linux/drivers/mtd/devices/docg3.c
<<
>>
Prefs
   1/*
   2 * Handles the M-Systems DiskOnChip G3 chip
   3 *
   4 * Copyright (C) 2011 Robert Jarzmik
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  19 *
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/platform_device.h>
  26#include <linux/string.h>
  27#include <linux/slab.h>
  28#include <linux/io.h>
  29#include <linux/delay.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/partitions.h>
  32#include <linux/bitmap.h>
  33#include <linux/bitrev.h>
  34#include <linux/bch.h>
  35
  36#include <linux/debugfs.h>
  37#include <linux/seq_file.h>
  38
  39#define CREATE_TRACE_POINTS
  40#include "docg3.h"
  41
  42/*
  43 * This driver handles the DiskOnChip G3 flash memory.
  44 *
  45 * As no specification is available from M-Systems/Sandisk, this drivers lacks
  46 * several functions available on the chip, as :
  47 *  - IPL write
  48 *
  49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
  50 * the driver assumes a 16bits data bus.
  51 *
  52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
  53 *  - a 1 byte Hamming code stored in the OOB for each page
  54 *  - a 7 bytes BCH code stored in the OOB for each page
  55 * The BCH ECC is :
  56 *  - BCH is in GF(2^14)
  57 *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
  58 *                                   + 1 hamming byte)
  59 *  - BCH can correct up to 4 bits (t = 4)
  60 *  - BCH syndroms are calculated in hardware, and checked in hardware as well
  61 *
  62 */
  63
  64static unsigned int reliable_mode;
  65module_param(reliable_mode, uint, 0);
  66MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
  67                 "2=reliable) : MLC normal operations are in normal mode");
  68
  69/**
  70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout
  71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
  72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
  73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
  74 * @oobavail: 8 available bytes remaining after ECC toll
  75 */
  76static struct nand_ecclayout docg3_oobinfo = {
  77        .eccbytes = 8,
  78        .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
  79        .oobfree = {{0, 7}, {15, 1} },
  80        .oobavail = 8,
  81};
  82
  83static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
  84{
  85        u8 val = readb(docg3->cascade->base + reg);
  86
  87        trace_docg3_io(0, 8, reg, (int)val);
  88        return val;
  89}
  90
  91static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
  92{
  93        u16 val = readw(docg3->cascade->base + reg);
  94
  95        trace_docg3_io(0, 16, reg, (int)val);
  96        return val;
  97}
  98
  99static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
 100{
 101        writeb(val, docg3->cascade->base + reg);
 102        trace_docg3_io(1, 8, reg, val);
 103}
 104
 105static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
 106{
 107        writew(val, docg3->cascade->base + reg);
 108        trace_docg3_io(1, 16, reg, val);
 109}
 110
 111static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
 112{
 113        doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
 114}
 115
 116static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
 117{
 118        doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
 119}
 120
 121static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
 122{
 123        doc_writeb(docg3, addr, DOC_FLASHADDRESS);
 124}
 125
 126static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
 127
 128static int doc_register_readb(struct docg3 *docg3, int reg)
 129{
 130        u8 val;
 131
 132        doc_writew(docg3, reg, DOC_READADDRESS);
 133        val = doc_readb(docg3, reg);
 134        doc_vdbg("Read register %04x : %02x\n", reg, val);
 135        return val;
 136}
 137
 138static int doc_register_readw(struct docg3 *docg3, int reg)
 139{
 140        u16 val;
 141
 142        doc_writew(docg3, reg, DOC_READADDRESS);
 143        val = doc_readw(docg3, reg);
 144        doc_vdbg("Read register %04x : %04x\n", reg, val);
 145        return val;
 146}
 147
 148/**
 149 * doc_delay - delay docg3 operations
 150 * @docg3: the device
 151 * @nbNOPs: the number of NOPs to issue
 152 *
 153 * As no specification is available, the right timings between chip commands are
 154 * unknown. The only available piece of information are the observed nops on a
 155 * working docg3 chip.
 156 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
 157 * friendlier msleep() functions or blocking mdelay().
 158 */
 159static void doc_delay(struct docg3 *docg3, int nbNOPs)
 160{
 161        int i;
 162
 163        doc_vdbg("NOP x %d\n", nbNOPs);
 164        for (i = 0; i < nbNOPs; i++)
 165                doc_writeb(docg3, 0, DOC_NOP);
 166}
 167
 168static int is_prot_seq_error(struct docg3 *docg3)
 169{
 170        int ctrl;
 171
 172        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 173        return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
 174}
 175
 176static int doc_is_ready(struct docg3 *docg3)
 177{
 178        int ctrl;
 179
 180        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 181        return ctrl & DOC_CTRL_FLASHREADY;
 182}
 183
 184static int doc_wait_ready(struct docg3 *docg3)
 185{
 186        int maxWaitCycles = 100;
 187
 188        do {
 189                doc_delay(docg3, 4);
 190                cpu_relax();
 191        } while (!doc_is_ready(docg3) && maxWaitCycles--);
 192        doc_delay(docg3, 2);
 193        if (maxWaitCycles > 0)
 194                return 0;
 195        else
 196                return -EIO;
 197}
 198
 199static int doc_reset_seq(struct docg3 *docg3)
 200{
 201        int ret;
 202
 203        doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
 204        doc_flash_sequence(docg3, DOC_SEQ_RESET);
 205        doc_flash_command(docg3, DOC_CMD_RESET);
 206        doc_delay(docg3, 2);
 207        ret = doc_wait_ready(docg3);
 208
 209        doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
 210        return ret;
 211}
 212
 213/**
 214 * doc_read_data_area - Read data from data area
 215 * @docg3: the device
 216 * @buf: the buffer to fill in (might be NULL is dummy reads)
 217 * @len: the length to read
 218 * @first: first time read, DOC_READADDRESS should be set
 219 *
 220 * Reads bytes from flash data. Handles the single byte / even bytes reads.
 221 */
 222static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
 223                               int first)
 224{
 225        int i, cdr, len4;
 226        u16 data16, *dst16;
 227        u8 data8, *dst8;
 228
 229        doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
 230        cdr = len & 0x1;
 231        len4 = len - cdr;
 232
 233        if (first)
 234                doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
 235        dst16 = buf;
 236        for (i = 0; i < len4; i += 2) {
 237                data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
 238                if (dst16) {
 239                        *dst16 = data16;
 240                        dst16++;
 241                }
 242        }
 243
 244        if (cdr) {
 245                doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
 246                           DOC_READADDRESS);
 247                doc_delay(docg3, 1);
 248                dst8 = (u8 *)dst16;
 249                for (i = 0; i < cdr; i++) {
 250                        data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
 251                        if (dst8) {
 252                                *dst8 = data8;
 253                                dst8++;
 254                        }
 255                }
 256        }
 257}
 258
 259/**
 260 * doc_write_data_area - Write data into data area
 261 * @docg3: the device
 262 * @buf: the buffer to get input bytes from
 263 * @len: the length to write
 264 *
 265 * Writes bytes into flash data. Handles the single byte / even bytes writes.
 266 */
 267static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
 268{
 269        int i, cdr, len4;
 270        u16 *src16;
 271        u8 *src8;
 272
 273        doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
 274        cdr = len & 0x3;
 275        len4 = len - cdr;
 276
 277        doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
 278        src16 = (u16 *)buf;
 279        for (i = 0; i < len4; i += 2) {
 280                doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
 281                src16++;
 282        }
 283
 284        src8 = (u8 *)src16;
 285        for (i = 0; i < cdr; i++) {
 286                doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
 287                           DOC_READADDRESS);
 288                doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
 289                src8++;
 290        }
 291}
 292
 293/**
 294 * doc_set_data_mode - Sets the flash to normal or reliable data mode
 295 * @docg3: the device
 296 *
 297 * The reliable data mode is a bit slower than the fast mode, but less errors
 298 * occur.  Entering the reliable mode cannot be done without entering the fast
 299 * mode first.
 300 *
 301 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
 302 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
 303 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
 304 * result, which is a logical and between bytes from page 0 and page 1 (which is
 305 * consistent with the fact that writing to a page is _clearing_ bits of that
 306 * page).
 307 */
 308static void doc_set_reliable_mode(struct docg3 *docg3)
 309{
 310        static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
 311
 312        doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
 313        switch (docg3->reliable) {
 314        case 0:
 315                break;
 316        case 1:
 317                doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
 318                doc_flash_command(docg3, DOC_CMD_FAST_MODE);
 319                break;
 320        case 2:
 321                doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
 322                doc_flash_command(docg3, DOC_CMD_FAST_MODE);
 323                doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
 324                break;
 325        default:
 326                doc_err("doc_set_reliable_mode(): invalid mode\n");
 327                break;
 328        }
 329        doc_delay(docg3, 2);
 330}
 331
 332/**
 333 * doc_set_asic_mode - Set the ASIC mode
 334 * @docg3: the device
 335 * @mode: the mode
 336 *
 337 * The ASIC can work in 3 modes :
 338 *  - RESET: all registers are zeroed
 339 *  - NORMAL: receives and handles commands
 340 *  - POWERDOWN: minimal poweruse, flash parts shut off
 341 */
 342static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
 343{
 344        int i;
 345
 346        for (i = 0; i < 12; i++)
 347                doc_readb(docg3, DOC_IOSPACE_IPL);
 348
 349        mode |= DOC_ASICMODE_MDWREN;
 350        doc_dbg("doc_set_asic_mode(%02x)\n", mode);
 351        doc_writeb(docg3, mode, DOC_ASICMODE);
 352        doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
 353        doc_delay(docg3, 1);
 354}
 355
 356/**
 357 * doc_set_device_id - Sets the devices id for cascaded G3 chips
 358 * @docg3: the device
 359 * @id: the chip to select (amongst 0, 1, 2, 3)
 360 *
 361 * There can be 4 cascaded G3 chips. This function selects the one which will
 362 * should be the active one.
 363 */
 364static void doc_set_device_id(struct docg3 *docg3, int id)
 365{
 366        u8 ctrl;
 367
 368        doc_dbg("doc_set_device_id(%d)\n", id);
 369        doc_writeb(docg3, id, DOC_DEVICESELECT);
 370        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 371
 372        ctrl &= ~DOC_CTRL_VIOLATION;
 373        ctrl |= DOC_CTRL_CE;
 374        doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
 375}
 376
 377/**
 378 * doc_set_extra_page_mode - Change flash page layout
 379 * @docg3: the device
 380 *
 381 * Normally, the flash page is split into the data (512 bytes) and the out of
 382 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
 383 * leveling counters are stored.  To access this last area of 4 bytes, a special
 384 * mode must be input to the flash ASIC.
 385 *
 386 * Returns 0 if no error occurred, -EIO else.
 387 */
 388static int doc_set_extra_page_mode(struct docg3 *docg3)
 389{
 390        int fctrl;
 391
 392        doc_dbg("doc_set_extra_page_mode()\n");
 393        doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
 394        doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
 395        doc_delay(docg3, 2);
 396
 397        fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 398        if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
 399                return -EIO;
 400        else
 401                return 0;
 402}
 403
 404/**
 405 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
 406 * @docg3: the device
 407 * @sector: the sector
 408 */
 409static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
 410{
 411        doc_delay(docg3, 1);
 412        doc_flash_address(docg3, sector & 0xff);
 413        doc_flash_address(docg3, (sector >> 8) & 0xff);
 414        doc_flash_address(docg3, (sector >> 16) & 0xff);
 415        doc_delay(docg3, 1);
 416}
 417
 418/**
 419 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
 420 * @docg3: the device
 421 * @sector: the sector
 422 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
 423 */
 424static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
 425{
 426        ofs = ofs >> 2;
 427        doc_delay(docg3, 1);
 428        doc_flash_address(docg3, ofs & 0xff);
 429        doc_flash_address(docg3, sector & 0xff);
 430        doc_flash_address(docg3, (sector >> 8) & 0xff);
 431        doc_flash_address(docg3, (sector >> 16) & 0xff);
 432        doc_delay(docg3, 1);
 433}
 434
 435/**
 436 * doc_seek - Set both flash planes to the specified block, page for reading
 437 * @docg3: the device
 438 * @block0: the first plane block index
 439 * @block1: the second plane block index
 440 * @page: the page index within the block
 441 * @wear: if true, read will occur on the 4 extra bytes of the wear area
 442 * @ofs: offset in page to read
 443 *
 444 * Programs the flash even and odd planes to the specific block and page.
 445 * Alternatively, programs the flash to the wear area of the specified page.
 446 */
 447static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
 448                         int wear, int ofs)
 449{
 450        int sector, ret = 0;
 451
 452        doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
 453                block0, block1, page, ofs, wear);
 454
 455        if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
 456                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
 457                doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
 458                doc_delay(docg3, 2);
 459        } else {
 460                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
 461                doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
 462                doc_delay(docg3, 2);
 463        }
 464
 465        doc_set_reliable_mode(docg3);
 466        if (wear)
 467                ret = doc_set_extra_page_mode(docg3);
 468        if (ret)
 469                goto out;
 470
 471        doc_flash_sequence(docg3, DOC_SEQ_READ);
 472        sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 473        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
 474        doc_setup_addr_sector(docg3, sector);
 475
 476        sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 477        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
 478        doc_setup_addr_sector(docg3, sector);
 479        doc_delay(docg3, 1);
 480
 481out:
 482        return ret;
 483}
 484
 485/**
 486 * doc_write_seek - Set both flash planes to the specified block, page for writing
 487 * @docg3: the device
 488 * @block0: the first plane block index
 489 * @block1: the second plane block index
 490 * @page: the page index within the block
 491 * @ofs: offset in page to write
 492 *
 493 * Programs the flash even and odd planes to the specific block and page.
 494 * Alternatively, programs the flash to the wear area of the specified page.
 495 */
 496static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
 497                         int ofs)
 498{
 499        int ret = 0, sector;
 500
 501        doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
 502                block0, block1, page, ofs);
 503
 504        doc_set_reliable_mode(docg3);
 505
 506        if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
 507                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
 508                doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
 509                doc_delay(docg3, 2);
 510        } else {
 511                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
 512                doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
 513                doc_delay(docg3, 2);
 514        }
 515
 516        doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
 517        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
 518
 519        sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 520        doc_setup_writeaddr_sector(docg3, sector, ofs);
 521
 522        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
 523        doc_delay(docg3, 2);
 524        ret = doc_wait_ready(docg3);
 525        if (ret)
 526                goto out;
 527
 528        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
 529        sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 530        doc_setup_writeaddr_sector(docg3, sector, ofs);
 531        doc_delay(docg3, 1);
 532
 533out:
 534        return ret;
 535}
 536
 537
 538/**
 539 * doc_read_page_ecc_init - Initialize hardware ECC engine
 540 * @docg3: the device
 541 * @len: the number of bytes covered by the ECC (BCH covered)
 542 *
 543 * The function does initialize the hardware ECC engine to compute the Hamming
 544 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
 545 *
 546 * Return 0 if succeeded, -EIO on error
 547 */
 548static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
 549{
 550        doc_writew(docg3, DOC_ECCCONF0_READ_MODE
 551                   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
 552                   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
 553                   DOC_ECCCONF0);
 554        doc_delay(docg3, 4);
 555        doc_register_readb(docg3, DOC_FLASHCONTROL);
 556        return doc_wait_ready(docg3);
 557}
 558
 559/**
 560 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
 561 * @docg3: the device
 562 * @len: the number of bytes covered by the ECC (BCH covered)
 563 *
 564 * The function does initialize the hardware ECC engine to compute the Hamming
 565 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
 566 *
 567 * Return 0 if succeeded, -EIO on error
 568 */
 569static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
 570{
 571        doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
 572                   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
 573                   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
 574                   DOC_ECCCONF0);
 575        doc_delay(docg3, 4);
 576        doc_register_readb(docg3, DOC_FLASHCONTROL);
 577        return doc_wait_ready(docg3);
 578}
 579
 580/**
 581 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
 582 * @docg3: the device
 583 *
 584 * Disables the hardware ECC generator and checker, for unchecked reads (as when
 585 * reading OOB only or write status byte).
 586 */
 587static void doc_ecc_disable(struct docg3 *docg3)
 588{
 589        doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
 590        doc_delay(docg3, 4);
 591}
 592
 593/**
 594 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
 595 * @docg3: the device
 596 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
 597 *
 598 * This function programs the ECC hardware to compute the hamming code on the
 599 * last provided N bytes to the hardware generator.
 600 */
 601static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
 602{
 603        u8 ecc_conf1;
 604
 605        ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
 606        ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
 607        ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
 608        doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
 609}
 610
 611/**
 612 * doc_ecc_bch_fix_data - Fix if need be read data from flash
 613 * @docg3: the device
 614 * @buf: the buffer of read data (512 + 7 + 1 bytes)
 615 * @hwecc: the hardware calculated ECC.
 616 *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
 617 *         area data, and calc_ecc the ECC calculated by the hardware generator.
 618 *
 619 * Checks if the received data matches the ECC, and if an error is detected,
 620 * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
 621 * understands the (data, ecc, syndroms) in an inverted order in comparison to
 622 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
 623 * bit6 and bit 1, ...) for all ECC data.
 624 *
 625 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 626 * algorithm is used to decode this.  However the hw operates on page
 627 * data in a bit order that is the reverse of that of the bch alg,
 628 * requiring that the bits be reversed on the result.  Thanks to Ivan
 629 * Djelic for his analysis.
 630 *
 631 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
 632 * errors were detected and cannot be fixed.
 633 */
 634static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
 635{
 636        u8 ecc[DOC_ECC_BCH_SIZE];
 637        int errorpos[DOC_ECC_BCH_T], i, numerrs;
 638
 639        for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
 640                ecc[i] = bitrev8(hwecc[i]);
 641        numerrs = decode_bch(docg3->cascade->bch, NULL,
 642                             DOC_ECC_BCH_COVERED_BYTES,
 643                             NULL, ecc, NULL, errorpos);
 644        BUG_ON(numerrs == -EINVAL);
 645        if (numerrs < 0)
 646                goto out;
 647
 648        for (i = 0; i < numerrs; i++)
 649                errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
 650        for (i = 0; i < numerrs; i++)
 651                if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
 652                        /* error is located in data, correct it */
 653                        change_bit(errorpos[i], buf);
 654out:
 655        doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
 656        return numerrs;
 657}
 658
 659
 660/**
 661 * doc_read_page_prepare - Prepares reading data from a flash page
 662 * @docg3: the device
 663 * @block0: the first plane block index on flash memory
 664 * @block1: the second plane block index on flash memory
 665 * @page: the page index in the block
 666 * @offset: the offset in the page (must be a multiple of 4)
 667 *
 668 * Prepares the page to be read in the flash memory :
 669 *   - tell ASIC to map the flash pages
 670 *   - tell ASIC to be in read mode
 671 *
 672 * After a call to this method, a call to doc_read_page_finish is mandatory,
 673 * to end the read cycle of the flash.
 674 *
 675 * Read data from a flash page. The length to be read must be between 0 and
 676 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
 677 * the extra bytes reading is not implemented).
 678 *
 679 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
 680 * in two steps:
 681 *  - one read of 512 bytes at offset 0
 682 *  - one read of 512 bytes at offset 512 + 16
 683 *
 684 * Returns 0 if successful, -EIO if a read error occurred.
 685 */
 686static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
 687                                 int page, int offset)
 688{
 689        int wear_area = 0, ret = 0;
 690
 691        doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
 692                block0, block1, page, offset);
 693        if (offset >= DOC_LAYOUT_WEAR_OFFSET)
 694                wear_area = 1;
 695        if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
 696                return -EINVAL;
 697
 698        doc_set_device_id(docg3, docg3->device_id);
 699        ret = doc_reset_seq(docg3);
 700        if (ret)
 701                goto err;
 702
 703        /* Program the flash address block and page */
 704        ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
 705        if (ret)
 706                goto err;
 707
 708        doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
 709        doc_delay(docg3, 2);
 710        doc_wait_ready(docg3);
 711
 712        doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
 713        doc_delay(docg3, 1);
 714        if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
 715                offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
 716        doc_flash_address(docg3, offset >> 2);
 717        doc_delay(docg3, 1);
 718        doc_wait_ready(docg3);
 719
 720        doc_flash_command(docg3, DOC_CMD_READ_FLASH);
 721
 722        return 0;
 723err:
 724        doc_writeb(docg3, 0, DOC_DATAEND);
 725        doc_delay(docg3, 2);
 726        return -EIO;
 727}
 728
 729/**
 730 * doc_read_page_getbytes - Reads bytes from a prepared page
 731 * @docg3: the device
 732 * @len: the number of bytes to be read (must be a multiple of 4)
 733 * @buf: the buffer to be filled in (or NULL is forget bytes)
 734 * @first: 1 if first time read, DOC_READADDRESS should be set
 735 * @last_odd: 1 if last read ended up on an odd byte
 736 *
 737 * Reads bytes from a prepared page. There is a trickery here : if the last read
 738 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
 739 * planes, the first byte must be read apart. If a word (16bit) read was used,
 740 * the read would return the byte of plane 2 as low *and* high endian, which
 741 * will mess the read.
 742 *
 743 */
 744static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
 745                                  int first, int last_odd)
 746{
 747        if (last_odd && len > 0) {
 748                doc_read_data_area(docg3, buf, 1, first);
 749                doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
 750        } else {
 751                doc_read_data_area(docg3, buf, len, first);
 752        }
 753        doc_delay(docg3, 2);
 754        return len;
 755}
 756
 757/**
 758 * doc_write_page_putbytes - Writes bytes into a prepared page
 759 * @docg3: the device
 760 * @len: the number of bytes to be written
 761 * @buf: the buffer of input bytes
 762 *
 763 */
 764static void doc_write_page_putbytes(struct docg3 *docg3, int len,
 765                                    const u_char *buf)
 766{
 767        doc_write_data_area(docg3, buf, len);
 768        doc_delay(docg3, 2);
 769}
 770
 771/**
 772 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
 773 * @docg3: the device
 774 * @hwecc:  the array of 7 integers where the hardware ecc will be stored
 775 */
 776static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
 777{
 778        int i;
 779
 780        for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
 781                hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
 782}
 783
 784/**
 785 * doc_page_finish - Ends reading/writing of a flash page
 786 * @docg3: the device
 787 */
 788static void doc_page_finish(struct docg3 *docg3)
 789{
 790        doc_writeb(docg3, 0, DOC_DATAEND);
 791        doc_delay(docg3, 2);
 792}
 793
 794/**
 795 * doc_read_page_finish - Ends reading of a flash page
 796 * @docg3: the device
 797 *
 798 * As a side effect, resets the chip selector to 0. This ensures that after each
 799 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
 800 * reboot will boot on floor 0, where the IPL is.
 801 */
 802static void doc_read_page_finish(struct docg3 *docg3)
 803{
 804        doc_page_finish(docg3);
 805        doc_set_device_id(docg3, 0);
 806}
 807
 808/**
 809 * calc_block_sector - Calculate blocks, pages and ofs.
 810
 811 * @from: offset in flash
 812 * @block0: first plane block index calculated
 813 * @block1: second plane block index calculated
 814 * @page: page calculated
 815 * @ofs: offset in page
 816 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
 817 * reliable mode.
 818 *
 819 * The calculation is based on the reliable/normal mode. In normal mode, the 64
 820 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
 821 * clones, only 32 pages per block are available.
 822 */
 823static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
 824                              int *ofs, int reliable)
 825{
 826        uint sector, pages_biblock;
 827
 828        pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
 829        if (reliable == 1 || reliable == 2)
 830                pages_biblock /= 2;
 831
 832        sector = from / DOC_LAYOUT_PAGE_SIZE;
 833        *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
 834        *block1 = *block0 + 1;
 835        *page = sector % pages_biblock;
 836        *page /= DOC_LAYOUT_NBPLANES;
 837        if (reliable == 1 || reliable == 2)
 838                *page *= 2;
 839        if (sector % 2)
 840                *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
 841        else
 842                *ofs = 0;
 843}
 844
 845/**
 846 * doc_read_oob - Read out of band bytes from flash
 847 * @mtd: the device
 848 * @from: the offset from first block and first page, in bytes, aligned on page
 849 *        size
 850 * @ops: the mtd oob structure
 851 *
 852 * Reads flash memory OOB area of pages.
 853 *
 854 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
 855 */
 856static int doc_read_oob(struct mtd_info *mtd, loff_t from,
 857                        struct mtd_oob_ops *ops)
 858{
 859        struct docg3 *docg3 = mtd->priv;
 860        int block0, block1, page, ret, skip, ofs = 0;
 861        u8 *oobbuf = ops->oobbuf;
 862        u8 *buf = ops->datbuf;
 863        size_t len, ooblen, nbdata, nboob;
 864        u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
 865        int max_bitflips = 0;
 866
 867        if (buf)
 868                len = ops->len;
 869        else
 870                len = 0;
 871        if (oobbuf)
 872                ooblen = ops->ooblen;
 873        else
 874                ooblen = 0;
 875
 876        if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
 877                oobbuf += ops->ooboffs;
 878
 879        doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
 880                from, ops->mode, buf, len, oobbuf, ooblen);
 881        if (ooblen % DOC_LAYOUT_OOB_SIZE)
 882                return -EINVAL;
 883
 884        if (from + len > mtd->size)
 885                return -EINVAL;
 886
 887        ops->oobretlen = 0;
 888        ops->retlen = 0;
 889        ret = 0;
 890        skip = from % DOC_LAYOUT_PAGE_SIZE;
 891        mutex_lock(&docg3->cascade->lock);
 892        while (ret >= 0 && (len > 0 || ooblen > 0)) {
 893                calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
 894                        docg3->reliable);
 895                nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
 896                nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
 897                ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
 898                if (ret < 0)
 899                        goto out;
 900                ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
 901                if (ret < 0)
 902                        goto err_in_read;
 903                ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
 904                if (ret < skip)
 905                        goto err_in_read;
 906                ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
 907                if (ret < nbdata)
 908                        goto err_in_read;
 909                doc_read_page_getbytes(docg3,
 910                                       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
 911                                       NULL, 0, (skip + nbdata) % 2);
 912                ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
 913                if (ret < nboob)
 914                        goto err_in_read;
 915                doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
 916                                       NULL, 0, nboob % 2);
 917
 918                doc_get_bch_hw_ecc(docg3, hwecc);
 919                eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
 920
 921                if (nboob >= DOC_LAYOUT_OOB_SIZE) {
 922                        doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
 923                        doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
 924                        doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
 925                        doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
 926                }
 927                doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
 928                doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
 929
 930                ret = -EIO;
 931                if (is_prot_seq_error(docg3))
 932                        goto err_in_read;
 933                ret = 0;
 934                if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
 935                    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
 936                    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
 937                    (ops->mode != MTD_OPS_RAW) &&
 938                    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
 939                        ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
 940                        if (ret < 0) {
 941                                mtd->ecc_stats.failed++;
 942                                ret = -EBADMSG;
 943                        }
 944                        if (ret > 0) {
 945                                mtd->ecc_stats.corrected += ret;
 946                                max_bitflips = max(max_bitflips, ret);
 947                                ret = max_bitflips;
 948                        }
 949                }
 950
 951                doc_read_page_finish(docg3);
 952                ops->retlen += nbdata;
 953                ops->oobretlen += nboob;
 954                buf += nbdata;
 955                oobbuf += nboob;
 956                len -= nbdata;
 957                ooblen -= nboob;
 958                from += DOC_LAYOUT_PAGE_SIZE;
 959                skip = 0;
 960        }
 961
 962out:
 963        mutex_unlock(&docg3->cascade->lock);
 964        return ret;
 965err_in_read:
 966        doc_read_page_finish(docg3);
 967        goto out;
 968}
 969
 970/**
 971 * doc_read - Read bytes from flash
 972 * @mtd: the device
 973 * @from: the offset from first block and first page, in bytes, aligned on page
 974 *        size
 975 * @len: the number of bytes to read (must be a multiple of 4)
 976 * @retlen: the number of bytes actually read
 977 * @buf: the filled in buffer
 978 *
 979 * Reads flash memory pages. This function does not read the OOB chunk, but only
 980 * the page data.
 981 *
 982 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
 983 */
 984static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
 985             size_t *retlen, u_char *buf)
 986{
 987        struct mtd_oob_ops ops;
 988        size_t ret;
 989
 990        memset(&ops, 0, sizeof(ops));
 991        ops.datbuf = buf;
 992        ops.len = len;
 993        ops.mode = MTD_OPS_AUTO_OOB;
 994
 995        ret = doc_read_oob(mtd, from, &ops);
 996        *retlen = ops.retlen;
 997        return ret;
 998}
 999
1000static int doc_reload_bbt(struct docg3 *docg3)
1001{
1002        int block = DOC_LAYOUT_BLOCK_BBT;
1003        int ret = 0, nbpages, page;
1004        u_char *buf = docg3->bbt;
1005
1006        nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1007        for (page = 0; !ret && (page < nbpages); page++) {
1008                ret = doc_read_page_prepare(docg3, block, block + 1,
1009                                            page + DOC_LAYOUT_PAGE_BBT, 0);
1010                if (!ret)
1011                        ret = doc_read_page_ecc_init(docg3,
1012                                                     DOC_LAYOUT_PAGE_SIZE);
1013                if (!ret)
1014                        doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1015                                               buf, 1, 0);
1016                buf += DOC_LAYOUT_PAGE_SIZE;
1017        }
1018        doc_read_page_finish(docg3);
1019        return ret;
1020}
1021
1022/**
1023 * doc_block_isbad - Checks whether a block is good or not
1024 * @mtd: the device
1025 * @from: the offset to find the correct block
1026 *
1027 * Returns 1 if block is bad, 0 if block is good
1028 */
1029static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1030{
1031        struct docg3 *docg3 = mtd->priv;
1032        int block0, block1, page, ofs, is_good;
1033
1034        calc_block_sector(from, &block0, &block1, &page, &ofs,
1035                docg3->reliable);
1036        doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1037                from, block0, block1, page, ofs);
1038
1039        if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1040                return 0;
1041        if (block1 > docg3->max_block)
1042                return -EINVAL;
1043
1044        is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1045        return !is_good;
1046}
1047
1048#if 0
1049/**
1050 * doc_get_erase_count - Get block erase count
1051 * @docg3: the device
1052 * @from: the offset in which the block is.
1053 *
1054 * Get the number of times a block was erased. The number is the maximum of
1055 * erase times between first and second plane (which should be equal normally).
1056 *
1057 * Returns The number of erases, or -EINVAL or -EIO on error.
1058 */
1059static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1060{
1061        u8 buf[DOC_LAYOUT_WEAR_SIZE];
1062        int ret, plane1_erase_count, plane2_erase_count;
1063        int block0, block1, page, ofs;
1064
1065        doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1066        if (from % DOC_LAYOUT_PAGE_SIZE)
1067                return -EINVAL;
1068        calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1069        if (block1 > docg3->max_block)
1070                return -EINVAL;
1071
1072        ret = doc_reset_seq(docg3);
1073        if (!ret)
1074                ret = doc_read_page_prepare(docg3, block0, block1, page,
1075                                            ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1076        if (!ret)
1077                ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1078                                             buf, 1, 0);
1079        doc_read_page_finish(docg3);
1080
1081        if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1082                return -EIO;
1083        plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1084                | ((u8)(~buf[5]) << 16);
1085        plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1086                | ((u8)(~buf[7]) << 16);
1087
1088        return max(plane1_erase_count, plane2_erase_count);
1089}
1090#endif
1091
1092/**
1093 * doc_get_op_status - get erase/write operation status
1094 * @docg3: the device
1095 *
1096 * Queries the status from the chip, and returns it
1097 *
1098 * Returns the status (bits DOC_PLANES_STATUS_*)
1099 */
1100static int doc_get_op_status(struct docg3 *docg3)
1101{
1102        u8 status;
1103
1104        doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1105        doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1106        doc_delay(docg3, 5);
1107
1108        doc_ecc_disable(docg3);
1109        doc_read_data_area(docg3, &status, 1, 1);
1110        return status;
1111}
1112
1113/**
1114 * doc_write_erase_wait_status - wait for write or erase completion
1115 * @docg3: the device
1116 *
1117 * Wait for the chip to be ready again after erase or write operation, and check
1118 * erase/write status.
1119 *
1120 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1121 * timeout
1122 */
1123static int doc_write_erase_wait_status(struct docg3 *docg3)
1124{
1125        int i, status, ret = 0;
1126
1127        for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1128                msleep(20);
1129        if (!doc_is_ready(docg3)) {
1130                doc_dbg("Timeout reached and the chip is still not ready\n");
1131                ret = -EAGAIN;
1132                goto out;
1133        }
1134
1135        status = doc_get_op_status(docg3);
1136        if (status & DOC_PLANES_STATUS_FAIL) {
1137                doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1138                        status);
1139                ret = -EIO;
1140        }
1141
1142out:
1143        doc_page_finish(docg3);
1144        return ret;
1145}
1146
1147/**
1148 * doc_erase_block - Erase a couple of blocks
1149 * @docg3: the device
1150 * @block0: the first block to erase (leftmost plane)
1151 * @block1: the second block to erase (rightmost plane)
1152 *
1153 * Erase both blocks, and return operation status
1154 *
1155 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1156 * ready for too long
1157 */
1158static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1159{
1160        int ret, sector;
1161
1162        doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1163        ret = doc_reset_seq(docg3);
1164        if (ret)
1165                return -EIO;
1166
1167        doc_set_reliable_mode(docg3);
1168        doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1169
1170        sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1171        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1172        doc_setup_addr_sector(docg3, sector);
1173        sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1174        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1175        doc_setup_addr_sector(docg3, sector);
1176        doc_delay(docg3, 1);
1177
1178        doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1179        doc_delay(docg3, 2);
1180
1181        if (is_prot_seq_error(docg3)) {
1182                doc_err("Erase blocks %d,%d error\n", block0, block1);
1183                return -EIO;
1184        }
1185
1186        return doc_write_erase_wait_status(docg3);
1187}
1188
1189/**
1190 * doc_erase - Erase a portion of the chip
1191 * @mtd: the device
1192 * @info: the erase info
1193 *
1194 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1195 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1196 *
1197 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1198 * issue
1199 */
1200static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1201{
1202        struct docg3 *docg3 = mtd->priv;
1203        uint64_t len;
1204        int block0, block1, page, ret, ofs = 0;
1205
1206        doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1207
1208        info->state = MTD_ERASE_PENDING;
1209        calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1210                          &ofs, docg3->reliable);
1211        ret = -EINVAL;
1212        if (info->addr + info->len > mtd->size || page || ofs)
1213                goto reset_err;
1214
1215        ret = 0;
1216        calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1217                          docg3->reliable);
1218        mutex_lock(&docg3->cascade->lock);
1219        doc_set_device_id(docg3, docg3->device_id);
1220        doc_set_reliable_mode(docg3);
1221        for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1222                info->state = MTD_ERASING;
1223                ret = doc_erase_block(docg3, block0, block1);
1224                block0 += 2;
1225                block1 += 2;
1226        }
1227        mutex_unlock(&docg3->cascade->lock);
1228
1229        if (ret)
1230                goto reset_err;
1231
1232        info->state = MTD_ERASE_DONE;
1233        return 0;
1234
1235reset_err:
1236        info->state = MTD_ERASE_FAILED;
1237        return ret;
1238}
1239
1240/**
1241 * doc_write_page - Write a single page to the chip
1242 * @docg3: the device
1243 * @to: the offset from first block and first page, in bytes, aligned on page
1244 *      size
1245 * @buf: buffer to get bytes from
1246 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1247 *       written)
1248 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1249 *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1250 *           remaining ones are filled with hardware Hamming and BCH
1251 *           computations. Its value is not meaningfull is oob == NULL.
1252 *
1253 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1254 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1255 * BCH generator if autoecc is not null.
1256 *
1257 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1258 */
1259static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1260                          const u_char *oob, int autoecc)
1261{
1262        int block0, block1, page, ret, ofs = 0;
1263        u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1264
1265        doc_dbg("doc_write_page(to=%lld)\n", to);
1266        calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1267
1268        doc_set_device_id(docg3, docg3->device_id);
1269        ret = doc_reset_seq(docg3);
1270        if (ret)
1271                goto err;
1272
1273        /* Program the flash address block and page */
1274        ret = doc_write_seek(docg3, block0, block1, page, ofs);
1275        if (ret)
1276                goto err;
1277
1278        doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1279        doc_delay(docg3, 2);
1280        doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1281
1282        if (oob && autoecc) {
1283                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1284                doc_delay(docg3, 2);
1285                oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1286
1287                hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1288                doc_delay(docg3, 2);
1289                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1290                                        &hamming);
1291                doc_delay(docg3, 2);
1292
1293                doc_get_bch_hw_ecc(docg3, hwecc);
1294                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1295                doc_delay(docg3, 2);
1296
1297                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1298        }
1299        if (oob && !autoecc)
1300                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1301
1302        doc_delay(docg3, 2);
1303        doc_page_finish(docg3);
1304        doc_delay(docg3, 2);
1305        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1306        doc_delay(docg3, 2);
1307
1308        /*
1309         * The wait status will perform another doc_page_finish() call, but that
1310         * seems to please the docg3, so leave it.
1311         */
1312        ret = doc_write_erase_wait_status(docg3);
1313        return ret;
1314err:
1315        doc_read_page_finish(docg3);
1316        return ret;
1317}
1318
1319/**
1320 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1321 * @ops: the oob operations
1322 *
1323 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1324 */
1325static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1326{
1327        int autoecc;
1328
1329        switch (ops->mode) {
1330        case MTD_OPS_PLACE_OOB:
1331        case MTD_OPS_AUTO_OOB:
1332                autoecc = 1;
1333                break;
1334        case MTD_OPS_RAW:
1335                autoecc = 0;
1336                break;
1337        default:
1338                autoecc = -EINVAL;
1339        }
1340        return autoecc;
1341}
1342
1343/**
1344 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1345 * @dst: the target 16 bytes OOB buffer
1346 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1347 *
1348 */
1349static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1350{
1351        memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1352        dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1353}
1354
1355/**
1356 * doc_backup_oob - Backup OOB into docg3 structure
1357 * @docg3: the device
1358 * @to: the page offset in the chip
1359 * @ops: the OOB size and buffer
1360 *
1361 * As the docg3 should write a page with its OOB in one pass, and some userland
1362 * applications do write_oob() to setup the OOB and then write(), store the OOB
1363 * into a temporary storage. This is very dangerous, as 2 concurrent
1364 * applications could store an OOB, and then write their pages (which will
1365 * result into one having its OOB corrupted).
1366 *
1367 * The only reliable way would be for userland to call doc_write_oob() with both
1368 * the page data _and_ the OOB area.
1369 *
1370 * Returns 0 if success, -EINVAL if ops content invalid
1371 */
1372static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1373                          struct mtd_oob_ops *ops)
1374{
1375        int ooblen = ops->ooblen, autoecc;
1376
1377        if (ooblen != DOC_LAYOUT_OOB_SIZE)
1378                return -EINVAL;
1379        autoecc = doc_guess_autoecc(ops);
1380        if (autoecc < 0)
1381                return autoecc;
1382
1383        docg3->oob_write_ofs = to;
1384        docg3->oob_autoecc = autoecc;
1385        if (ops->mode == MTD_OPS_AUTO_OOB) {
1386                doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1387                ops->oobretlen = 8;
1388        } else {
1389                memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1390                ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1391        }
1392        return 0;
1393}
1394
1395/**
1396 * doc_write_oob - Write out of band bytes to flash
1397 * @mtd: the device
1398 * @ofs: the offset from first block and first page, in bytes, aligned on page
1399 *       size
1400 * @ops: the mtd oob structure
1401 *
1402 * Either write OOB data into a temporary buffer, for the subsequent write
1403 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1404 * as well, issue the page write.
1405 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1406 * still be filled in if asked for).
1407 *
1408 * Returns 0 is successful, EINVAL if length is not 14 bytes
1409 */
1410static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1411                         struct mtd_oob_ops *ops)
1412{
1413        struct docg3 *docg3 = mtd->priv;
1414        int ret, autoecc, oobdelta;
1415        u8 *oobbuf = ops->oobbuf;
1416        u8 *buf = ops->datbuf;
1417        size_t len, ooblen;
1418        u8 oob[DOC_LAYOUT_OOB_SIZE];
1419
1420        if (buf)
1421                len = ops->len;
1422        else
1423                len = 0;
1424        if (oobbuf)
1425                ooblen = ops->ooblen;
1426        else
1427                ooblen = 0;
1428
1429        if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1430                oobbuf += ops->ooboffs;
1431
1432        doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1433                ofs, ops->mode, buf, len, oobbuf, ooblen);
1434        switch (ops->mode) {
1435        case MTD_OPS_PLACE_OOB:
1436        case MTD_OPS_RAW:
1437                oobdelta = mtd->oobsize;
1438                break;
1439        case MTD_OPS_AUTO_OOB:
1440                oobdelta = mtd->ecclayout->oobavail;
1441                break;
1442        default:
1443                return -EINVAL;
1444        }
1445        if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1446            (ofs % DOC_LAYOUT_PAGE_SIZE))
1447                return -EINVAL;
1448        if (len && ooblen &&
1449            (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1450                return -EINVAL;
1451        if (ofs + len > mtd->size)
1452                return -EINVAL;
1453
1454        ops->oobretlen = 0;
1455        ops->retlen = 0;
1456        ret = 0;
1457        if (len == 0 && ooblen == 0)
1458                return -EINVAL;
1459        if (len == 0 && ooblen > 0)
1460                return doc_backup_oob(docg3, ofs, ops);
1461
1462        autoecc = doc_guess_autoecc(ops);
1463        if (autoecc < 0)
1464                return autoecc;
1465
1466        mutex_lock(&docg3->cascade->lock);
1467        while (!ret && len > 0) {
1468                memset(oob, 0, sizeof(oob));
1469                if (ofs == docg3->oob_write_ofs)
1470                        memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1471                else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1472                        doc_fill_autooob(oob, oobbuf);
1473                else if (ooblen > 0)
1474                        memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1475                ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1476
1477                ofs += DOC_LAYOUT_PAGE_SIZE;
1478                len -= DOC_LAYOUT_PAGE_SIZE;
1479                buf += DOC_LAYOUT_PAGE_SIZE;
1480                if (ooblen) {
1481                        oobbuf += oobdelta;
1482                        ooblen -= oobdelta;
1483                        ops->oobretlen += oobdelta;
1484                }
1485                ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1486        }
1487
1488        doc_set_device_id(docg3, 0);
1489        mutex_unlock(&docg3->cascade->lock);
1490        return ret;
1491}
1492
1493/**
1494 * doc_write - Write a buffer to the chip
1495 * @mtd: the device
1496 * @to: the offset from first block and first page, in bytes, aligned on page
1497 *      size
1498 * @len: the number of bytes to write (must be a full page size, ie. 512)
1499 * @retlen: the number of bytes actually written (0 or 512)
1500 * @buf: the buffer to get bytes from
1501 *
1502 * Writes data to the chip.
1503 *
1504 * Returns 0 if write successful, -EIO if write error
1505 */
1506static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1507                     size_t *retlen, const u_char *buf)
1508{
1509        struct docg3 *docg3 = mtd->priv;
1510        int ret;
1511        struct mtd_oob_ops ops;
1512
1513        doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1514        ops.datbuf = (char *)buf;
1515        ops.len = len;
1516        ops.mode = MTD_OPS_PLACE_OOB;
1517        ops.oobbuf = NULL;
1518        ops.ooblen = 0;
1519        ops.ooboffs = 0;
1520
1521        ret = doc_write_oob(mtd, to, &ops);
1522        *retlen = ops.retlen;
1523        return ret;
1524}
1525
1526static struct docg3 *sysfs_dev2docg3(struct device *dev,
1527                                     struct device_attribute *attr)
1528{
1529        int floor;
1530        struct platform_device *pdev = to_platform_device(dev);
1531        struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1532
1533        floor = attr->attr.name[1] - '0';
1534        if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1535                return NULL;
1536        else
1537                return docg3_floors[floor]->priv;
1538}
1539
1540static ssize_t dps0_is_key_locked(struct device *dev,
1541                                  struct device_attribute *attr, char *buf)
1542{
1543        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1544        int dps0;
1545
1546        mutex_lock(&docg3->cascade->lock);
1547        doc_set_device_id(docg3, docg3->device_id);
1548        dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1549        doc_set_device_id(docg3, 0);
1550        mutex_unlock(&docg3->cascade->lock);
1551
1552        return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1553}
1554
1555static ssize_t dps1_is_key_locked(struct device *dev,
1556                                  struct device_attribute *attr, char *buf)
1557{
1558        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1559        int dps1;
1560
1561        mutex_lock(&docg3->cascade->lock);
1562        doc_set_device_id(docg3, docg3->device_id);
1563        dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1564        doc_set_device_id(docg3, 0);
1565        mutex_unlock(&docg3->cascade->lock);
1566
1567        return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1568}
1569
1570static ssize_t dps0_insert_key(struct device *dev,
1571                               struct device_attribute *attr,
1572                               const char *buf, size_t count)
1573{
1574        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1575        int i;
1576
1577        if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1578                return -EINVAL;
1579
1580        mutex_lock(&docg3->cascade->lock);
1581        doc_set_device_id(docg3, docg3->device_id);
1582        for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1583                doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1584        doc_set_device_id(docg3, 0);
1585        mutex_unlock(&docg3->cascade->lock);
1586        return count;
1587}
1588
1589static ssize_t dps1_insert_key(struct device *dev,
1590                               struct device_attribute *attr,
1591                               const char *buf, size_t count)
1592{
1593        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1594        int i;
1595
1596        if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1597                return -EINVAL;
1598
1599        mutex_lock(&docg3->cascade->lock);
1600        doc_set_device_id(docg3, docg3->device_id);
1601        for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1602                doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1603        doc_set_device_id(docg3, 0);
1604        mutex_unlock(&docg3->cascade->lock);
1605        return count;
1606}
1607
1608#define FLOOR_SYSFS(id) { \
1609        __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1610        __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1611        __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \
1612        __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \
1613}
1614
1615static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1616        FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1617};
1618
1619static int doc_register_sysfs(struct platform_device *pdev,
1620                              struct docg3_cascade *cascade)
1621{
1622        int ret = 0, floor, i = 0;
1623        struct device *dev = &pdev->dev;
1624
1625        for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1626                     cascade->floors[floor]; floor++)
1627                for (i = 0; !ret && i < 4; i++)
1628                        ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1629        if (!ret)
1630                return 0;
1631        do {
1632                while (--i >= 0)
1633                        device_remove_file(dev, &doc_sys_attrs[floor][i]);
1634                i = 4;
1635        } while (--floor >= 0);
1636        return ret;
1637}
1638
1639static void doc_unregister_sysfs(struct platform_device *pdev,
1640                                 struct docg3_cascade *cascade)
1641{
1642        struct device *dev = &pdev->dev;
1643        int floor, i;
1644
1645        for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1646             floor++)
1647                for (i = 0; i < 4; i++)
1648                        device_remove_file(dev, &doc_sys_attrs[floor][i]);
1649}
1650
1651/*
1652 * Debug sysfs entries
1653 */
1654static int dbg_flashctrl_show(struct seq_file *s, void *p)
1655{
1656        struct docg3 *docg3 = (struct docg3 *)s->private;
1657
1658        int pos = 0;
1659        u8 fctrl;
1660
1661        mutex_lock(&docg3->cascade->lock);
1662        fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1663        mutex_unlock(&docg3->cascade->lock);
1664
1665        pos += seq_printf(s,
1666                 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1667                 fctrl,
1668                 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1669                 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1670                 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1671                 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1672                 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1673        return pos;
1674}
1675DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1676
1677static int dbg_asicmode_show(struct seq_file *s, void *p)
1678{
1679        struct docg3 *docg3 = (struct docg3 *)s->private;
1680
1681        int pos = 0, pctrl, mode;
1682
1683        mutex_lock(&docg3->cascade->lock);
1684        pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1685        mode = pctrl & 0x03;
1686        mutex_unlock(&docg3->cascade->lock);
1687
1688        pos += seq_printf(s,
1689                         "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1690                         pctrl,
1691                         pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1692                         pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1693                         pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1694                         pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1695                         pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1696                         mode >> 1, mode & 0x1);
1697
1698        switch (mode) {
1699        case DOC_ASICMODE_RESET:
1700                pos += seq_printf(s, "reset");
1701                break;
1702        case DOC_ASICMODE_NORMAL:
1703                pos += seq_printf(s, "normal");
1704                break;
1705        case DOC_ASICMODE_POWERDOWN:
1706                pos += seq_printf(s, "powerdown");
1707                break;
1708        }
1709        pos += seq_printf(s, ")\n");
1710        return pos;
1711}
1712DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1713
1714static int dbg_device_id_show(struct seq_file *s, void *p)
1715{
1716        struct docg3 *docg3 = (struct docg3 *)s->private;
1717        int pos = 0;
1718        int id;
1719
1720        mutex_lock(&docg3->cascade->lock);
1721        id = doc_register_readb(docg3, DOC_DEVICESELECT);
1722        mutex_unlock(&docg3->cascade->lock);
1723
1724        pos += seq_printf(s, "DeviceId = %d\n", id);
1725        return pos;
1726}
1727DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1728
1729static int dbg_protection_show(struct seq_file *s, void *p)
1730{
1731        struct docg3 *docg3 = (struct docg3 *)s->private;
1732        int pos = 0;
1733        int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1734
1735        mutex_lock(&docg3->cascade->lock);
1736        protect = doc_register_readb(docg3, DOC_PROTECTION);
1737        dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1738        dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1739        dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1740        dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1741        dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1742        dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1743        mutex_unlock(&docg3->cascade->lock);
1744
1745        pos += seq_printf(s, "Protection = 0x%02x (",
1746                         protect);
1747        if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1748                pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
1749        if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1750                pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
1751        if (protect & DOC_PROTECT_LOCK_INPUT)
1752                pos += seq_printf(s, "LOCK_INPUT,");
1753        if (protect & DOC_PROTECT_STICKY_LOCK)
1754                pos += seq_printf(s, "STICKY_LOCK,");
1755        if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1756                pos += seq_printf(s, "PROTECTION ON,");
1757        if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1758                pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
1759        if (protect & DOC_PROTECT_PROTECTION_ERROR)
1760                pos += seq_printf(s, "PROTECT_ERR,");
1761        else
1762                pos += seq_printf(s, "NO_PROTECT_ERR");
1763        pos += seq_printf(s, ")\n");
1764
1765        pos += seq_printf(s, "DPS0 = 0x%02x : "
1766                         "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1767                         "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1768                         dps0, dps0_low, dps0_high,
1769                         !!(dps0 & DOC_DPS_OTP_PROTECTED),
1770                         !!(dps0 & DOC_DPS_READ_PROTECTED),
1771                         !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1772                         !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1773                         !!(dps0 & DOC_DPS_KEY_OK));
1774        pos += seq_printf(s, "DPS1 = 0x%02x : "
1775                         "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "
1776                         "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1777                         dps1, dps1_low, dps1_high,
1778                         !!(dps1 & DOC_DPS_OTP_PROTECTED),
1779                         !!(dps1 & DOC_DPS_READ_PROTECTED),
1780                         !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1781                         !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1782                         !!(dps1 & DOC_DPS_KEY_OK));
1783        return pos;
1784}
1785DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1786
1787static int __init doc_dbg_register(struct docg3 *docg3)
1788{
1789        struct dentry *root, *entry;
1790
1791        root = debugfs_create_dir("docg3", NULL);
1792        if (!root)
1793                return -ENOMEM;
1794
1795        entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1796                                  &flashcontrol_fops);
1797        if (entry)
1798                entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1799                                            docg3, &asic_mode_fops);
1800        if (entry)
1801                entry = debugfs_create_file("device_id", S_IRUSR, root,
1802                                            docg3, &device_id_fops);
1803        if (entry)
1804                entry = debugfs_create_file("protection", S_IRUSR, root,
1805                                            docg3, &protection_fops);
1806        if (entry) {
1807                docg3->debugfs_root = root;
1808                return 0;
1809        } else {
1810                debugfs_remove_recursive(root);
1811                return -ENOMEM;
1812        }
1813}
1814
1815static void __exit doc_dbg_unregister(struct docg3 *docg3)
1816{
1817        debugfs_remove_recursive(docg3->debugfs_root);
1818}
1819
1820/**
1821 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1822 * @chip_id: The chip ID of the supported chip
1823 * @mtd: The structure to fill
1824 */
1825static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1826{
1827        struct docg3 *docg3 = mtd->priv;
1828        int cfg;
1829
1830        cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1831        docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1832        docg3->reliable = reliable_mode;
1833
1834        switch (chip_id) {
1835        case DOC_CHIPID_G3:
1836                mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1837                                      docg3->device_id);
1838                docg3->max_block = 2047;
1839                break;
1840        }
1841        mtd->type = MTD_NANDFLASH;
1842        mtd->flags = MTD_CAP_NANDFLASH;
1843        mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1844        if (docg3->reliable == 2)
1845                mtd->size /= 2;
1846        mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1847        if (docg3->reliable == 2)
1848                mtd->erasesize /= 2;
1849        mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1850        mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1851        mtd->owner = THIS_MODULE;
1852        mtd->_erase = doc_erase;
1853        mtd->_read = doc_read;
1854        mtd->_write = doc_write;
1855        mtd->_read_oob = doc_read_oob;
1856        mtd->_write_oob = doc_write_oob;
1857        mtd->_block_isbad = doc_block_isbad;
1858        mtd->ecclayout = &docg3_oobinfo;
1859        mtd->ecc_strength = DOC_ECC_BCH_T;
1860}
1861
1862/**
1863 * doc_probe_device - Check if a device is available
1864 * @base: the io space where the device is probed
1865 * @floor: the floor of the probed device
1866 * @dev: the device
1867 * @cascade: the cascade of chips this devices will belong to
1868 *
1869 * Checks whether a device at the specified IO range, and floor is available.
1870 *
1871 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1872 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1873 * launched.
1874 */
1875static struct mtd_info * __init
1876doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1877{
1878        int ret, bbt_nbpages;
1879        u16 chip_id, chip_id_inv;
1880        struct docg3 *docg3;
1881        struct mtd_info *mtd;
1882
1883        ret = -ENOMEM;
1884        docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1885        if (!docg3)
1886                goto nomem1;
1887        mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1888        if (!mtd)
1889                goto nomem2;
1890        mtd->priv = docg3;
1891        bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1892                                   8 * DOC_LAYOUT_PAGE_SIZE);
1893        docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1894        if (!docg3->bbt)
1895                goto nomem3;
1896
1897        docg3->dev = dev;
1898        docg3->device_id = floor;
1899        docg3->cascade = cascade;
1900        doc_set_device_id(docg3, docg3->device_id);
1901        if (!floor)
1902                doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1903        doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1904
1905        chip_id = doc_register_readw(docg3, DOC_CHIPID);
1906        chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1907
1908        ret = 0;
1909        if (chip_id != (u16)(~chip_id_inv)) {
1910                goto nomem3;
1911        }
1912
1913        switch (chip_id) {
1914        case DOC_CHIPID_G3:
1915                doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1916                         docg3->cascade->base, floor);
1917                break;
1918        default:
1919                doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1920                goto nomem3;
1921        }
1922
1923        doc_set_driver_info(chip_id, mtd);
1924
1925        doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1926        doc_reload_bbt(docg3);
1927        return mtd;
1928
1929nomem3:
1930        kfree(mtd);
1931nomem2:
1932        kfree(docg3);
1933nomem1:
1934        return ERR_PTR(ret);
1935}
1936
1937/**
1938 * doc_release_device - Release a docg3 floor
1939 * @mtd: the device
1940 */
1941static void doc_release_device(struct mtd_info *mtd)
1942{
1943        struct docg3 *docg3 = mtd->priv;
1944
1945        mtd_device_unregister(mtd);
1946        kfree(docg3->bbt);
1947        kfree(docg3);
1948        kfree(mtd->name);
1949        kfree(mtd);
1950}
1951
1952/**
1953 * docg3_resume - Awakens docg3 floor
1954 * @pdev: platfrom device
1955 *
1956 * Returns 0 (always successful)
1957 */
1958static int docg3_resume(struct platform_device *pdev)
1959{
1960        int i;
1961        struct docg3_cascade *cascade;
1962        struct mtd_info **docg3_floors, *mtd;
1963        struct docg3 *docg3;
1964
1965        cascade = platform_get_drvdata(pdev);
1966        docg3_floors = cascade->floors;
1967        mtd = docg3_floors[0];
1968        docg3 = mtd->priv;
1969
1970        doc_dbg("docg3_resume()\n");
1971        for (i = 0; i < 12; i++)
1972                doc_readb(docg3, DOC_IOSPACE_IPL);
1973        return 0;
1974}
1975
1976/**
1977 * docg3_suspend - Put in low power mode the docg3 floor
1978 * @pdev: platform device
1979 * @state: power state
1980 *
1981 * Shuts off most of docg3 circuitery to lower power consumption.
1982 *
1983 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1984 */
1985static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1986{
1987        int floor, i;
1988        struct docg3_cascade *cascade;
1989        struct mtd_info **docg3_floors, *mtd;
1990        struct docg3 *docg3;
1991        u8 ctrl, pwr_down;
1992
1993        cascade = platform_get_drvdata(pdev);
1994        docg3_floors = cascade->floors;
1995        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1996                mtd = docg3_floors[floor];
1997                if (!mtd)
1998                        continue;
1999                docg3 = mtd->priv;
2000
2001                doc_writeb(docg3, floor, DOC_DEVICESELECT);
2002                ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
2003                ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
2004                doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
2005
2006                for (i = 0; i < 10; i++) {
2007                        usleep_range(3000, 4000);
2008                        pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2009                        if (pwr_down & DOC_POWERDOWN_READY)
2010                                break;
2011                }
2012                if (pwr_down & DOC_POWERDOWN_READY) {
2013                        doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2014                                floor);
2015                } else {
2016                        doc_err("docg3_suspend(): floor %d powerdown failed\n",
2017                                floor);
2018                        return -EIO;
2019                }
2020        }
2021
2022        mtd = docg3_floors[0];
2023        docg3 = mtd->priv;
2024        doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2025        return 0;
2026}
2027
2028/**
2029 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2030 * @pdev: platform device
2031 *
2032 * Probes for a G3 chip at the specified IO space in the platform data
2033 * ressources. The floor 0 must be available.
2034 *
2035 * Returns 0 on success, -ENOMEM, -ENXIO on error
2036 */
2037static int __init docg3_probe(struct platform_device *pdev)
2038{
2039        struct device *dev = &pdev->dev;
2040        struct mtd_info *mtd;
2041        struct resource *ress;
2042        void __iomem *base;
2043        int ret, floor, found = 0;
2044        struct docg3_cascade *cascade;
2045
2046        ret = -ENXIO;
2047        ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2048        if (!ress) {
2049                dev_err(dev, "No I/O memory resource defined\n");
2050                goto noress;
2051        }
2052        base = ioremap(ress->start, DOC_IOSPACE_SIZE);
2053
2054        ret = -ENOMEM;
2055        cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS,
2056                          GFP_KERNEL);
2057        if (!cascade)
2058                goto nomem1;
2059        cascade->base = base;
2060        mutex_init(&cascade->lock);
2061        cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2062                             DOC_ECC_BCH_PRIMPOLY);
2063        if (!cascade->bch)
2064                goto nomem2;
2065
2066        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2067                mtd = doc_probe_device(cascade, floor, dev);
2068                if (IS_ERR(mtd)) {
2069                        ret = PTR_ERR(mtd);
2070                        goto err_probe;
2071                }
2072                if (!mtd) {
2073                        if (floor == 0)
2074                                goto notfound;
2075                        else
2076                                continue;
2077                }
2078                cascade->floors[floor] = mtd;
2079                ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2080                                                0);
2081                if (ret)
2082                        goto err_probe;
2083                found++;
2084        }
2085
2086        ret = doc_register_sysfs(pdev, cascade);
2087        if (ret)
2088                goto err_probe;
2089        if (!found)
2090                goto notfound;
2091
2092        platform_set_drvdata(pdev, cascade);
2093        doc_dbg_register(cascade->floors[0]->priv);
2094        return 0;
2095
2096notfound:
2097        ret = -ENODEV;
2098        dev_info(dev, "No supported DiskOnChip found\n");
2099err_probe:
2100        kfree(cascade->bch);
2101        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2102                if (cascade->floors[floor])
2103                        doc_release_device(cascade->floors[floor]);
2104nomem2:
2105        kfree(cascade);
2106nomem1:
2107        iounmap(base);
2108noress:
2109        return ret;
2110}
2111
2112/**
2113 * docg3_release - Release the driver
2114 * @pdev: the platform device
2115 *
2116 * Returns 0
2117 */
2118static int __exit docg3_release(struct platform_device *pdev)
2119{
2120        struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2121        struct docg3 *docg3 = cascade->floors[0]->priv;
2122        void __iomem *base = cascade->base;
2123        int floor;
2124
2125        doc_unregister_sysfs(pdev, cascade);
2126        doc_dbg_unregister(docg3);
2127        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2128                if (cascade->floors[floor])
2129                        doc_release_device(cascade->floors[floor]);
2130
2131        free_bch(docg3->cascade->bch);
2132        kfree(cascade);
2133        iounmap(base);
2134        return 0;
2135}
2136
2137static struct platform_driver g3_driver = {
2138        .driver         = {
2139                .name   = "docg3",
2140                .owner  = THIS_MODULE,
2141        },
2142        .suspend        = docg3_suspend,
2143        .resume         = docg3_resume,
2144        .remove         = __exit_p(docg3_release),
2145};
2146
2147module_platform_driver_probe(g3_driver, docg3_probe);
2148
2149MODULE_LICENSE("GPL");
2150MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2151MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2152