_16:
2224                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2225                        if (state->type_A) {
2226                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2227                                if (status < 0)
2228                                        break;
2229                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2230                                if (status < 0)
2231                                        break;
2232                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2233                                if (status < 0)
2234                                        break;
2235                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2236                                if (status < 0)
2237                                        break;
2238                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2239                                if (status < 0)
2240                                        break;
2241
2242                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2243                                if (status < 0)
2244                                        break;
2245                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2246                                if (status < 0)
2247                                        break;
2248                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2249                                if (status < 0)
2250                                        break;
2251                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2252                                if (status < 0)
2253                                        break;
2254                        }
2255                        break;
2256
2257                }
2258                status = status;
2259                if (status < 0)
2260                        break;
2261
2262                switch (DRX_CHANNEL_HIGH) {
2263                default:
2264                case DRX_CHANNEL_AUTO:
2265                case DRX_CHANNEL_LOW:
2266                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2267                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2268                        if (status < 0)
2269                                break;
2270                        break;
2271                case DRX_CHANNEL_HIGH:
2272                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2273                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2274                        if (status < 0)
2275                                break;
2276                        break;
2277
2278                }
2279
2280                switch (p->code_rate_HP) {
2281                case FEC_1_2:
2282                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2283                        if (state->type_A) {
2284                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2285                                if (status < 0)
2286                                        break;
2287                        }
2288                        break;
2289                default:
2290                        operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2291                case FEC_2_3:
2292                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2293                        if (state->type_A) {
2294                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2295                                if (status < 0)
2296                                        break;
2297                        }
2298                        break;
2299                case FEC_3_4:
2300                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2301                        if (state->type_A) {
2302                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2303                                if (status < 0)
2304                                        break;
2305                        }
2306                        break;
2307                case FEC_5_6:
2308                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2309                        if (state->type_A) {
2310                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2311                                if (status < 0)
2312                                        break;
2313                        }
2314                        break;
2315                case FEC_7_8:
2316                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2317                        if (state->type_A) {
2318                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2319                                if (status < 0)
2320                                        break;
2321                        }
2322                        break;
2323                }
2324                status = status;
2325                if (status < 0)
2326                        break;
2327
2328                /* First determine real bandwidth (Hz) */
2329                /* Also set delay for impulse noise cruncher (only A2) */
2330                /* Also set parameters for EC_OC fix, note
2331                   EC_OC_REG_TMD_HIL_MAR is changed
2332                   by SC for fix for some 8K,1/8 guard but is restored by
2333                   InitEC and ResetEC
2334                   functions */
2335                switch (p->bandwidth_hz) {
2336                case 0:
2337                        p->bandwidth_hz = 8000000;
2338                        /* fall through */
2339                case 8000000:
2340                        /* (64/7)*(8/8)*1000000 */
2341                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2342
2343                        bandwidthParam = 0;
2344                        status = Write16(state,
2345                                         FE_AG_REG_IND_DEL__A, 50, 0x0000);
2346                        break;
2347                case 7000000:
2348                        /* (64/7)*(7/8)*1000000 */
2349                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2350                        bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2351                        status = Write16(state,
2352                                         FE_AG_REG_IND_DEL__A, 59, 0x0000);
2353                        break;
2354                case 6000000:
2355                        /* (64/7)*(6/8)*1000000 */
2356                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2357                        bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2358                        status = Write16(state,
2359                                         FE_AG_REG_IND_DEL__A, 71, 0x0000);
2360                        break;
2361                default:
2362                        status = -EINVAL;
2363                }
2364                if (status < 0)
2365                        break;
2366
2367                status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2368                if (status < 0)
2369                        break;
2370
2371                {
2372                        u16 sc_config;
2373                        status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2374                        if (status < 0)
2375                                break;
2376
2377                        /* enable SLAVE mode in 2k 1/32 to
2378                           prevent timing change glitches */
2379                        if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2380                            (p->guard_interval == GUARD_INTERVAL_1_32)) {
2381                                /* enable slave */
2382                                sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2383                        } else {
2384                                /* disable slave */
2385                                sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2386                        }
2387                        status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2388                        if (status < 0)
2389                                break;
2390                }
2391
2392                status = SetCfgNoiseCalibration(state, &state->noise_cal);
2393                if (status < 0)
2394                        break;
2395
2396                if (state->cscd_state == CSCD_INIT) {
2397                        /* switch on SRMM scan in SC */
2398                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2399                        if (status < 0)
2400                                break;
2401/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2402                        state->cscd_state = CSCD_SET;
2403                }
2404
2405                /* Now compute FE_IF_REG_INCR */
2406                /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2407                   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2408                feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2409                                    (1ULL << 21), bandwidth) - (1 << 23);
2410                status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2411                if (status < 0)
2412                        break;
2413                status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2414                if (status < 0)
2415                        break;
2416                /* Bandwidth setting done */
2417
2418                /* Mirror & frequency offset */
2419                SetFrequencyShift(state, off, mirrorFreqSpect);
2420
2421                /* Start SC, write channel settings to SC */
2422
2423                /* Enable SC after setting all other parameters */
2424                status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2425                if (status < 0)
2426                        break;
2427                status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2428                if (status < 0)
2429                        break;
2430
2431                /* Write SC parameter registers, operation mode */
2432#if 1
2433                operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2434                                 SC_RA_RAM_OP_AUTO_GUARD__M |
2435                                 SC_RA_RAM_OP_AUTO_CONST__M |
2436                                 SC_RA_RAM_OP_AUTO_HIER__M |
2437                                 SC_RA_RAM_OP_AUTO_RATE__M);
2438#endif
2439                status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2440                if (status < 0)
2441                        break;
2442
2443                /* Start correct processes to get in lock */
2444                status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2445                if (status < 0)
2446                        break;
2447
2448                status = StartOC(state);
2449                if (status < 0)
2450                        break;
2451
2452                if (state->operation_mode != OM_Default) {
2453                        status = StartDiversity(state);
2454                        if (status < 0)
2455                                break;
2456                }
2457
2458                state->drxd_state = DRXD_STARTED;
2459        } while (0);
2460
2461        return status;
2462}
2463
2464static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2465{
2466        u32 ulRfAgcOutputLevel = 0xffffffff;
2467        u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2468        u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2469        u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2470        u32 ulRfAgcSpeed = 0;   /* Currently unused */
2471        u32 ulRfAgcMode = 0;    /*2;   Off */
2472        u32 ulRfAgcR1 = 820;
2473        u32 ulRfAgcR2 = 2200;
2474        u32 ulRfAgcR3 = 150;
2475        u32 ulIfAgcMode = 0;    /* Auto */
2476        u32 ulIfAgcOutputLevel = 0xffffffff;
2477        u32 ulIfAgcSettleLevel = 0xffffffff;
2478        u32 ulIfAgcMinLevel = 0xffffffff;
2479        u32 ulIfAgcMaxLevel = 0xffffffff;
2480        u32 ulIfAgcSpeed = 0xffffffff;
2481        u32 ulIfAgcR1 = 820;
2482        u32 ulIfAgcR2 = 2200;
2483        u32 ulIfAgcR3 = 150;
2484        u32 ulClock = state->config.clock;
2485        u32 ulSerialMode = 0;
2486        u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2487        u32 ulHiI2cDelay = HI_I2C_DELAY;
2488        u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2489        u32 ulHiI2cPatch = 0;
2490        u32 ulEnvironment = APPENV_PORTABLE;
2491        u32 ulEnvironmentDiversity = APPENV_MOBILE;
2492        u32 ulIFFilter = IFFILTER_SAW;
2493
2494        state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2495        state->if_agc_cfg.outputLevel = 0;
2496        state->if_agc_cfg.settleLevel = 140;
2497        state->if_agc_cfg.minOutputLevel = 0;
2498        state->if_agc_cfg.maxOutputLevel = 1023;
2499        state->if_agc_cfg.speed = 904;
2500
2501        if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2502                state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2503                state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2504        }
2505
2506        if (ulIfAgcMode == 0 &&
2507            ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2508            ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2509            ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2510            ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2511                state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2512                state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2513                state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2514                state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2515                state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2516        }
2517
2518        state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2519        state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2520        state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2521
2522        state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2523        state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2524        state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2525
2526        state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2527        /* rest of the RFAgcCfg structure currently unused */
2528        if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2529                state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2530                state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2531        }
2532
2533        if (ulRfAgcMode == 0 &&
2534            ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2535            ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2536            ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2537            ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2538                state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2539                state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2540                state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2541                state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2542                state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2543        }
2544
2545        if (ulRfAgcMode == 2)
2546                state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2547
2548        if (ulEnvironment <= 2)
2549                state->app_env_default = (enum app_env)
2550                    (ulEnvironment);
2551        if (ulEnvironmentDiversity <= 2)
2552                state->app_env_diversity = (enum app_env)
2553                    (ulEnvironmentDiversity);
2554
2555        if (ulIFFilter == IFFILTER_DISCRETE) {
2556                /* discrete filter */
2557                state->noise_cal.cpOpt = 0;
2558                state->noise_cal.cpNexpOfs = 40;
2559                state->noise_cal.tdCal2k = -40;
2560                state->noise_cal.tdCal8k = -24;
2561        } else {
2562                /* SAW filter */
2563                state->noise_cal.cpOpt = 1;
2564                state->noise_cal.cpNexpOfs = 0;
2565                state->noise_cal.tdCal2k = -21;
2566                state->noise_cal.tdCal8k = -24;
2567        }
2568        state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2569
2570        state->chip_adr = (state->config.demod_address << 1) | 1;
2571        switch (ulHiI2cPatch) {
2572        case 1:
2573                state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2574                break;
2575        case 3:
2576                state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2577                break;
2578        default:
2579                state->m_HiI2cPatch = NULL;
2580        }
2581
2582        /* modify tuner and clock attributes */
2583        state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2584        /* expected system clock frequency in kHz */
2585        state->expected_sys_clock_freq = 48000;
2586        /* real system clock frequency in kHz */
2587        state->sys_clock_freq = 48000;
2588        state->osc_clock_freq = (u16) ulClock;
2589        state->osc_clock_deviation = 0;
2590        state->cscd_state = CSCD_INIT;
2591        state->drxd_state = DRXD_UNINITIALIZED;
2592
2593        state->PGA = 0;
2594        state->type_A = 0;
2595        state->tuner_mirrors = 0;
2596
2597        /* modify MPEG output attributes */
2598        state->insert_rs_byte = state->config.insert_rs_byte;
2599        state->enable_parallel = (ulSerialMode != 1);
2600
2601        /* Timing div, 250ns/Psys */
2602        /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2603
2604        state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2605                                          ulHiI2cDelay) / 1000;
2606        /* Bridge delay, uses oscilator clock */
2607        /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2608        state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2609                                            ulHiI2cBridgeDelay) / 1000;
2610
2611        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2612        /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2613        state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2614        return 0;
2615}
2616
2617static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2618{
2619        int status = 0;
2620        u32 driverVersion;
2621
2622        if (state->init_done)
2623                return 0;
2624
2625        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2626
2627        do {
2628                state->operation_mode = OM_Default;
2629
2630                status = SetDeviceTypeId(state);
2631                if (status < 0)
2632                        break;
2633
2634                /* Apply I2c address patch to B1 */
2635                if (!state->type_A && state->m_HiI2cPatch != NULL)
2636                        status = WriteTable(state, state->m_HiI2cPatch);
2637                        if (status < 0)
2638                                break;
2639
2640                if (state->type_A) {
2641                        /* HI firmware patch for UIO readout,
2642                           avoid clearing of result register */
2643                        status = Write16(state, 0x43012D, 0x047f, 0);
2644                        if (status < 0)
2645                                break;
2646                }
2647
2648                status = HI_ResetCommand(state);
2649                if (status < 0)
2650                        break;
2651
2652                status = StopAllProcessors(state);
2653                if (status < 0)
2654                        break;
2655                status = InitCC(state);
2656                if (status < 0)
2657                        break;
2658
2659                state->osc_clock_deviation = 0;
2660
2661                if (state->config.osc_deviation)
2662                        state->osc_clock_deviation =
2663                            state->config.osc_deviation(state->priv, 0, 0);
2664                {
2665                        /* Handle clock deviation */
2666                        s32 devB;
2667                        s32 devA = (s32) (state->osc_clock_deviation) *
2668                            (s32) (state->expected_sys_clock_freq);
2669                        /* deviation in kHz */
2670                        s32 deviation = (devA / (1000000L));
2671                        /* rounding, signed */
2672                        if (devA > 0)
2673                                devB = (2);
2674                        else
2675                                devB = (-2);
2676                        if ((devB * (devA % 1000000L) > 1000000L)) {
2677                                /* add +1 or -1 */
2678                                deviation += (devB / 2);
2679                        }
2680
2681                        state->sys_clock_freq =
2682                            (u16) ((state->expected_sys_clock_freq) +
2683                                   deviation);
2684                }
2685                status = InitHI(state);
2686                if (status < 0)
2687                        break;
2688                status = InitAtomicRead(state);
2689                if (status < 0)
2690                        break;
2691
2692                status = EnableAndResetMB(state);
2693                if (status < 0)
2694                        break;
2695                if (state->type_A)
2696                        status = ResetCEFR(state);
2697                        if (status < 0)
2698                                break;
2699
2700                if (fw) {
2701                        status = DownloadMicrocode(state, fw, fw_size);
2702                        if (status < 0)
2703                                break;
2704                } else {
2705                        status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2706                        if (status < 0)
2707                                break;
2708                }
2709
2710                if (state->PGA) {
2711                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2712                        SetCfgPga(state, 0);    /* PGA = 0 dB */
2713                } else {
2714                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2715                }
2716
2717                state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2718
2719                status = InitFE(state);
2720                if (status < 0)
2721                        break;
2722                status = InitFT(state);
2723                if (status < 0)
2724                        break;
2725                status = InitCP(state);
2726                if (status < 0)
2727                        break;
2728                status = InitCE(state);
2729                if (status < 0)
2730                        break;
2731                status = InitEQ(state);
2732                if (status < 0)
2733                        break;
2734                status = InitEC(state);
2735                if (status < 0)
2736                        break;
2737                status = InitSC(state);
2738                if (status < 0)
2739                        break;
2740
2741                status = SetCfgIfAgc(state, &state->if_agc_cfg);
2742                if (status < 0)
2743                        break;
2744                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2745                if (status < 0)
2746                        break;
2747
2748                state->cscd_state = CSCD_INIT;
2749                status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2750                if (status < 0)
2751                        break;
2752                status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2753                if (status < 0)
2754                        break;
2755
2756                driverVersion = (((VERSION_MAJOR / 10) << 4) +
2757                                 (VERSION_MAJOR % 10)) << 24;
2758                driverVersion += (((VERSION_MINOR / 10) << 4) +
2759                                  (VERSION_MINOR % 10)) << 16;
2760                driverVersion += ((VERSION_PATCH / 1000) << 12) +
2761                    ((VERSION_PATCH / 100) << 8) +
2762                    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2763
2764                status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2765                if (status < 0)
2766                        break;
2767
2768                status = StopOC(state);
2769                if (status < 0)
2770                        break;
2771
2772                state->drxd_state = DRXD_STOPPED;
2773                state->init_done = 1;
2774                status = 0;
2775        } while (0);
2776        return status;
2777}
2778
2779static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2780{
2781        DRX_GetLockStatus(state, pLockStatus);
2782
2783        /*if (*pLockStatus&DRX_LOCK_MPEG) */
2784        if (*pLockStatus & DRX_LOCK_FEC) {
2785                ConfigureMPEGOutput(state, 1);
2786                /* Get status again, in case we have MPEG lock now */
2787                /*DRX_GetLockStatus(state, pLockStatus); */
2788        }
2789
2790        return 0;
2791}
2792
2793/****************************************************************************/
2794/****************************************************************************/
2795/****************************************************************************/
2796
2797static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2798{
2799        struct drxd_state *state = fe->demodulator_priv;
2800        u32 value;
2801        int res;
2802
2803        res = ReadIFAgc(state, &value);
2804        if (res < 0)
2805                *strength = 0;
2806        else
2807                *strength = 0xffff - (value << 4);
2808        return 0;
2809}
2810
2811static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2812{
2813        struct drxd_state *state = fe->demodulator_priv;
2814        u32 lock;
2815
2816        DRXD_status(state, &lock);
2817        *status = 0;
2818        /* No MPEG lock in V255 firmware, bug ? */
2819#if 1
2820        if (lock & DRX_LOCK_MPEG)
2821                *status |= FE_HAS_LOCK;
2822#else
2823        if (lock & DRX_LOCK_FEC)
2824                *status |= FE_HAS_LOCK;
2825#endif
2826        if (lock & DRX_LOCK_FEC)
2827                *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2828        if (lock & DRX_LOCK_DEMOD)
2829                *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2830
2831        return 0;
2832}
2833
2834static int drxd_init(struct dvb_frontend *fe)
2835{
2836        struct drxd_state *state = fe->demodulator_priv;
2837        int err = 0;
2838
2839/*      if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2840        return DRXD_init(state, 0, 0);
2841
2842        err = DRXD_init(state, state->fw->data, state->fw->size);
2843        release_firmware(state->fw);
2844        return err;
2845}
2846
2847int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2848{
2849        struct drxd_state *state = fe->demodulator_priv;
2850
2851        if (state->config.disable_i2c_gate_ctrl == 1)
2852                return 0;
2853
2854        return DRX_ConfigureI2CBridge(state, onoff);
2855}
2856EXPORT_SYMBOL(drxd_config_i2c);
2857
2858static int drxd_get_tune_settings(struct dvb_frontend *fe,
2859                                  struct dvb_frontend_tune_settings *sets)
2860{
2861        sets->min_delay_ms = 10000;
2862        sets->max_drift = 0;
2863        sets->step_size = 0;
2864        return 0;
2865}
2866
2867static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2868{
2869        *ber = 0;
2870        return 0;
2871}
2872
2873static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2874{
2875        *snr = 0;
2876        return 0;
2877}
2878
2879static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2880{
2881        *ucblocks = 0;
2882        return 0;
2883}
2884
2885static int drxd_sleep(struct dvb_frontend *fe)
2886{
2887        struct drxd_state *state = fe->demodulator_priv;
2888
2889        ConfigureMPEGOutput(state, 0);
2890        return 0;
2891}
2892
2893static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2894{
2895        return drxd_config_i2c(fe, enable);
2896}
2897
2898static int drxd_set_frontend(struct dvb_frontend *fe)
2899{
2900        struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2901        struct drxd_state *state = fe->demodulator_priv;
2902        s32 off = 0;
2903
2904        state->props = *p;
2905        DRX_Stop(state);
2906
2907        if (fe->ops.tuner_ops.set_params) {
2908                fe->ops.tuner_ops.set_params(fe);
2909                if (fe->ops.i2c_gate_ctrl)
2910                        fe->ops.i2c_gate_ctrl(fe, 0);
2911        }
2912
2913        msleep(200);
2914
2915        return DRX_Start(state, off);
2916}
2917
2918static void drxd_release(struct dvb_frontend *fe)
2919{
2920        struct drxd_state *state = fe->demodulator_priv;
2921
2922        kfree(state);
2923}
2924
2925static struct dvb_frontend_ops drxd_ops = {
2926        .delsys = { SYS_DVBT},
2927        .info = {
2928                 .name = "Micronas DRXD DVB-T",
2929                 .frequency_min = 47125000,
2930                 .frequency_max = 855250000,
2931                 .frequency_stepsize = 166667,
2932                 .frequency_tolerance = 0,
2933                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2934                 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2935                 FE_CAN_FEC_AUTO |
2936                 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2937                 FE_CAN_QAM_AUTO |
2938                 FE_CAN_TRANSMISSION_MODE_AUTO |
2939                 FE_CAN_GUARD_INTERVAL_AUTO |
2940                 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2941
2942        .release = drxd_release,
2943        .init = drxd_init,
2944        .sleep = drxd_sleep,
2945        .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2946
2947        .set_frontend = drxd_set_frontend,
2948        .get_tune_settings = drxd_get_tune_settings,
2949
2950        .read_status = drxd_read_status,
2951        .read_ber = drxd_read_ber,
2952        .read_signal_strength = drxd_read_signal_strength,
2953        .read_snr = drxd_read_snr,
2954        .read_ucblocks = drxd_read_ucblocks,
2955};
2956
2957struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2958                                 void *priv, struct i2c_adapter *i2c,
2959                                 struct device *dev)
2960{
2961        struct drxd_state *state = NULL;
2962
2963        state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2964        if (!state)
2965                return NULL;
2966        memset(state, 0, sizeof(*state));
2967
2968        state->ops = drxd_ops;
2969        state->dev = dev;
2970        state->config = *config;
2971        state->i2c = i2c;
2972        state->priv = priv;
2973
2974        mutex_init(&state->mutex);
2975
2976        if (Read16(state, 0, 0, 0) < 0)
2977                goto error;
2978
2979        state->frontend.ops = drxd_ops;
2980        state->frontend.demodulator_priv = state;
2981        ConfigureMPEGOutput(state, 0);
2982        /* add few initialization to allow gate control */
2983        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2984        InitHI(state);
2985
2986        return &state->frontend;
2987
2988error:
2989        printk(KERN_ERR "drxd: not found\n");
2990        kfree(state);
2991        return NULL;
2992}
2993EXPORT_SYMBOL(drxd_attach);
2994
2995MODULE_DESCRIPTION("DRXD driver");
2996MODULE_AUTHOR("Micronas");
2997MODULE_LICENSE("GPL");
2998