linux/drivers/misc/sgi-gru/grukservices.c
<<
>>
Prefs
   1/*
   2 * SN Platform GRU Driver
   3 *
   4 *              KERNEL SERVICES THAT USE THE GRU
   5 *
   6 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
   7 *
   8 *  This program is free software; you can redistribute it and/or modify
   9 *  it under the terms of the GNU General Public License as published by
  10 *  the Free Software Foundation; either version 2 of the License, or
  11 *  (at your option) any later version.
  12 *
  13 *  This program is distributed in the hope that it will be useful,
  14 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *  GNU General Public License for more details.
  17 *
  18 *  You should have received a copy of the GNU General Public License
  19 *  along with this program; if not, write to the Free Software
  20 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  21 */
  22
  23#include <linux/kernel.h>
  24#include <linux/errno.h>
  25#include <linux/slab.h>
  26#include <linux/mm.h>
  27#include <linux/spinlock.h>
  28#include <linux/device.h>
  29#include <linux/miscdevice.h>
  30#include <linux/proc_fs.h>
  31#include <linux/interrupt.h>
  32#include <linux/uaccess.h>
  33#include <linux/delay.h>
  34#include <linux/export.h>
  35#include <asm/io_apic.h>
  36#include "gru.h"
  37#include "grulib.h"
  38#include "grutables.h"
  39#include "grukservices.h"
  40#include "gru_instructions.h"
  41#include <asm/uv/uv_hub.h>
  42
  43/*
  44 * Kernel GRU Usage
  45 *
  46 * The following is an interim algorithm for management of kernel GRU
  47 * resources. This will likely be replaced when we better understand the
  48 * kernel/user requirements.
  49 *
  50 * Blade percpu resources reserved for kernel use. These resources are
  51 * reserved whenever the the kernel context for the blade is loaded. Note
  52 * that the kernel context is not guaranteed to be always available. It is
  53 * loaded on demand & can be stolen by a user if the user demand exceeds the
  54 * kernel demand. The kernel can always reload the kernel context but
  55 * a SLEEP may be required!!!.
  56 *
  57 * Async Overview:
  58 *
  59 *      Each blade has one "kernel context" that owns GRU kernel resources
  60 *      located on the blade. Kernel drivers use GRU resources in this context
  61 *      for sending messages, zeroing memory, etc.
  62 *
  63 *      The kernel context is dynamically loaded on demand. If it is not in
  64 *      use by the kernel, the kernel context can be unloaded & given to a user.
  65 *      The kernel context will be reloaded when needed. This may require that
  66 *      a context be stolen from a user.
  67 *              NOTE: frequent unloading/reloading of the kernel context is
  68 *              expensive. We are depending on batch schedulers, cpusets, sane
  69 *              drivers or some other mechanism to prevent the need for frequent
  70 *              stealing/reloading.
  71 *
  72 *      The kernel context consists of two parts:
  73 *              - 1 CB & a few DSRs that are reserved for each cpu on the blade.
  74 *                Each cpu has it's own private resources & does not share them
  75 *                with other cpus. These resources are used serially, ie,
  76 *                locked, used & unlocked  on each call to a function in
  77 *                grukservices.
  78 *                      (Now that we have dynamic loading of kernel contexts, I
  79 *                       may rethink this & allow sharing between cpus....)
  80 *
  81 *              - Additional resources can be reserved long term & used directly
  82 *                by UV drivers located in the kernel. Drivers using these GRU
  83 *                resources can use asynchronous GRU instructions that send
  84 *                interrupts on completion.
  85 *                      - these resources must be explicitly locked/unlocked
  86 *                      - locked resources prevent (obviously) the kernel
  87 *                        context from being unloaded.
  88 *                      - drivers using these resource directly issue their own
  89 *                        GRU instruction and must wait/check completion.
  90 *
  91 *                When these resources are reserved, the caller can optionally
  92 *                associate a wait_queue with the resources and use asynchronous
  93 *                GRU instructions. When an async GRU instruction completes, the
  94 *                driver will do a wakeup on the event.
  95 *
  96 */
  97
  98
  99#define ASYNC_HAN_TO_BID(h)     ((h) - 1)
 100#define ASYNC_BID_TO_HAN(b)     ((b) + 1)
 101#define ASYNC_HAN_TO_BS(h)      gru_base[ASYNC_HAN_TO_BID(h)]
 102
 103#define GRU_NUM_KERNEL_CBR      1
 104#define GRU_NUM_KERNEL_DSR_BYTES 256
 105#define GRU_NUM_KERNEL_DSR_CL   (GRU_NUM_KERNEL_DSR_BYTES /             \
 106                                        GRU_CACHE_LINE_BYTES)
 107
 108/* GRU instruction attributes for all instructions */
 109#define IMA                     IMA_CB_DELAY
 110
 111/* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
 112#define __gru_cacheline_aligned__                               \
 113        __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
 114
 115#define MAGIC   0x1234567887654321UL
 116
 117/* Default retry count for GRU errors on kernel instructions */
 118#define EXCEPTION_RETRY_LIMIT   3
 119
 120/* Status of message queue sections */
 121#define MQS_EMPTY               0
 122#define MQS_FULL                1
 123#define MQS_NOOP                2
 124
 125/*----------------- RESOURCE MANAGEMENT -------------------------------------*/
 126/* optimized for x86_64 */
 127struct message_queue {
 128        union gru_mesqhead      head __gru_cacheline_aligned__; /* CL 0 */
 129        int                     qlines;                         /* DW 1 */
 130        long                    hstatus[2];
 131        void                    *next __gru_cacheline_aligned__;/* CL 1 */
 132        void                    *limit;
 133        void                    *start;
 134        void                    *start2;
 135        char                    data ____cacheline_aligned;     /* CL 2 */
 136};
 137
 138/* First word in every message - used by mesq interface */
 139struct message_header {
 140        char    present;
 141        char    present2;
 142        char    lines;
 143        char    fill;
 144};
 145
 146#define HSTATUS(mq, h)  ((mq) + offsetof(struct message_queue, hstatus[h]))
 147
 148/*
 149 * Reload the blade's kernel context into a GRU chiplet. Called holding
 150 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
 151 */
 152static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
 153{
 154        struct gru_state *gru;
 155        struct gru_thread_state *kgts;
 156        void *vaddr;
 157        int ctxnum, ncpus;
 158
 159        up_read(&bs->bs_kgts_sema);
 160        down_write(&bs->bs_kgts_sema);
 161
 162        if (!bs->bs_kgts) {
 163                bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
 164                bs->bs_kgts->ts_user_blade_id = blade_id;
 165        }
 166        kgts = bs->bs_kgts;
 167
 168        if (!kgts->ts_gru) {
 169                STAT(load_kernel_context);
 170                ncpus = uv_blade_nr_possible_cpus(blade_id);
 171                kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
 172                        GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
 173                kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
 174                        GRU_NUM_KERNEL_DSR_BYTES * ncpus +
 175                                bs->bs_async_dsr_bytes);
 176                while (!gru_assign_gru_context(kgts)) {
 177                        msleep(1);
 178                        gru_steal_context(kgts);
 179                }
 180                gru_load_context(kgts);
 181                gru = bs->bs_kgts->ts_gru;
 182                vaddr = gru->gs_gru_base_vaddr;
 183                ctxnum = kgts->ts_ctxnum;
 184                bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
 185                bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
 186        }
 187        downgrade_write(&bs->bs_kgts_sema);
 188}
 189
 190/*
 191 * Free all kernel contexts that are not currently in use.
 192 *   Returns 0 if all freed, else number of inuse context.
 193 */
 194static int gru_free_kernel_contexts(void)
 195{
 196        struct gru_blade_state *bs;
 197        struct gru_thread_state *kgts;
 198        int bid, ret = 0;
 199
 200        for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
 201                bs = gru_base[bid];
 202                if (!bs)
 203                        continue;
 204
 205                /* Ignore busy contexts. Don't want to block here.  */
 206                if (down_write_trylock(&bs->bs_kgts_sema)) {
 207                        kgts = bs->bs_kgts;
 208                        if (kgts && kgts->ts_gru)
 209                                gru_unload_context(kgts, 0);
 210                        bs->bs_kgts = NULL;
 211                        up_write(&bs->bs_kgts_sema);
 212                        kfree(kgts);
 213                } else {
 214                        ret++;
 215                }
 216        }
 217        return ret;
 218}
 219
 220/*
 221 * Lock & load the kernel context for the specified blade.
 222 */
 223static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
 224{
 225        struct gru_blade_state *bs;
 226        int bid;
 227
 228        STAT(lock_kernel_context);
 229again:
 230        bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
 231        bs = gru_base[bid];
 232
 233        /* Handle the case where migration occurred while waiting for the sema */
 234        down_read(&bs->bs_kgts_sema);
 235        if (blade_id < 0 && bid != uv_numa_blade_id()) {
 236                up_read(&bs->bs_kgts_sema);
 237                goto again;
 238        }
 239        if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
 240                gru_load_kernel_context(bs, bid);
 241        return bs;
 242
 243}
 244
 245/*
 246 * Unlock the kernel context for the specified blade. Context is not
 247 * unloaded but may be stolen before next use.
 248 */
 249static void gru_unlock_kernel_context(int blade_id)
 250{
 251        struct gru_blade_state *bs;
 252
 253        bs = gru_base[blade_id];
 254        up_read(&bs->bs_kgts_sema);
 255        STAT(unlock_kernel_context);
 256}
 257
 258/*
 259 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
 260 *      - returns with preemption disabled
 261 */
 262static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
 263{
 264        struct gru_blade_state *bs;
 265        int lcpu;
 266
 267        BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
 268        preempt_disable();
 269        bs = gru_lock_kernel_context(-1);
 270        lcpu = uv_blade_processor_id();
 271        *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
 272        *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
 273        return 0;
 274}
 275
 276/*
 277 * Free the current cpus reserved DSR/CBR resources.
 278 */
 279static void gru_free_cpu_resources(void *cb, void *dsr)
 280{
 281        gru_unlock_kernel_context(uv_numa_blade_id());
 282        preempt_enable();
 283}
 284
 285/*
 286 * Reserve GRU resources to be used asynchronously.
 287 *   Note: currently supports only 1 reservation per blade.
 288 *
 289 *      input:
 290 *              blade_id  - blade on which resources should be reserved
 291 *              cbrs      - number of CBRs
 292 *              dsr_bytes - number of DSR bytes needed
 293 *      output:
 294 *              handle to identify resource
 295 *              (0 = async resources already reserved)
 296 */
 297unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
 298                        struct completion *cmp)
 299{
 300        struct gru_blade_state *bs;
 301        struct gru_thread_state *kgts;
 302        int ret = 0;
 303
 304        bs = gru_base[blade_id];
 305
 306        down_write(&bs->bs_kgts_sema);
 307
 308        /* Verify no resources already reserved */
 309        if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
 310                goto done;
 311        bs->bs_async_dsr_bytes = dsr_bytes;
 312        bs->bs_async_cbrs = cbrs;
 313        bs->bs_async_wq = cmp;
 314        kgts = bs->bs_kgts;
 315
 316        /* Resources changed. Unload context if already loaded */
 317        if (kgts && kgts->ts_gru)
 318                gru_unload_context(kgts, 0);
 319        ret = ASYNC_BID_TO_HAN(blade_id);
 320
 321done:
 322        up_write(&bs->bs_kgts_sema);
 323        return ret;
 324}
 325
 326/*
 327 * Release async resources previously reserved.
 328 *
 329 *      input:
 330 *              han - handle to identify resources
 331 */
 332void gru_release_async_resources(unsigned long han)
 333{
 334        struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 335
 336        down_write(&bs->bs_kgts_sema);
 337        bs->bs_async_dsr_bytes = 0;
 338        bs->bs_async_cbrs = 0;
 339        bs->bs_async_wq = NULL;
 340        up_write(&bs->bs_kgts_sema);
 341}
 342
 343/*
 344 * Wait for async GRU instructions to complete.
 345 *
 346 *      input:
 347 *              han - handle to identify resources
 348 */
 349void gru_wait_async_cbr(unsigned long han)
 350{
 351        struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 352
 353        wait_for_completion(bs->bs_async_wq);
 354        mb();
 355}
 356
 357/*
 358 * Lock previous reserved async GRU resources
 359 *
 360 *      input:
 361 *              han - handle to identify resources
 362 *      output:
 363 *              cb  - pointer to first CBR
 364 *              dsr - pointer to first DSR
 365 */
 366void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
 367{
 368        struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 369        int blade_id = ASYNC_HAN_TO_BID(han);
 370        int ncpus;
 371
 372        gru_lock_kernel_context(blade_id);
 373        ncpus = uv_blade_nr_possible_cpus(blade_id);
 374        if (cb)
 375                *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
 376        if (dsr)
 377                *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
 378}
 379
 380/*
 381 * Unlock previous reserved async GRU resources
 382 *
 383 *      input:
 384 *              han - handle to identify resources
 385 */
 386void gru_unlock_async_resource(unsigned long han)
 387{
 388        int blade_id = ASYNC_HAN_TO_BID(han);
 389
 390        gru_unlock_kernel_context(blade_id);
 391}
 392
 393/*----------------------------------------------------------------------*/
 394int gru_get_cb_exception_detail(void *cb,
 395                struct control_block_extended_exc_detail *excdet)
 396{
 397        struct gru_control_block_extended *cbe;
 398        struct gru_thread_state *kgts = NULL;
 399        unsigned long off;
 400        int cbrnum, bid;
 401
 402        /*
 403         * Locate kgts for cb. This algorithm is SLOW but
 404         * this function is rarely called (ie., almost never).
 405         * Performance does not matter.
 406         */
 407        for_each_possible_blade(bid) {
 408                if (!gru_base[bid])
 409                        break;
 410                kgts = gru_base[bid]->bs_kgts;
 411                if (!kgts || !kgts->ts_gru)
 412                        continue;
 413                off = cb - kgts->ts_gru->gs_gru_base_vaddr;
 414                if (off < GRU_SIZE)
 415                        break;
 416                kgts = NULL;
 417        }
 418        BUG_ON(!kgts);
 419        cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
 420        cbe = get_cbe(GRUBASE(cb), cbrnum);
 421        gru_flush_cache(cbe);   /* CBE not coherent */
 422        sync_core();
 423        excdet->opc = cbe->opccpy;
 424        excdet->exopc = cbe->exopccpy;
 425        excdet->ecause = cbe->ecause;
 426        excdet->exceptdet0 = cbe->idef1upd;
 427        excdet->exceptdet1 = cbe->idef3upd;
 428        gru_flush_cache(cbe);
 429        return 0;
 430}
 431
 432char *gru_get_cb_exception_detail_str(int ret, void *cb,
 433                                      char *buf, int size)
 434{
 435        struct gru_control_block_status *gen = (void *)cb;
 436        struct control_block_extended_exc_detail excdet;
 437
 438        if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
 439                gru_get_cb_exception_detail(cb, &excdet);
 440                snprintf(buf, size,
 441                        "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
 442                        "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
 443                        gen, excdet.opc, excdet.exopc, excdet.ecause,
 444                        excdet.exceptdet0, excdet.exceptdet1);
 445        } else {
 446                snprintf(buf, size, "No exception");
 447        }
 448        return buf;
 449}
 450
 451static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
 452{
 453        while (gen->istatus >= CBS_ACTIVE) {
 454                cpu_relax();
 455                barrier();
 456        }
 457        return gen->istatus;
 458}
 459
 460static int gru_retry_exception(void *cb)
 461{
 462        struct gru_control_block_status *gen = (void *)cb;
 463        struct control_block_extended_exc_detail excdet;
 464        int retry = EXCEPTION_RETRY_LIMIT;
 465
 466        while (1)  {
 467                if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
 468                        return CBS_IDLE;
 469                if (gru_get_cb_message_queue_substatus(cb))
 470                        return CBS_EXCEPTION;
 471                gru_get_cb_exception_detail(cb, &excdet);
 472                if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
 473                                (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
 474                        break;
 475                if (retry-- == 0)
 476                        break;
 477                gen->icmd = 1;
 478                gru_flush_cache(gen);
 479        }
 480        return CBS_EXCEPTION;
 481}
 482
 483int gru_check_status_proc(void *cb)
 484{
 485        struct gru_control_block_status *gen = (void *)cb;
 486        int ret;
 487
 488        ret = gen->istatus;
 489        if (ret == CBS_EXCEPTION)
 490                ret = gru_retry_exception(cb);
 491        rmb();
 492        return ret;
 493
 494}
 495
 496int gru_wait_proc(void *cb)
 497{
 498        struct gru_control_block_status *gen = (void *)cb;
 499        int ret;
 500
 501        ret = gru_wait_idle_or_exception(gen);
 502        if (ret == CBS_EXCEPTION)
 503                ret = gru_retry_exception(cb);
 504        rmb();
 505        return ret;
 506}
 507
 508void gru_abort(int ret, void *cb, char *str)
 509{
 510        char buf[GRU_EXC_STR_SIZE];
 511
 512        panic("GRU FATAL ERROR: %s - %s\n", str,
 513              gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
 514}
 515
 516void gru_wait_abort_proc(void *cb)
 517{
 518        int ret;
 519
 520        ret = gru_wait_proc(cb);
 521        if (ret)
 522                gru_abort(ret, cb, "gru_wait_abort");
 523}
 524
 525
 526/*------------------------------ MESSAGE QUEUES -----------------------------*/
 527
 528/* Internal status . These are NOT returned to the user. */
 529#define MQIE_AGAIN              -1      /* try again */
 530
 531
 532/*
 533 * Save/restore the "present" flag that is in the second line of 2-line
 534 * messages
 535 */
 536static inline int get_present2(void *p)
 537{
 538        struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
 539        return mhdr->present;
 540}
 541
 542static inline void restore_present2(void *p, int val)
 543{
 544        struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
 545        mhdr->present = val;
 546}
 547
 548/*
 549 * Create a message queue.
 550 *      qlines - message queue size in cache lines. Includes 2-line header.
 551 */
 552int gru_create_message_queue(struct gru_message_queue_desc *mqd,
 553                void *p, unsigned int bytes, int nasid, int vector, int apicid)
 554{
 555        struct message_queue *mq = p;
 556        unsigned int qlines;
 557
 558        qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
 559        memset(mq, 0, bytes);
 560        mq->start = &mq->data;
 561        mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
 562        mq->next = &mq->data;
 563        mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
 564        mq->qlines = qlines;
 565        mq->hstatus[0] = 0;
 566        mq->hstatus[1] = 1;
 567        mq->head = gru_mesq_head(2, qlines / 2 + 1);
 568        mqd->mq = mq;
 569        mqd->mq_gpa = uv_gpa(mq);
 570        mqd->qlines = qlines;
 571        mqd->interrupt_pnode = nasid >> 1;
 572        mqd->interrupt_vector = vector;
 573        mqd->interrupt_apicid = apicid;
 574        return 0;
 575}
 576EXPORT_SYMBOL_GPL(gru_create_message_queue);
 577
 578/*
 579 * Send a NOOP message to a message queue
 580 *      Returns:
 581 *               0 - if queue is full after the send. This is the normal case
 582 *                   but various races can change this.
 583 *              -1 - if mesq sent successfully but queue not full
 584 *              >0 - unexpected error. MQE_xxx returned
 585 */
 586static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
 587                                void *mesg)
 588{
 589        const struct message_header noop_header = {
 590                                        .present = MQS_NOOP, .lines = 1};
 591        unsigned long m;
 592        int substatus, ret;
 593        struct message_header save_mhdr, *mhdr = mesg;
 594
 595        STAT(mesq_noop);
 596        save_mhdr = *mhdr;
 597        *mhdr = noop_header;
 598        gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
 599        ret = gru_wait(cb);
 600
 601        if (ret) {
 602                substatus = gru_get_cb_message_queue_substatus(cb);
 603                switch (substatus) {
 604                case CBSS_NO_ERROR:
 605                        STAT(mesq_noop_unexpected_error);
 606                        ret = MQE_UNEXPECTED_CB_ERR;
 607                        break;
 608                case CBSS_LB_OVERFLOWED:
 609                        STAT(mesq_noop_lb_overflow);
 610                        ret = MQE_CONGESTION;
 611                        break;
 612                case CBSS_QLIMIT_REACHED:
 613                        STAT(mesq_noop_qlimit_reached);
 614                        ret = 0;
 615                        break;
 616                case CBSS_AMO_NACKED:
 617                        STAT(mesq_noop_amo_nacked);
 618                        ret = MQE_CONGESTION;
 619                        break;
 620                case CBSS_PUT_NACKED:
 621                        STAT(mesq_noop_put_nacked);
 622                        m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
 623                        gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
 624                                                IMA);
 625                        if (gru_wait(cb) == CBS_IDLE)
 626                                ret = MQIE_AGAIN;
 627                        else
 628                                ret = MQE_UNEXPECTED_CB_ERR;
 629                        break;
 630                case CBSS_PAGE_OVERFLOW:
 631                        STAT(mesq_noop_page_overflow);
 632                        /* fallthru */
 633                default:
 634                        BUG();
 635                }
 636        }
 637        *mhdr = save_mhdr;
 638        return ret;
 639}
 640
 641/*
 642 * Handle a gru_mesq full.
 643 */
 644static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
 645                                void *mesg, int lines)
 646{
 647        union gru_mesqhead mqh;
 648        unsigned int limit, head;
 649        unsigned long avalue;
 650        int half, qlines;
 651
 652        /* Determine if switching to first/second half of q */
 653        avalue = gru_get_amo_value(cb);
 654        head = gru_get_amo_value_head(cb);
 655        limit = gru_get_amo_value_limit(cb);
 656
 657        qlines = mqd->qlines;
 658        half = (limit != qlines);
 659
 660        if (half)
 661                mqh = gru_mesq_head(qlines / 2 + 1, qlines);
 662        else
 663                mqh = gru_mesq_head(2, qlines / 2 + 1);
 664
 665        /* Try to get lock for switching head pointer */
 666        gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
 667        if (gru_wait(cb) != CBS_IDLE)
 668                goto cberr;
 669        if (!gru_get_amo_value(cb)) {
 670                STAT(mesq_qf_locked);
 671                return MQE_QUEUE_FULL;
 672        }
 673
 674        /* Got the lock. Send optional NOP if queue not full, */
 675        if (head != limit) {
 676                if (send_noop_message(cb, mqd, mesg)) {
 677                        gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
 678                                        XTYPE_DW, IMA);
 679                        if (gru_wait(cb) != CBS_IDLE)
 680                                goto cberr;
 681                        STAT(mesq_qf_noop_not_full);
 682                        return MQIE_AGAIN;
 683                }
 684                avalue++;
 685        }
 686
 687        /* Then flip queuehead to other half of queue. */
 688        gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
 689                                                        IMA);
 690        if (gru_wait(cb) != CBS_IDLE)
 691                goto cberr;
 692
 693        /* If not successfully in swapping queue head, clear the hstatus lock */
 694        if (gru_get_amo_value(cb) != avalue) {
 695                STAT(mesq_qf_switch_head_failed);
 696                gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
 697                                                        IMA);
 698                if (gru_wait(cb) != CBS_IDLE)
 699                        goto cberr;
 700        }
 701        return MQIE_AGAIN;
 702cberr:
 703        STAT(mesq_qf_unexpected_error);
 704        return MQE_UNEXPECTED_CB_ERR;
 705}
 706
 707/*
 708 * Handle a PUT failure. Note: if message was a 2-line message, one of the
 709 * lines might have successfully have been written. Before sending the
 710 * message, "present" must be cleared in BOTH lines to prevent the receiver
 711 * from prematurely seeing the full message.
 712 */
 713static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
 714                        void *mesg, int lines)
 715{
 716        unsigned long m, *val = mesg, gpa, save;
 717        int ret;
 718
 719        m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
 720        if (lines == 2) {
 721                gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
 722                if (gru_wait(cb) != CBS_IDLE)
 723                        return MQE_UNEXPECTED_CB_ERR;
 724        }
 725        gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
 726        if (gru_wait(cb) != CBS_IDLE)
 727                return MQE_UNEXPECTED_CB_ERR;
 728
 729        if (!mqd->interrupt_vector)
 730                return MQE_OK;
 731
 732        /*
 733         * Send a cross-partition interrupt to the SSI that contains the target
 734         * message queue. Normally, the interrupt is automatically delivered by
 735         * hardware but some error conditions require explicit delivery.
 736         * Use the GRU to deliver the interrupt. Otherwise partition failures
 737         * could cause unrecovered errors.
 738         */
 739        gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT);
 740        save = *val;
 741        *val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector,
 742                                dest_Fixed);
 743        gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA);
 744        ret = gru_wait(cb);
 745        *val = save;
 746        if (ret != CBS_IDLE)
 747                return MQE_UNEXPECTED_CB_ERR;
 748        return MQE_OK;
 749}
 750
 751/*
 752 * Handle a gru_mesq failure. Some of these failures are software recoverable
 753 * or retryable.
 754 */
 755static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
 756                                void *mesg, int lines)
 757{
 758        int substatus, ret = 0;
 759
 760        substatus = gru_get_cb_message_queue_substatus(cb);
 761        switch (substatus) {
 762        case CBSS_NO_ERROR:
 763                STAT(mesq_send_unexpected_error);
 764                ret = MQE_UNEXPECTED_CB_ERR;
 765                break;
 766        case CBSS_LB_OVERFLOWED:
 767                STAT(mesq_send_lb_overflow);
 768                ret = MQE_CONGESTION;
 769                break;
 770        case CBSS_QLIMIT_REACHED:
 771                STAT(mesq_send_qlimit_reached);
 772                ret = send_message_queue_full(cb, mqd, mesg, lines);
 773                break;
 774        case CBSS_AMO_NACKED:
 775                STAT(mesq_send_amo_nacked);
 776                ret = MQE_CONGESTION;
 777                break;
 778        case CBSS_PUT_NACKED:
 779                STAT(mesq_send_put_nacked);
 780                ret = send_message_put_nacked(cb, mqd, mesg, lines);
 781                break;
 782        case CBSS_PAGE_OVERFLOW:
 783                STAT(mesq_page_overflow);
 784                /* fallthru */
 785        default:
 786                BUG();
 787        }
 788        return ret;
 789}
 790
 791/*
 792 * Send a message to a message queue
 793 *      mqd     message queue descriptor
 794 *      mesg    message. ust be vaddr within a GSEG
 795 *      bytes   message size (<= 2 CL)
 796 */
 797int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
 798                                unsigned int bytes)
 799{
 800        struct message_header *mhdr;
 801        void *cb;
 802        void *dsr;
 803        int istatus, clines, ret;
 804
 805        STAT(mesq_send);
 806        BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
 807
 808        clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
 809        if (gru_get_cpu_resources(bytes, &cb, &dsr))
 810                return MQE_BUG_NO_RESOURCES;
 811        memcpy(dsr, mesg, bytes);
 812        mhdr = dsr;
 813        mhdr->present = MQS_FULL;
 814        mhdr->lines = clines;
 815        if (clines == 2) {
 816                mhdr->present2 = get_present2(mhdr);
 817                restore_present2(mhdr, MQS_FULL);
 818        }
 819
 820        do {
 821                ret = MQE_OK;
 822                gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
 823                istatus = gru_wait(cb);
 824                if (istatus != CBS_IDLE)
 825                        ret = send_message_failure(cb, mqd, dsr, clines);
 826        } while (ret == MQIE_AGAIN);
 827        gru_free_cpu_resources(cb, dsr);
 828
 829        if (ret)
 830                STAT(mesq_send_failed);
 831        return ret;
 832}
 833EXPORT_SYMBOL_GPL(gru_send_message_gpa);
 834
 835/*
 836 * Advance the receive pointer for the queue to the next message.
 837 */
 838void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
 839{
 840        struct message_queue *mq = mqd->mq;
 841        struct message_header *mhdr = mq->next;
 842        void *next, *pnext;
 843        int half = -1;
 844        int lines = mhdr->lines;
 845
 846        if (lines == 2)
 847                restore_present2(mhdr, MQS_EMPTY);
 848        mhdr->present = MQS_EMPTY;
 849
 850        pnext = mq->next;
 851        next = pnext + GRU_CACHE_LINE_BYTES * lines;
 852        if (next == mq->limit) {
 853                next = mq->start;
 854                half = 1;
 855        } else if (pnext < mq->start2 && next >= mq->start2) {
 856                half = 0;
 857        }
 858
 859        if (half >= 0)
 860                mq->hstatus[half] = 1;
 861        mq->next = next;
 862}
 863EXPORT_SYMBOL_GPL(gru_free_message);
 864
 865/*
 866 * Get next message from message queue. Return NULL if no message
 867 * present. User must call next_message() to move to next message.
 868 *      rmq     message queue
 869 */
 870void *gru_get_next_message(struct gru_message_queue_desc *mqd)
 871{
 872        struct message_queue *mq = mqd->mq;
 873        struct message_header *mhdr = mq->next;
 874        int present = mhdr->present;
 875
 876        /* skip NOOP messages */
 877        while (present == MQS_NOOP) {
 878                gru_free_message(mqd, mhdr);
 879                mhdr = mq->next;
 880                present = mhdr->present;
 881        }
 882
 883        /* Wait for both halves of 2 line messages */
 884        if (present == MQS_FULL && mhdr->lines == 2 &&
 885                                get_present2(mhdr) == MQS_EMPTY)
 886                present = MQS_EMPTY;
 887
 888        if (!present) {
 889                STAT(mesq_receive_none);
 890                return NULL;
 891        }
 892
 893        if (mhdr->lines == 2)
 894                restore_present2(mhdr, mhdr->present2);
 895
 896        STAT(mesq_receive);
 897        return mhdr;
 898}
 899EXPORT_SYMBOL_GPL(gru_get_next_message);
 900
 901/* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
 902
 903/*
 904 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
 905 */
 906int gru_read_gpa(unsigned long *value, unsigned long gpa)
 907{
 908        void *cb;
 909        void *dsr;
 910        int ret, iaa;
 911
 912        STAT(read_gpa);
 913        if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
 914                return MQE_BUG_NO_RESOURCES;
 915        iaa = gpa >> 62;
 916        gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
 917        ret = gru_wait(cb);
 918        if (ret == CBS_IDLE)
 919                *value = *(unsigned long *)dsr;
 920        gru_free_cpu_resources(cb, dsr);
 921        return ret;
 922}
 923EXPORT_SYMBOL_GPL(gru_read_gpa);
 924
 925
 926/*
 927 * Copy a block of data using the GRU resources
 928 */
 929int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
 930                                unsigned int bytes)
 931{
 932        void *cb;
 933        void *dsr;
 934        int ret;
 935
 936        STAT(copy_gpa);
 937        if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
 938                return MQE_BUG_NO_RESOURCES;
 939        gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
 940                  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
 941        ret = gru_wait(cb);
 942        gru_free_cpu_resources(cb, dsr);
 943        return ret;
 944}
 945EXPORT_SYMBOL_GPL(gru_copy_gpa);
 946
 947/* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
 948/*      Temp - will delete after we gain confidence in the GRU          */
 949
 950static int quicktest0(unsigned long arg)
 951{
 952        unsigned long word0;
 953        unsigned long word1;
 954        void *cb;
 955        void *dsr;
 956        unsigned long *p;
 957        int ret = -EIO;
 958
 959        if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
 960                return MQE_BUG_NO_RESOURCES;
 961        p = dsr;
 962        word0 = MAGIC;
 963        word1 = 0;
 964
 965        gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
 966        if (gru_wait(cb) != CBS_IDLE) {
 967                printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
 968                goto done;
 969        }
 970
 971        if (*p != MAGIC) {
 972                printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
 973                goto done;
 974        }
 975        gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
 976        if (gru_wait(cb) != CBS_IDLE) {
 977                printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
 978                goto done;
 979        }
 980
 981        if (word0 != word1 || word1 != MAGIC) {
 982                printk(KERN_DEBUG
 983                       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
 984                     smp_processor_id(), word1, MAGIC);
 985                goto done;
 986        }
 987        ret = 0;
 988
 989done:
 990        gru_free_cpu_resources(cb, dsr);
 991        return ret;
 992}
 993
 994#define ALIGNUP(p, q)   ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
 995
 996static int quicktest1(unsigned long arg)
 997{
 998        struct gru_message_queue_desc mqd;
 999        void *p, *mq;
1000        unsigned long *dw;
1001        int i, ret = -EIO;
1002        char mes[GRU_CACHE_LINE_BYTES], *m;
1003
1004        /* Need  1K cacheline aligned that does not cross page boundary */
1005        p = kmalloc(4096, 0);
1006        if (p == NULL)
1007                return -ENOMEM;
1008        mq = ALIGNUP(p, 1024);
1009        memset(mes, 0xee, sizeof(mes));
1010        dw = mq;
1011
1012        gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1013        for (i = 0; i < 6; i++) {
1014                mes[8] = i;
1015                do {
1016                        ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1017                } while (ret == MQE_CONGESTION);
1018                if (ret)
1019                        break;
1020        }
1021        if (ret != MQE_QUEUE_FULL || i != 4) {
1022                printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1023                       smp_processor_id(), ret, i);
1024                goto done;
1025        }
1026
1027        for (i = 0; i < 6; i++) {
1028                m = gru_get_next_message(&mqd);
1029                if (!m || m[8] != i)
1030                        break;
1031                gru_free_message(&mqd, m);
1032        }
1033        if (i != 4) {
1034                printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1035                        smp_processor_id(), i, m, m ? m[8] : -1);
1036                goto done;
1037        }
1038        ret = 0;
1039
1040done:
1041        kfree(p);
1042        return ret;
1043}
1044
1045static int quicktest2(unsigned long arg)
1046{
1047        static DECLARE_COMPLETION(cmp);
1048        unsigned long han;
1049        int blade_id = 0;
1050        int numcb = 4;
1051        int ret = 0;
1052        unsigned long *buf;
1053        void *cb0, *cb;
1054        struct gru_control_block_status *gen;
1055        int i, k, istatus, bytes;
1056
1057        bytes = numcb * 4 * 8;
1058        buf = kmalloc(bytes, GFP_KERNEL);
1059        if (!buf)
1060                return -ENOMEM;
1061
1062        ret = -EBUSY;
1063        han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1064        if (!han)
1065                goto done;
1066
1067        gru_lock_async_resource(han, &cb0, NULL);
1068        memset(buf, 0xee, bytes);
1069        for (i = 0; i < numcb; i++)
1070                gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1071                                XTYPE_DW, 4, 1, IMA_INTERRUPT);
1072
1073        ret = 0;
1074        k = numcb;
1075        do {
1076                gru_wait_async_cbr(han);
1077                for (i = 0; i < numcb; i++) {
1078                        cb = cb0 + i * GRU_HANDLE_STRIDE;
1079                        istatus = gru_check_status(cb);
1080                        if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1081                                break;
1082                }
1083                if (i == numcb)
1084                        continue;
1085                if (istatus != CBS_IDLE) {
1086                        printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1087                        ret = -EFAULT;
1088                } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1089                                buf[4 * i + 3]) {
1090                        printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1091                               smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1092                        ret = -EIO;
1093                }
1094                k--;
1095                gen = cb;
1096                gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1097        } while (k);
1098        BUG_ON(cmp.done);
1099
1100        gru_unlock_async_resource(han);
1101        gru_release_async_resources(han);
1102done:
1103        kfree(buf);
1104        return ret;
1105}
1106
1107#define BUFSIZE 200
1108static int quicktest3(unsigned long arg)
1109{
1110        char buf1[BUFSIZE], buf2[BUFSIZE];
1111        int ret = 0;
1112
1113        memset(buf2, 0, sizeof(buf2));
1114        memset(buf1, get_cycles() & 255, sizeof(buf1));
1115        gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1116        if (memcmp(buf1, buf2, BUFSIZE)) {
1117                printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1118                ret = -EIO;
1119        }
1120        return ret;
1121}
1122
1123/*
1124 * Debugging only. User hook for various kernel tests
1125 * of driver & gru.
1126 */
1127int gru_ktest(unsigned long arg)
1128{
1129        int ret = -EINVAL;
1130
1131        switch (arg & 0xff) {
1132        case 0:
1133                ret = quicktest0(arg);
1134                break;
1135        case 1:
1136                ret = quicktest1(arg);
1137                break;
1138        case 2:
1139                ret = quicktest2(arg);
1140                break;
1141        case 3:
1142                ret = quicktest3(arg);
1143                break;
1144        case 99:
1145                ret = gru_free_kernel_contexts();
1146                break;
1147        }
1148        return ret;
1149
1150}
1151
1152int gru_kservices_init(void)
1153{
1154        return 0;
1155}
1156
1157void gru_kservices_exit(void)
1158{
1159        if (gru_free_kernel_contexts())
1160                BUG();
1161}
1162
1163