linux/drivers/mtd/nand/cafe_nand.c
<<
>>
Prefs
   1/*
   2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
   3 *
   4 * The data sheet for this device can be found at:
   5 *    http://wiki.laptop.org/go/Datasheets 
   6 *
   7 * Copyright © 2006 Red Hat, Inc.
   8 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
   9 */
  10
  11#define DEBUG
  12
  13#include <linux/device.h>
  14#undef DEBUG
  15#include <linux/mtd/mtd.h>
  16#include <linux/mtd/nand.h>
  17#include <linux/mtd/partitions.h>
  18#include <linux/rslib.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/interrupt.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/slab.h>
  24#include <linux/module.h>
  25#include <asm/io.h>
  26
  27#define CAFE_NAND_CTRL1         0x00
  28#define CAFE_NAND_CTRL2         0x04
  29#define CAFE_NAND_CTRL3         0x08
  30#define CAFE_NAND_STATUS        0x0c
  31#define CAFE_NAND_IRQ           0x10
  32#define CAFE_NAND_IRQ_MASK      0x14
  33#define CAFE_NAND_DATA_LEN      0x18
  34#define CAFE_NAND_ADDR1         0x1c
  35#define CAFE_NAND_ADDR2         0x20
  36#define CAFE_NAND_TIMING1       0x24
  37#define CAFE_NAND_TIMING2       0x28
  38#define CAFE_NAND_TIMING3       0x2c
  39#define CAFE_NAND_NONMEM        0x30
  40#define CAFE_NAND_ECC_RESULT    0x3C
  41#define CAFE_NAND_DMA_CTRL      0x40
  42#define CAFE_NAND_DMA_ADDR0     0x44
  43#define CAFE_NAND_DMA_ADDR1     0x48
  44#define CAFE_NAND_ECC_SYN01     0x50
  45#define CAFE_NAND_ECC_SYN23     0x54
  46#define CAFE_NAND_ECC_SYN45     0x58
  47#define CAFE_NAND_ECC_SYN67     0x5c
  48#define CAFE_NAND_READ_DATA     0x1000
  49#define CAFE_NAND_WRITE_DATA    0x2000
  50
  51#define CAFE_GLOBAL_CTRL        0x3004
  52#define CAFE_GLOBAL_IRQ         0x3008
  53#define CAFE_GLOBAL_IRQ_MASK    0x300c
  54#define CAFE_NAND_RESET         0x3034
  55
  56/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  57#define CTRL1_CHIPSELECT        (1<<19)
  58
  59struct cafe_priv {
  60        struct nand_chip nand;
  61        struct pci_dev *pdev;
  62        void __iomem *mmio;
  63        struct rs_control *rs;
  64        uint32_t ctl1;
  65        uint32_t ctl2;
  66        int datalen;
  67        int nr_data;
  68        int data_pos;
  69        int page_addr;
  70        dma_addr_t dmaaddr;
  71        unsigned char *dmabuf;
  72};
  73
  74static int usedma = 1;
  75module_param(usedma, int, 0644);
  76
  77static int skipbbt = 0;
  78module_param(skipbbt, int, 0644);
  79
  80static int debug = 0;
  81module_param(debug, int, 0644);
  82
  83static int regdebug = 0;
  84module_param(regdebug, int, 0644);
  85
  86static int checkecc = 1;
  87module_param(checkecc, int, 0644);
  88
  89static unsigned int numtimings;
  90static int timing[3];
  91module_param_array(timing, int, &numtimings, 0644);
  92
  93static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  94
  95/* Hrm. Why isn't this already conditional on something in the struct device? */
  96#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  97
  98/* Make it easier to switch to PIO if we need to */
  99#define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
 100#define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
 101
 102static int cafe_device_ready(struct mtd_info *mtd)
 103{
 104        struct cafe_priv *cafe = mtd->priv;
 105        int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
 106        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 107
 108        cafe_writel(cafe, irqs, NAND_IRQ);
 109
 110        cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
 111                result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
 112                cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 113
 114        return result;
 115}
 116
 117
 118static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 119{
 120        struct cafe_priv *cafe = mtd->priv;
 121
 122        if (usedma)
 123                memcpy(cafe->dmabuf + cafe->datalen, buf, len);
 124        else
 125                memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
 126
 127        cafe->datalen += len;
 128
 129        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
 130                len, cafe->datalen);
 131}
 132
 133static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 134{
 135        struct cafe_priv *cafe = mtd->priv;
 136
 137        if (usedma)
 138                memcpy(buf, cafe->dmabuf + cafe->datalen, len);
 139        else
 140                memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
 141
 142        cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
 143                  len, cafe->datalen);
 144        cafe->datalen += len;
 145}
 146
 147static uint8_t cafe_read_byte(struct mtd_info *mtd)
 148{
 149        struct cafe_priv *cafe = mtd->priv;
 150        uint8_t d;
 151
 152        cafe_read_buf(mtd, &d, 1);
 153        cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 154
 155        return d;
 156}
 157
 158static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
 159                              int column, int page_addr)
 160{
 161        struct cafe_priv *cafe = mtd->priv;
 162        int adrbytes = 0;
 163        uint32_t ctl1;
 164        uint32_t doneint = 0x80000000;
 165
 166        cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
 167                command, column, page_addr);
 168
 169        if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
 170                /* Second half of a command we already calculated */
 171                cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
 172                ctl1 = cafe->ctl1;
 173                cafe->ctl2 &= ~(1<<30);
 174                cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
 175                          cafe->ctl1, cafe->nr_data);
 176                goto do_command;
 177        }
 178        /* Reset ECC engine */
 179        cafe_writel(cafe, 0, NAND_CTRL2);
 180
 181        /* Emulate NAND_CMD_READOOB on large-page chips */
 182        if (mtd->writesize > 512 &&
 183            command == NAND_CMD_READOOB) {
 184                column += mtd->writesize;
 185                command = NAND_CMD_READ0;
 186        }
 187
 188        /* FIXME: Do we need to send read command before sending data
 189           for small-page chips, to position the buffer correctly? */
 190
 191        if (column != -1) {
 192                cafe_writel(cafe, column, NAND_ADDR1);
 193                adrbytes = 2;
 194                if (page_addr != -1)
 195                        goto write_adr2;
 196        } else if (page_addr != -1) {
 197                cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
 198                page_addr >>= 16;
 199        write_adr2:
 200                cafe_writel(cafe, page_addr, NAND_ADDR2);
 201                adrbytes += 2;
 202                if (mtd->size > mtd->writesize << 16)
 203                        adrbytes++;
 204        }
 205
 206        cafe->data_pos = cafe->datalen = 0;
 207
 208        /* Set command valid bit, mask in the chip select bit  */
 209        ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
 210
 211        /* Set RD or WR bits as appropriate */
 212        if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
 213                ctl1 |= (1<<26); /* rd */
 214                /* Always 5 bytes, for now */
 215                cafe->datalen = 4;
 216                /* And one address cycle -- even for STATUS, since the controller doesn't work without */
 217                adrbytes = 1;
 218        } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 219                   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
 220                ctl1 |= 1<<26; /* rd */
 221                /* For now, assume just read to end of page */
 222                cafe->datalen = mtd->writesize + mtd->oobsize - column;
 223        } else if (command == NAND_CMD_SEQIN)
 224                ctl1 |= 1<<25; /* wr */
 225
 226        /* Set number of address bytes */
 227        if (adrbytes)
 228                ctl1 |= ((adrbytes-1)|8) << 27;
 229
 230        if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
 231                /* Ignore the first command of a pair; the hardware
 232                   deals with them both at once, later */
 233                cafe->ctl1 = ctl1;
 234                cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
 235                          cafe->ctl1, cafe->datalen);
 236                return;
 237        }
 238        /* RNDOUT and READ0 commands need a following byte */
 239        if (command == NAND_CMD_RNDOUT)
 240                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
 241        else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
 242                cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
 243
 244 do_command:
 245        cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
 246                cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
 247
 248        /* NB: The datasheet lies -- we really should be subtracting 1 here */
 249        cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
 250        cafe_writel(cafe, 0x90000000, NAND_IRQ);
 251        if (usedma && (ctl1 & (3<<25))) {
 252                uint32_t dmactl = 0xc0000000 + cafe->datalen;
 253                /* If WR or RD bits set, set up DMA */
 254                if (ctl1 & (1<<26)) {
 255                        /* It's a read */
 256                        dmactl |= (1<<29);
 257                        /* ... so it's done when the DMA is done, not just
 258                           the command. */
 259                        doneint = 0x10000000;
 260                }
 261                cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
 262        }
 263        cafe->datalen = 0;
 264
 265        if (unlikely(regdebug)) {
 266                int i;
 267                printk("About to write command %08x to register 0\n", ctl1);
 268                for (i=4; i< 0x5c; i+=4)
 269                        printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 270        }
 271
 272        cafe_writel(cafe, ctl1, NAND_CTRL1);
 273        /* Apply this short delay always to ensure that we do wait tWB in
 274         * any case on any machine. */
 275        ndelay(100);
 276
 277        if (1) {
 278                int c;
 279                uint32_t irqs;
 280
 281                for (c = 500000; c != 0; c--) {
 282                        irqs = cafe_readl(cafe, NAND_IRQ);
 283                        if (irqs & doneint)
 284                                break;
 285                        udelay(1);
 286                        if (!(c % 100000))
 287                                cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
 288                        cpu_relax();
 289                }
 290                cafe_writel(cafe, doneint, NAND_IRQ);
 291                cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
 292                             command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
 293        }
 294
 295        WARN_ON(cafe->ctl2 & (1<<30));
 296
 297        switch (command) {
 298
 299        case NAND_CMD_CACHEDPROG:
 300        case NAND_CMD_PAGEPROG:
 301        case NAND_CMD_ERASE1:
 302        case NAND_CMD_ERASE2:
 303        case NAND_CMD_SEQIN:
 304        case NAND_CMD_RNDIN:
 305        case NAND_CMD_STATUS:
 306        case NAND_CMD_RNDOUT:
 307                cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 308                return;
 309        }
 310        nand_wait_ready(mtd);
 311        cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 312}
 313
 314static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
 315{
 316        struct cafe_priv *cafe = mtd->priv;
 317
 318        cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
 319
 320        /* Mask the appropriate bit into the stored value of ctl1
 321           which will be used by cafe_nand_cmdfunc() */
 322        if (chipnr)
 323                cafe->ctl1 |= CTRL1_CHIPSELECT;
 324        else
 325                cafe->ctl1 &= ~CTRL1_CHIPSELECT;
 326}
 327
 328static irqreturn_t cafe_nand_interrupt(int irq, void *id)
 329{
 330        struct mtd_info *mtd = id;
 331        struct cafe_priv *cafe = mtd->priv;
 332        uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
 333        cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
 334        if (!irqs)
 335                return IRQ_NONE;
 336
 337        cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
 338        return IRQ_HANDLED;
 339}
 340
 341static void cafe_nand_bug(struct mtd_info *mtd)
 342{
 343        BUG();
 344}
 345
 346static int cafe_nand_write_oob(struct mtd_info *mtd,
 347                               struct nand_chip *chip, int page)
 348{
 349        int status = 0;
 350
 351        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 352        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 353        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 354        status = chip->waitfunc(mtd, chip);
 355
 356        return status & NAND_STATUS_FAIL ? -EIO : 0;
 357}
 358
 359/* Don't use -- use nand_read_oob_std for now */
 360static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 361                              int page)
 362{
 363        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 364        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 365        return 0;
 366}
 367/**
 368 * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
 369 * @mtd:        mtd info structure
 370 * @chip:       nand chip info structure
 371 * @buf:        buffer to store read data
 372 * @oob_required:       caller expects OOB data read to chip->oob_poi
 373 *
 374 * The hw generator calculates the error syndrome automatically. Therefore
 375 * we need a special oob layout and handling.
 376 */
 377static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 378                               uint8_t *buf, int oob_required, int page)
 379{
 380        struct cafe_priv *cafe = mtd->priv;
 381        unsigned int max_bitflips = 0;
 382
 383        cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
 384                     cafe_readl(cafe, NAND_ECC_RESULT),
 385                     cafe_readl(cafe, NAND_ECC_SYN01));
 386
 387        chip->read_buf(mtd, buf, mtd->writesize);
 388        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 389
 390        if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 391                unsigned short syn[8], pat[4];
 392                int pos[4];
 393                u8 *oob = chip->oob_poi;
 394                int i, n;
 395
 396                for (i=0; i<8; i+=2) {
 397                        uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
 398                        syn[i] = cafe->rs->index_of[tmp & 0xfff];
 399                        syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
 400                }
 401
 402                n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
 403                                pat);
 404
 405                for (i = 0; i < n; i++) {
 406                        int p = pos[i];
 407
 408                        /* The 12-bit symbols are mapped to bytes here */
 409
 410                        if (p > 1374) {
 411                                /* out of range */
 412                                n = -1374;
 413                        } else if (p == 0) {
 414                                /* high four bits do not correspond to data */
 415                                if (pat[i] > 0xff)
 416                                        n = -2048;
 417                                else
 418                                        buf[0] ^= pat[i];
 419                        } else if (p == 1365) {
 420                                buf[2047] ^= pat[i] >> 4;
 421                                oob[0] ^= pat[i] << 4;
 422                        } else if (p > 1365) {
 423                                if ((p & 1) == 1) {
 424                                        oob[3*p/2 - 2048] ^= pat[i] >> 4;
 425                                        oob[3*p/2 - 2047] ^= pat[i] << 4;
 426                                } else {
 427                                        oob[3*p/2 - 2049] ^= pat[i] >> 8;
 428                                        oob[3*p/2 - 2048] ^= pat[i];
 429                                }
 430                        } else if ((p & 1) == 1) {
 431                                buf[3*p/2] ^= pat[i] >> 4;
 432                                buf[3*p/2 + 1] ^= pat[i] << 4;
 433                        } else {
 434                                buf[3*p/2 - 1] ^= pat[i] >> 8;
 435                                buf[3*p/2] ^= pat[i];
 436                        }
 437                }
 438
 439                if (n < 0) {
 440                        dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
 441                                cafe_readl(cafe, NAND_ADDR2) * 2048);
 442                        for (i = 0; i < 0x5c; i += 4)
 443                                printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
 444                        mtd->ecc_stats.failed++;
 445                } else {
 446                        dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
 447                        mtd->ecc_stats.corrected += n;
 448                        max_bitflips = max_t(unsigned int, max_bitflips, n);
 449                }
 450        }
 451
 452        return max_bitflips;
 453}
 454
 455static struct nand_ecclayout cafe_oobinfo_2048 = {
 456        .eccbytes = 14,
 457        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 458        .oobfree = {{14, 50}}
 459};
 460
 461/* Ick. The BBT code really ought to be able to work this bit out
 462   for itself from the above, at least for the 2KiB case */
 463static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
 464static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
 465
 466static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
 467static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
 468
 469
 470static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
 471        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 472                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 473        .offs = 14,
 474        .len = 4,
 475        .veroffs = 18,
 476        .maxblocks = 4,
 477        .pattern = cafe_bbt_pattern_2048
 478};
 479
 480static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
 481        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 482                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 483        .offs = 14,
 484        .len = 4,
 485        .veroffs = 18,
 486        .maxblocks = 4,
 487        .pattern = cafe_mirror_pattern_2048
 488};
 489
 490static struct nand_ecclayout cafe_oobinfo_512 = {
 491        .eccbytes = 14,
 492        .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
 493        .oobfree = {{14, 2}}
 494};
 495
 496static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
 497        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 498                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 499        .offs = 14,
 500        .len = 1,
 501        .veroffs = 15,
 502        .maxblocks = 4,
 503        .pattern = cafe_bbt_pattern_512
 504};
 505
 506static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
 507        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 508                | NAND_BBT_2BIT | NAND_BBT_VERSION,
 509        .offs = 14,
 510        .len = 1,
 511        .veroffs = 15,
 512        .maxblocks = 4,
 513        .pattern = cafe_mirror_pattern_512
 514};
 515
 516
 517static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
 518                                          struct nand_chip *chip,
 519                                          const uint8_t *buf, int oob_required)
 520{
 521        struct cafe_priv *cafe = mtd->priv;
 522
 523        chip->write_buf(mtd, buf, mtd->writesize);
 524        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 525
 526        /* Set up ECC autogeneration */
 527        cafe->ctl2 |= (1<<30);
 528
 529        return 0;
 530}
 531
 532static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 533                        uint32_t offset, int data_len, const uint8_t *buf,
 534                        int oob_required, int page, int cached, int raw)
 535{
 536        int status;
 537
 538        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
 539
 540        if (unlikely(raw))
 541                status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
 542        else
 543                status = chip->ecc.write_page(mtd, chip, buf, oob_required);
 544
 545        if (status < 0)
 546                return status;
 547
 548        /*
 549         * Cached progamming disabled for now, Not sure if its worth the
 550         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
 551         */
 552        cached = 0;
 553
 554        if (!cached || !(chip->options & NAND_CACHEPRG)) {
 555
 556                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 557                status = chip->waitfunc(mtd, chip);
 558                /*
 559                 * See if operation failed and additional status checks are
 560                 * available
 561                 */
 562                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
 563                        status = chip->errstat(mtd, chip, FL_WRITING, status,
 564                                               page);
 565
 566                if (status & NAND_STATUS_FAIL)
 567                        return -EIO;
 568        } else {
 569                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
 570                status = chip->waitfunc(mtd, chip);
 571        }
 572
 573        return 0;
 574}
 575
 576static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 577{
 578        return 0;
 579}
 580
 581/* F_2[X]/(X**6+X+1)  */
 582static unsigned short gf64_mul(u8 a, u8 b)
 583{
 584        u8 c;
 585        unsigned int i;
 586
 587        c = 0;
 588        for (i = 0; i < 6; i++) {
 589                if (a & 1)
 590                        c ^= b;
 591                a >>= 1;
 592                b <<= 1;
 593                if ((b & 0x40) != 0)
 594                        b ^= 0x43;
 595        }
 596
 597        return c;
 598}
 599
 600/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
 601static u16 gf4096_mul(u16 a, u16 b)
 602{
 603        u8 ah, al, bh, bl, ch, cl;
 604
 605        ah = a >> 6;
 606        al = a & 0x3f;
 607        bh = b >> 6;
 608        bl = b & 0x3f;
 609
 610        ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
 611        cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
 612
 613        return (ch << 6) ^ cl;
 614}
 615
 616static int cafe_mul(int x)
 617{
 618        if (x == 0)
 619                return 1;
 620        return gf4096_mul(x, 0xe01);
 621}
 622
 623static int cafe_nand_probe(struct pci_dev *pdev,
 624                                     const struct pci_device_id *ent)
 625{
 626        struct mtd_info *mtd;
 627        struct cafe_priv *cafe;
 628        uint32_t ctrl;
 629        int err = 0;
 630
 631        /* Very old versions shared the same PCI ident for all three
 632           functions on the chip. Verify the class too... */
 633        if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
 634                return -ENODEV;
 635
 636        err = pci_enable_device(pdev);
 637        if (err)
 638                return err;
 639
 640        pci_set_master(pdev);
 641
 642        mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
 643        if (!mtd) {
 644                dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
 645                return  -ENOMEM;
 646        }
 647        cafe = (void *)(&mtd[1]);
 648
 649        mtd->dev.parent = &pdev->dev;
 650        mtd->priv = cafe;
 651        mtd->owner = THIS_MODULE;
 652
 653        cafe->pdev = pdev;
 654        cafe->mmio = pci_iomap(pdev, 0, 0);
 655        if (!cafe->mmio) {
 656                dev_warn(&pdev->dev, "failed to iomap\n");
 657                err = -ENOMEM;
 658                goto out_free_mtd;
 659        }
 660        cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
 661                                          &cafe->dmaaddr, GFP_KERNEL);
 662        if (!cafe->dmabuf) {
 663                err = -ENOMEM;
 664                goto out_ior;
 665        }
 666        cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
 667
 668        cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
 669        if (!cafe->rs) {
 670                err = -ENOMEM;
 671                goto out_ior;
 672        }
 673
 674        cafe->nand.cmdfunc = cafe_nand_cmdfunc;
 675        cafe->nand.dev_ready = cafe_device_ready;
 676        cafe->nand.read_byte = cafe_read_byte;
 677        cafe->nand.read_buf = cafe_read_buf;
 678        cafe->nand.write_buf = cafe_write_buf;
 679        cafe->nand.select_chip = cafe_select_chip;
 680
 681        cafe->nand.chip_delay = 0;
 682
 683        /* Enable the following for a flash based bad block table */
 684        cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
 685        cafe->nand.options = NAND_OWN_BUFFERS;
 686
 687        if (skipbbt) {
 688                cafe->nand.options |= NAND_SKIP_BBTSCAN;
 689                cafe->nand.block_bad = cafe_nand_block_bad;
 690        }
 691
 692        if (numtimings && numtimings != 3) {
 693                dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
 694        }
 695
 696        if (numtimings == 3) {
 697                cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
 698                             timing[0], timing[1], timing[2]);
 699        } else {
 700                timing[0] = cafe_readl(cafe, NAND_TIMING1);
 701                timing[1] = cafe_readl(cafe, NAND_TIMING2);
 702                timing[2] = cafe_readl(cafe, NAND_TIMING3);
 703
 704                if (timing[0] | timing[1] | timing[2]) {
 705                        cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
 706                                     timing[0], timing[1], timing[2]);
 707                } else {
 708                        dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
 709                        timing[0] = timing[1] = timing[2] = 0xffffffff;
 710                }
 711        }
 712
 713        /* Start off by resetting the NAND controller completely */
 714        cafe_writel(cafe, 1, NAND_RESET);
 715        cafe_writel(cafe, 0, NAND_RESET);
 716
 717        cafe_writel(cafe, timing[0], NAND_TIMING1);
 718        cafe_writel(cafe, timing[1], NAND_TIMING2);
 719        cafe_writel(cafe, timing[2], NAND_TIMING3);
 720
 721        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 722        err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
 723                          "CAFE NAND", mtd);
 724        if (err) {
 725                dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
 726                goto out_free_dma;
 727        }
 728
 729        /* Disable master reset, enable NAND clock */
 730        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 731        ctrl &= 0xffffeff0;
 732        ctrl |= 0x00007000;
 733        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 734        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 735        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 736
 737        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 738        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 739
 740        /* Set up DMA address */
 741        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 742        if (sizeof(cafe->dmaaddr) > 4)
 743                /* Shift in two parts to shut the compiler up */
 744                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 745        else
 746                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 747
 748        cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
 749                cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
 750
 751        /* Enable NAND IRQ in global IRQ mask register */
 752        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 753        cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
 754                cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
 755
 756        /* Scan to find existence of the device */
 757        if (nand_scan_ident(mtd, 2, NULL)) {
 758                err = -ENXIO;
 759                goto out_irq;
 760        }
 761
 762        cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
 763        if (mtd->writesize == 2048)
 764                cafe->ctl2 |= 1<<29; /* 2KiB page size */
 765
 766        /* Set up ECC according to the type of chip we found */
 767        if (mtd->writesize == 2048) {
 768                cafe->nand.ecc.layout = &cafe_oobinfo_2048;
 769                cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
 770                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
 771        } else if (mtd->writesize == 512) {
 772                cafe->nand.ecc.layout = &cafe_oobinfo_512;
 773                cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
 774                cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
 775        } else {
 776                printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
 777                       mtd->writesize);
 778                goto out_irq;
 779        }
 780        cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
 781        cafe->nand.ecc.size = mtd->writesize;
 782        cafe->nand.ecc.bytes = 14;
 783        cafe->nand.ecc.strength = 4;
 784        cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
 785        cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
 786        cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
 787        cafe->nand.write_page = cafe_nand_write_page;
 788        cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
 789        cafe->nand.ecc.write_oob = cafe_nand_write_oob;
 790        cafe->nand.ecc.read_page = cafe_nand_read_page;
 791        cafe->nand.ecc.read_oob = cafe_nand_read_oob;
 792
 793        err = nand_scan_tail(mtd);
 794        if (err)
 795                goto out_irq;
 796
 797        pci_set_drvdata(pdev, mtd);
 798
 799        mtd->name = "cafe_nand";
 800        mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
 801
 802        goto out;
 803
 804 out_irq:
 805        /* Disable NAND IRQ in global IRQ mask register */
 806        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 807        free_irq(pdev->irq, mtd);
 808 out_free_dma:
 809        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 810 out_ior:
 811        pci_iounmap(pdev, cafe->mmio);
 812 out_free_mtd:
 813        kfree(mtd);
 814 out:
 815        return err;
 816}
 817
 818static void cafe_nand_remove(struct pci_dev *pdev)
 819{
 820        struct mtd_info *mtd = pci_get_drvdata(pdev);
 821        struct cafe_priv *cafe = mtd->priv;
 822
 823        /* Disable NAND IRQ in global IRQ mask register */
 824        cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 825        free_irq(pdev->irq, mtd);
 826        nand_release(mtd);
 827        free_rs(cafe->rs);
 828        pci_iounmap(pdev, cafe->mmio);
 829        dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 830        kfree(mtd);
 831}
 832
 833static const struct pci_device_id cafe_nand_tbl[] = {
 834        { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
 835          PCI_ANY_ID, PCI_ANY_ID },
 836        { }
 837};
 838
 839MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
 840
 841static int cafe_nand_resume(struct pci_dev *pdev)
 842{
 843        uint32_t ctrl;
 844        struct mtd_info *mtd = pci_get_drvdata(pdev);
 845        struct cafe_priv *cafe = mtd->priv;
 846
 847       /* Start off by resetting the NAND controller completely */
 848        cafe_writel(cafe, 1, NAND_RESET);
 849        cafe_writel(cafe, 0, NAND_RESET);
 850        cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
 851
 852        /* Restore timing configuration */
 853        cafe_writel(cafe, timing[0], NAND_TIMING1);
 854        cafe_writel(cafe, timing[1], NAND_TIMING2);
 855        cafe_writel(cafe, timing[2], NAND_TIMING3);
 856
 857        /* Disable master reset, enable NAND clock */
 858        ctrl = cafe_readl(cafe, GLOBAL_CTRL);
 859        ctrl &= 0xffffeff0;
 860        ctrl |= 0x00007000;
 861        cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
 862        cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
 863        cafe_writel(cafe, 0, NAND_DMA_CTRL);
 864        cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
 865        cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
 866
 867        /* Set up DMA address */
 868        cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
 869        if (sizeof(cafe->dmaaddr) > 4)
 870        /* Shift in two parts to shut the compiler up */
 871                cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
 872        else
 873                cafe_writel(cafe, 0, NAND_DMA_ADDR1);
 874
 875        /* Enable NAND IRQ in global IRQ mask register */
 876        cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
 877        return 0;
 878}
 879
 880static struct pci_driver cafe_nand_pci_driver = {
 881        .name = "CAFÉ NAND",
 882        .id_table = cafe_nand_tbl,
 883        .probe = cafe_nand_probe,
 884        .remove = cafe_nand_remove,
 885        .resume = cafe_nand_resume,
 886};
 887
 888module_pci_driver(cafe_nand_pci_driver);
 889
 890MODULE_LICENSE("GPL");
 891MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
 892MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
 893