linux/drivers/mtd/nand/docg4.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
   3 *
   4 * mtd nand driver for M-Systems DiskOnChip G4
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
  12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
  13 * Should work on these as well.  Let me know!
  14 *
  15 * TODO:
  16 *
  17 *  Mechanism for management of password-protected areas
  18 *
  19 *  Hamming ecc when reading oob only
  20 *
  21 *  According to the M-Sys documentation, this device is also available in a
  22 *  "dual-die" configuration having a 256MB capacity, but no mechanism for
  23 *  detecting this variant is documented.  Currently this driver assumes 128MB
  24 *  capacity.
  25 *
  26 *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
  27 *  contain multiple G4s in a cascaded configuration, if any.
  28 *
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/init.h>
  34#include <linux/string.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/module.h>
  38#include <linux/export.h>
  39#include <linux/platform_device.h>
  40#include <linux/io.h>
  41#include <linux/bitops.h>
  42#include <linux/mtd/partitions.h>
  43#include <linux/mtd/mtd.h>
  44#include <linux/mtd/nand.h>
  45#include <linux/bch.h>
  46#include <linux/bitrev.h>
  47
  48/*
  49 * In "reliable mode" consecutive 2k pages are used in parallel (in some
  50 * fashion) to store the same data.  The data can be read back from the
  51 * even-numbered pages in the normal manner; odd-numbered pages will appear to
  52 * contain junk.  Systems that boot from the docg4 typically write the secondary
  53 * program loader (SPL) code in this mode.  The SPL is loaded by the initial
  54 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
  55 * to the reset vector address).  This module parameter enables you to use this
  56 * driver to write the SPL.  When in this mode, no more than 2k of data can be
  57 * written at a time, because the addresses do not increment in the normal
  58 * manner, and the starting offset must be within an even-numbered 2k region;
  59 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
  60 * 0x1a00, ...  Reliable mode is a special case and should not be used unless
  61 * you know what you're doing.
  62 */
  63static bool reliable_mode;
  64module_param(reliable_mode, bool, 0);
  65MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
  66
  67/*
  68 * You'll want to ignore badblocks if you're reading a partition that contains
  69 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
  70 * it does not use mtd nand's method for marking bad blocks (using oob area).
  71 * This will also skip the check of the "page written" flag.
  72 */
  73static bool ignore_badblocks;
  74module_param(ignore_badblocks, bool, 0);
  75MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
  76
  77struct docg4_priv {
  78        struct mtd_info *mtd;
  79        struct device *dev;
  80        void __iomem *virtadr;
  81        int status;
  82        struct {
  83                unsigned int command;
  84                int column;
  85                int page;
  86        } last_command;
  87        uint8_t oob_buf[16];
  88        uint8_t ecc_buf[7];
  89        int oob_page;
  90        struct bch_control *bch;
  91};
  92
  93/*
  94 * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
  95 * shared with other diskonchip devices (P3, G3 at least).
  96 *
  97 * Functions with names prefixed with docg4_ are mtd / nand interface functions
  98 * (though they may also be called internally).  All others are internal.
  99 */
 100
 101#define DOC_IOSPACE_DATA                0x0800
 102
 103/* register offsets */
 104#define DOC_CHIPID                      0x1000
 105#define DOC_DEVICESELECT                0x100a
 106#define DOC_ASICMODE                    0x100c
 107#define DOC_DATAEND                     0x101e
 108#define DOC_NOP                         0x103e
 109
 110#define DOC_FLASHSEQUENCE               0x1032
 111#define DOC_FLASHCOMMAND                0x1034
 112#define DOC_FLASHADDRESS                0x1036
 113#define DOC_FLASHCONTROL                0x1038
 114#define DOC_ECCCONF0                    0x1040
 115#define DOC_ECCCONF1                    0x1042
 116#define DOC_HAMMINGPARITY               0x1046
 117#define DOC_BCH_SYNDROM(idx)            (0x1048 + idx)
 118
 119#define DOC_ASICMODECONFIRM             0x1072
 120#define DOC_CHIPID_INV                  0x1074
 121#define DOC_POWERMODE                   0x107c
 122
 123#define DOCG4_MYSTERY_REG               0x1050
 124
 125/* apparently used only to write oob bytes 6 and 7 */
 126#define DOCG4_OOB_6_7                   0x1052
 127
 128/* DOC_FLASHSEQUENCE register commands */
 129#define DOC_SEQ_RESET                   0x00
 130#define DOCG4_SEQ_PAGE_READ             0x03
 131#define DOCG4_SEQ_FLUSH                 0x29
 132#define DOCG4_SEQ_PAGEWRITE             0x16
 133#define DOCG4_SEQ_PAGEPROG              0x1e
 134#define DOCG4_SEQ_BLOCKERASE            0x24
 135#define DOCG4_SEQ_SETMODE               0x45
 136
 137/* DOC_FLASHCOMMAND register commands */
 138#define DOCG4_CMD_PAGE_READ             0x00
 139#define DOC_CMD_ERASECYCLE2             0xd0
 140#define DOCG4_CMD_FLUSH                 0x70
 141#define DOCG4_CMD_READ2                 0x30
 142#define DOC_CMD_PROG_BLOCK_ADDR         0x60
 143#define DOCG4_CMD_PAGEWRITE             0x80
 144#define DOC_CMD_PROG_CYCLE2             0x10
 145#define DOCG4_CMD_FAST_MODE             0xa3 /* functionality guessed */
 146#define DOC_CMD_RELIABLE_MODE           0x22
 147#define DOC_CMD_RESET                   0xff
 148
 149/* DOC_POWERMODE register bits */
 150#define DOC_POWERDOWN_READY             0x80
 151
 152/* DOC_FLASHCONTROL register bits */
 153#define DOC_CTRL_CE                     0x10
 154#define DOC_CTRL_UNKNOWN                0x40
 155#define DOC_CTRL_FLASHREADY             0x01
 156
 157/* DOC_ECCCONF0 register bits */
 158#define DOC_ECCCONF0_READ_MODE          0x8000
 159#define DOC_ECCCONF0_UNKNOWN            0x2000
 160#define DOC_ECCCONF0_ECC_ENABLE         0x1000
 161#define DOC_ECCCONF0_DATA_BYTES_MASK    0x07ff
 162
 163/* DOC_ECCCONF1 register bits */
 164#define DOC_ECCCONF1_BCH_SYNDROM_ERR    0x80
 165#define DOC_ECCCONF1_ECC_ENABLE         0x07
 166#define DOC_ECCCONF1_PAGE_IS_WRITTEN    0x20
 167
 168/* DOC_ASICMODE register bits */
 169#define DOC_ASICMODE_RESET              0x00
 170#define DOC_ASICMODE_NORMAL             0x01
 171#define DOC_ASICMODE_POWERDOWN          0x02
 172#define DOC_ASICMODE_MDWREN             0x04
 173#define DOC_ASICMODE_BDETCT_RESET       0x08
 174#define DOC_ASICMODE_RSTIN_RESET        0x10
 175#define DOC_ASICMODE_RAM_WE             0x20
 176
 177/* good status values read after read/write/erase operations */
 178#define DOCG4_PROGSTATUS_GOOD          0x51
 179#define DOCG4_PROGSTATUS_GOOD_2        0xe0
 180
 181/*
 182 * On read operations (page and oob-only), the first byte read from I/O reg is a
 183 * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
 184 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
 185 */
 186#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
 187
 188/* anatomy of the device */
 189#define DOCG4_CHIP_SIZE        0x8000000
 190#define DOCG4_PAGE_SIZE        0x200
 191#define DOCG4_PAGES_PER_BLOCK  0x200
 192#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
 193#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
 194#define DOCG4_OOB_SIZE         0x10
 195#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
 196#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
 197#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
 198
 199/* all but the last byte is included in ecc calculation */
 200#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
 201
 202#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
 203
 204/* expected values from the ID registers */
 205#define DOCG4_IDREG1_VALUE     0x0400
 206#define DOCG4_IDREG2_VALUE     0xfbff
 207
 208/* primitive polynomial used to build the Galois field used by hw ecc gen */
 209#define DOCG4_PRIMITIVE_POLY   0x4443
 210
 211#define DOCG4_M                14  /* Galois field is of order 2^14 */
 212#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
 213
 214#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
 215#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
 216
 217/*
 218 * Bytes 0, 1 are used as badblock marker.
 219 * Bytes 2 - 6 are available to the user.
 220 * Byte 7 is hamming ecc for first 7 oob bytes only.
 221 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
 222 * Byte 15 (the last) is used by the driver as a "page written" flag.
 223 */
 224static struct nand_ecclayout docg4_oobinfo = {
 225        .eccbytes = 9,
 226        .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
 227        .oobavail = 5,
 228        .oobfree = { {.offset = 2, .length = 5} }
 229};
 230
 231/*
 232 * The device has a nop register which M-Sys claims is for the purpose of
 233 * inserting precise delays.  But beware; at least some operations fail if the
 234 * nop writes are replaced with a generic delay!
 235 */
 236static inline void write_nop(void __iomem *docptr)
 237{
 238        writew(0, docptr + DOC_NOP);
 239}
 240
 241static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 242{
 243        int i;
 244        struct nand_chip *nand = mtd->priv;
 245        uint16_t *p = (uint16_t *) buf;
 246        len >>= 1;
 247
 248        for (i = 0; i < len; i++)
 249                p[i] = readw(nand->IO_ADDR_R);
 250}
 251
 252static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 253{
 254        int i;
 255        struct nand_chip *nand = mtd->priv;
 256        uint16_t *p = (uint16_t *) buf;
 257        len >>= 1;
 258
 259        for (i = 0; i < len; i++)
 260                writew(p[i], nand->IO_ADDR_W);
 261}
 262
 263static int poll_status(struct docg4_priv *doc)
 264{
 265        /*
 266         * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
 267         * register.  Operations known to take a long time (e.g., block erase)
 268         * should sleep for a while before calling this.
 269         */
 270
 271        uint16_t flash_status;
 272        unsigned int timeo;
 273        void __iomem *docptr = doc->virtadr;
 274
 275        dev_dbg(doc->dev, "%s...\n", __func__);
 276
 277        /* hardware quirk requires reading twice initially */
 278        flash_status = readw(docptr + DOC_FLASHCONTROL);
 279
 280        timeo = 1000;
 281        do {
 282                cpu_relax();
 283                flash_status = readb(docptr + DOC_FLASHCONTROL);
 284        } while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo);
 285
 286
 287        if (!timeo) {
 288                dev_err(doc->dev, "%s: timed out!\n", __func__);
 289                return NAND_STATUS_FAIL;
 290        }
 291
 292        if (unlikely(timeo < 50))
 293                dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n",
 294                         __func__, timeo);
 295
 296        return 0;
 297}
 298
 299
 300static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
 301{
 302
 303        struct docg4_priv *doc = nand->priv;
 304        int status = NAND_STATUS_WP;       /* inverse logic?? */
 305        dev_dbg(doc->dev, "%s...\n", __func__);
 306
 307        /* report any previously unreported error */
 308        if (doc->status) {
 309                status |= doc->status;
 310                doc->status = 0;
 311                return status;
 312        }
 313
 314        status |= poll_status(doc);
 315        return status;
 316}
 317
 318static void docg4_select_chip(struct mtd_info *mtd, int chip)
 319{
 320        /*
 321         * Select among multiple cascaded chips ("floors").  Multiple floors are
 322         * not yet supported, so the only valid non-negative value is 0.
 323         */
 324        struct nand_chip *nand = mtd->priv;
 325        struct docg4_priv *doc = nand->priv;
 326        void __iomem *docptr = doc->virtadr;
 327
 328        dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
 329
 330        if (chip < 0)
 331                return;         /* deselected */
 332
 333        if (chip > 0)
 334                dev_warn(doc->dev, "multiple floors currently unsupported\n");
 335
 336        writew(0, docptr + DOC_DEVICESELECT);
 337}
 338
 339static void reset(struct mtd_info *mtd)
 340{
 341        /* full device reset */
 342
 343        struct nand_chip *nand = mtd->priv;
 344        struct docg4_priv *doc = nand->priv;
 345        void __iomem *docptr = doc->virtadr;
 346
 347        writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
 348               docptr + DOC_ASICMODE);
 349        writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
 350               docptr + DOC_ASICMODECONFIRM);
 351        write_nop(docptr);
 352
 353        writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
 354               docptr + DOC_ASICMODE);
 355        writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
 356               docptr + DOC_ASICMODECONFIRM);
 357
 358        writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
 359
 360        poll_status(doc);
 361}
 362
 363static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
 364{
 365        /* read the 7 hw-generated ecc bytes */
 366
 367        int i;
 368        for (i = 0; i < 7; i++) { /* hw quirk; read twice */
 369                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 370                ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
 371        }
 372}
 373
 374static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
 375{
 376        /*
 377         * Called after a page read when hardware reports bitflips.
 378         * Up to four bitflips can be corrected.
 379         */
 380
 381        struct nand_chip *nand = mtd->priv;
 382        struct docg4_priv *doc = nand->priv;
 383        void __iomem *docptr = doc->virtadr;
 384        int i, numerrs, errpos[4];
 385        const uint8_t blank_read_hwecc[8] = {
 386                0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
 387
 388        read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
 389
 390        /* check if read error is due to a blank page */
 391        if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
 392                return 0;       /* yes */
 393
 394        /* skip additional check of "written flag" if ignore_badblocks */
 395        if (ignore_badblocks == false) {
 396
 397                /*
 398                 * If the hw ecc bytes are not those of a blank page, there's
 399                 * still a chance that the page is blank, but was read with
 400                 * errors.  Check the "written flag" in last oob byte, which
 401                 * is set to zero when a page is written.  If more than half
 402                 * the bits are set, assume a blank page.  Unfortunately, the
 403                 * bit flips(s) are not reported in stats.
 404                 */
 405
 406                if (nand->oob_poi[15]) {
 407                        int bit, numsetbits = 0;
 408                        unsigned long written_flag = nand->oob_poi[15];
 409                        for_each_set_bit(bit, &written_flag, 8)
 410                                numsetbits++;
 411                        if (numsetbits > 4) { /* assume blank */
 412                                dev_warn(doc->dev,
 413                                         "error(s) in blank page "
 414                                         "at offset %08x\n",
 415                                         page * DOCG4_PAGE_SIZE);
 416                                return 0;
 417                        }
 418                }
 419        }
 420
 421        /*
 422         * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 423         * algorithm is used to decode this.  However the hw operates on page
 424         * data in a bit order that is the reverse of that of the bch alg,
 425         * requiring that the bits be reversed on the result.  Thanks to Ivan
 426         * Djelic for his analysis!
 427         */
 428        for (i = 0; i < 7; i++)
 429                doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
 430
 431        numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
 432                             doc->ecc_buf, NULL, errpos);
 433
 434        if (numerrs == -EBADMSG) {
 435                dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
 436                         page * DOCG4_PAGE_SIZE);
 437                return -EBADMSG;
 438        }
 439
 440        BUG_ON(numerrs < 0);    /* -EINVAL, or anything other than -EBADMSG */
 441
 442        /* undo last step in BCH alg (modulo mirroring not needed) */
 443        for (i = 0; i < numerrs; i++)
 444                errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
 445
 446        /* fix the errors */
 447        for (i = 0; i < numerrs; i++) {
 448
 449                /* ignore if error within oob ecc bytes */
 450                if (errpos[i] > DOCG4_USERDATA_LEN * 8)
 451                        continue;
 452
 453                /* if error within oob area preceeding ecc bytes... */
 454                if (errpos[i] > DOCG4_PAGE_SIZE * 8)
 455                        change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
 456                                   (unsigned long *)nand->oob_poi);
 457
 458                else    /* error in page data */
 459                        change_bit(errpos[i], (unsigned long *)buf);
 460        }
 461
 462        dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
 463                   numerrs, page * DOCG4_PAGE_SIZE);
 464
 465        return numerrs;
 466}
 467
 468static uint8_t docg4_read_byte(struct mtd_info *mtd)
 469{
 470        struct nand_chip *nand = mtd->priv;
 471        struct docg4_priv *doc = nand->priv;
 472
 473        dev_dbg(doc->dev, "%s\n", __func__);
 474
 475        if (doc->last_command.command == NAND_CMD_STATUS) {
 476                int status;
 477
 478                /*
 479                 * Previous nand command was status request, so nand
 480                 * infrastructure code expects to read the status here.  If an
 481                 * error occurred in a previous operation, report it.
 482                 */
 483                doc->last_command.command = 0;
 484
 485                if (doc->status) {
 486                        status = doc->status;
 487                        doc->status = 0;
 488                }
 489
 490                /* why is NAND_STATUS_WP inverse logic?? */
 491                else
 492                        status = NAND_STATUS_WP | NAND_STATUS_READY;
 493
 494                return status;
 495        }
 496
 497        dev_warn(doc->dev, "unexpectd call to read_byte()\n");
 498
 499        return 0;
 500}
 501
 502static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
 503{
 504        /* write the four address bytes packed in docg4_addr to the device */
 505
 506        void __iomem *docptr = doc->virtadr;
 507        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 508        docg4_addr >>= 8;
 509        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 510        docg4_addr >>= 8;
 511        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 512        docg4_addr >>= 8;
 513        writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
 514}
 515
 516static int read_progstatus(struct docg4_priv *doc)
 517{
 518        /*
 519         * This apparently checks the status of programming.  Done after an
 520         * erasure, and after page data is written.  On error, the status is
 521         * saved, to be later retrieved by the nand infrastructure code.
 522         */
 523        void __iomem *docptr = doc->virtadr;
 524
 525        /* status is read from the I/O reg */
 526        uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
 527        uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
 528        uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
 529
 530        dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
 531              __func__, status1, status2, status3);
 532
 533        if (status1 != DOCG4_PROGSTATUS_GOOD
 534            || status2 != DOCG4_PROGSTATUS_GOOD_2
 535            || status3 != DOCG4_PROGSTATUS_GOOD_2) {
 536                doc->status = NAND_STATUS_FAIL;
 537                dev_warn(doc->dev, "read_progstatus failed: "
 538                         "%02x, %02x, %02x\n", status1, status2, status3);
 539                return -EIO;
 540        }
 541        return 0;
 542}
 543
 544static int pageprog(struct mtd_info *mtd)
 545{
 546        /*
 547         * Final step in writing a page.  Writes the contents of its
 548         * internal buffer out to the flash array, or some such.
 549         */
 550
 551        struct nand_chip *nand = mtd->priv;
 552        struct docg4_priv *doc = nand->priv;
 553        void __iomem *docptr = doc->virtadr;
 554        int retval = 0;
 555
 556        dev_dbg(doc->dev, "docg4: %s\n", __func__);
 557
 558        writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
 559        writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
 560        write_nop(docptr);
 561        write_nop(docptr);
 562
 563        /* Just busy-wait; usleep_range() slows things down noticeably. */
 564        poll_status(doc);
 565
 566        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 567        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 568        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 569        write_nop(docptr);
 570        write_nop(docptr);
 571        write_nop(docptr);
 572        write_nop(docptr);
 573        write_nop(docptr);
 574
 575        retval = read_progstatus(doc);
 576        writew(0, docptr + DOC_DATAEND);
 577        write_nop(docptr);
 578        poll_status(doc);
 579        write_nop(docptr);
 580
 581        return retval;
 582}
 583
 584static void sequence_reset(struct mtd_info *mtd)
 585{
 586        /* common starting sequence for all operations */
 587
 588        struct nand_chip *nand = mtd->priv;
 589        struct docg4_priv *doc = nand->priv;
 590        void __iomem *docptr = doc->virtadr;
 591
 592        writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
 593        writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
 594        writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
 595        write_nop(docptr);
 596        write_nop(docptr);
 597        poll_status(doc);
 598        write_nop(docptr);
 599}
 600
 601static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 602{
 603        /* first step in reading a page */
 604
 605        struct nand_chip *nand = mtd->priv;
 606        struct docg4_priv *doc = nand->priv;
 607        void __iomem *docptr = doc->virtadr;
 608
 609        dev_dbg(doc->dev,
 610              "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
 611
 612        sequence_reset(mtd);
 613
 614        writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
 615        writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
 616        write_nop(docptr);
 617
 618        write_addr(doc, docg4_addr);
 619
 620        write_nop(docptr);
 621        writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
 622        write_nop(docptr);
 623        write_nop(docptr);
 624
 625        poll_status(doc);
 626}
 627
 628static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
 629{
 630        /* first step in writing a page */
 631
 632        struct nand_chip *nand = mtd->priv;
 633        struct docg4_priv *doc = nand->priv;
 634        void __iomem *docptr = doc->virtadr;
 635
 636        dev_dbg(doc->dev,
 637              "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
 638        sequence_reset(mtd);
 639
 640        if (unlikely(reliable_mode)) {
 641                writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
 642                writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
 643                writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
 644                write_nop(docptr);
 645        }
 646
 647        writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
 648        writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
 649        write_nop(docptr);
 650        write_addr(doc, docg4_addr);
 651        write_nop(docptr);
 652        write_nop(docptr);
 653        poll_status(doc);
 654}
 655
 656static uint32_t mtd_to_docg4_address(int page, int column)
 657{
 658        /*
 659         * Convert mtd address to format used by the device, 32 bit packed.
 660         *
 661         * Some notes on G4 addressing... The M-Sys documentation on this device
 662         * claims that pages are 2K in length, and indeed, the format of the
 663         * address used by the device reflects that.  But within each page are
 664         * four 512 byte "sub-pages", each with its own oob data that is
 665         * read/written immediately after the 512 bytes of page data.  This oob
 666         * data contains the ecc bytes for the preceeding 512 bytes.
 667         *
 668         * Rather than tell the mtd nand infrastructure that page size is 2k,
 669         * with four sub-pages each, we engage in a little subterfuge and tell
 670         * the infrastructure code that pages are 512 bytes in size.  This is
 671         * done because during the course of reverse-engineering the device, I
 672         * never observed an instance where an entire 2K "page" was read or
 673         * written as a unit.  Each "sub-page" is always addressed individually,
 674         * its data read/written, and ecc handled before the next "sub-page" is
 675         * addressed.
 676         *
 677         * This requires us to convert addresses passed by the mtd nand
 678         * infrastructure code to those used by the device.
 679         *
 680         * The address that is written to the device consists of four bytes: the
 681         * first two are the 2k page number, and the second is the index into
 682         * the page.  The index is in terms of 16-bit half-words and includes
 683         * the preceeding oob data, so e.g., the index into the second
 684         * "sub-page" is 0x108, and the full device address of the start of mtd
 685         * page 0x201 is 0x00800108.
 686         */
 687        int g4_page = page / 4;                       /* device's 2K page */
 688        int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
 689        return (g4_page << 16) | g4_index;            /* pack */
 690}
 691
 692static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
 693                          int page_addr)
 694{
 695        /* handle standard nand commands */
 696
 697        struct nand_chip *nand = mtd->priv;
 698        struct docg4_priv *doc = nand->priv;
 699        uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
 700
 701        dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
 702              __func__, command, page_addr, column);
 703
 704        /*
 705         * Save the command and its arguments.  This enables emulation of
 706         * standard flash devices, and also some optimizations.
 707         */
 708        doc->last_command.command = command;
 709        doc->last_command.column = column;
 710        doc->last_command.page = page_addr;
 711
 712        switch (command) {
 713
 714        case NAND_CMD_RESET:
 715                reset(mtd);
 716                break;
 717
 718        case NAND_CMD_READ0:
 719                read_page_prologue(mtd, g4_addr);
 720                break;
 721
 722        case NAND_CMD_STATUS:
 723                /* next call to read_byte() will expect a status */
 724                break;
 725
 726        case NAND_CMD_SEQIN:
 727                if (unlikely(reliable_mode)) {
 728                        uint16_t g4_page = g4_addr >> 16;
 729
 730                        /* writes to odd-numbered 2k pages are invalid */
 731                        if (g4_page & 0x01)
 732                                dev_warn(doc->dev,
 733                                         "invalid reliable mode address\n");
 734                }
 735
 736                write_page_prologue(mtd, g4_addr);
 737
 738                /* hack for deferred write of oob bytes */
 739                if (doc->oob_page == page_addr)
 740                        memcpy(nand->oob_poi, doc->oob_buf, 16);
 741                break;
 742
 743        case NAND_CMD_PAGEPROG:
 744                pageprog(mtd);
 745                break;
 746
 747        /* we don't expect these, based on review of nand_base.c */
 748        case NAND_CMD_READOOB:
 749        case NAND_CMD_READID:
 750        case NAND_CMD_ERASE1:
 751        case NAND_CMD_ERASE2:
 752                dev_warn(doc->dev, "docg4_command: "
 753                         "unexpected nand command 0x%x\n", command);
 754                break;
 755
 756        }
 757}
 758
 759static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
 760                     uint8_t *buf, int page, bool use_ecc)
 761{
 762        struct docg4_priv *doc = nand->priv;
 763        void __iomem *docptr = doc->virtadr;
 764        uint16_t status, edc_err, *buf16;
 765        int bits_corrected = 0;
 766
 767        dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
 768
 769        writew(DOC_ECCCONF0_READ_MODE |
 770               DOC_ECCCONF0_ECC_ENABLE |
 771               DOC_ECCCONF0_UNKNOWN |
 772               DOCG4_BCH_SIZE,
 773               docptr + DOC_ECCCONF0);
 774        write_nop(docptr);
 775        write_nop(docptr);
 776        write_nop(docptr);
 777        write_nop(docptr);
 778        write_nop(docptr);
 779
 780        /* the 1st byte from the I/O reg is a status; the rest is page data */
 781        status = readw(docptr + DOC_IOSPACE_DATA);
 782        if (status & DOCG4_READ_ERROR) {
 783                dev_err(doc->dev,
 784                        "docg4_read_page: bad status: 0x%02x\n", status);
 785                writew(0, docptr + DOC_DATAEND);
 786                return -EIO;
 787        }
 788
 789        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 790
 791        docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
 792
 793        /* this device always reads oob after page data */
 794        /* first 14 oob bytes read from I/O reg */
 795        docg4_read_buf(mtd, nand->oob_poi, 14);
 796
 797        /* last 2 read from another reg */
 798        buf16 = (uint16_t *)(nand->oob_poi + 14);
 799        *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
 800
 801        write_nop(docptr);
 802
 803        if (likely(use_ecc == true)) {
 804
 805                /* read the register that tells us if bitflip(s) detected  */
 806                edc_err = readw(docptr + DOC_ECCCONF1);
 807                edc_err = readw(docptr + DOC_ECCCONF1);
 808                dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
 809
 810                /* If bitflips are reported, attempt to correct with ecc */
 811                if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
 812                        bits_corrected = correct_data(mtd, buf, page);
 813                        if (bits_corrected == -EBADMSG)
 814                                mtd->ecc_stats.failed++;
 815                        else
 816                                mtd->ecc_stats.corrected += bits_corrected;
 817                }
 818        }
 819
 820        writew(0, docptr + DOC_DATAEND);
 821        if (bits_corrected == -EBADMSG)   /* uncorrectable errors */
 822                return 0;
 823        return bits_corrected;
 824}
 825
 826
 827static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 828                               uint8_t *buf, int oob_required, int page)
 829{
 830        return read_page(mtd, nand, buf, page, false);
 831}
 832
 833static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
 834                           uint8_t *buf, int oob_required, int page)
 835{
 836        return read_page(mtd, nand, buf, page, true);
 837}
 838
 839static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
 840                          int page)
 841{
 842        struct docg4_priv *doc = nand->priv;
 843        void __iomem *docptr = doc->virtadr;
 844        uint16_t status;
 845
 846        dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
 847
 848        docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
 849
 850        writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
 851        write_nop(docptr);
 852        write_nop(docptr);
 853        write_nop(docptr);
 854        write_nop(docptr);
 855        write_nop(docptr);
 856
 857        /* the 1st byte from the I/O reg is a status; the rest is oob data */
 858        status = readw(docptr + DOC_IOSPACE_DATA);
 859        if (status & DOCG4_READ_ERROR) {
 860                dev_warn(doc->dev,
 861                         "docg4_read_oob failed: status = 0x%02x\n", status);
 862                return -EIO;
 863        }
 864
 865        dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
 866
 867        docg4_read_buf(mtd, nand->oob_poi, 16);
 868
 869        write_nop(docptr);
 870        write_nop(docptr);
 871        write_nop(docptr);
 872        writew(0, docptr + DOC_DATAEND);
 873        write_nop(docptr);
 874
 875        return 0;
 876}
 877
 878static void docg4_erase_block(struct mtd_info *mtd, int page)
 879{
 880        struct nand_chip *nand = mtd->priv;
 881        struct docg4_priv *doc = nand->priv;
 882        void __iomem *docptr = doc->virtadr;
 883        uint16_t g4_page;
 884
 885        dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
 886
 887        sequence_reset(mtd);
 888
 889        writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
 890        writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
 891        write_nop(docptr);
 892
 893        /* only 2 bytes of address are written to specify erase block */
 894        g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
 895        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 896        g4_page >>= 8;
 897        writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
 898        write_nop(docptr);
 899
 900        /* start the erasure */
 901        writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
 902        write_nop(docptr);
 903        write_nop(docptr);
 904
 905        usleep_range(500, 1000); /* erasure is long; take a snooze */
 906        poll_status(doc);
 907        writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
 908        writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
 909        writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
 910        write_nop(docptr);
 911        write_nop(docptr);
 912        write_nop(docptr);
 913        write_nop(docptr);
 914        write_nop(docptr);
 915
 916        read_progstatus(doc);
 917
 918        writew(0, docptr + DOC_DATAEND);
 919        write_nop(docptr);
 920        poll_status(doc);
 921        write_nop(docptr);
 922}
 923
 924static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
 925                       const uint8_t *buf, bool use_ecc)
 926{
 927        struct docg4_priv *doc = nand->priv;
 928        void __iomem *docptr = doc->virtadr;
 929        uint8_t ecc_buf[8];
 930
 931        dev_dbg(doc->dev, "%s...\n", __func__);
 932
 933        writew(DOC_ECCCONF0_ECC_ENABLE |
 934               DOC_ECCCONF0_UNKNOWN |
 935               DOCG4_BCH_SIZE,
 936               docptr + DOC_ECCCONF0);
 937        write_nop(docptr);
 938
 939        /* write the page data */
 940        docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
 941
 942        /* oob bytes 0 through 5 are written to I/O reg */
 943        docg4_write_buf16(mtd, nand->oob_poi, 6);
 944
 945        /* oob byte 6 written to a separate reg */
 946        writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
 947
 948        write_nop(docptr);
 949        write_nop(docptr);
 950
 951        /* write hw-generated ecc bytes to oob */
 952        if (likely(use_ecc == true)) {
 953                /* oob byte 7 is hamming code */
 954                uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
 955                hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
 956                writew(hamming, docptr + DOCG4_OOB_6_7);
 957                write_nop(docptr);
 958
 959                /* read the 7 bch bytes from ecc regs */
 960                read_hw_ecc(docptr, ecc_buf);
 961                ecc_buf[7] = 0;         /* clear the "page written" flag */
 962        }
 963
 964        /* write user-supplied bytes to oob */
 965        else {
 966                writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
 967                write_nop(docptr);
 968                memcpy(ecc_buf, &nand->oob_poi[8], 8);
 969        }
 970
 971        docg4_write_buf16(mtd, ecc_buf, 8);
 972        write_nop(docptr);
 973        write_nop(docptr);
 974        writew(0, docptr + DOC_DATAEND);
 975        write_nop(docptr);
 976
 977        return 0;
 978}
 979
 980static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
 981                                 const uint8_t *buf, int oob_required)
 982{
 983        return write_page(mtd, nand, buf, false);
 984}
 985
 986static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
 987                             const uint8_t *buf, int oob_required)
 988{
 989        return write_page(mtd, nand, buf, true);
 990}
 991
 992static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
 993                           int page)
 994{
 995        /*
 996         * Writing oob-only is not really supported, because MLC nand must write
 997         * oob bytes at the same time as page data.  Nonetheless, we save the
 998         * oob buffer contents here, and then write it along with the page data
 999         * if the same page is subsequently written.  This allows user space
1000         * utilities that write the oob data prior to the page data to work
1001         * (e.g., nandwrite).  The disdvantage is that, if the intention was to
1002         * write oob only, the operation is quietly ignored.  Also, oob can get
1003         * corrupted if two concurrent processes are running nandwrite.
1004         */
1005
1006        /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1007        struct docg4_priv *doc = nand->priv;
1008        doc->oob_page = page;
1009        memcpy(doc->oob_buf, nand->oob_poi, 16);
1010        return 0;
1011}
1012
1013static int __init read_factory_bbt(struct mtd_info *mtd)
1014{
1015        /*
1016         * The device contains a read-only factory bad block table.  Read it and
1017         * update the memory-based bbt accordingly.
1018         */
1019
1020        struct nand_chip *nand = mtd->priv;
1021        struct docg4_priv *doc = nand->priv;
1022        uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1023        uint8_t *buf;
1024        int i, block;
1025        __u32 eccfailed_stats = mtd->ecc_stats.failed;
1026
1027        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1028        if (buf == NULL)
1029                return -ENOMEM;
1030
1031        read_page_prologue(mtd, g4_addr);
1032        docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1033
1034        /*
1035         * If no memory-based bbt was created, exit.  This will happen if module
1036         * parameter ignore_badblocks is set.  Then why even call this function?
1037         * For an unknown reason, block erase always fails if it's the first
1038         * operation after device power-up.  The above read ensures it never is.
1039         * Ugly, I know.
1040         */
1041        if (nand->bbt == NULL)  /* no memory-based bbt */
1042                goto exit;
1043
1044        if (mtd->ecc_stats.failed > eccfailed_stats) {
1045                /*
1046                 * Whoops, an ecc failure ocurred reading the factory bbt.
1047                 * It is stored redundantly, so we get another chance.
1048                 */
1049                eccfailed_stats = mtd->ecc_stats.failed;
1050                docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1051                if (mtd->ecc_stats.failed > eccfailed_stats) {
1052                        dev_warn(doc->dev,
1053                                 "The factory bbt could not be read!\n");
1054                        goto exit;
1055                }
1056        }
1057
1058        /*
1059         * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1060         * simple: one bit per block, block numbers increase left to right (msb
1061         * to lsb).  Bit clear means bad block.
1062         */
1063        for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1064                int bitnum;
1065                unsigned long bits = ~buf[i];
1066                for_each_set_bit(bitnum, &bits, 8) {
1067                        int badblock = block + 7 - bitnum;
1068                        nand->bbt[badblock / 4] |=
1069                                0x03 << ((badblock % 4) * 2);
1070                        mtd->ecc_stats.badblocks++;
1071                        dev_notice(doc->dev, "factory-marked bad block: %d\n",
1072                                   badblock);
1073                }
1074        }
1075 exit:
1076        kfree(buf);
1077        return 0;
1078}
1079
1080static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1081{
1082        /*
1083         * Mark a block as bad.  Bad blocks are marked in the oob area of the
1084         * first page of the block.  The default scan_bbt() in the nand
1085         * infrastructure code works fine for building the memory-based bbt
1086         * during initialization, as does the nand infrastructure function that
1087         * checks if a block is bad by reading the bbt.  This function replaces
1088         * the nand default because writes to oob-only are not supported.
1089         */
1090
1091        int ret, i;
1092        uint8_t *buf;
1093        struct nand_chip *nand = mtd->priv;
1094        struct docg4_priv *doc = nand->priv;
1095        struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1096        int block = (int)(ofs >> nand->bbt_erase_shift);
1097        int page = (int)(ofs >> nand->page_shift);
1098        uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1099
1100        dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1101
1102        if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1103                dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1104                         __func__, ofs);
1105
1106        /* allocate blank buffer for page data */
1107        buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1108        if (buf == NULL)
1109                return -ENOMEM;
1110
1111        /* update bbt in memory */
1112        nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2);
1113
1114        /* write bit-wise negation of pattern to oob buffer */
1115        memset(nand->oob_poi, 0xff, mtd->oobsize);
1116        for (i = 0; i < bbtd->len; i++)
1117                nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1118
1119        /* write first page of block */
1120        write_page_prologue(mtd, g4_addr);
1121        docg4_write_page(mtd, nand, buf, 1);
1122        ret = pageprog(mtd);
1123        if (!ret)
1124                mtd->ecc_stats.badblocks++;
1125
1126        kfree(buf);
1127
1128        return ret;
1129}
1130
1131static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1132{
1133        /* only called when module_param ignore_badblocks is set */
1134        return 0;
1135}
1136
1137static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1138{
1139        /*
1140         * Put the device into "deep power-down" mode.  Note that CE# must be
1141         * deasserted for this to take effect.  The xscale, e.g., can be
1142         * configured to float this signal when the processor enters power-down,
1143         * and a suitable pull-up ensures its deassertion.
1144         */
1145
1146        int i;
1147        uint8_t pwr_down;
1148        struct docg4_priv *doc = platform_get_drvdata(pdev);
1149        void __iomem *docptr = doc->virtadr;
1150
1151        dev_dbg(doc->dev, "%s...\n", __func__);
1152
1153        /* poll the register that tells us we're ready to go to sleep */
1154        for (i = 0; i < 10; i++) {
1155                pwr_down = readb(docptr + DOC_POWERMODE);
1156                if (pwr_down & DOC_POWERDOWN_READY)
1157                        break;
1158                usleep_range(1000, 4000);
1159        }
1160
1161        if (pwr_down & DOC_POWERDOWN_READY) {
1162                dev_err(doc->dev, "suspend failed; "
1163                        "timeout polling DOC_POWERDOWN_READY\n");
1164                return -EIO;
1165        }
1166
1167        writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1168               docptr + DOC_ASICMODE);
1169        writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1170               docptr + DOC_ASICMODECONFIRM);
1171
1172        write_nop(docptr);
1173
1174        return 0;
1175}
1176
1177static int docg4_resume(struct platform_device *pdev)
1178{
1179
1180        /*
1181         * Exit power-down.  Twelve consecutive reads of the address below
1182         * accomplishes this, assuming CE# has been asserted.
1183         */
1184
1185        struct docg4_priv *doc = platform_get_drvdata(pdev);
1186        void __iomem *docptr = doc->virtadr;
1187        int i;
1188
1189        dev_dbg(doc->dev, "%s...\n", __func__);
1190
1191        for (i = 0; i < 12; i++)
1192                readb(docptr + 0x1fff);
1193
1194        return 0;
1195}
1196
1197static void __init init_mtd_structs(struct mtd_info *mtd)
1198{
1199        /* initialize mtd and nand data structures */
1200
1201        /*
1202         * Note that some of the following initializations are not usually
1203         * required within a nand driver because they are performed by the nand
1204         * infrastructure code as part of nand_scan().  In this case they need
1205         * to be initialized here because we skip call to nand_scan_ident() (the
1206         * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1207         * because for this device the chip id is not read in the manner of a
1208         * standard nand device.  Unfortunately, nand_scan_ident() does other
1209         * things as well, such as call nand_set_defaults().
1210         */
1211
1212        struct nand_chip *nand = mtd->priv;
1213        struct docg4_priv *doc = nand->priv;
1214
1215        mtd->size = DOCG4_CHIP_SIZE;
1216        mtd->name = "Msys_Diskonchip_G4";
1217        mtd->writesize = DOCG4_PAGE_SIZE;
1218        mtd->erasesize = DOCG4_BLOCK_SIZE;
1219        mtd->oobsize = DOCG4_OOB_SIZE;
1220        nand->chipsize = DOCG4_CHIP_SIZE;
1221        nand->chip_shift = DOCG4_CHIP_SHIFT;
1222        nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1223        nand->chip_delay = 20;
1224        nand->page_shift = DOCG4_PAGE_SHIFT;
1225        nand->pagemask = 0x3ffff;
1226        nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1227        nand->badblockbits = 8;
1228        nand->ecc.layout = &docg4_oobinfo;
1229        nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1230        nand->ecc.size = DOCG4_PAGE_SIZE;
1231        nand->ecc.prepad = 8;
1232        nand->ecc.bytes = 8;
1233        nand->ecc.strength = DOCG4_T;
1234        nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1235        nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1236        nand->controller = &nand->hwcontrol;
1237        spin_lock_init(&nand->controller->lock);
1238        init_waitqueue_head(&nand->controller->wq);
1239
1240        /* methods */
1241        nand->cmdfunc = docg4_command;
1242        nand->waitfunc = docg4_wait;
1243        nand->select_chip = docg4_select_chip;
1244        nand->read_byte = docg4_read_byte;
1245        nand->block_markbad = docg4_block_markbad;
1246        nand->read_buf = docg4_read_buf;
1247        nand->write_buf = docg4_write_buf16;
1248        nand->scan_bbt = nand_default_bbt;
1249        nand->erase_cmd = docg4_erase_block;
1250        nand->ecc.read_page = docg4_read_page;
1251        nand->ecc.write_page = docg4_write_page;
1252        nand->ecc.read_page_raw = docg4_read_page_raw;
1253        nand->ecc.write_page_raw = docg4_write_page_raw;
1254        nand->ecc.read_oob = docg4_read_oob;
1255        nand->ecc.write_oob = docg4_write_oob;
1256
1257        /*
1258         * The way the nand infrastructure code is written, a memory-based bbt
1259         * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1260         * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1261         * scan and define a dummy block_bad() which always returns 0.
1262         */
1263        if (ignore_badblocks) {
1264                nand->options |= NAND_SKIP_BBTSCAN;
1265                nand->block_bad = docg4_block_neverbad;
1266        }
1267
1268}
1269
1270static int __init read_id_reg(struct mtd_info *mtd)
1271{
1272        struct nand_chip *nand = mtd->priv;
1273        struct docg4_priv *doc = nand->priv;
1274        void __iomem *docptr = doc->virtadr;
1275        uint16_t id1, id2;
1276
1277        /* check for presence of g4 chip by reading id registers */
1278        id1 = readw(docptr + DOC_CHIPID);
1279        id1 = readw(docptr + DOCG4_MYSTERY_REG);
1280        id2 = readw(docptr + DOC_CHIPID_INV);
1281        id2 = readw(docptr + DOCG4_MYSTERY_REG);
1282
1283        if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1284                dev_info(doc->dev,
1285                         "NAND device: 128MiB Diskonchip G4 detected\n");
1286                return 0;
1287        }
1288
1289        return -ENODEV;
1290}
1291
1292static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1293
1294static int __init probe_docg4(struct platform_device *pdev)
1295{
1296        struct mtd_info *mtd;
1297        struct nand_chip *nand;
1298        void __iomem *virtadr;
1299        struct docg4_priv *doc;
1300        int len, retval;
1301        struct resource *r;
1302        struct device *dev = &pdev->dev;
1303
1304        r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1305        if (r == NULL) {
1306                dev_err(dev, "no io memory resource defined!\n");
1307                return -ENODEV;
1308        }
1309
1310        virtadr = ioremap(r->start, resource_size(r));
1311        if (!virtadr) {
1312                dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1313                return -EIO;
1314        }
1315
1316        len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1317                sizeof(struct docg4_priv);
1318        mtd = kzalloc(len, GFP_KERNEL);
1319        if (mtd == NULL) {
1320                retval = -ENOMEM;
1321                goto fail;
1322        }
1323        nand = (struct nand_chip *) (mtd + 1);
1324        doc = (struct docg4_priv *) (nand + 1);
1325        mtd->priv = nand;
1326        nand->priv = doc;
1327        mtd->owner = THIS_MODULE;
1328        doc->virtadr = virtadr;
1329        doc->dev = dev;
1330
1331        init_mtd_structs(mtd);
1332
1333        /* initialize kernel bch algorithm */
1334        doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1335        if (doc->bch == NULL) {
1336                retval = -EINVAL;
1337                goto fail;
1338        }
1339
1340        platform_set_drvdata(pdev, doc);
1341
1342        reset(mtd);
1343        retval = read_id_reg(mtd);
1344        if (retval == -ENODEV) {
1345                dev_warn(dev, "No diskonchip G4 device found.\n");
1346                goto fail;
1347        }
1348
1349        retval = nand_scan_tail(mtd);
1350        if (retval)
1351                goto fail;
1352
1353        retval = read_factory_bbt(mtd);
1354        if (retval)
1355                goto fail;
1356
1357        retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1358        if (retval)
1359                goto fail;
1360
1361        doc->mtd = mtd;
1362        return 0;
1363
1364 fail:
1365        iounmap(virtadr);
1366        if (mtd) {
1367                /* re-declarations avoid compiler warning */
1368                struct nand_chip *nand = mtd->priv;
1369                struct docg4_priv *doc = nand->priv;
1370                nand_release(mtd); /* deletes partitions and mtd devices */
1371                platform_set_drvdata(pdev, NULL);
1372                free_bch(doc->bch);
1373                kfree(mtd);
1374        }
1375
1376        return retval;
1377}
1378
1379static int __exit cleanup_docg4(struct platform_device *pdev)
1380{
1381        struct docg4_priv *doc = platform_get_drvdata(pdev);
1382        nand_release(doc->mtd);
1383        platform_set_drvdata(pdev, NULL);
1384        free_bch(doc->bch);
1385        kfree(doc->mtd);
1386        iounmap(doc->virtadr);
1387        return 0;
1388}
1389
1390static struct platform_driver docg4_driver = {
1391        .driver         = {
1392                .name   = "docg4",
1393                .owner  = THIS_MODULE,
1394        },
1395        .suspend        = docg4_suspend,
1396        .resume         = docg4_resume,
1397        .remove         = __exit_p(cleanup_docg4),
1398};
1399
1400module_platform_driver_probe(docg4_driver, probe_docg4);
1401
1402MODULE_LICENSE("GPL");
1403MODULE_AUTHOR("Mike Dunn");
1404MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1405