linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/suspend.h>
  27#include <linux/fault-inject.h>
  28#include <linux/random.h>
  29#include <linux/slab.h>
  30
  31#include <linux/mmc/card.h>
  32#include <linux/mmc/host.h>
  33#include <linux/mmc/mmc.h>
  34#include <linux/mmc/sd.h>
  35
  36#include "core.h"
  37#include "bus.h"
  38#include "host.h"
  39#include "sdio_bus.h"
  40
  41#include "mmc_ops.h"
  42#include "sd_ops.h"
  43#include "sdio_ops.h"
  44
  45/* If the device is not responding */
  46#define MMC_CORE_TIMEOUT_MS     (10 * 60 * 1000) /* 10 minute timeout */
  47
  48/*
  49 * Background operations can take a long time, depending on the housekeeping
  50 * operations the card has to perform.
  51 */
  52#define MMC_BKOPS_MAX_TIMEOUT   (4 * 60 * 1000) /* max time to wait in ms */
  53
  54static struct workqueue_struct *workqueue;
  55static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  56
  57/*
  58 * Enabling software CRCs on the data blocks can be a significant (30%)
  59 * performance cost, and for other reasons may not always be desired.
  60 * So we allow it it to be disabled.
  61 */
  62bool use_spi_crc = 1;
  63module_param(use_spi_crc, bool, 0);
  64
  65/*
  66 * We normally treat cards as removed during suspend if they are not
  67 * known to be on a non-removable bus, to avoid the risk of writing
  68 * back data to a different card after resume.  Allow this to be
  69 * overridden if necessary.
  70 */
  71#ifdef CONFIG_MMC_UNSAFE_RESUME
  72bool mmc_assume_removable;
  73#else
  74bool mmc_assume_removable = 1;
  75#endif
  76EXPORT_SYMBOL(mmc_assume_removable);
  77module_param_named(removable, mmc_assume_removable, bool, 0644);
  78MODULE_PARM_DESC(
  79        removable,
  80        "MMC/SD cards are removable and may be removed during suspend");
  81
  82/*
  83 * Internal function. Schedule delayed work in the MMC work queue.
  84 */
  85static int mmc_schedule_delayed_work(struct delayed_work *work,
  86                                     unsigned long delay)
  87{
  88        return queue_delayed_work(workqueue, work, delay);
  89}
  90
  91/*
  92 * Internal function. Flush all scheduled work from the MMC work queue.
  93 */
  94static void mmc_flush_scheduled_work(void)
  95{
  96        flush_workqueue(workqueue);
  97}
  98
  99#ifdef CONFIG_FAIL_MMC_REQUEST
 100
 101/*
 102 * Internal function. Inject random data errors.
 103 * If mmc_data is NULL no errors are injected.
 104 */
 105static void mmc_should_fail_request(struct mmc_host *host,
 106                                    struct mmc_request *mrq)
 107{
 108        struct mmc_command *cmd = mrq->cmd;
 109        struct mmc_data *data = mrq->data;
 110        static const int data_errors[] = {
 111                -ETIMEDOUT,
 112                -EILSEQ,
 113                -EIO,
 114        };
 115
 116        if (!data)
 117                return;
 118
 119        if (cmd->error || data->error ||
 120            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 121                return;
 122
 123        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 124        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 125}
 126
 127#else /* CONFIG_FAIL_MMC_REQUEST */
 128
 129static inline void mmc_should_fail_request(struct mmc_host *host,
 130                                           struct mmc_request *mrq)
 131{
 132}
 133
 134#endif /* CONFIG_FAIL_MMC_REQUEST */
 135
 136/**
 137 *      mmc_request_done - finish processing an MMC request
 138 *      @host: MMC host which completed request
 139 *      @mrq: MMC request which request
 140 *
 141 *      MMC drivers should call this function when they have completed
 142 *      their processing of a request.
 143 */
 144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 145{
 146        struct mmc_command *cmd = mrq->cmd;
 147        int err = cmd->error;
 148
 149        if (err && cmd->retries && mmc_host_is_spi(host)) {
 150                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 151                        cmd->retries = 0;
 152        }
 153
 154        if (err && cmd->retries && !mmc_card_removed(host->card)) {
 155                /*
 156                 * Request starter must handle retries - see
 157                 * mmc_wait_for_req_done().
 158                 */
 159                if (mrq->done)
 160                        mrq->done(mrq);
 161        } else {
 162                mmc_should_fail_request(host, mrq);
 163
 164                led_trigger_event(host->led, LED_OFF);
 165
 166                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 167                        mmc_hostname(host), cmd->opcode, err,
 168                        cmd->resp[0], cmd->resp[1],
 169                        cmd->resp[2], cmd->resp[3]);
 170
 171                if (mrq->data) {
 172                        pr_debug("%s:     %d bytes transferred: %d\n",
 173                                mmc_hostname(host),
 174                                mrq->data->bytes_xfered, mrq->data->error);
 175                }
 176
 177                if (mrq->stop) {
 178                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 179                                mmc_hostname(host), mrq->stop->opcode,
 180                                mrq->stop->error,
 181                                mrq->stop->resp[0], mrq->stop->resp[1],
 182                                mrq->stop->resp[2], mrq->stop->resp[3]);
 183                }
 184
 185                if (mrq->done)
 186                        mrq->done(mrq);
 187
 188                mmc_host_clk_release(host);
 189        }
 190}
 191
 192EXPORT_SYMBOL(mmc_request_done);
 193
 194static void
 195mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 196{
 197#ifdef CONFIG_MMC_DEBUG
 198        unsigned int i, sz;
 199        struct scatterlist *sg;
 200#endif
 201
 202        if (mrq->sbc) {
 203                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 204                         mmc_hostname(host), mrq->sbc->opcode,
 205                         mrq->sbc->arg, mrq->sbc->flags);
 206        }
 207
 208        pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 209                 mmc_hostname(host), mrq->cmd->opcode,
 210                 mrq->cmd->arg, mrq->cmd->flags);
 211
 212        if (mrq->data) {
 213                pr_debug("%s:     blksz %d blocks %d flags %08x "
 214                        "tsac %d ms nsac %d\n",
 215                        mmc_hostname(host), mrq->data->blksz,
 216                        mrq->data->blocks, mrq->data->flags,
 217                        mrq->data->timeout_ns / 1000000,
 218                        mrq->data->timeout_clks);
 219        }
 220
 221        if (mrq->stop) {
 222                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 223                         mmc_hostname(host), mrq->stop->opcode,
 224                         mrq->stop->arg, mrq->stop->flags);
 225        }
 226
 227        WARN_ON(!host->claimed);
 228
 229        mrq->cmd->error = 0;
 230        mrq->cmd->mrq = mrq;
 231        if (mrq->data) {
 232                BUG_ON(mrq->data->blksz > host->max_blk_size);
 233                BUG_ON(mrq->data->blocks > host->max_blk_count);
 234                BUG_ON(mrq->data->blocks * mrq->data->blksz >
 235                        host->max_req_size);
 236
 237#ifdef CONFIG_MMC_DEBUG
 238                sz = 0;
 239                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 240                        sz += sg->length;
 241                BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 242#endif
 243
 244                mrq->cmd->data = mrq->data;
 245                mrq->data->error = 0;
 246                mrq->data->mrq = mrq;
 247                if (mrq->stop) {
 248                        mrq->data->stop = mrq->stop;
 249                        mrq->stop->error = 0;
 250                        mrq->stop->mrq = mrq;
 251                }
 252        }
 253        mmc_host_clk_hold(host);
 254        led_trigger_event(host->led, LED_FULL);
 255        host->ops->request(host, mrq);
 256}
 257
 258/**
 259 *      mmc_start_bkops - start BKOPS for supported cards
 260 *      @card: MMC card to start BKOPS
 261 *      @form_exception: A flag to indicate if this function was
 262 *                       called due to an exception raised by the card
 263 *
 264 *      Start background operations whenever requested.
 265 *      When the urgent BKOPS bit is set in a R1 command response
 266 *      then background operations should be started immediately.
 267*/
 268void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 269{
 270        int err;
 271        int timeout;
 272        bool use_busy_signal;
 273
 274        BUG_ON(!card);
 275
 276        if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
 277                return;
 278
 279        err = mmc_read_bkops_status(card);
 280        if (err) {
 281                pr_err("%s: Failed to read bkops status: %d\n",
 282                       mmc_hostname(card->host), err);
 283                return;
 284        }
 285
 286        if (!card->ext_csd.raw_bkops_status)
 287                return;
 288
 289        if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 290            from_exception)
 291                return;
 292
 293        mmc_claim_host(card->host);
 294        if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 295                timeout = MMC_BKOPS_MAX_TIMEOUT;
 296                use_busy_signal = true;
 297        } else {
 298                timeout = 0;
 299                use_busy_signal = false;
 300        }
 301
 302        err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 303                        EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
 304        if (err) {
 305                pr_warn("%s: Error %d starting bkops\n",
 306                        mmc_hostname(card->host), err);
 307                goto out;
 308        }
 309
 310        /*
 311         * For urgent bkops status (LEVEL_2 and more)
 312         * bkops executed synchronously, otherwise
 313         * the operation is in progress
 314         */
 315        if (!use_busy_signal)
 316                mmc_card_set_doing_bkops(card);
 317out:
 318        mmc_release_host(card->host);
 319}
 320EXPORT_SYMBOL(mmc_start_bkops);
 321
 322/*
 323 * mmc_wait_data_done() - done callback for data request
 324 * @mrq: done data request
 325 *
 326 * Wakes up mmc context, passed as a callback to host controller driver
 327 */
 328static void mmc_wait_data_done(struct mmc_request *mrq)
 329{
 330        mrq->host->context_info.is_done_rcv = true;
 331        wake_up_interruptible(&mrq->host->context_info.wait);
 332}
 333
 334static void mmc_wait_done(struct mmc_request *mrq)
 335{
 336        complete(&mrq->completion);
 337}
 338
 339/*
 340 *__mmc_start_data_req() - starts data request
 341 * @host: MMC host to start the request
 342 * @mrq: data request to start
 343 *
 344 * Sets the done callback to be called when request is completed by the card.
 345 * Starts data mmc request execution
 346 */
 347static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 348{
 349        mrq->done = mmc_wait_data_done;
 350        mrq->host = host;
 351        if (mmc_card_removed(host->card)) {
 352                mrq->cmd->error = -ENOMEDIUM;
 353                mmc_wait_data_done(mrq);
 354                return -ENOMEDIUM;
 355        }
 356        mmc_start_request(host, mrq);
 357
 358        return 0;
 359}
 360
 361static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 362{
 363        init_completion(&mrq->completion);
 364        mrq->done = mmc_wait_done;
 365        if (mmc_card_removed(host->card)) {
 366                mrq->cmd->error = -ENOMEDIUM;
 367                complete(&mrq->completion);
 368                return -ENOMEDIUM;
 369        }
 370        mmc_start_request(host, mrq);
 371        return 0;
 372}
 373
 374/*
 375 * mmc_wait_for_data_req_done() - wait for request completed
 376 * @host: MMC host to prepare the command.
 377 * @mrq: MMC request to wait for
 378 *
 379 * Blocks MMC context till host controller will ack end of data request
 380 * execution or new request notification arrives from the block layer.
 381 * Handles command retries.
 382 *
 383 * Returns enum mmc_blk_status after checking errors.
 384 */
 385static int mmc_wait_for_data_req_done(struct mmc_host *host,
 386                                      struct mmc_request *mrq,
 387                                      struct mmc_async_req *next_req)
 388{
 389        struct mmc_command *cmd;
 390        struct mmc_context_info *context_info = &host->context_info;
 391        int err;
 392        unsigned long flags;
 393
 394        while (1) {
 395                wait_event_interruptible(context_info->wait,
 396                                (context_info->is_done_rcv ||
 397                                 context_info->is_new_req));
 398                spin_lock_irqsave(&context_info->lock, flags);
 399                context_info->is_waiting_last_req = false;
 400                spin_unlock_irqrestore(&context_info->lock, flags);
 401                if (context_info->is_done_rcv) {
 402                        context_info->is_done_rcv = false;
 403                        context_info->is_new_req = false;
 404                        cmd = mrq->cmd;
 405
 406                        if (!cmd->error || !cmd->retries ||
 407                            mmc_card_removed(host->card)) {
 408                                err = host->areq->err_check(host->card,
 409                                                            host->areq);
 410                                break; /* return err */
 411                        } else {
 412                                pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 413                                        mmc_hostname(host),
 414                                        cmd->opcode, cmd->error);
 415                                cmd->retries--;
 416                                cmd->error = 0;
 417                                host->ops->request(host, mrq);
 418                                continue; /* wait for done/new event again */
 419                        }
 420                } else if (context_info->is_new_req) {
 421                        context_info->is_new_req = false;
 422                        if (!next_req) {
 423                                err = MMC_BLK_NEW_REQUEST;
 424                                break; /* return err */
 425                        }
 426                }
 427        }
 428        return err;
 429}
 430
 431static void mmc_wait_for_req_done(struct mmc_host *host,
 432                                  struct mmc_request *mrq)
 433{
 434        struct mmc_command *cmd;
 435
 436        while (1) {
 437                wait_for_completion(&mrq->completion);
 438
 439                cmd = mrq->cmd;
 440
 441                /*
 442                 * If host has timed out waiting for the sanitize
 443                 * to complete, card might be still in programming state
 444                 * so let's try to bring the card out of programming
 445                 * state.
 446                 */
 447                if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 448                        if (!mmc_interrupt_hpi(host->card)) {
 449                                pr_warning("%s: %s: Interrupted sanitize\n",
 450                                           mmc_hostname(host), __func__);
 451                                cmd->error = 0;
 452                                break;
 453                        } else {
 454                                pr_err("%s: %s: Failed to interrupt sanitize\n",
 455                                       mmc_hostname(host), __func__);
 456                        }
 457                }
 458                if (!cmd->error || !cmd->retries ||
 459                    mmc_card_removed(host->card))
 460                        break;
 461
 462                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 463                         mmc_hostname(host), cmd->opcode, cmd->error);
 464                cmd->retries--;
 465                cmd->error = 0;
 466                host->ops->request(host, mrq);
 467        }
 468}
 469
 470/**
 471 *      mmc_pre_req - Prepare for a new request
 472 *      @host: MMC host to prepare command
 473 *      @mrq: MMC request to prepare for
 474 *      @is_first_req: true if there is no previous started request
 475 *                     that may run in parellel to this call, otherwise false
 476 *
 477 *      mmc_pre_req() is called in prior to mmc_start_req() to let
 478 *      host prepare for the new request. Preparation of a request may be
 479 *      performed while another request is running on the host.
 480 */
 481static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 482                 bool is_first_req)
 483{
 484        if (host->ops->pre_req) {
 485                mmc_host_clk_hold(host);
 486                host->ops->pre_req(host, mrq, is_first_req);
 487                mmc_host_clk_release(host);
 488        }
 489}
 490
 491/**
 492 *      mmc_post_req - Post process a completed request
 493 *      @host: MMC host to post process command
 494 *      @mrq: MMC request to post process for
 495 *      @err: Error, if non zero, clean up any resources made in pre_req
 496 *
 497 *      Let the host post process a completed request. Post processing of
 498 *      a request may be performed while another reuqest is running.
 499 */
 500static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 501                         int err)
 502{
 503        if (host->ops->post_req) {
 504                mmc_host_clk_hold(host);
 505                host->ops->post_req(host, mrq, err);
 506                mmc_host_clk_release(host);
 507        }
 508}
 509
 510/**
 511 *      mmc_start_req - start a non-blocking request
 512 *      @host: MMC host to start command
 513 *      @areq: async request to start
 514 *      @error: out parameter returns 0 for success, otherwise non zero
 515 *
 516 *      Start a new MMC custom command request for a host.
 517 *      If there is on ongoing async request wait for completion
 518 *      of that request and start the new one and return.
 519 *      Does not wait for the new request to complete.
 520 *
 521 *      Returns the completed request, NULL in case of none completed.
 522 *      Wait for the an ongoing request (previoulsy started) to complete and
 523 *      return the completed request. If there is no ongoing request, NULL
 524 *      is returned without waiting. NULL is not an error condition.
 525 */
 526struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 527                                    struct mmc_async_req *areq, int *error)
 528{
 529        int err = 0;
 530        int start_err = 0;
 531        struct mmc_async_req *data = host->areq;
 532
 533        /* Prepare a new request */
 534        if (areq)
 535                mmc_pre_req(host, areq->mrq, !host->areq);
 536
 537        if (host->areq) {
 538                err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
 539                if (err == MMC_BLK_NEW_REQUEST) {
 540                        if (error)
 541                                *error = err;
 542                        /*
 543                         * The previous request was not completed,
 544                         * nothing to return
 545                         */
 546                        return NULL;
 547                }
 548                /*
 549                 * Check BKOPS urgency for each R1 response
 550                 */
 551                if (host->card && mmc_card_mmc(host->card) &&
 552                    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 553                     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 554                    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
 555                        mmc_start_bkops(host->card, true);
 556        }
 557
 558        if (!err && areq)
 559                start_err = __mmc_start_data_req(host, areq->mrq);
 560
 561        if (host->areq)
 562                mmc_post_req(host, host->areq->mrq, 0);
 563
 564         /* Cancel a prepared request if it was not started. */
 565        if ((err || start_err) && areq)
 566                mmc_post_req(host, areq->mrq, -EINVAL);
 567
 568        if (err)
 569                host->areq = NULL;
 570        else
 571                host->areq = areq;
 572
 573        if (error)
 574                *error = err;
 575        return data;
 576}
 577EXPORT_SYMBOL(mmc_start_req);
 578
 579/**
 580 *      mmc_wait_for_req - start a request and wait for completion
 581 *      @host: MMC host to start command
 582 *      @mrq: MMC request to start
 583 *
 584 *      Start a new MMC custom command request for a host, and wait
 585 *      for the command to complete. Does not attempt to parse the
 586 *      response.
 587 */
 588void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 589{
 590        __mmc_start_req(host, mrq);
 591        mmc_wait_for_req_done(host, mrq);
 592}
 593EXPORT_SYMBOL(mmc_wait_for_req);
 594
 595/**
 596 *      mmc_interrupt_hpi - Issue for High priority Interrupt
 597 *      @card: the MMC card associated with the HPI transfer
 598 *
 599 *      Issued High Priority Interrupt, and check for card status
 600 *      until out-of prg-state.
 601 */
 602int mmc_interrupt_hpi(struct mmc_card *card)
 603{
 604        int err;
 605        u32 status;
 606        unsigned long prg_wait;
 607
 608        BUG_ON(!card);
 609
 610        if (!card->ext_csd.hpi_en) {
 611                pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 612                return 1;
 613        }
 614
 615        mmc_claim_host(card->host);
 616        err = mmc_send_status(card, &status);
 617        if (err) {
 618                pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 619                goto out;
 620        }
 621
 622        switch (R1_CURRENT_STATE(status)) {
 623        case R1_STATE_IDLE:
 624        case R1_STATE_READY:
 625        case R1_STATE_STBY:
 626        case R1_STATE_TRAN:
 627                /*
 628                 * In idle and transfer states, HPI is not needed and the caller
 629                 * can issue the next intended command immediately
 630                 */
 631                goto out;
 632        case R1_STATE_PRG:
 633                break;
 634        default:
 635                /* In all other states, it's illegal to issue HPI */
 636                pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 637                        mmc_hostname(card->host), R1_CURRENT_STATE(status));
 638                err = -EINVAL;
 639                goto out;
 640        }
 641
 642        err = mmc_send_hpi_cmd(card, &status);
 643        if (err)
 644                goto out;
 645
 646        prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 647        do {
 648                err = mmc_send_status(card, &status);
 649
 650                if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 651                        break;
 652                if (time_after(jiffies, prg_wait))
 653                        err = -ETIMEDOUT;
 654        } while (!err);
 655
 656out:
 657        mmc_release_host(card->host);
 658        return err;
 659}
 660EXPORT_SYMBOL(mmc_interrupt_hpi);
 661
 662/**
 663 *      mmc_wait_for_cmd - start a command and wait for completion
 664 *      @host: MMC host to start command
 665 *      @cmd: MMC command to start
 666 *      @retries: maximum number of retries
 667 *
 668 *      Start a new MMC command for a host, and wait for the command
 669 *      to complete.  Return any error that occurred while the command
 670 *      was executing.  Do not attempt to parse the response.
 671 */
 672int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 673{
 674        struct mmc_request mrq = {NULL};
 675
 676        WARN_ON(!host->claimed);
 677
 678        memset(cmd->resp, 0, sizeof(cmd->resp));
 679        cmd->retries = retries;
 680
 681        mrq.cmd = cmd;
 682        cmd->data = NULL;
 683
 684        mmc_wait_for_req(host, &mrq);
 685
 686        return cmd->error;
 687}
 688
 689EXPORT_SYMBOL(mmc_wait_for_cmd);
 690
 691/**
 692 *      mmc_stop_bkops - stop ongoing BKOPS
 693 *      @card: MMC card to check BKOPS
 694 *
 695 *      Send HPI command to stop ongoing background operations to
 696 *      allow rapid servicing of foreground operations, e.g. read/
 697 *      writes. Wait until the card comes out of the programming state
 698 *      to avoid errors in servicing read/write requests.
 699 */
 700int mmc_stop_bkops(struct mmc_card *card)
 701{
 702        int err = 0;
 703
 704        BUG_ON(!card);
 705        err = mmc_interrupt_hpi(card);
 706
 707        /*
 708         * If err is EINVAL, we can't issue an HPI.
 709         * It should complete the BKOPS.
 710         */
 711        if (!err || (err == -EINVAL)) {
 712                mmc_card_clr_doing_bkops(card);
 713                err = 0;
 714        }
 715
 716        return err;
 717}
 718EXPORT_SYMBOL(mmc_stop_bkops);
 719
 720int mmc_read_bkops_status(struct mmc_card *card)
 721{
 722        int err;
 723        u8 *ext_csd;
 724
 725        /*
 726         * In future work, we should consider storing the entire ext_csd.
 727         */
 728        ext_csd = kmalloc(512, GFP_KERNEL);
 729        if (!ext_csd) {
 730                pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
 731                       mmc_hostname(card->host));
 732                return -ENOMEM;
 733        }
 734
 735        mmc_claim_host(card->host);
 736        err = mmc_send_ext_csd(card, ext_csd);
 737        mmc_release_host(card->host);
 738        if (err)
 739                goto out;
 740
 741        card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 742        card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 743out:
 744        kfree(ext_csd);
 745        return err;
 746}
 747EXPORT_SYMBOL(mmc_read_bkops_status);
 748
 749/**
 750 *      mmc_set_data_timeout - set the timeout for a data command
 751 *      @data: data phase for command
 752 *      @card: the MMC card associated with the data transfer
 753 *
 754 *      Computes the data timeout parameters according to the
 755 *      correct algorithm given the card type.
 756 */
 757void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 758{
 759        unsigned int mult;
 760
 761        /*
 762         * SDIO cards only define an upper 1 s limit on access.
 763         */
 764        if (mmc_card_sdio(card)) {
 765                data->timeout_ns = 1000000000;
 766                data->timeout_clks = 0;
 767                return;
 768        }
 769
 770        /*
 771         * SD cards use a 100 multiplier rather than 10
 772         */
 773        mult = mmc_card_sd(card) ? 100 : 10;
 774
 775        /*
 776         * Scale up the multiplier (and therefore the timeout) by
 777         * the r2w factor for writes.
 778         */
 779        if (data->flags & MMC_DATA_WRITE)
 780                mult <<= card->csd.r2w_factor;
 781
 782        data->timeout_ns = card->csd.tacc_ns * mult;
 783        data->timeout_clks = card->csd.tacc_clks * mult;
 784
 785        /*
 786         * SD cards also have an upper limit on the timeout.
 787         */
 788        if (mmc_card_sd(card)) {
 789                unsigned int timeout_us, limit_us;
 790
 791                timeout_us = data->timeout_ns / 1000;
 792                if (mmc_host_clk_rate(card->host))
 793                        timeout_us += data->timeout_clks * 1000 /
 794                                (mmc_host_clk_rate(card->host) / 1000);
 795
 796                if (data->flags & MMC_DATA_WRITE)
 797                        /*
 798                         * The MMC spec "It is strongly recommended
 799                         * for hosts to implement more than 500ms
 800                         * timeout value even if the card indicates
 801                         * the 250ms maximum busy length."  Even the
 802                         * previous value of 300ms is known to be
 803                         * insufficient for some cards.
 804                         */
 805                        limit_us = 3000000;
 806                else
 807                        limit_us = 100000;
 808
 809                /*
 810                 * SDHC cards always use these fixed values.
 811                 */
 812                if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 813                        data->timeout_ns = limit_us * 1000;
 814                        data->timeout_clks = 0;
 815                }
 816        }
 817
 818        /*
 819         * Some cards require longer data read timeout than indicated in CSD.
 820         * Address this by setting the read timeout to a "reasonably high"
 821         * value. For the cards tested, 300ms has proven enough. If necessary,
 822         * this value can be increased if other problematic cards require this.
 823         */
 824        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 825                data->timeout_ns = 300000000;
 826                data->timeout_clks = 0;
 827        }
 828
 829        /*
 830         * Some cards need very high timeouts if driven in SPI mode.
 831         * The worst observed timeout was 900ms after writing a
 832         * continuous stream of data until the internal logic
 833         * overflowed.
 834         */
 835        if (mmc_host_is_spi(card->host)) {
 836                if (data->flags & MMC_DATA_WRITE) {
 837                        if (data->timeout_ns < 1000000000)
 838                                data->timeout_ns = 1000000000;  /* 1s */
 839                } else {
 840                        if (data->timeout_ns < 100000000)
 841                                data->timeout_ns =  100000000;  /* 100ms */
 842                }
 843        }
 844}
 845EXPORT_SYMBOL(mmc_set_data_timeout);
 846
 847/**
 848 *      mmc_align_data_size - pads a transfer size to a more optimal value
 849 *      @card: the MMC card associated with the data transfer
 850 *      @sz: original transfer size
 851 *
 852 *      Pads the original data size with a number of extra bytes in
 853 *      order to avoid controller bugs and/or performance hits
 854 *      (e.g. some controllers revert to PIO for certain sizes).
 855 *
 856 *      Returns the improved size, which might be unmodified.
 857 *
 858 *      Note that this function is only relevant when issuing a
 859 *      single scatter gather entry.
 860 */
 861unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 862{
 863        /*
 864         * FIXME: We don't have a system for the controller to tell
 865         * the core about its problems yet, so for now we just 32-bit
 866         * align the size.
 867         */
 868        sz = ((sz + 3) / 4) * 4;
 869
 870        return sz;
 871}
 872EXPORT_SYMBOL(mmc_align_data_size);
 873
 874/**
 875 *      __mmc_claim_host - exclusively claim a host
 876 *      @host: mmc host to claim
 877 *      @abort: whether or not the operation should be aborted
 878 *
 879 *      Claim a host for a set of operations.  If @abort is non null and
 880 *      dereference a non-zero value then this will return prematurely with
 881 *      that non-zero value without acquiring the lock.  Returns zero
 882 *      with the lock held otherwise.
 883 */
 884int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 885{
 886        DECLARE_WAITQUEUE(wait, current);
 887        unsigned long flags;
 888        int stop;
 889
 890        might_sleep();
 891
 892        add_wait_queue(&host->wq, &wait);
 893        spin_lock_irqsave(&host->lock, flags);
 894        while (1) {
 895                set_current_state(TASK_UNINTERRUPTIBLE);
 896                stop = abort ? atomic_read(abort) : 0;
 897                if (stop || !host->claimed || host->claimer == current)
 898                        break;
 899                spin_unlock_irqrestore(&host->lock, flags);
 900                schedule();
 901                spin_lock_irqsave(&host->lock, flags);
 902        }
 903        set_current_state(TASK_RUNNING);
 904        if (!stop) {
 905                host->claimed = 1;
 906                host->claimer = current;
 907                host->claim_cnt += 1;
 908        } else
 909                wake_up(&host->wq);
 910        spin_unlock_irqrestore(&host->lock, flags);
 911        remove_wait_queue(&host->wq, &wait);
 912        if (host->ops->enable && !stop && host->claim_cnt == 1)
 913                host->ops->enable(host);
 914        return stop;
 915}
 916
 917EXPORT_SYMBOL(__mmc_claim_host);
 918
 919/**
 920 *      mmc_try_claim_host - try exclusively to claim a host
 921 *      @host: mmc host to claim
 922 *
 923 *      Returns %1 if the host is claimed, %0 otherwise.
 924 */
 925int mmc_try_claim_host(struct mmc_host *host)
 926{
 927        int claimed_host = 0;
 928        unsigned long flags;
 929
 930        spin_lock_irqsave(&host->lock, flags);
 931        if (!host->claimed || host->claimer == current) {
 932                host->claimed = 1;
 933                host->claimer = current;
 934                host->claim_cnt += 1;
 935                claimed_host = 1;
 936        }
 937        spin_unlock_irqrestore(&host->lock, flags);
 938        if (host->ops->enable && claimed_host && host->claim_cnt == 1)
 939                host->ops->enable(host);
 940        return claimed_host;
 941}
 942EXPORT_SYMBOL(mmc_try_claim_host);
 943
 944/**
 945 *      mmc_release_host - release a host
 946 *      @host: mmc host to release
 947 *
 948 *      Release a MMC host, allowing others to claim the host
 949 *      for their operations.
 950 */
 951void mmc_release_host(struct mmc_host *host)
 952{
 953        unsigned long flags;
 954
 955        WARN_ON(!host->claimed);
 956
 957        if (host->ops->disable && host->claim_cnt == 1)
 958                host->ops->disable(host);
 959
 960        spin_lock_irqsave(&host->lock, flags);
 961        if (--host->claim_cnt) {
 962                /* Release for nested claim */
 963                spin_unlock_irqrestore(&host->lock, flags);
 964        } else {
 965                host->claimed = 0;
 966                host->claimer = NULL;
 967                spin_unlock_irqrestore(&host->lock, flags);
 968                wake_up(&host->wq);
 969        }
 970}
 971EXPORT_SYMBOL(mmc_release_host);
 972
 973/*
 974 * This is a helper function, which fetches a runtime pm reference for the
 975 * card device and also claims the host.
 976 */
 977void mmc_get_card(struct mmc_card *card)
 978{
 979        pm_runtime_get_sync(&card->dev);
 980        mmc_claim_host(card->host);
 981}
 982EXPORT_SYMBOL(mmc_get_card);
 983
 984/*
 985 * This is a helper function, which releases the host and drops the runtime
 986 * pm reference for the card device.
 987 */
 988void mmc_put_card(struct mmc_card *card)
 989{
 990        mmc_release_host(card->host);
 991        pm_runtime_mark_last_busy(&card->dev);
 992        pm_runtime_put_autosuspend(&card->dev);
 993}
 994EXPORT_SYMBOL(mmc_put_card);
 995
 996/*
 997 * Internal function that does the actual ios call to the host driver,
 998 * optionally printing some debug output.
 999 */
1000static inline void mmc_set_ios(struct mmc_host *host)
1001{
1002        struct mmc_ios *ios = &host->ios;
1003
1004        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1005                "width %u timing %u\n",
1006                 mmc_hostname(host), ios->clock, ios->bus_mode,
1007                 ios->power_mode, ios->chip_select, ios->vdd,
1008                 ios->bus_width, ios->timing);
1009
1010        if (ios->clock > 0)
1011                mmc_set_ungated(host);
1012        host->ops->set_ios(host, ios);
1013}
1014
1015/*
1016 * Control chip select pin on a host.
1017 */
1018void mmc_set_chip_select(struct mmc_host *host, int mode)
1019{
1020        mmc_host_clk_hold(host);
1021        host->ios.chip_select = mode;
1022        mmc_set_ios(host);
1023        mmc_host_clk_release(host);
1024}
1025
1026/*
1027 * Sets the host clock to the highest possible frequency that
1028 * is below "hz".
1029 */
1030static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1031{
1032        WARN_ON(hz < host->f_min);
1033
1034        if (hz > host->f_max)
1035                hz = host->f_max;
1036
1037        host->ios.clock = hz;
1038        mmc_set_ios(host);
1039}
1040
1041void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1042{
1043        mmc_host_clk_hold(host);
1044        __mmc_set_clock(host, hz);
1045        mmc_host_clk_release(host);
1046}
1047
1048#ifdef CONFIG_MMC_CLKGATE
1049/*
1050 * This gates the clock by setting it to 0 Hz.
1051 */
1052void mmc_gate_clock(struct mmc_host *host)
1053{
1054        unsigned long flags;
1055
1056        spin_lock_irqsave(&host->clk_lock, flags);
1057        host->clk_old = host->ios.clock;
1058        host->ios.clock = 0;
1059        host->clk_gated = true;
1060        spin_unlock_irqrestore(&host->clk_lock, flags);
1061        mmc_set_ios(host);
1062}
1063
1064/*
1065 * This restores the clock from gating by using the cached
1066 * clock value.
1067 */
1068void mmc_ungate_clock(struct mmc_host *host)
1069{
1070        /*
1071         * We should previously have gated the clock, so the clock shall
1072         * be 0 here! The clock may however be 0 during initialization,
1073         * when some request operations are performed before setting
1074         * the frequency. When ungate is requested in that situation
1075         * we just ignore the call.
1076         */
1077        if (host->clk_old) {
1078                BUG_ON(host->ios.clock);
1079                /* This call will also set host->clk_gated to false */
1080                __mmc_set_clock(host, host->clk_old);
1081        }
1082}
1083
1084void mmc_set_ungated(struct mmc_host *host)
1085{
1086        unsigned long flags;
1087
1088        /*
1089         * We've been given a new frequency while the clock is gated,
1090         * so make sure we regard this as ungating it.
1091         */
1092        spin_lock_irqsave(&host->clk_lock, flags);
1093        host->clk_gated = false;
1094        spin_unlock_irqrestore(&host->clk_lock, flags);
1095}
1096
1097#else
1098void mmc_set_ungated(struct mmc_host *host)
1099{
1100}
1101#endif
1102
1103/*
1104 * Change the bus mode (open drain/push-pull) of a host.
1105 */
1106void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1107{
1108        mmc_host_clk_hold(host);
1109        host->ios.bus_mode = mode;
1110        mmc_set_ios(host);
1111        mmc_host_clk_release(host);
1112}
1113
1114/*
1115 * Change data bus width of a host.
1116 */
1117void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1118{
1119        mmc_host_clk_hold(host);
1120        host->ios.bus_width = width;
1121        mmc_set_ios(host);
1122        mmc_host_clk_release(host);
1123}
1124
1125/**
1126 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1127 * @vdd:        voltage (mV)
1128 * @low_bits:   prefer low bits in boundary cases
1129 *
1130 * This function returns the OCR bit number according to the provided @vdd
1131 * value. If conversion is not possible a negative errno value returned.
1132 *
1133 * Depending on the @low_bits flag the function prefers low or high OCR bits
1134 * on boundary voltages. For example,
1135 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1136 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1137 *
1138 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1139 */
1140static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1141{
1142        const int max_bit = ilog2(MMC_VDD_35_36);
1143        int bit;
1144
1145        if (vdd < 1650 || vdd > 3600)
1146                return -EINVAL;
1147
1148        if (vdd >= 1650 && vdd <= 1950)
1149                return ilog2(MMC_VDD_165_195);
1150
1151        if (low_bits)
1152                vdd -= 1;
1153
1154        /* Base 2000 mV, step 100 mV, bit's base 8. */
1155        bit = (vdd - 2000) / 100 + 8;
1156        if (bit > max_bit)
1157                return max_bit;
1158        return bit;
1159}
1160
1161/**
1162 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1163 * @vdd_min:    minimum voltage value (mV)
1164 * @vdd_max:    maximum voltage value (mV)
1165 *
1166 * This function returns the OCR mask bits according to the provided @vdd_min
1167 * and @vdd_max values. If conversion is not possible the function returns 0.
1168 *
1169 * Notes wrt boundary cases:
1170 * This function sets the OCR bits for all boundary voltages, for example
1171 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1172 * MMC_VDD_34_35 mask.
1173 */
1174u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1175{
1176        u32 mask = 0;
1177
1178        if (vdd_max < vdd_min)
1179                return 0;
1180
1181        /* Prefer high bits for the boundary vdd_max values. */
1182        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1183        if (vdd_max < 0)
1184                return 0;
1185
1186        /* Prefer low bits for the boundary vdd_min values. */
1187        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1188        if (vdd_min < 0)
1189                return 0;
1190
1191        /* Fill the mask, from max bit to min bit. */
1192        while (vdd_max >= vdd_min)
1193                mask |= 1 << vdd_max--;
1194
1195        return mask;
1196}
1197EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1198
1199#ifdef CONFIG_REGULATOR
1200
1201/**
1202 * mmc_regulator_get_ocrmask - return mask of supported voltages
1203 * @supply: regulator to use
1204 *
1205 * This returns either a negative errno, or a mask of voltages that
1206 * can be provided to MMC/SD/SDIO devices using the specified voltage
1207 * regulator.  This would normally be called before registering the
1208 * MMC host adapter.
1209 */
1210int mmc_regulator_get_ocrmask(struct regulator *supply)
1211{
1212        int                     result = 0;
1213        int                     count;
1214        int                     i;
1215
1216        count = regulator_count_voltages(supply);
1217        if (count < 0)
1218                return count;
1219
1220        for (i = 0; i < count; i++) {
1221                int             vdd_uV;
1222                int             vdd_mV;
1223
1224                vdd_uV = regulator_list_voltage(supply, i);
1225                if (vdd_uV <= 0)
1226                        continue;
1227
1228                vdd_mV = vdd_uV / 1000;
1229                result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1230        }
1231
1232        return result;
1233}
1234EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1235
1236/**
1237 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1238 * @mmc: the host to regulate
1239 * @supply: regulator to use
1240 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1241 *
1242 * Returns zero on success, else negative errno.
1243 *
1244 * MMC host drivers may use this to enable or disable a regulator using
1245 * a particular supply voltage.  This would normally be called from the
1246 * set_ios() method.
1247 */
1248int mmc_regulator_set_ocr(struct mmc_host *mmc,
1249                        struct regulator *supply,
1250                        unsigned short vdd_bit)
1251{
1252        int                     result = 0;
1253        int                     min_uV, max_uV;
1254
1255        if (vdd_bit) {
1256                int             tmp;
1257                int             voltage;
1258
1259                /*
1260                 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1261                 * bits this regulator doesn't quite support ... don't
1262                 * be too picky, most cards and regulators are OK with
1263                 * a 0.1V range goof (it's a small error percentage).
1264                 */
1265                tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1266                if (tmp == 0) {
1267                        min_uV = 1650 * 1000;
1268                        max_uV = 1950 * 1000;
1269                } else {
1270                        min_uV = 1900 * 1000 + tmp * 100 * 1000;
1271                        max_uV = min_uV + 100 * 1000;
1272                }
1273
1274                /*
1275                 * If we're using a fixed/static regulator, don't call
1276                 * regulator_set_voltage; it would fail.
1277                 */
1278                voltage = regulator_get_voltage(supply);
1279
1280                if (!regulator_can_change_voltage(supply))
1281                        min_uV = max_uV = voltage;
1282
1283                if (voltage < 0)
1284                        result = voltage;
1285                else if (voltage < min_uV || voltage > max_uV)
1286                        result = regulator_set_voltage(supply, min_uV, max_uV);
1287                else
1288                        result = 0;
1289
1290                if (result == 0 && !mmc->regulator_enabled) {
1291                        result = regulator_enable(supply);
1292                        if (!result)
1293                                mmc->regulator_enabled = true;
1294                }
1295        } else if (mmc->regulator_enabled) {
1296                result = regulator_disable(supply);
1297                if (result == 0)
1298                        mmc->regulator_enabled = false;
1299        }
1300
1301        if (result)
1302                dev_err(mmc_dev(mmc),
1303                        "could not set regulator OCR (%d)\n", result);
1304        return result;
1305}
1306EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1307
1308int mmc_regulator_get_supply(struct mmc_host *mmc)
1309{
1310        struct device *dev = mmc_dev(mmc);
1311        struct regulator *supply;
1312        int ret;
1313
1314        supply = devm_regulator_get(dev, "vmmc");
1315        mmc->supply.vmmc = supply;
1316        mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1317
1318        if (IS_ERR(supply))
1319                return PTR_ERR(supply);
1320
1321        ret = mmc_regulator_get_ocrmask(supply);
1322        if (ret > 0)
1323                mmc->ocr_avail = ret;
1324        else
1325                dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1326
1327        return 0;
1328}
1329EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1330
1331#endif /* CONFIG_REGULATOR */
1332
1333/*
1334 * Mask off any voltages we don't support and select
1335 * the lowest voltage
1336 */
1337u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1338{
1339        int bit;
1340
1341        ocr &= host->ocr_avail;
1342
1343        bit = ffs(ocr);
1344        if (bit) {
1345                bit -= 1;
1346
1347                ocr &= 3 << bit;
1348
1349                mmc_host_clk_hold(host);
1350                host->ios.vdd = bit;
1351                mmc_set_ios(host);
1352                mmc_host_clk_release(host);
1353        } else {
1354                pr_warning("%s: host doesn't support card's voltages\n",
1355                                mmc_hostname(host));
1356                ocr = 0;
1357        }
1358
1359        return ocr;
1360}
1361
1362int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1363{
1364        int err = 0;
1365        int old_signal_voltage = host->ios.signal_voltage;
1366
1367        host->ios.signal_voltage = signal_voltage;
1368        if (host->ops->start_signal_voltage_switch) {
1369                mmc_host_clk_hold(host);
1370                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1371                mmc_host_clk_release(host);
1372        }
1373
1374        if (err)
1375                host->ios.signal_voltage = old_signal_voltage;
1376
1377        return err;
1378
1379}
1380
1381int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1382{
1383        struct mmc_command cmd = {0};
1384        int err = 0;
1385        u32 clock;
1386
1387        BUG_ON(!host);
1388
1389        /*
1390         * Send CMD11 only if the request is to switch the card to
1391         * 1.8V signalling.
1392         */
1393        if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1394                return __mmc_set_signal_voltage(host, signal_voltage);
1395
1396        /*
1397         * If we cannot switch voltages, return failure so the caller
1398         * can continue without UHS mode
1399         */
1400        if (!host->ops->start_signal_voltage_switch)
1401                return -EPERM;
1402        if (!host->ops->card_busy)
1403                pr_warning("%s: cannot verify signal voltage switch\n",
1404                                mmc_hostname(host));
1405
1406        cmd.opcode = SD_SWITCH_VOLTAGE;
1407        cmd.arg = 0;
1408        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1409
1410        err = mmc_wait_for_cmd(host, &cmd, 0);
1411        if (err)
1412                return err;
1413
1414        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1415                return -EIO;
1416
1417        mmc_host_clk_hold(host);
1418        /*
1419         * The card should drive cmd and dat[0:3] low immediately
1420         * after the response of cmd11, but wait 1 ms to be sure
1421         */
1422        mmc_delay(1);
1423        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1424                err = -EAGAIN;
1425                goto power_cycle;
1426        }
1427        /*
1428         * During a signal voltage level switch, the clock must be gated
1429         * for 5 ms according to the SD spec
1430         */
1431        clock = host->ios.clock;
1432        host->ios.clock = 0;
1433        mmc_set_ios(host);
1434
1435        if (__mmc_set_signal_voltage(host, signal_voltage)) {
1436                /*
1437                 * Voltages may not have been switched, but we've already
1438                 * sent CMD11, so a power cycle is required anyway
1439                 */
1440                err = -EAGAIN;
1441                goto power_cycle;
1442        }
1443
1444        /* Keep clock gated for at least 5 ms */
1445        mmc_delay(5);
1446        host->ios.clock = clock;
1447        mmc_set_ios(host);
1448
1449        /* Wait for at least 1 ms according to spec */
1450        mmc_delay(1);
1451
1452        /*
1453         * Failure to switch is indicated by the card holding
1454         * dat[0:3] low
1455         */
1456        if (host->ops->card_busy && host->ops->card_busy(host))
1457                err = -EAGAIN;
1458
1459power_cycle:
1460        if (err) {
1461                pr_debug("%s: Signal voltage switch failed, "
1462                        "power cycling card\n", mmc_hostname(host));
1463                mmc_power_cycle(host);
1464        }
1465
1466        mmc_host_clk_release(host);
1467
1468        return err;
1469}
1470
1471/*
1472 * Select timing parameters for host.
1473 */
1474void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1475{
1476        mmc_host_clk_hold(host);
1477        host->ios.timing = timing;
1478        mmc_set_ios(host);
1479        mmc_host_clk_release(host);
1480}
1481
1482/*
1483 * Select appropriate driver type for host.
1484 */
1485void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1486{
1487        mmc_host_clk_hold(host);
1488        host->ios.drv_type = drv_type;
1489        mmc_set_ios(host);
1490        mmc_host_clk_release(host);
1491}
1492
1493/*
1494 * Apply power to the MMC stack.  This is a two-stage process.
1495 * First, we enable power to the card without the clock running.
1496 * We then wait a bit for the power to stabilise.  Finally,
1497 * enable the bus drivers and clock to the card.
1498 *
1499 * We must _NOT_ enable the clock prior to power stablising.
1500 *
1501 * If a host does all the power sequencing itself, ignore the
1502 * initial MMC_POWER_UP stage.
1503 */
1504void mmc_power_up(struct mmc_host *host)
1505{
1506        int bit;
1507
1508        if (host->ios.power_mode == MMC_POWER_ON)
1509                return;
1510
1511        mmc_host_clk_hold(host);
1512
1513        /* If ocr is set, we use it */
1514        if (host->ocr)
1515                bit = ffs(host->ocr) - 1;
1516        else
1517                bit = fls(host->ocr_avail) - 1;
1518
1519        host->ios.vdd = bit;
1520        if (mmc_host_is_spi(host))
1521                host->ios.chip_select = MMC_CS_HIGH;
1522        else
1523                host->ios.chip_select = MMC_CS_DONTCARE;
1524        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1525        host->ios.power_mode = MMC_POWER_UP;
1526        host->ios.bus_width = MMC_BUS_WIDTH_1;
1527        host->ios.timing = MMC_TIMING_LEGACY;
1528        mmc_set_ios(host);
1529
1530        /* Set signal voltage to 3.3V */
1531        __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1532
1533        /*
1534         * This delay should be sufficient to allow the power supply
1535         * to reach the minimum voltage.
1536         */
1537        mmc_delay(10);
1538
1539        host->ios.clock = host->f_init;
1540
1541        host->ios.power_mode = MMC_POWER_ON;
1542        mmc_set_ios(host);
1543
1544        /*
1545         * This delay must be at least 74 clock sizes, or 1 ms, or the
1546         * time required to reach a stable voltage.
1547         */
1548        mmc_delay(10);
1549
1550        mmc_host_clk_release(host);
1551}
1552
1553void mmc_power_off(struct mmc_host *host)
1554{
1555        if (host->ios.power_mode == MMC_POWER_OFF)
1556                return;
1557
1558        mmc_host_clk_hold(host);
1559
1560        host->ios.clock = 0;
1561        host->ios.vdd = 0;
1562
1563
1564        /*
1565         * Reset ocr mask to be the highest possible voltage supported for
1566         * this mmc host. This value will be used at next power up.
1567         */
1568        host->ocr = 1 << (fls(host->ocr_avail) - 1);
1569
1570        if (!mmc_host_is_spi(host)) {
1571                host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1572                host->ios.chip_select = MMC_CS_DONTCARE;
1573        }
1574        host->ios.power_mode = MMC_POWER_OFF;
1575        host->ios.bus_width = MMC_BUS_WIDTH_1;
1576        host->ios.timing = MMC_TIMING_LEGACY;
1577        mmc_set_ios(host);
1578
1579        /*
1580         * Some configurations, such as the 802.11 SDIO card in the OLPC
1581         * XO-1.5, require a short delay after poweroff before the card
1582         * can be successfully turned on again.
1583         */
1584        mmc_delay(1);
1585
1586        mmc_host_clk_release(host);
1587}
1588
1589void mmc_power_cycle(struct mmc_host *host)
1590{
1591        mmc_power_off(host);
1592        /* Wait at least 1 ms according to SD spec */
1593        mmc_delay(1);
1594        mmc_power_up(host);
1595}
1596
1597/*
1598 * Cleanup when the last reference to the bus operator is dropped.
1599 */
1600static void __mmc_release_bus(struct mmc_host *host)
1601{
1602        BUG_ON(!host);
1603        BUG_ON(host->bus_refs);
1604        BUG_ON(!host->bus_dead);
1605
1606        host->bus_ops = NULL;
1607}
1608
1609/*
1610 * Increase reference count of bus operator
1611 */
1612static inline void mmc_bus_get(struct mmc_host *host)
1613{
1614        unsigned long flags;
1615
1616        spin_lock_irqsave(&host->lock, flags);
1617        host->bus_refs++;
1618        spin_unlock_irqrestore(&host->lock, flags);
1619}
1620
1621/*
1622 * Decrease reference count of bus operator and free it if
1623 * it is the last reference.
1624 */
1625static inline void mmc_bus_put(struct mmc_host *host)
1626{
1627        unsigned long flags;
1628
1629        spin_lock_irqsave(&host->lock, flags);
1630        host->bus_refs--;
1631        if ((host->bus_refs == 0) && host->bus_ops)
1632                __mmc_release_bus(host);
1633        spin_unlock_irqrestore(&host->lock, flags);
1634}
1635
1636/*
1637 * Assign a mmc bus handler to a host. Only one bus handler may control a
1638 * host at any given time.
1639 */
1640void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1641{
1642        unsigned long flags;
1643
1644        BUG_ON(!host);
1645        BUG_ON(!ops);
1646
1647        WARN_ON(!host->claimed);
1648
1649        spin_lock_irqsave(&host->lock, flags);
1650
1651        BUG_ON(host->bus_ops);
1652        BUG_ON(host->bus_refs);
1653
1654        host->bus_ops = ops;
1655        host->bus_refs = 1;
1656        host->bus_dead = 0;
1657
1658        spin_unlock_irqrestore(&host->lock, flags);
1659}
1660
1661/*
1662 * Remove the current bus handler from a host.
1663 */
1664void mmc_detach_bus(struct mmc_host *host)
1665{
1666        unsigned long flags;
1667
1668        BUG_ON(!host);
1669
1670        WARN_ON(!host->claimed);
1671        WARN_ON(!host->bus_ops);
1672
1673        spin_lock_irqsave(&host->lock, flags);
1674
1675        host->bus_dead = 1;
1676
1677        spin_unlock_irqrestore(&host->lock, flags);
1678
1679        mmc_bus_put(host);
1680}
1681
1682/**
1683 *      mmc_detect_change - process change of state on a MMC socket
1684 *      @host: host which changed state.
1685 *      @delay: optional delay to wait before detection (jiffies)
1686 *
1687 *      MMC drivers should call this when they detect a card has been
1688 *      inserted or removed. The MMC layer will confirm that any
1689 *      present card is still functional, and initialize any newly
1690 *      inserted.
1691 */
1692void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1693{
1694#ifdef CONFIG_MMC_DEBUG
1695        unsigned long flags;
1696        spin_lock_irqsave(&host->lock, flags);
1697        WARN_ON(host->removed);
1698        spin_unlock_irqrestore(&host->lock, flags);
1699#endif
1700        host->detect_change = 1;
1701        mmc_schedule_delayed_work(&host->detect, delay);
1702}
1703
1704EXPORT_SYMBOL(mmc_detect_change);
1705
1706void mmc_init_erase(struct mmc_card *card)
1707{
1708        unsigned int sz;
1709
1710        if (is_power_of_2(card->erase_size))
1711                card->erase_shift = ffs(card->erase_size) - 1;
1712        else
1713                card->erase_shift = 0;
1714
1715        /*
1716         * It is possible to erase an arbitrarily large area of an SD or MMC
1717         * card.  That is not desirable because it can take a long time
1718         * (minutes) potentially delaying more important I/O, and also the
1719         * timeout calculations become increasingly hugely over-estimated.
1720         * Consequently, 'pref_erase' is defined as a guide to limit erases
1721         * to that size and alignment.
1722         *
1723         * For SD cards that define Allocation Unit size, limit erases to one
1724         * Allocation Unit at a time.  For MMC cards that define High Capacity
1725         * Erase Size, whether it is switched on or not, limit to that size.
1726         * Otherwise just have a stab at a good value.  For modern cards it
1727         * will end up being 4MiB.  Note that if the value is too small, it
1728         * can end up taking longer to erase.
1729         */
1730        if (mmc_card_sd(card) && card->ssr.au) {
1731                card->pref_erase = card->ssr.au;
1732                card->erase_shift = ffs(card->ssr.au) - 1;
1733        } else if (card->ext_csd.hc_erase_size) {
1734                card->pref_erase = card->ext_csd.hc_erase_size;
1735        } else {
1736                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1737                if (sz < 128)
1738                        card->pref_erase = 512 * 1024 / 512;
1739                else if (sz < 512)
1740                        card->pref_erase = 1024 * 1024 / 512;
1741                else if (sz < 1024)
1742                        card->pref_erase = 2 * 1024 * 1024 / 512;
1743                else
1744                        card->pref_erase = 4 * 1024 * 1024 / 512;
1745                if (card->pref_erase < card->erase_size)
1746                        card->pref_erase = card->erase_size;
1747                else {
1748                        sz = card->pref_erase % card->erase_size;
1749                        if (sz)
1750                                card->pref_erase += card->erase_size - sz;
1751                }
1752        }
1753}
1754
1755static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1756                                          unsigned int arg, unsigned int qty)
1757{
1758        unsigned int erase_timeout;
1759
1760        if (arg == MMC_DISCARD_ARG ||
1761            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1762                erase_timeout = card->ext_csd.trim_timeout;
1763        } else if (card->ext_csd.erase_group_def & 1) {
1764                /* High Capacity Erase Group Size uses HC timeouts */
1765                if (arg == MMC_TRIM_ARG)
1766                        erase_timeout = card->ext_csd.trim_timeout;
1767                else
1768                        erase_timeout = card->ext_csd.hc_erase_timeout;
1769        } else {
1770                /* CSD Erase Group Size uses write timeout */
1771                unsigned int mult = (10 << card->csd.r2w_factor);
1772                unsigned int timeout_clks = card->csd.tacc_clks * mult;
1773                unsigned int timeout_us;
1774
1775                /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1776                if (card->csd.tacc_ns < 1000000)
1777                        timeout_us = (card->csd.tacc_ns * mult) / 1000;
1778                else
1779                        timeout_us = (card->csd.tacc_ns / 1000) * mult;
1780
1781                /*
1782                 * ios.clock is only a target.  The real clock rate might be
1783                 * less but not that much less, so fudge it by multiplying by 2.
1784                 */
1785                timeout_clks <<= 1;
1786                timeout_us += (timeout_clks * 1000) /
1787                              (mmc_host_clk_rate(card->host) / 1000);
1788
1789                erase_timeout = timeout_us / 1000;
1790
1791                /*
1792                 * Theoretically, the calculation could underflow so round up
1793                 * to 1ms in that case.
1794                 */
1795                if (!erase_timeout)
1796                        erase_timeout = 1;
1797        }
1798
1799        /* Multiplier for secure operations */
1800        if (arg & MMC_SECURE_ARGS) {
1801                if (arg == MMC_SECURE_ERASE_ARG)
1802                        erase_timeout *= card->ext_csd.sec_erase_mult;
1803                else
1804                        erase_timeout *= card->ext_csd.sec_trim_mult;
1805        }
1806
1807        erase_timeout *= qty;
1808
1809        /*
1810         * Ensure at least a 1 second timeout for SPI as per
1811         * 'mmc_set_data_timeout()'
1812         */
1813        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1814                erase_timeout = 1000;
1815
1816        return erase_timeout;
1817}
1818
1819static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1820                                         unsigned int arg,
1821                                         unsigned int qty)
1822{
1823        unsigned int erase_timeout;
1824
1825        if (card->ssr.erase_timeout) {
1826                /* Erase timeout specified in SD Status Register (SSR) */
1827                erase_timeout = card->ssr.erase_timeout * qty +
1828                                card->ssr.erase_offset;
1829        } else {
1830                /*
1831                 * Erase timeout not specified in SD Status Register (SSR) so
1832                 * use 250ms per write block.
1833                 */
1834                erase_timeout = 250 * qty;
1835        }
1836
1837        /* Must not be less than 1 second */
1838        if (erase_timeout < 1000)
1839                erase_timeout = 1000;
1840
1841        return erase_timeout;
1842}
1843
1844static unsigned int mmc_erase_timeout(struct mmc_card *card,
1845                                      unsigned int arg,
1846                                      unsigned int qty)
1847{
1848        if (mmc_card_sd(card))
1849                return mmc_sd_erase_timeout(card, arg, qty);
1850        else
1851                return mmc_mmc_erase_timeout(card, arg, qty);
1852}
1853
1854static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1855                        unsigned int to, unsigned int arg)
1856{
1857        struct mmc_command cmd = {0};
1858        unsigned int qty = 0;
1859        unsigned long timeout;
1860        int err;
1861
1862        /*
1863         * qty is used to calculate the erase timeout which depends on how many
1864         * erase groups (or allocation units in SD terminology) are affected.
1865         * We count erasing part of an erase group as one erase group.
1866         * For SD, the allocation units are always a power of 2.  For MMC, the
1867         * erase group size is almost certainly also power of 2, but it does not
1868         * seem to insist on that in the JEDEC standard, so we fall back to
1869         * division in that case.  SD may not specify an allocation unit size,
1870         * in which case the timeout is based on the number of write blocks.
1871         *
1872         * Note that the timeout for secure trim 2 will only be correct if the
1873         * number of erase groups specified is the same as the total of all
1874         * preceding secure trim 1 commands.  Since the power may have been
1875         * lost since the secure trim 1 commands occurred, it is generally
1876         * impossible to calculate the secure trim 2 timeout correctly.
1877         */
1878        if (card->erase_shift)
1879                qty += ((to >> card->erase_shift) -
1880                        (from >> card->erase_shift)) + 1;
1881        else if (mmc_card_sd(card))
1882                qty += to - from + 1;
1883        else
1884                qty += ((to / card->erase_size) -
1885                        (from / card->erase_size)) + 1;
1886
1887        if (!mmc_card_blockaddr(card)) {
1888                from <<= 9;
1889                to <<= 9;
1890        }
1891
1892        if (mmc_card_sd(card))
1893                cmd.opcode = SD_ERASE_WR_BLK_START;
1894        else
1895                cmd.opcode = MMC_ERASE_GROUP_START;
1896        cmd.arg = from;
1897        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1898        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1899        if (err) {
1900                pr_err("mmc_erase: group start error %d, "
1901                       "status %#x\n", err, cmd.resp[0]);
1902                err = -EIO;
1903                goto out;
1904        }
1905
1906        memset(&cmd, 0, sizeof(struct mmc_command));
1907        if (mmc_card_sd(card))
1908                cmd.opcode = SD_ERASE_WR_BLK_END;
1909        else
1910                cmd.opcode = MMC_ERASE_GROUP_END;
1911        cmd.arg = to;
1912        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1913        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1914        if (err) {
1915                pr_err("mmc_erase: group end error %d, status %#x\n",
1916                       err, cmd.resp[0]);
1917                err = -EIO;
1918                goto out;
1919        }
1920
1921        memset(&cmd, 0, sizeof(struct mmc_command));
1922        cmd.opcode = MMC_ERASE;
1923        cmd.arg = arg;
1924        cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1925        cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1926        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927        if (err) {
1928                pr_err("mmc_erase: erase error %d, status %#x\n",
1929                       err, cmd.resp[0]);
1930                err = -EIO;
1931                goto out;
1932        }
1933
1934        if (mmc_host_is_spi(card->host))
1935                goto out;
1936
1937        timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1938        do {
1939                memset(&cmd, 0, sizeof(struct mmc_command));
1940                cmd.opcode = MMC_SEND_STATUS;
1941                cmd.arg = card->rca << 16;
1942                cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1943                /* Do not retry else we can't see errors */
1944                err = mmc_wait_for_cmd(card->host, &cmd, 0);
1945                if (err || (cmd.resp[0] & 0xFDF92000)) {
1946                        pr_err("error %d requesting status %#x\n",
1947                                err, cmd.resp[0]);
1948                        err = -EIO;
1949                        goto out;
1950                }
1951
1952                /* Timeout if the device never becomes ready for data and
1953                 * never leaves the program state.
1954                 */
1955                if (time_after(jiffies, timeout)) {
1956                        pr_err("%s: Card stuck in programming state! %s\n",
1957                                mmc_hostname(card->host), __func__);
1958                        err =  -EIO;
1959                        goto out;
1960                }
1961
1962        } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1963                 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1964out:
1965        return err;
1966}
1967
1968/**
1969 * mmc_erase - erase sectors.
1970 * @card: card to erase
1971 * @from: first sector to erase
1972 * @nr: number of sectors to erase
1973 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1974 *
1975 * Caller must claim host before calling this function.
1976 */
1977int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1978              unsigned int arg)
1979{
1980        unsigned int rem, to = from + nr;
1981
1982        if (!(card->host->caps & MMC_CAP_ERASE) ||
1983            !(card->csd.cmdclass & CCC_ERASE))
1984                return -EOPNOTSUPP;
1985
1986        if (!card->erase_size)
1987                return -EOPNOTSUPP;
1988
1989        if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1990                return -EOPNOTSUPP;
1991
1992        if ((arg & MMC_SECURE_ARGS) &&
1993            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1994                return -EOPNOTSUPP;
1995
1996        if ((arg & MMC_TRIM_ARGS) &&
1997            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1998                return -EOPNOTSUPP;
1999
2000        if (arg == MMC_SECURE_ERASE_ARG) {
2001                if (from % card->erase_size || nr % card->erase_size)
2002                        return -EINVAL;
2003        }
2004
2005        if (arg == MMC_ERASE_ARG) {
2006                rem = from % card->erase_size;
2007                if (rem) {
2008                        rem = card->erase_size - rem;
2009                        from += rem;
2010                        if (nr > rem)
2011                                nr -= rem;
2012                        else
2013                                return 0;
2014                }
2015                rem = nr % card->erase_size;
2016                if (rem)
2017                        nr -= rem;
2018        }
2019
2020        if (nr == 0)
2021                return 0;
2022
2023        to = from + nr;
2024
2025        if (to <= from)
2026                return -EINVAL;
2027
2028        /* 'from' and 'to' are inclusive */
2029        to -= 1;
2030
2031        return mmc_do_erase(card, from, to, arg);
2032}
2033EXPORT_SYMBOL(mmc_erase);
2034
2035int mmc_can_erase(struct mmc_card *card)
2036{
2037        if ((card->host->caps & MMC_CAP_ERASE) &&
2038            (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2039                return 1;
2040        return 0;
2041}
2042EXPORT_SYMBOL(mmc_can_erase);
2043
2044int mmc_can_trim(struct mmc_card *card)
2045{
2046        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2047                return 1;
2048        return 0;
2049}
2050EXPORT_SYMBOL(mmc_can_trim);
2051
2052int mmc_can_discard(struct mmc_card *card)
2053{
2054        /*
2055         * As there's no way to detect the discard support bit at v4.5
2056         * use the s/w feature support filed.
2057         */
2058        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2059                return 1;
2060        return 0;
2061}
2062EXPORT_SYMBOL(mmc_can_discard);
2063
2064int mmc_can_sanitize(struct mmc_card *card)
2065{
2066        if (!mmc_can_trim(card) && !mmc_can_erase(card))
2067                return 0;
2068        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2069                return 1;
2070        return 0;
2071}
2072EXPORT_SYMBOL(mmc_can_sanitize);
2073
2074int mmc_can_secure_erase_trim(struct mmc_card *card)
2075{
2076        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2077                return 1;
2078        return 0;
2079}
2080EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2081
2082int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2083                            unsigned int nr)
2084{
2085        if (!card->erase_size)
2086                return 0;
2087        if (from % card->erase_size || nr % card->erase_size)
2088                return 0;
2089        return 1;
2090}
2091EXPORT_SYMBOL(mmc_erase_group_aligned);
2092
2093static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2094                                            unsigned int arg)
2095{
2096        struct mmc_host *host = card->host;
2097        unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2098        unsigned int last_timeout = 0;
2099
2100        if (card->erase_shift)
2101                max_qty = UINT_MAX >> card->erase_shift;
2102        else if (mmc_card_sd(card))
2103                max_qty = UINT_MAX;
2104        else
2105                max_qty = UINT_MAX / card->erase_size;
2106
2107        /* Find the largest qty with an OK timeout */
2108        do {
2109                y = 0;
2110                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2111                        timeout = mmc_erase_timeout(card, arg, qty + x);
2112                        if (timeout > host->max_discard_to)
2113                                break;
2114                        if (timeout < last_timeout)
2115                                break;
2116                        last_timeout = timeout;
2117                        y = x;
2118                }
2119                qty += y;
2120        } while (y);
2121
2122        if (!qty)
2123                return 0;
2124
2125        if (qty == 1)
2126                return 1;
2127
2128        /* Convert qty to sectors */
2129        if (card->erase_shift)
2130                max_discard = --qty << card->erase_shift;
2131        else if (mmc_card_sd(card))
2132                max_discard = qty;
2133        else
2134                max_discard = --qty * card->erase_size;
2135
2136        return max_discard;
2137}
2138
2139unsigned int mmc_calc_max_discard(struct mmc_card *card)
2140{
2141        struct mmc_host *host = card->host;
2142        unsigned int max_discard, max_trim;
2143
2144        if (!host->max_discard_to)
2145                return UINT_MAX;
2146
2147        /*
2148         * Without erase_group_def set, MMC erase timeout depends on clock
2149         * frequence which can change.  In that case, the best choice is
2150         * just the preferred erase size.
2151         */
2152        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2153                return card->pref_erase;
2154
2155        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2156        if (mmc_can_trim(card)) {
2157                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2158                if (max_trim < max_discard)
2159                        max_discard = max_trim;
2160        } else if (max_discard < card->erase_size) {
2161                max_discard = 0;
2162        }
2163        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2164                 mmc_hostname(host), max_discard, host->max_discard_to);
2165        return max_discard;
2166}
2167EXPORT_SYMBOL(mmc_calc_max_discard);
2168
2169int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2170{
2171        struct mmc_command cmd = {0};
2172
2173        if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2174                return 0;
2175
2176        cmd.opcode = MMC_SET_BLOCKLEN;
2177        cmd.arg = blocklen;
2178        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2179        return mmc_wait_for_cmd(card->host, &cmd, 5);
2180}
2181EXPORT_SYMBOL(mmc_set_blocklen);
2182
2183int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2184                        bool is_rel_write)
2185{
2186        struct mmc_command cmd = {0};
2187
2188        cmd.opcode = MMC_SET_BLOCK_COUNT;
2189        cmd.arg = blockcount & 0x0000FFFF;
2190        if (is_rel_write)
2191                cmd.arg |= 1 << 31;
2192        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2193        return mmc_wait_for_cmd(card->host, &cmd, 5);
2194}
2195EXPORT_SYMBOL(mmc_set_blockcount);
2196
2197static void mmc_hw_reset_for_init(struct mmc_host *host)
2198{
2199        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2200                return;
2201        mmc_host_clk_hold(host);
2202        host->ops->hw_reset(host);
2203        mmc_host_clk_release(host);
2204}
2205
2206int mmc_can_reset(struct mmc_card *card)
2207{
2208        u8 rst_n_function;
2209
2210        if (!mmc_card_mmc(card))
2211                return 0;
2212        rst_n_function = card->ext_csd.rst_n_function;
2213        if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2214                return 0;
2215        return 1;
2216}
2217EXPORT_SYMBOL(mmc_can_reset);
2218
2219static int mmc_do_hw_reset(struct mmc_host *host, int check)
2220{
2221        struct mmc_card *card = host->card;
2222
2223        if (!host->bus_ops->power_restore)
2224                return -EOPNOTSUPP;
2225
2226        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2227                return -EOPNOTSUPP;
2228
2229        if (!card)
2230                return -EINVAL;
2231
2232        if (!mmc_can_reset(card))
2233                return -EOPNOTSUPP;
2234
2235        mmc_host_clk_hold(host);
2236        mmc_set_clock(host, host->f_init);
2237
2238        host->ops->hw_reset(host);
2239
2240        /* If the reset has happened, then a status command will fail */
2241        if (check) {
2242                struct mmc_command cmd = {0};
2243                int err;
2244
2245                cmd.opcode = MMC_SEND_STATUS;
2246                if (!mmc_host_is_spi(card->host))
2247                        cmd.arg = card->rca << 16;
2248                cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2249                err = mmc_wait_for_cmd(card->host, &cmd, 0);
2250                if (!err) {
2251                        mmc_host_clk_release(host);
2252                        return -ENOSYS;
2253                }
2254        }
2255
2256        host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2257        if (mmc_host_is_spi(host)) {
2258                host->ios.chip_select = MMC_CS_HIGH;
2259                host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2260        } else {
2261                host->ios.chip_select = MMC_CS_DONTCARE;
2262                host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2263        }
2264        host->ios.bus_width = MMC_BUS_WIDTH_1;
2265        host->ios.timing = MMC_TIMING_LEGACY;
2266        mmc_set_ios(host);
2267
2268        mmc_host_clk_release(host);
2269
2270        return host->bus_ops->power_restore(host);
2271}
2272
2273int mmc_hw_reset(struct mmc_host *host)
2274{
2275        return mmc_do_hw_reset(host, 0);
2276}
2277EXPORT_SYMBOL(mmc_hw_reset);
2278
2279int mmc_hw_reset_check(struct mmc_host *host)
2280{
2281        return mmc_do_hw_reset(host, 1);
2282}
2283EXPORT_SYMBOL(mmc_hw_reset_check);
2284
2285static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2286{
2287        host->f_init = freq;
2288
2289#ifdef CONFIG_MMC_DEBUG
2290        pr_info("%s: %s: trying to init card at %u Hz\n",
2291                mmc_hostname(host), __func__, host->f_init);
2292#endif
2293        mmc_power_up(host);
2294
2295        /*
2296         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2297         * do a hardware reset if possible.
2298         */
2299        mmc_hw_reset_for_init(host);
2300
2301        /*
2302         * sdio_reset sends CMD52 to reset card.  Since we do not know
2303         * if the card is being re-initialized, just send it.  CMD52
2304         * should be ignored by SD/eMMC cards.
2305         */
2306        sdio_reset(host);
2307        mmc_go_idle(host);
2308
2309        mmc_send_if_cond(host, host->ocr_avail);
2310
2311        /* Order's important: probe SDIO, then SD, then MMC */
2312        if (!mmc_attach_sdio(host))
2313                return 0;
2314        if (!mmc_attach_sd(host))
2315                return 0;
2316        if (!mmc_attach_mmc(host))
2317                return 0;
2318
2319        mmc_power_off(host);
2320        return -EIO;
2321}
2322
2323int _mmc_detect_card_removed(struct mmc_host *host)
2324{
2325        int ret;
2326
2327        if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2328                return 0;
2329
2330        if (!host->card || mmc_card_removed(host->card))
2331                return 1;
2332
2333        ret = host->bus_ops->alive(host);
2334
2335        /*
2336         * Card detect status and alive check may be out of sync if card is
2337         * removed slowly, when card detect switch changes while card/slot
2338         * pads are still contacted in hardware (refer to "SD Card Mechanical
2339         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2340         * detect work 200ms later for this case.
2341         */
2342        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2343                mmc_detect_change(host, msecs_to_jiffies(200));
2344                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2345        }
2346
2347        if (ret) {
2348                mmc_card_set_removed(host->card);
2349                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2350        }
2351
2352        return ret;
2353}
2354
2355int mmc_detect_card_removed(struct mmc_host *host)
2356{
2357        struct mmc_card *card = host->card;
2358        int ret;
2359
2360        WARN_ON(!host->claimed);
2361
2362        if (!card)
2363                return 1;
2364
2365        ret = mmc_card_removed(card);
2366        /*
2367         * The card will be considered unchanged unless we have been asked to
2368         * detect a change or host requires polling to provide card detection.
2369         */
2370        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2371                return ret;
2372
2373        host->detect_change = 0;
2374        if (!ret) {
2375                ret = _mmc_detect_card_removed(host);
2376                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2377                        /*
2378                         * Schedule a detect work as soon as possible to let a
2379                         * rescan handle the card removal.
2380                         */
2381                        cancel_delayed_work(&host->detect);
2382                        mmc_detect_change(host, 0);
2383                }
2384        }
2385
2386        return ret;
2387}
2388EXPORT_SYMBOL(mmc_detect_card_removed);
2389
2390void mmc_rescan(struct work_struct *work)
2391{
2392        struct mmc_host *host =
2393                container_of(work, struct mmc_host, detect.work);
2394        int i;
2395
2396        if (host->rescan_disable)
2397                return;
2398
2399        /* If there is a non-removable card registered, only scan once */
2400        if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2401                return;
2402        host->rescan_entered = 1;
2403
2404        mmc_bus_get(host);
2405
2406        /*
2407         * if there is a _removable_ card registered, check whether it is
2408         * still present
2409         */
2410        if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2411            && !(host->caps & MMC_CAP_NONREMOVABLE))
2412                host->bus_ops->detect(host);
2413
2414        host->detect_change = 0;
2415
2416        /*
2417         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2418         * the card is no longer present.
2419         */
2420        mmc_bus_put(host);
2421        mmc_bus_get(host);
2422
2423        /* if there still is a card present, stop here */
2424        if (host->bus_ops != NULL) {
2425                mmc_bus_put(host);
2426                goto out;
2427        }
2428
2429        /*
2430         * Only we can add a new handler, so it's safe to
2431         * release the lock here.
2432         */
2433        mmc_bus_put(host);
2434
2435        if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2436                mmc_claim_host(host);
2437                mmc_power_off(host);
2438                mmc_release_host(host);
2439                goto out;
2440        }
2441
2442        mmc_claim_host(host);
2443        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2444                if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2445                        break;
2446                if (freqs[i] <= host->f_min)
2447                        break;
2448        }
2449        mmc_release_host(host);
2450
2451 out:
2452        if (host->caps & MMC_CAP_NEEDS_POLL)
2453                mmc_schedule_delayed_work(&host->detect, HZ);
2454}
2455
2456void mmc_start_host(struct mmc_host *host)
2457{
2458        host->f_init = max(freqs[0], host->f_min);
2459        host->rescan_disable = 0;
2460        if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2461                mmc_power_off(host);
2462        else
2463                mmc_power_up(host);
2464        mmc_detect_change(host, 0);
2465}
2466
2467void mmc_stop_host(struct mmc_host *host)
2468{
2469#ifdef CONFIG_MMC_DEBUG
2470        unsigned long flags;
2471        spin_lock_irqsave(&host->lock, flags);
2472        host->removed = 1;
2473        spin_unlock_irqrestore(&host->lock, flags);
2474#endif
2475
2476        host->rescan_disable = 1;
2477        cancel_delayed_work_sync(&host->detect);
2478        mmc_flush_scheduled_work();
2479
2480        /* clear pm flags now and let card drivers set them as needed */
2481        host->pm_flags = 0;
2482
2483        mmc_bus_get(host);
2484        if (host->bus_ops && !host->bus_dead) {
2485                /* Calling bus_ops->remove() with a claimed host can deadlock */
2486                host->bus_ops->remove(host);
2487                mmc_claim_host(host);
2488                mmc_detach_bus(host);
2489                mmc_power_off(host);
2490                mmc_release_host(host);
2491                mmc_bus_put(host);
2492                return;
2493        }
2494        mmc_bus_put(host);
2495
2496        BUG_ON(host->card);
2497
2498        mmc_power_off(host);
2499}
2500
2501int mmc_power_save_host(struct mmc_host *host)
2502{
2503        int ret = 0;
2504
2505#ifdef CONFIG_MMC_DEBUG
2506        pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2507#endif
2508
2509        mmc_bus_get(host);
2510
2511        if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2512                mmc_bus_put(host);
2513                return -EINVAL;
2514        }
2515
2516        if (host->bus_ops->power_save)
2517                ret = host->bus_ops->power_save(host);
2518
2519        mmc_bus_put(host);
2520
2521        mmc_power_off(host);
2522
2523        return ret;
2524}
2525EXPORT_SYMBOL(mmc_power_save_host);
2526
2527int mmc_power_restore_host(struct mmc_host *host)
2528{
2529        int ret;
2530
2531#ifdef CONFIG_MMC_DEBUG
2532        pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2533#endif
2534
2535        mmc_bus_get(host);
2536
2537        if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2538                mmc_bus_put(host);
2539                return -EINVAL;
2540        }
2541
2542        mmc_power_up(host);
2543        ret = host->bus_ops->power_restore(host);
2544
2545        mmc_bus_put(host);
2546
2547        return ret;
2548}
2549EXPORT_SYMBOL(mmc_power_restore_host);
2550
2551/*
2552 * Flush the cache to the non-volatile storage.
2553 */
2554int mmc_flush_cache(struct mmc_card *card)
2555{
2556        struct mmc_host *host = card->host;
2557        int err = 0;
2558
2559        if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2560                return err;
2561
2562        if (mmc_card_mmc(card) &&
2563                        (card->ext_csd.cache_size > 0) &&
2564                        (card->ext_csd.cache_ctrl & 1)) {
2565                err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2566                                EXT_CSD_FLUSH_CACHE, 1, 0);
2567                if (err)
2568                        pr_err("%s: cache flush error %d\n",
2569                                        mmc_hostname(card->host), err);
2570        }
2571
2572        return err;
2573}
2574EXPORT_SYMBOL(mmc_flush_cache);
2575
2576/*
2577 * Turn the cache ON/OFF.
2578 * Turning the cache OFF shall trigger flushing of the data
2579 * to the non-volatile storage.
2580 * This function should be called with host claimed
2581 */
2582int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2583{
2584        struct mmc_card *card = host->card;
2585        unsigned int timeout;
2586        int err = 0;
2587
2588        if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2589                        mmc_card_is_removable(host))
2590                return err;
2591
2592        if (card && mmc_card_mmc(card) &&
2593                        (card->ext_csd.cache_size > 0)) {
2594                enable = !!enable;
2595
2596                if (card->ext_csd.cache_ctrl ^ enable) {
2597                        timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2598                        err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2599                                        EXT_CSD_CACHE_CTRL, enable, timeout);
2600                        if (err)
2601                                pr_err("%s: cache %s error %d\n",
2602                                                mmc_hostname(card->host),
2603                                                enable ? "on" : "off",
2604                                                err);
2605                        else
2606                                card->ext_csd.cache_ctrl = enable;
2607                }
2608        }
2609
2610        return err;
2611}
2612EXPORT_SYMBOL(mmc_cache_ctrl);
2613
2614#ifdef CONFIG_PM
2615
2616/**
2617 *      mmc_suspend_host - suspend a host
2618 *      @host: mmc host
2619 */
2620int mmc_suspend_host(struct mmc_host *host)
2621{
2622        /* This function is deprecated */
2623        return 0;
2624}
2625EXPORT_SYMBOL(mmc_suspend_host);
2626
2627/**
2628 *      mmc_resume_host - resume a previously suspended host
2629 *      @host: mmc host
2630 */
2631int mmc_resume_host(struct mmc_host *host)
2632{
2633        /* This function is deprecated */
2634        return 0;
2635}
2636EXPORT_SYMBOL(mmc_resume_host);
2637
2638/* Do the card removal on suspend if card is assumed removeable
2639 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2640   to sync the card.
2641*/
2642int mmc_pm_notify(struct notifier_block *notify_block,
2643                                        unsigned long mode, void *unused)
2644{
2645        struct mmc_host *host = container_of(
2646                notify_block, struct mmc_host, pm_notify);
2647        unsigned long flags;
2648        int err = 0;
2649
2650        switch (mode) {
2651        case PM_HIBERNATION_PREPARE:
2652        case PM_SUSPEND_PREPARE:
2653                spin_lock_irqsave(&host->lock, flags);
2654                host->rescan_disable = 1;
2655                spin_unlock_irqrestore(&host->lock, flags);
2656                cancel_delayed_work_sync(&host->detect);
2657
2658                if (!host->bus_ops)
2659                        break;
2660
2661                /* Validate prerequisites for suspend */
2662                if (host->bus_ops->pre_suspend)
2663                        err = host->bus_ops->pre_suspend(host);
2664                if (!err && host->bus_ops->suspend)
2665                        break;
2666
2667                /* Calling bus_ops->remove() with a claimed host can deadlock */
2668                host->bus_ops->remove(host);
2669                mmc_claim_host(host);
2670                mmc_detach_bus(host);
2671                mmc_power_off(host);
2672                mmc_release_host(host);
2673                host->pm_flags = 0;
2674                break;
2675
2676        case PM_POST_SUSPEND:
2677        case PM_POST_HIBERNATION:
2678        case PM_POST_RESTORE:
2679
2680                spin_lock_irqsave(&host->lock, flags);
2681                host->rescan_disable = 0;
2682                spin_unlock_irqrestore(&host->lock, flags);
2683                mmc_detect_change(host, 0);
2684
2685        }
2686
2687        return 0;
2688}
2689#endif
2690
2691/**
2692 * mmc_init_context_info() - init synchronization context
2693 * @host: mmc host
2694 *
2695 * Init struct context_info needed to implement asynchronous
2696 * request mechanism, used by mmc core, host driver and mmc requests
2697 * supplier.
2698 */
2699void mmc_init_context_info(struct mmc_host *host)
2700{
2701        spin_lock_init(&host->context_info.lock);
2702        host->context_info.is_new_req = false;
2703        host->context_info.is_done_rcv = false;
2704        host->context_info.is_waiting_last_req = false;
2705        init_waitqueue_head(&host->context_info.wait);
2706}
2707
2708static int __init mmc_init(void)
2709{
2710        int ret;
2711
2712        workqueue = alloc_ordered_workqueue("kmmcd", 0);
2713        if (!workqueue)
2714                return -ENOMEM;
2715
2716        ret = mmc_register_bus();
2717        if (ret)
2718                goto destroy_workqueue;
2719
2720        ret = mmc_register_host_class();
2721        if (ret)
2722                goto unregister_bus;
2723
2724        ret = sdio_register_bus();
2725        if (ret)
2726                goto unregister_host_class;
2727
2728        return 0;
2729
2730unregister_host_class:
2731        mmc_unregister_host_class();
2732unregister_bus:
2733        mmc_unregister_bus();
2734destroy_workqueue:
2735        destroy_workqueue(workqueue);
2736
2737        return ret;
2738}
2739
2740static void __exit mmc_exit(void)
2741{
2742        sdio_unregister_bus();
2743        mmc_unregister_host_class();
2744        mmc_unregister_bus();
2745        destroy_workqueue(workqueue);
2746}
2747
2748subsys_initcall(mmc_init);
2749module_exit(mmc_exit);
2750
2751MODULE_LICENSE("GPL");
2752