linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  drivers/mtd/nand.c
   3 *
   4 *  Overview:
   5 *   This is the generic MTD driver for NAND flash devices. It should be
   6 *   capable of working with almost all NAND chips currently available.
   7 *
   8 *      Additional technical information is available on
   9 *      http://www.linux-mtd.infradead.org/doc/nand.html
  10 *
  11 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  12 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  13 *
  14 *  Credits:
  15 *      David Woodhouse for adding multichip support
  16 *
  17 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  18 *      rework for 2K page size chips
  19 *
  20 *  TODO:
  21 *      Enable cached programming for 2k page size chips
  22 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  23 *      if we have HW ECC support.
  24 *      BBT table is not serialized, has to be fixed
  25 *
  26 * This program is free software; you can redistribute it and/or modify
  27 * it under the terms of the GNU General Public License version 2 as
  28 * published by the Free Software Foundation.
  29 *
  30 */
  31
  32#include <linux/module.h>
  33#include <linux/delay.h>
  34#include <linux/errno.h>
  35#include <linux/err.h>
  36#include <linux/sched.h>
  37#include <linux/slab.h>
  38#include <linux/types.h>
  39#include <linux/mtd/mtd.h>
  40#include <linux/mtd/nand.h>
  41#include <linux/mtd/nand_ecc.h>
  42#include <linux/mtd/nand_bch.h>
  43#include <linux/interrupt.h>
  44#include <linux/bitops.h>
  45#include <linux/leds.h>
  46#include <linux/io.h>
  47#include <linux/mtd/partitions.h>
  48
  49/* Define default oob placement schemes for large and small page devices */
  50static struct nand_ecclayout nand_oob_8 = {
  51        .eccbytes = 3,
  52        .eccpos = {0, 1, 2},
  53        .oobfree = {
  54                {.offset = 3,
  55                 .length = 2},
  56                {.offset = 6,
  57                 .length = 2} }
  58};
  59
  60static struct nand_ecclayout nand_oob_16 = {
  61        .eccbytes = 6,
  62        .eccpos = {0, 1, 2, 3, 6, 7},
  63        .oobfree = {
  64                {.offset = 8,
  65                 . length = 8} }
  66};
  67
  68static struct nand_ecclayout nand_oob_64 = {
  69        .eccbytes = 24,
  70        .eccpos = {
  71                   40, 41, 42, 43, 44, 45, 46, 47,
  72                   48, 49, 50, 51, 52, 53, 54, 55,
  73                   56, 57, 58, 59, 60, 61, 62, 63},
  74        .oobfree = {
  75                {.offset = 2,
  76                 .length = 38} }
  77};
  78
  79static struct nand_ecclayout nand_oob_128 = {
  80        .eccbytes = 48,
  81        .eccpos = {
  82                   80, 81, 82, 83, 84, 85, 86, 87,
  83                   88, 89, 90, 91, 92, 93, 94, 95,
  84                   96, 97, 98, 99, 100, 101, 102, 103,
  85                   104, 105, 106, 107, 108, 109, 110, 111,
  86                   112, 113, 114, 115, 116, 117, 118, 119,
  87                   120, 121, 122, 123, 124, 125, 126, 127},
  88        .oobfree = {
  89                {.offset = 2,
  90                 .length = 78} }
  91};
  92
  93static int nand_get_device(struct mtd_info *mtd, int new_state);
  94
  95static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
  96                             struct mtd_oob_ops *ops);
  97
  98/*
  99 * For devices which display every fart in the system on a separate LED. Is
 100 * compiled away when LED support is disabled.
 101 */
 102DEFINE_LED_TRIGGER(nand_led_trigger);
 103
 104static int check_offs_len(struct mtd_info *mtd,
 105                                        loff_t ofs, uint64_t len)
 106{
 107        struct nand_chip *chip = mtd->priv;
 108        int ret = 0;
 109
 110        /* Start address must align on block boundary */
 111        if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
 112                pr_debug("%s: unaligned address\n", __func__);
 113                ret = -EINVAL;
 114        }
 115
 116        /* Length must align on block boundary */
 117        if (len & ((1 << chip->phys_erase_shift) - 1)) {
 118                pr_debug("%s: length not block aligned\n", __func__);
 119                ret = -EINVAL;
 120        }
 121
 122        return ret;
 123}
 124
 125/**
 126 * nand_release_device - [GENERIC] release chip
 127 * @mtd: MTD device structure
 128 *
 129 * Release chip lock and wake up anyone waiting on the device.
 130 */
 131static void nand_release_device(struct mtd_info *mtd)
 132{
 133        struct nand_chip *chip = mtd->priv;
 134
 135        /* Release the controller and the chip */
 136        spin_lock(&chip->controller->lock);
 137        chip->controller->active = NULL;
 138        chip->state = FL_READY;
 139        wake_up(&chip->controller->wq);
 140        spin_unlock(&chip->controller->lock);
 141}
 142
 143/**
 144 * nand_read_byte - [DEFAULT] read one byte from the chip
 145 * @mtd: MTD device structure
 146 *
 147 * Default read function for 8bit buswidth
 148 */
 149static uint8_t nand_read_byte(struct mtd_info *mtd)
 150{
 151        struct nand_chip *chip = mtd->priv;
 152        return readb(chip->IO_ADDR_R);
 153}
 154
 155/**
 156 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 157 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
 158 * @mtd: MTD device structure
 159 *
 160 * Default read function for 16bit buswidth with endianness conversion.
 161 *
 162 */
 163static uint8_t nand_read_byte16(struct mtd_info *mtd)
 164{
 165        struct nand_chip *chip = mtd->priv;
 166        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 167}
 168
 169/**
 170 * nand_read_word - [DEFAULT] read one word from the chip
 171 * @mtd: MTD device structure
 172 *
 173 * Default read function for 16bit buswidth without endianness conversion.
 174 */
 175static u16 nand_read_word(struct mtd_info *mtd)
 176{
 177        struct nand_chip *chip = mtd->priv;
 178        return readw(chip->IO_ADDR_R);
 179}
 180
 181/**
 182 * nand_select_chip - [DEFAULT] control CE line
 183 * @mtd: MTD device structure
 184 * @chipnr: chipnumber to select, -1 for deselect
 185 *
 186 * Default select function for 1 chip devices.
 187 */
 188static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 189{
 190        struct nand_chip *chip = mtd->priv;
 191
 192        switch (chipnr) {
 193        case -1:
 194                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 195                break;
 196        case 0:
 197                break;
 198
 199        default:
 200                BUG();
 201        }
 202}
 203
 204/**
 205 * nand_write_buf - [DEFAULT] write buffer to chip
 206 * @mtd: MTD device structure
 207 * @buf: data buffer
 208 * @len: number of bytes to write
 209 *
 210 * Default write function for 8bit buswidth.
 211 */
 212static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 213{
 214        int i;
 215        struct nand_chip *chip = mtd->priv;
 216
 217        for (i = 0; i < len; i++)
 218                writeb(buf[i], chip->IO_ADDR_W);
 219}
 220
 221/**
 222 * nand_read_buf - [DEFAULT] read chip data into buffer
 223 * @mtd: MTD device structure
 224 * @buf: buffer to store date
 225 * @len: number of bytes to read
 226 *
 227 * Default read function for 8bit buswidth.
 228 */
 229static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 230{
 231        int i;
 232        struct nand_chip *chip = mtd->priv;
 233
 234        for (i = 0; i < len; i++)
 235                buf[i] = readb(chip->IO_ADDR_R);
 236}
 237
 238/**
 239 * nand_write_buf16 - [DEFAULT] write buffer to chip
 240 * @mtd: MTD device structure
 241 * @buf: data buffer
 242 * @len: number of bytes to write
 243 *
 244 * Default write function for 16bit buswidth.
 245 */
 246static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 247{
 248        int i;
 249        struct nand_chip *chip = mtd->priv;
 250        u16 *p = (u16 *) buf;
 251        len >>= 1;
 252
 253        for (i = 0; i < len; i++)
 254                writew(p[i], chip->IO_ADDR_W);
 255
 256}
 257
 258/**
 259 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 260 * @mtd: MTD device structure
 261 * @buf: buffer to store date
 262 * @len: number of bytes to read
 263 *
 264 * Default read function for 16bit buswidth.
 265 */
 266static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 267{
 268        int i;
 269        struct nand_chip *chip = mtd->priv;
 270        u16 *p = (u16 *) buf;
 271        len >>= 1;
 272
 273        for (i = 0; i < len; i++)
 274                p[i] = readw(chip->IO_ADDR_R);
 275}
 276
 277/**
 278 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 279 * @mtd: MTD device structure
 280 * @ofs: offset from device start
 281 * @getchip: 0, if the chip is already selected
 282 *
 283 * Check, if the block is bad.
 284 */
 285static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 286{
 287        int page, chipnr, res = 0, i = 0;
 288        struct nand_chip *chip = mtd->priv;
 289        u16 bad;
 290
 291        if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 292                ofs += mtd->erasesize - mtd->writesize;
 293
 294        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 295
 296        if (getchip) {
 297                chipnr = (int)(ofs >> chip->chip_shift);
 298
 299                nand_get_device(mtd, FL_READING);
 300
 301                /* Select the NAND device */
 302                chip->select_chip(mtd, chipnr);
 303        }
 304
 305        do {
 306                if (chip->options & NAND_BUSWIDTH_16) {
 307                        chip->cmdfunc(mtd, NAND_CMD_READOOB,
 308                                        chip->badblockpos & 0xFE, page);
 309                        bad = cpu_to_le16(chip->read_word(mtd));
 310                        if (chip->badblockpos & 0x1)
 311                                bad >>= 8;
 312                        else
 313                                bad &= 0xFF;
 314                } else {
 315                        chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
 316                                        page);
 317                        bad = chip->read_byte(mtd);
 318                }
 319
 320                if (likely(chip->badblockbits == 8))
 321                        res = bad != 0xFF;
 322                else
 323                        res = hweight8(bad) < chip->badblockbits;
 324                ofs += mtd->writesize;
 325                page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 326                i++;
 327        } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
 328
 329        if (getchip) {
 330                chip->select_chip(mtd, -1);
 331                nand_release_device(mtd);
 332        }
 333
 334        return res;
 335}
 336
 337/**
 338 * nand_default_block_markbad - [DEFAULT] mark a block bad
 339 * @mtd: MTD device structure
 340 * @ofs: offset from device start
 341 *
 342 * This is the default implementation, which can be overridden by a hardware
 343 * specific driver. We try operations in the following order, according to our
 344 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
 345 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 346 *  (2) update in-memory BBT
 347 *  (3) write bad block marker to OOB area of affected block
 348 *  (4) update flash-based BBT
 349 * Note that we retain the first error encountered in (3) or (4), finish the
 350 * procedures, and dump the error in the end.
 351*/
 352static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 353{
 354        struct nand_chip *chip = mtd->priv;
 355        uint8_t buf[2] = { 0, 0 };
 356        int block, res, ret = 0, i = 0;
 357        int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
 358
 359        if (write_oob) {
 360                struct erase_info einfo;
 361
 362                /* Attempt erase before marking OOB */
 363                memset(&einfo, 0, sizeof(einfo));
 364                einfo.mtd = mtd;
 365                einfo.addr = ofs;
 366                einfo.len = 1 << chip->phys_erase_shift;
 367                nand_erase_nand(mtd, &einfo, 0);
 368        }
 369
 370        /* Get block number */
 371        block = (int)(ofs >> chip->bbt_erase_shift);
 372        /* Mark block bad in memory-based BBT */
 373        if (chip->bbt)
 374                chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 375
 376        /* Write bad block marker to OOB */
 377        if (write_oob) {
 378                struct mtd_oob_ops ops;
 379                loff_t wr_ofs = ofs;
 380
 381                nand_get_device(mtd, FL_WRITING);
 382
 383                ops.datbuf = NULL;
 384                ops.oobbuf = buf;
 385                ops.ooboffs = chip->badblockpos;
 386                if (chip->options & NAND_BUSWIDTH_16) {
 387                        ops.ooboffs &= ~0x01;
 388                        ops.len = ops.ooblen = 2;
 389                } else {
 390                        ops.len = ops.ooblen = 1;
 391                }
 392                ops.mode = MTD_OPS_PLACE_OOB;
 393
 394                /* Write to first/last page(s) if necessary */
 395                if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
 396                        wr_ofs += mtd->erasesize - mtd->writesize;
 397                do {
 398                        res = nand_do_write_oob(mtd, wr_ofs, &ops);
 399                        if (!ret)
 400                                ret = res;
 401
 402                        i++;
 403                        wr_ofs += mtd->writesize;
 404                } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
 405
 406                nand_release_device(mtd);
 407        }
 408
 409        /* Update flash-based bad block table */
 410        if (chip->bbt_options & NAND_BBT_USE_FLASH) {
 411                res = nand_update_bbt(mtd, ofs);
 412                if (!ret)
 413                        ret = res;
 414        }
 415
 416        if (!ret)
 417                mtd->ecc_stats.badblocks++;
 418
 419        return ret;
 420}
 421
 422/**
 423 * nand_check_wp - [GENERIC] check if the chip is write protected
 424 * @mtd: MTD device structure
 425 *
 426 * Check, if the device is write protected. The function expects, that the
 427 * device is already selected.
 428 */
 429static int nand_check_wp(struct mtd_info *mtd)
 430{
 431        struct nand_chip *chip = mtd->priv;
 432
 433        /* Broken xD cards report WP despite being writable */
 434        if (chip->options & NAND_BROKEN_XD)
 435                return 0;
 436
 437        /* Check the WP bit */
 438        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 439        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 440}
 441
 442/**
 443 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 444 * @mtd: MTD device structure
 445 * @ofs: offset from device start
 446 * @getchip: 0, if the chip is already selected
 447 * @allowbbt: 1, if its allowed to access the bbt area
 448 *
 449 * Check, if the block is bad. Either by reading the bad block table or
 450 * calling of the scan function.
 451 */
 452static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 453                               int allowbbt)
 454{
 455        struct nand_chip *chip = mtd->priv;
 456
 457        if (!chip->bbt)
 458                return chip->block_bad(mtd, ofs, getchip);
 459
 460        /* Return info from the table */
 461        return nand_isbad_bbt(mtd, ofs, allowbbt);
 462}
 463
 464/**
 465 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 466 * @mtd: MTD device structure
 467 * @timeo: Timeout
 468 *
 469 * Helper function for nand_wait_ready used when needing to wait in interrupt
 470 * context.
 471 */
 472static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 473{
 474        struct nand_chip *chip = mtd->priv;
 475        int i;
 476
 477        /* Wait for the device to get ready */
 478        for (i = 0; i < timeo; i++) {
 479                if (chip->dev_ready(mtd))
 480                        break;
 481                touch_softlockup_watchdog();
 482                mdelay(1);
 483        }
 484}
 485
 486/* Wait for the ready pin, after a command. The timeout is caught later. */
 487void nand_wait_ready(struct mtd_info *mtd)
 488{
 489        struct nand_chip *chip = mtd->priv;
 490        unsigned long timeo = jiffies + msecs_to_jiffies(20);
 491
 492        /* 400ms timeout */
 493        if (in_interrupt() || oops_in_progress)
 494                return panic_nand_wait_ready(mtd, 400);
 495
 496        led_trigger_event(nand_led_trigger, LED_FULL);
 497        /* Wait until command is processed or timeout occurs */
 498        do {
 499                if (chip->dev_ready(mtd))
 500                        break;
 501                touch_softlockup_watchdog();
 502        } while (time_before(jiffies, timeo));
 503        led_trigger_event(nand_led_trigger, LED_OFF);
 504}
 505EXPORT_SYMBOL_GPL(nand_wait_ready);
 506
 507/**
 508 * nand_command - [DEFAULT] Send command to NAND device
 509 * @mtd: MTD device structure
 510 * @command: the command to be sent
 511 * @column: the column address for this command, -1 if none
 512 * @page_addr: the page address for this command, -1 if none
 513 *
 514 * Send command to NAND device. This function is used for small page devices
 515 * (512 Bytes per page).
 516 */
 517static void nand_command(struct mtd_info *mtd, unsigned int command,
 518                         int column, int page_addr)
 519{
 520        register struct nand_chip *chip = mtd->priv;
 521        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 522
 523        /* Write out the command to the device */
 524        if (command == NAND_CMD_SEQIN) {
 525                int readcmd;
 526
 527                if (column >= mtd->writesize) {
 528                        /* OOB area */
 529                        column -= mtd->writesize;
 530                        readcmd = NAND_CMD_READOOB;
 531                } else if (column < 256) {
 532                        /* First 256 bytes --> READ0 */
 533                        readcmd = NAND_CMD_READ0;
 534                } else {
 535                        column -= 256;
 536                        readcmd = NAND_CMD_READ1;
 537                }
 538                chip->cmd_ctrl(mtd, readcmd, ctrl);
 539                ctrl &= ~NAND_CTRL_CHANGE;
 540        }
 541        chip->cmd_ctrl(mtd, command, ctrl);
 542
 543        /* Address cycle, when necessary */
 544        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 545        /* Serially input address */
 546        if (column != -1) {
 547                /* Adjust columns for 16 bit buswidth */
 548                if (chip->options & NAND_BUSWIDTH_16)
 549                        column >>= 1;
 550                chip->cmd_ctrl(mtd, column, ctrl);
 551                ctrl &= ~NAND_CTRL_CHANGE;
 552        }
 553        if (page_addr != -1) {
 554                chip->cmd_ctrl(mtd, page_addr, ctrl);
 555                ctrl &= ~NAND_CTRL_CHANGE;
 556                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 557                /* One more address cycle for devices > 32MiB */
 558                if (chip->chipsize > (32 << 20))
 559                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 560        }
 561        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 562
 563        /*
 564         * Program and erase have their own busy handlers status and sequential
 565         * in needs no delay
 566         */
 567        switch (command) {
 568
 569        case NAND_CMD_PAGEPROG:
 570        case NAND_CMD_ERASE1:
 571        case NAND_CMD_ERASE2:
 572        case NAND_CMD_SEQIN:
 573        case NAND_CMD_STATUS:
 574                return;
 575
 576        case NAND_CMD_RESET:
 577                if (chip->dev_ready)
 578                        break;
 579                udelay(chip->chip_delay);
 580                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 581                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 582                chip->cmd_ctrl(mtd,
 583                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 584                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 585                                ;
 586                return;
 587
 588                /* This applies to read commands */
 589        default:
 590                /*
 591                 * If we don't have access to the busy pin, we apply the given
 592                 * command delay
 593                 */
 594                if (!chip->dev_ready) {
 595                        udelay(chip->chip_delay);
 596                        return;
 597                }
 598        }
 599        /*
 600         * Apply this short delay always to ensure that we do wait tWB in
 601         * any case on any machine.
 602         */
 603        ndelay(100);
 604
 605        nand_wait_ready(mtd);
 606}
 607
 608/**
 609 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 610 * @mtd: MTD device structure
 611 * @command: the command to be sent
 612 * @column: the column address for this command, -1 if none
 613 * @page_addr: the page address for this command, -1 if none
 614 *
 615 * Send command to NAND device. This is the version for the new large page
 616 * devices. We don't have the separate regions as we have in the small page
 617 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
 618 */
 619static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 620                            int column, int page_addr)
 621{
 622        register struct nand_chip *chip = mtd->priv;
 623
 624        /* Emulate NAND_CMD_READOOB */
 625        if (command == NAND_CMD_READOOB) {
 626                column += mtd->writesize;
 627                command = NAND_CMD_READ0;
 628        }
 629
 630        /* Command latch cycle */
 631        chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 632
 633        if (column != -1 || page_addr != -1) {
 634                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 635
 636                /* Serially input address */
 637                if (column != -1) {
 638                        /* Adjust columns for 16 bit buswidth */
 639                        if (chip->options & NAND_BUSWIDTH_16)
 640                                column >>= 1;
 641                        chip->cmd_ctrl(mtd, column, ctrl);
 642                        ctrl &= ~NAND_CTRL_CHANGE;
 643                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 644                }
 645                if (page_addr != -1) {
 646                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 647                        chip->cmd_ctrl(mtd, page_addr >> 8,
 648                                       NAND_NCE | NAND_ALE);
 649                        /* One more address cycle for devices > 128MiB */
 650                        if (chip->chipsize > (128 << 20))
 651                                chip->cmd_ctrl(mtd, page_addr >> 16,
 652                                               NAND_NCE | NAND_ALE);
 653                }
 654        }
 655        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 656
 657        /*
 658         * Program and erase have their own busy handlers status, sequential
 659         * in, and deplete1 need no delay.
 660         */
 661        switch (command) {
 662
 663        case NAND_CMD_CACHEDPROG:
 664        case NAND_CMD_PAGEPROG:
 665        case NAND_CMD_ERASE1:
 666        case NAND_CMD_ERASE2:
 667        case NAND_CMD_SEQIN:
 668        case NAND_CMD_RNDIN:
 669        case NAND_CMD_STATUS:
 670                return;
 671
 672        case NAND_CMD_RESET:
 673                if (chip->dev_ready)
 674                        break;
 675                udelay(chip->chip_delay);
 676                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 677                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 678                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 679                               NAND_NCE | NAND_CTRL_CHANGE);
 680                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 681                                ;
 682                return;
 683
 684        case NAND_CMD_RNDOUT:
 685                /* No ready / busy check necessary */
 686                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 687                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 688                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 689                               NAND_NCE | NAND_CTRL_CHANGE);
 690                return;
 691
 692        case NAND_CMD_READ0:
 693                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 694                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 695                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 696                               NAND_NCE | NAND_CTRL_CHANGE);
 697
 698                /* This applies to read commands */
 699        default:
 700                /*
 701                 * If we don't have access to the busy pin, we apply the given
 702                 * command delay.
 703                 */
 704                if (!chip->dev_ready) {
 705                        udelay(chip->chip_delay);
 706                        return;
 707                }
 708        }
 709
 710        /*
 711         * Apply this short delay always to ensure that we do wait tWB in
 712         * any case on any machine.
 713         */
 714        ndelay(100);
 715
 716        nand_wait_ready(mtd);
 717}
 718
 719/**
 720 * panic_nand_get_device - [GENERIC] Get chip for selected access
 721 * @chip: the nand chip descriptor
 722 * @mtd: MTD device structure
 723 * @new_state: the state which is requested
 724 *
 725 * Used when in panic, no locks are taken.
 726 */
 727static void panic_nand_get_device(struct nand_chip *chip,
 728                      struct mtd_info *mtd, int new_state)
 729{
 730        /* Hardware controller shared among independent devices */
 731        chip->controller->active = chip;
 732        chip->state = new_state;
 733}
 734
 735/**
 736 * nand_get_device - [GENERIC] Get chip for selected access
 737 * @mtd: MTD device structure
 738 * @new_state: the state which is requested
 739 *
 740 * Get the device and lock it for exclusive access
 741 */
 742static int
 743nand_get_device(struct mtd_info *mtd, int new_state)
 744{
 745        struct nand_chip *chip = mtd->priv;
 746        spinlock_t *lock = &chip->controller->lock;
 747        wait_queue_head_t *wq = &chip->controller->wq;
 748        DECLARE_WAITQUEUE(wait, current);
 749retry:
 750        spin_lock(lock);
 751
 752        /* Hardware controller shared among independent devices */
 753        if (!chip->controller->active)
 754                chip->controller->active = chip;
 755
 756        if (chip->controller->active == chip && chip->state == FL_READY) {
 757                chip->state = new_state;
 758                spin_unlock(lock);
 759                return 0;
 760        }
 761        if (new_state == FL_PM_SUSPENDED) {
 762                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 763                        chip->state = FL_PM_SUSPENDED;
 764                        spin_unlock(lock);
 765                        return 0;
 766                }
 767        }
 768        set_current_state(TASK_UNINTERRUPTIBLE);
 769        add_wait_queue(wq, &wait);
 770        spin_unlock(lock);
 771        schedule();
 772        remove_wait_queue(wq, &wait);
 773        goto retry;
 774}
 775
 776/**
 777 * panic_nand_wait - [GENERIC] wait until the command is done
 778 * @mtd: MTD device structure
 779 * @chip: NAND chip structure
 780 * @timeo: timeout
 781 *
 782 * Wait for command done. This is a helper function for nand_wait used when
 783 * we are in interrupt context. May happen when in panic and trying to write
 784 * an oops through mtdoops.
 785 */
 786static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 787                            unsigned long timeo)
 788{
 789        int i;
 790        for (i = 0; i < timeo; i++) {
 791                if (chip->dev_ready) {
 792                        if (chip->dev_ready(mtd))
 793                                break;
 794                } else {
 795                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 796                                break;
 797                }
 798                mdelay(1);
 799        }
 800}
 801
 802/**
 803 * nand_wait - [DEFAULT] wait until the command is done
 804 * @mtd: MTD device structure
 805 * @chip: NAND chip structure
 806 *
 807 * Wait for command done. This applies to erase and program only. Erase can
 808 * take up to 400ms and program up to 20ms according to general NAND and
 809 * SmartMedia specs.
 810 */
 811static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 812{
 813
 814        int status, state = chip->state;
 815        unsigned long timeo = (state == FL_ERASING ? 400 : 20);
 816
 817        led_trigger_event(nand_led_trigger, LED_FULL);
 818
 819        /*
 820         * Apply this short delay always to ensure that we do wait tWB in any
 821         * case on any machine.
 822         */
 823        ndelay(100);
 824
 825        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 826
 827        if (in_interrupt() || oops_in_progress)
 828                panic_nand_wait(mtd, chip, timeo);
 829        else {
 830                timeo = jiffies + msecs_to_jiffies(timeo);
 831                while (time_before(jiffies, timeo)) {
 832                        if (chip->dev_ready) {
 833                                if (chip->dev_ready(mtd))
 834                                        break;
 835                        } else {
 836                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
 837                                        break;
 838                        }
 839                        cond_resched();
 840                }
 841        }
 842        led_trigger_event(nand_led_trigger, LED_OFF);
 843
 844        status = (int)chip->read_byte(mtd);
 845        /* This can happen if in case of timeout or buggy dev_ready */
 846        WARN_ON(!(status & NAND_STATUS_READY));
 847        return status;
 848}
 849
 850/**
 851 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 852 * @mtd: mtd info
 853 * @ofs: offset to start unlock from
 854 * @len: length to unlock
 855 * @invert: when = 0, unlock the range of blocks within the lower and
 856 *                    upper boundary address
 857 *          when = 1, unlock the range of blocks outside the boundaries
 858 *                    of the lower and upper boundary address
 859 *
 860 * Returs unlock status.
 861 */
 862static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 863                                        uint64_t len, int invert)
 864{
 865        int ret = 0;
 866        int status, page;
 867        struct nand_chip *chip = mtd->priv;
 868
 869        /* Submit address of first page to unlock */
 870        page = ofs >> chip->page_shift;
 871        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 872
 873        /* Submit address of last page to unlock */
 874        page = (ofs + len) >> chip->page_shift;
 875        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 876                                (page | invert) & chip->pagemask);
 877
 878        /* Call wait ready function */
 879        status = chip->waitfunc(mtd, chip);
 880        /* See if device thinks it succeeded */
 881        if (status & NAND_STATUS_FAIL) {
 882                pr_debug("%s: error status = 0x%08x\n",
 883                                        __func__, status);
 884                ret = -EIO;
 885        }
 886
 887        return ret;
 888}
 889
 890/**
 891 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 892 * @mtd: mtd info
 893 * @ofs: offset to start unlock from
 894 * @len: length to unlock
 895 *
 896 * Returns unlock status.
 897 */
 898int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 899{
 900        int ret = 0;
 901        int chipnr;
 902        struct nand_chip *chip = mtd->priv;
 903
 904        pr_debug("%s: start = 0x%012llx, len = %llu\n",
 905                        __func__, (unsigned long long)ofs, len);
 906
 907        if (check_offs_len(mtd, ofs, len))
 908                ret = -EINVAL;
 909
 910        /* Align to last block address if size addresses end of the device */
 911        if (ofs + len == mtd->size)
 912                len -= mtd->erasesize;
 913
 914        nand_get_device(mtd, FL_UNLOCKING);
 915
 916        /* Shift to get chip number */
 917        chipnr = ofs >> chip->chip_shift;
 918
 919        chip->select_chip(mtd, chipnr);
 920
 921        /* Check, if it is write protected */
 922        if (nand_check_wp(mtd)) {
 923                pr_debug("%s: device is write protected!\n",
 924                                        __func__);
 925                ret = -EIO;
 926                goto out;
 927        }
 928
 929        ret = __nand_unlock(mtd, ofs, len, 0);
 930
 931out:
 932        chip->select_chip(mtd, -1);
 933        nand_release_device(mtd);
 934
 935        return ret;
 936}
 937EXPORT_SYMBOL(nand_unlock);
 938
 939/**
 940 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 941 * @mtd: mtd info
 942 * @ofs: offset to start unlock from
 943 * @len: length to unlock
 944 *
 945 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 946 * have this feature, but it allows only to lock all blocks, not for specified
 947 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 948 * now.
 949 *
 950 * Returns lock status.
 951 */
 952int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 953{
 954        int ret = 0;
 955        int chipnr, status, page;
 956        struct nand_chip *chip = mtd->priv;
 957
 958        pr_debug("%s: start = 0x%012llx, len = %llu\n",
 959                        __func__, (unsigned long long)ofs, len);
 960
 961        if (check_offs_len(mtd, ofs, len))
 962                ret = -EINVAL;
 963
 964        nand_get_device(mtd, FL_LOCKING);
 965
 966        /* Shift to get chip number */
 967        chipnr = ofs >> chip->chip_shift;
 968
 969        chip->select_chip(mtd, chipnr);
 970
 971        /* Check, if it is write protected */
 972        if (nand_check_wp(mtd)) {
 973                pr_debug("%s: device is write protected!\n",
 974                                        __func__);
 975                status = MTD_ERASE_FAILED;
 976                ret = -EIO;
 977                goto out;
 978        }
 979
 980        /* Submit address of first page to lock */
 981        page = ofs >> chip->page_shift;
 982        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
 983
 984        /* Call wait ready function */
 985        status = chip->waitfunc(mtd, chip);
 986        /* See if device thinks it succeeded */
 987        if (status & NAND_STATUS_FAIL) {
 988                pr_debug("%s: error status = 0x%08x\n",
 989                                        __func__, status);
 990                ret = -EIO;
 991                goto out;
 992        }
 993
 994        ret = __nand_unlock(mtd, ofs, len, 0x1);
 995
 996out:
 997        chip->select_chip(mtd, -1);
 998        nand_release_device(mtd);
 999
1000        return ret;
1001}
1002EXPORT_SYMBOL(nand_lock);
1003
1004/**
1005 * nand_read_page_raw - [INTERN] read raw page data without ecc
1006 * @mtd: mtd info structure
1007 * @chip: nand chip info structure
1008 * @buf: buffer to store read data
1009 * @oob_required: caller requires OOB data read to chip->oob_poi
1010 * @page: page number to read
1011 *
1012 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1013 */
1014static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1015                              uint8_t *buf, int oob_required, int page)
1016{
1017        chip->read_buf(mtd, buf, mtd->writesize);
1018        if (oob_required)
1019                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1020        return 0;
1021}
1022
1023/**
1024 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1025 * @mtd: mtd info structure
1026 * @chip: nand chip info structure
1027 * @buf: buffer to store read data
1028 * @oob_required: caller requires OOB data read to chip->oob_poi
1029 * @page: page number to read
1030 *
1031 * We need a special oob layout and handling even when OOB isn't used.
1032 */
1033static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1034                                       struct nand_chip *chip, uint8_t *buf,
1035                                       int oob_required, int page)
1036{
1037        int eccsize = chip->ecc.size;
1038        int eccbytes = chip->ecc.bytes;
1039        uint8_t *oob = chip->oob_poi;
1040        int steps, size;
1041
1042        for (steps = chip->ecc.steps; steps > 0; steps--) {
1043                chip->read_buf(mtd, buf, eccsize);
1044                buf += eccsize;
1045
1046                if (chip->ecc.prepad) {
1047                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1048                        oob += chip->ecc.prepad;
1049                }
1050
1051                chip->read_buf(mtd, oob, eccbytes);
1052                oob += eccbytes;
1053
1054                if (chip->ecc.postpad) {
1055                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1056                        oob += chip->ecc.postpad;
1057                }
1058        }
1059
1060        size = mtd->oobsize - (oob - chip->oob_poi);
1061        if (size)
1062                chip->read_buf(mtd, oob, size);
1063
1064        return 0;
1065}
1066
1067/**
1068 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1069 * @mtd: mtd info structure
1070 * @chip: nand chip info structure
1071 * @buf: buffer to store read data
1072 * @oob_required: caller requires OOB data read to chip->oob_poi
1073 * @page: page number to read
1074 */
1075static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1076                                uint8_t *buf, int oob_required, int page)
1077{
1078        int i, eccsize = chip->ecc.size;
1079        int eccbytes = chip->ecc.bytes;
1080        int eccsteps = chip->ecc.steps;
1081        uint8_t *p = buf;
1082        uint8_t *ecc_calc = chip->buffers->ecccalc;
1083        uint8_t *ecc_code = chip->buffers->ecccode;
1084        uint32_t *eccpos = chip->ecc.layout->eccpos;
1085        unsigned int max_bitflips = 0;
1086
1087        chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1088
1089        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1090                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1091
1092        for (i = 0; i < chip->ecc.total; i++)
1093                ecc_code[i] = chip->oob_poi[eccpos[i]];
1094
1095        eccsteps = chip->ecc.steps;
1096        p = buf;
1097
1098        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1099                int stat;
1100
1101                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1102                if (stat < 0) {
1103                        mtd->ecc_stats.failed++;
1104                } else {
1105                        mtd->ecc_stats.corrected += stat;
1106                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1107                }
1108        }
1109        return max_bitflips;
1110}
1111
1112/**
1113 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @data_offs: offset of requested data within the page
1117 * @readlen: data length
1118 * @bufpoi: buffer to store read data
1119 */
1120static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1121                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1122{
1123        int start_step, end_step, num_steps;
1124        uint32_t *eccpos = chip->ecc.layout->eccpos;
1125        uint8_t *p;
1126        int data_col_addr, i, gaps = 0;
1127        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1128        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1129        int index = 0;
1130        unsigned int max_bitflips = 0;
1131
1132        /* Column address within the page aligned to ECC size (256bytes) */
1133        start_step = data_offs / chip->ecc.size;
1134        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1135        num_steps = end_step - start_step + 1;
1136
1137        /* Data size aligned to ECC ecc.size */
1138        datafrag_len = num_steps * chip->ecc.size;
1139        eccfrag_len = num_steps * chip->ecc.bytes;
1140
1141        data_col_addr = start_step * chip->ecc.size;
1142        /* If we read not a page aligned data */
1143        if (data_col_addr != 0)
1144                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1145
1146        p = bufpoi + data_col_addr;
1147        chip->read_buf(mtd, p, datafrag_len);
1148
1149        /* Calculate ECC */
1150        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1151                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1152
1153        /*
1154         * The performance is faster if we position offsets according to
1155         * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1156         */
1157        for (i = 0; i < eccfrag_len - 1; i++) {
1158                if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1159                        eccpos[i + start_step * chip->ecc.bytes + 1]) {
1160                        gaps = 1;
1161                        break;
1162                }
1163        }
1164        if (gaps) {
1165                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1166                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1167        } else {
1168                /*
1169                 * Send the command to read the particular ECC bytes take care
1170                 * about buswidth alignment in read_buf.
1171                 */
1172                index = start_step * chip->ecc.bytes;
1173
1174                aligned_pos = eccpos[index] & ~(busw - 1);
1175                aligned_len = eccfrag_len;
1176                if (eccpos[index] & (busw - 1))
1177                        aligned_len++;
1178                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1179                        aligned_len++;
1180
1181                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1182                                        mtd->writesize + aligned_pos, -1);
1183                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1184        }
1185
1186        for (i = 0; i < eccfrag_len; i++)
1187                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1188
1189        p = bufpoi + data_col_addr;
1190        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1191                int stat;
1192
1193                stat = chip->ecc.correct(mtd, p,
1194                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1195                if (stat < 0) {
1196                        mtd->ecc_stats.failed++;
1197                } else {
1198                        mtd->ecc_stats.corrected += stat;
1199                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1200                }
1201        }
1202        return max_bitflips;
1203}
1204
1205/**
1206 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1207 * @mtd: mtd info structure
1208 * @chip: nand chip info structure
1209 * @buf: buffer to store read data
1210 * @oob_required: caller requires OOB data read to chip->oob_poi
1211 * @page: page number to read
1212 *
1213 * Not for syndrome calculating ECC controllers which need a special oob layout.
1214 */
1215static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1216                                uint8_t *buf, int oob_required, int page)
1217{
1218        int i, eccsize = chip->ecc.size;
1219        int eccbytes = chip->ecc.bytes;
1220        int eccsteps = chip->ecc.steps;
1221        uint8_t *p = buf;
1222        uint8_t *ecc_calc = chip->buffers->ecccalc;
1223        uint8_t *ecc_code = chip->buffers->ecccode;
1224        uint32_t *eccpos = chip->ecc.layout->eccpos;
1225        unsigned int max_bitflips = 0;
1226
1227        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1228                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1229                chip->read_buf(mtd, p, eccsize);
1230                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1231        }
1232        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1233
1234        for (i = 0; i < chip->ecc.total; i++)
1235                ecc_code[i] = chip->oob_poi[eccpos[i]];
1236
1237        eccsteps = chip->ecc.steps;
1238        p = buf;
1239
1240        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1241                int stat;
1242
1243                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1244                if (stat < 0) {
1245                        mtd->ecc_stats.failed++;
1246                } else {
1247                        mtd->ecc_stats.corrected += stat;
1248                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1249                }
1250        }
1251        return max_bitflips;
1252}
1253
1254/**
1255 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1256 * @mtd: mtd info structure
1257 * @chip: nand chip info structure
1258 * @buf: buffer to store read data
1259 * @oob_required: caller requires OOB data read to chip->oob_poi
1260 * @page: page number to read
1261 *
1262 * Hardware ECC for large page chips, require OOB to be read first. For this
1263 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1264 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1265 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1266 * the data area, by overwriting the NAND manufacturer bad block markings.
1267 */
1268static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1269        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1270{
1271        int i, eccsize = chip->ecc.size;
1272        int eccbytes = chip->ecc.bytes;
1273        int eccsteps = chip->ecc.steps;
1274        uint8_t *p = buf;
1275        uint8_t *ecc_code = chip->buffers->ecccode;
1276        uint32_t *eccpos = chip->ecc.layout->eccpos;
1277        uint8_t *ecc_calc = chip->buffers->ecccalc;
1278        unsigned int max_bitflips = 0;
1279
1280        /* Read the OOB area first */
1281        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1282        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1283        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1284
1285        for (i = 0; i < chip->ecc.total; i++)
1286                ecc_code[i] = chip->oob_poi[eccpos[i]];
1287
1288        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1289                int stat;
1290
1291                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1292                chip->read_buf(mtd, p, eccsize);
1293                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1294
1295                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1296                if (stat < 0) {
1297                        mtd->ecc_stats.failed++;
1298                } else {
1299                        mtd->ecc_stats.corrected += stat;
1300                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1301                }
1302        }
1303        return max_bitflips;
1304}
1305
1306/**
1307 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1308 * @mtd: mtd info structure
1309 * @chip: nand chip info structure
1310 * @buf: buffer to store read data
1311 * @oob_required: caller requires OOB data read to chip->oob_poi
1312 * @page: page number to read
1313 *
1314 * The hw generator calculates the error syndrome automatically. Therefore we
1315 * need a special oob layout and handling.
1316 */
1317static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1318                                   uint8_t *buf, int oob_required, int page)
1319{
1320        int i, eccsize = chip->ecc.size;
1321        int eccbytes = chip->ecc.bytes;
1322        int eccsteps = chip->ecc.steps;
1323        uint8_t *p = buf;
1324        uint8_t *oob = chip->oob_poi;
1325        unsigned int max_bitflips = 0;
1326
1327        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1328                int stat;
1329
1330                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1331                chip->read_buf(mtd, p, eccsize);
1332
1333                if (chip->ecc.prepad) {
1334                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1335                        oob += chip->ecc.prepad;
1336                }
1337
1338                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1339                chip->read_buf(mtd, oob, eccbytes);
1340                stat = chip->ecc.correct(mtd, p, oob, NULL);
1341
1342                if (stat < 0) {
1343                        mtd->ecc_stats.failed++;
1344                } else {
1345                        mtd->ecc_stats.corrected += stat;
1346                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1347                }
1348
1349                oob += eccbytes;
1350
1351                if (chip->ecc.postpad) {
1352                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1353                        oob += chip->ecc.postpad;
1354                }
1355        }
1356
1357        /* Calculate remaining oob bytes */
1358        i = mtd->oobsize - (oob - chip->oob_poi);
1359        if (i)
1360                chip->read_buf(mtd, oob, i);
1361
1362        return max_bitflips;
1363}
1364
1365/**
1366 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1367 * @chip: nand chip structure
1368 * @oob: oob destination address
1369 * @ops: oob ops structure
1370 * @len: size of oob to transfer
1371 */
1372static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1373                                  struct mtd_oob_ops *ops, size_t len)
1374{
1375        switch (ops->mode) {
1376
1377        case MTD_OPS_PLACE_OOB:
1378        case MTD_OPS_RAW:
1379                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1380                return oob + len;
1381
1382        case MTD_OPS_AUTO_OOB: {
1383                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1384                uint32_t boffs = 0, roffs = ops->ooboffs;
1385                size_t bytes = 0;
1386
1387                for (; free->length && len; free++, len -= bytes) {
1388                        /* Read request not from offset 0? */
1389                        if (unlikely(roffs)) {
1390                                if (roffs >= free->length) {
1391                                        roffs -= free->length;
1392                                        continue;
1393                                }
1394                                boffs = free->offset + roffs;
1395                                bytes = min_t(size_t, len,
1396                                              (free->length - roffs));
1397                                roffs = 0;
1398                        } else {
1399                                bytes = min_t(size_t, len, free->length);
1400                                boffs = free->offset;
1401                        }
1402                        memcpy(oob, chip->oob_poi + boffs, bytes);
1403                        oob += bytes;
1404                }
1405                return oob;
1406        }
1407        default:
1408                BUG();
1409        }
1410        return NULL;
1411}
1412
1413/**
1414 * nand_do_read_ops - [INTERN] Read data with ECC
1415 * @mtd: MTD device structure
1416 * @from: offset to read from
1417 * @ops: oob ops structure
1418 *
1419 * Internal function. Called with chip held.
1420 */
1421static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1422                            struct mtd_oob_ops *ops)
1423{
1424        int chipnr, page, realpage, col, bytes, aligned, oob_required;
1425        struct nand_chip *chip = mtd->priv;
1426        struct mtd_ecc_stats stats;
1427        int ret = 0;
1428        uint32_t readlen = ops->len;
1429        uint32_t oobreadlen = ops->ooblen;
1430        uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1431                mtd->oobavail : mtd->oobsize;
1432
1433        uint8_t *bufpoi, *oob, *buf;
1434        unsigned int max_bitflips = 0;
1435
1436        stats = mtd->ecc_stats;
1437
1438        chipnr = (int)(from >> chip->chip_shift);
1439        chip->select_chip(mtd, chipnr);
1440
1441        realpage = (int)(from >> chip->page_shift);
1442        page = realpage & chip->pagemask;
1443
1444        col = (int)(from & (mtd->writesize - 1));
1445
1446        buf = ops->datbuf;
1447        oob = ops->oobbuf;
1448        oob_required = oob ? 1 : 0;
1449
1450        while (1) {
1451                bytes = min(mtd->writesize - col, readlen);
1452                aligned = (bytes == mtd->writesize);
1453
1454                /* Is the current page in the buffer? */
1455                if (realpage != chip->pagebuf || oob) {
1456                        bufpoi = aligned ? buf : chip->buffers->databuf;
1457
1458                        chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1459
1460                        /*
1461                         * Now read the page into the buffer.  Absent an error,
1462                         * the read methods return max bitflips per ecc step.
1463                         */
1464                        if (unlikely(ops->mode == MTD_OPS_RAW))
1465                                ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1466                                                              oob_required,
1467                                                              page);
1468                        else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1469                                 !oob)
1470                                ret = chip->ecc.read_subpage(mtd, chip,
1471                                                        col, bytes, bufpoi);
1472                        else
1473                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1474                                                          oob_required, page);
1475                        if (ret < 0) {
1476                                if (!aligned)
1477                                        /* Invalidate page cache */
1478                                        chip->pagebuf = -1;
1479                                break;
1480                        }
1481
1482                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
1483
1484                        /* Transfer not aligned data */
1485                        if (!aligned) {
1486                                if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1487                                    !(mtd->ecc_stats.failed - stats.failed) &&
1488                                    (ops->mode != MTD_OPS_RAW)) {
1489                                        chip->pagebuf = realpage;
1490                                        chip->pagebuf_bitflips = ret;
1491                                } else {
1492                                        /* Invalidate page cache */
1493                                        chip->pagebuf = -1;
1494                                }
1495                                memcpy(buf, chip->buffers->databuf + col, bytes);
1496                        }
1497
1498                        buf += bytes;
1499
1500                        if (unlikely(oob)) {
1501                                int toread = min(oobreadlen, max_oobsize);
1502
1503                                if (toread) {
1504                                        oob = nand_transfer_oob(chip,
1505                                                oob, ops, toread);
1506                                        oobreadlen -= toread;
1507                                }
1508                        }
1509
1510                        if (chip->options & NAND_NEED_READRDY) {
1511                                /* Apply delay or wait for ready/busy pin */
1512                                if (!chip->dev_ready)
1513                                        udelay(chip->chip_delay);
1514                                else
1515                                        nand_wait_ready(mtd);
1516                        }
1517                } else {
1518                        memcpy(buf, chip->buffers->databuf + col, bytes);
1519                        buf += bytes;
1520                        max_bitflips = max_t(unsigned int, max_bitflips,
1521                                             chip->pagebuf_bitflips);
1522                }
1523
1524                readlen -= bytes;
1525
1526                if (!readlen)
1527                        break;
1528
1529                /* For subsequent reads align to page boundary */
1530                col = 0;
1531                /* Increment page address */
1532                realpage++;
1533
1534                page = realpage & chip->pagemask;
1535                /* Check, if we cross a chip boundary */
1536                if (!page) {
1537                        chipnr++;
1538                        chip->select_chip(mtd, -1);
1539                        chip->select_chip(mtd, chipnr);
1540                }
1541        }
1542        chip->select_chip(mtd, -1);
1543
1544        ops->retlen = ops->len - (size_t) readlen;
1545        if (oob)
1546                ops->oobretlen = ops->ooblen - oobreadlen;
1547
1548        if (ret < 0)
1549                return ret;
1550
1551        if (mtd->ecc_stats.failed - stats.failed)
1552                return -EBADMSG;
1553
1554        return max_bitflips;
1555}
1556
1557/**
1558 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1559 * @mtd: MTD device structure
1560 * @from: offset to read from
1561 * @len: number of bytes to read
1562 * @retlen: pointer to variable to store the number of read bytes
1563 * @buf: the databuffer to put data
1564 *
1565 * Get hold of the chip and call nand_do_read.
1566 */
1567static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1568                     size_t *retlen, uint8_t *buf)
1569{
1570        struct mtd_oob_ops ops;
1571        int ret;
1572
1573        nand_get_device(mtd, FL_READING);
1574        ops.len = len;
1575        ops.datbuf = buf;
1576        ops.oobbuf = NULL;
1577        ops.mode = MTD_OPS_PLACE_OOB;
1578        ret = nand_do_read_ops(mtd, from, &ops);
1579        *retlen = ops.retlen;
1580        nand_release_device(mtd);
1581        return ret;
1582}
1583
1584/**
1585 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1586 * @mtd: mtd info structure
1587 * @chip: nand chip info structure
1588 * @page: page number to read
1589 */
1590static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1591                             int page)
1592{
1593        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1594        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1595        return 0;
1596}
1597
1598/**
1599 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1600 *                          with syndromes
1601 * @mtd: mtd info structure
1602 * @chip: nand chip info structure
1603 * @page: page number to read
1604 */
1605static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1606                                  int page)
1607{
1608        uint8_t *buf = chip->oob_poi;
1609        int length = mtd->oobsize;
1610        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1611        int eccsize = chip->ecc.size;
1612        uint8_t *bufpoi = buf;
1613        int i, toread, sndrnd = 0, pos;
1614
1615        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1616        for (i = 0; i < chip->ecc.steps; i++) {
1617                if (sndrnd) {
1618                        pos = eccsize + i * (eccsize + chunk);
1619                        if (mtd->writesize > 512)
1620                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1621                        else
1622                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1623                } else
1624                        sndrnd = 1;
1625                toread = min_t(int, length, chunk);
1626                chip->read_buf(mtd, bufpoi, toread);
1627                bufpoi += toread;
1628                length -= toread;
1629        }
1630        if (length > 0)
1631                chip->read_buf(mtd, bufpoi, length);
1632
1633        return 0;
1634}
1635
1636/**
1637 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1638 * @mtd: mtd info structure
1639 * @chip: nand chip info structure
1640 * @page: page number to write
1641 */
1642static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1643                              int page)
1644{
1645        int status = 0;
1646        const uint8_t *buf = chip->oob_poi;
1647        int length = mtd->oobsize;
1648
1649        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1650        chip->write_buf(mtd, buf, length);
1651        /* Send command to program the OOB data */
1652        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1653
1654        status = chip->waitfunc(mtd, chip);
1655
1656        return status & NAND_STATUS_FAIL ? -EIO : 0;
1657}
1658
1659/**
1660 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1661 *                           with syndrome - only for large page flash
1662 * @mtd: mtd info structure
1663 * @chip: nand chip info structure
1664 * @page: page number to write
1665 */
1666static int nand_write_oob_syndrome(struct mtd_info *mtd,
1667                                   struct nand_chip *chip, int page)
1668{
1669        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1670        int eccsize = chip->ecc.size, length = mtd->oobsize;
1671        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1672        const uint8_t *bufpoi = chip->oob_poi;
1673
1674        /*
1675         * data-ecc-data-ecc ... ecc-oob
1676         * or
1677         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1678         */
1679        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1680                pos = steps * (eccsize + chunk);
1681                steps = 0;
1682        } else
1683                pos = eccsize;
1684
1685        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1686        for (i = 0; i < steps; i++) {
1687                if (sndcmd) {
1688                        if (mtd->writesize <= 512) {
1689                                uint32_t fill = 0xFFFFFFFF;
1690
1691                                len = eccsize;
1692                                while (len > 0) {
1693                                        int num = min_t(int, len, 4);
1694                                        chip->write_buf(mtd, (uint8_t *)&fill,
1695                                                        num);
1696                                        len -= num;
1697                                }
1698                        } else {
1699                                pos = eccsize + i * (eccsize + chunk);
1700                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1701                        }
1702                } else
1703                        sndcmd = 1;
1704                len = min_t(int, length, chunk);
1705                chip->write_buf(mtd, bufpoi, len);
1706                bufpoi += len;
1707                length -= len;
1708        }
1709        if (length > 0)
1710                chip->write_buf(mtd, bufpoi, length);
1711
1712        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1713        status = chip->waitfunc(mtd, chip);
1714
1715        return status & NAND_STATUS_FAIL ? -EIO : 0;
1716}
1717
1718/**
1719 * nand_do_read_oob - [INTERN] NAND read out-of-band
1720 * @mtd: MTD device structure
1721 * @from: offset to read from
1722 * @ops: oob operations description structure
1723 *
1724 * NAND read out-of-band data from the spare area.
1725 */
1726static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1727                            struct mtd_oob_ops *ops)
1728{
1729        int page, realpage, chipnr;
1730        struct nand_chip *chip = mtd->priv;
1731        struct mtd_ecc_stats stats;
1732        int readlen = ops->ooblen;
1733        int len;
1734        uint8_t *buf = ops->oobbuf;
1735        int ret = 0;
1736
1737        pr_debug("%s: from = 0x%08Lx, len = %i\n",
1738                        __func__, (unsigned long long)from, readlen);
1739
1740        stats = mtd->ecc_stats;
1741
1742        if (ops->mode == MTD_OPS_AUTO_OOB)
1743                len = chip->ecc.layout->oobavail;
1744        else
1745                len = mtd->oobsize;
1746
1747        if (unlikely(ops->ooboffs >= len)) {
1748                pr_debug("%s: attempt to start read outside oob\n",
1749                                __func__);
1750                return -EINVAL;
1751        }
1752
1753        /* Do not allow reads past end of device */
1754        if (unlikely(from >= mtd->size ||
1755                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1756                                        (from >> chip->page_shift)) * len)) {
1757                pr_debug("%s: attempt to read beyond end of device\n",
1758                                __func__);
1759                return -EINVAL;
1760        }
1761
1762        chipnr = (int)(from >> chip->chip_shift);
1763        chip->select_chip(mtd, chipnr);
1764
1765        /* Shift to get page */
1766        realpage = (int)(from >> chip->page_shift);
1767        page = realpage & chip->pagemask;
1768
1769        while (1) {
1770                if (ops->mode == MTD_OPS_RAW)
1771                        ret = chip->ecc.read_oob_raw(mtd, chip, page);
1772                else
1773                        ret = chip->ecc.read_oob(mtd, chip, page);
1774
1775                if (ret < 0)
1776                        break;
1777
1778                len = min(len, readlen);
1779                buf = nand_transfer_oob(chip, buf, ops, len);
1780
1781                if (chip->options & NAND_NEED_READRDY) {
1782                        /* Apply delay or wait for ready/busy pin */
1783                        if (!chip->dev_ready)
1784                                udelay(chip->chip_delay);
1785                        else
1786                                nand_wait_ready(mtd);
1787                }
1788
1789                readlen -= len;
1790                if (!readlen)
1791                        break;
1792
1793                /* Increment page address */
1794                realpage++;
1795
1796                page = realpage & chip->pagemask;
1797                /* Check, if we cross a chip boundary */
1798                if (!page) {
1799                        chipnr++;
1800                        chip->select_chip(mtd, -1);
1801                        chip->select_chip(mtd, chipnr);
1802                }
1803        }
1804        chip->select_chip(mtd, -1);
1805
1806        ops->oobretlen = ops->ooblen - readlen;
1807
1808        if (ret < 0)
1809                return ret;
1810
1811        if (mtd->ecc_stats.failed - stats.failed)
1812                return -EBADMSG;
1813
1814        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1815}
1816
1817/**
1818 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1819 * @mtd: MTD device structure
1820 * @from: offset to read from
1821 * @ops: oob operation description structure
1822 *
1823 * NAND read data and/or out-of-band data.
1824 */
1825static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1826                         struct mtd_oob_ops *ops)
1827{
1828        int ret = -ENOTSUPP;
1829
1830        ops->retlen = 0;
1831
1832        /* Do not allow reads past end of device */
1833        if (ops->datbuf && (from + ops->len) > mtd->size) {
1834                pr_debug("%s: attempt to read beyond end of device\n",
1835                                __func__);
1836                return -EINVAL;
1837        }
1838
1839        nand_get_device(mtd, FL_READING);
1840
1841        switch (ops->mode) {
1842        case MTD_OPS_PLACE_OOB:
1843        case MTD_OPS_AUTO_OOB:
1844        case MTD_OPS_RAW:
1845                break;
1846
1847        default:
1848                goto out;
1849        }
1850
1851        if (!ops->datbuf)
1852                ret = nand_do_read_oob(mtd, from, ops);
1853        else
1854                ret = nand_do_read_ops(mtd, from, ops);
1855
1856out:
1857        nand_release_device(mtd);
1858        return ret;
1859}
1860
1861
1862/**
1863 * nand_write_page_raw - [INTERN] raw page write function
1864 * @mtd: mtd info structure
1865 * @chip: nand chip info structure
1866 * @buf: data buffer
1867 * @oob_required: must write chip->oob_poi to OOB
1868 *
1869 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1870 */
1871static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1872                                const uint8_t *buf, int oob_required)
1873{
1874        chip->write_buf(mtd, buf, mtd->writesize);
1875        if (oob_required)
1876                chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1877
1878        return 0;
1879}
1880
1881/**
1882 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1883 * @mtd: mtd info structure
1884 * @chip: nand chip info structure
1885 * @buf: data buffer
1886 * @oob_required: must write chip->oob_poi to OOB
1887 *
1888 * We need a special oob layout and handling even when ECC isn't checked.
1889 */
1890static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1891                                        struct nand_chip *chip,
1892                                        const uint8_t *buf, int oob_required)
1893{
1894        int eccsize = chip->ecc.size;
1895        int eccbytes = chip->ecc.bytes;
1896        uint8_t *oob = chip->oob_poi;
1897        int steps, size;
1898
1899        for (steps = chip->ecc.steps; steps > 0; steps--) {
1900                chip->write_buf(mtd, buf, eccsize);
1901                buf += eccsize;
1902
1903                if (chip->ecc.prepad) {
1904                        chip->write_buf(mtd, oob, chip->ecc.prepad);
1905                        oob += chip->ecc.prepad;
1906                }
1907
1908                chip->read_buf(mtd, oob, eccbytes);
1909                oob += eccbytes;
1910
1911                if (chip->ecc.postpad) {
1912                        chip->write_buf(mtd, oob, chip->ecc.postpad);
1913                        oob += chip->ecc.postpad;
1914                }
1915        }
1916
1917        size = mtd->oobsize - (oob - chip->oob_poi);
1918        if (size)
1919                chip->write_buf(mtd, oob, size);
1920
1921        return 0;
1922}
1923/**
1924 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1925 * @mtd: mtd info structure
1926 * @chip: nand chip info structure
1927 * @buf: data buffer
1928 * @oob_required: must write chip->oob_poi to OOB
1929 */
1930static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1931                                  const uint8_t *buf, int oob_required)
1932{
1933        int i, eccsize = chip->ecc.size;
1934        int eccbytes = chip->ecc.bytes;
1935        int eccsteps = chip->ecc.steps;
1936        uint8_t *ecc_calc = chip->buffers->ecccalc;
1937        const uint8_t *p = buf;
1938        uint32_t *eccpos = chip->ecc.layout->eccpos;
1939
1940        /* Software ECC calculation */
1941        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1942                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1943
1944        for (i = 0; i < chip->ecc.total; i++)
1945                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1946
1947        return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1948}
1949
1950/**
1951 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1952 * @mtd: mtd info structure
1953 * @chip: nand chip info structure
1954 * @buf: data buffer
1955 * @oob_required: must write chip->oob_poi to OOB
1956 */
1957static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1958                                  const uint8_t *buf, int oob_required)
1959{
1960        int i, eccsize = chip->ecc.size;
1961        int eccbytes = chip->ecc.bytes;
1962        int eccsteps = chip->ecc.steps;
1963        uint8_t *ecc_calc = chip->buffers->ecccalc;
1964        const uint8_t *p = buf;
1965        uint32_t *eccpos = chip->ecc.layout->eccpos;
1966
1967        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1968                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1969                chip->write_buf(mtd, p, eccsize);
1970                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1971        }
1972
1973        for (i = 0; i < chip->ecc.total; i++)
1974                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1975
1976        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1977
1978        return 0;
1979}
1980
1981
1982/**
1983 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1984 * @mtd:        mtd info structure
1985 * @chip:       nand chip info structure
1986 * @column:     column address of subpage within the page
1987 * @data_len:   data length
1988 * @oob_required: must write chip->oob_poi to OOB
1989 */
1990static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1991                                struct nand_chip *chip, uint32_t offset,
1992                                uint32_t data_len, const uint8_t *data_buf,
1993                                int oob_required)
1994{
1995        uint8_t *oob_buf  = chip->oob_poi;
1996        uint8_t *ecc_calc = chip->buffers->ecccalc;
1997        int ecc_size      = chip->ecc.size;
1998        int ecc_bytes     = chip->ecc.bytes;
1999        int ecc_steps     = chip->ecc.steps;
2000        uint32_t *eccpos  = chip->ecc.layout->eccpos;
2001        uint32_t start_step = offset / ecc_size;
2002        uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2003        int oob_bytes       = mtd->oobsize / ecc_steps;
2004        int step, i;
2005
2006        for (step = 0; step < ecc_steps; step++) {
2007                /* configure controller for WRITE access */
2008                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2009
2010                /* write data (untouched subpages already masked by 0xFF) */
2011                chip->write_buf(mtd, data_buf, ecc_size);
2012
2013                /* mask ECC of un-touched subpages by padding 0xFF */
2014                if ((step < start_step) || (step > end_step))
2015                        memset(ecc_calc, 0xff, ecc_bytes);
2016                else
2017                        chip->ecc.calculate(mtd, data_buf, ecc_calc);
2018
2019                /* mask OOB of un-touched subpages by padding 0xFF */
2020                /* if oob_required, preserve OOB metadata of written subpage */
2021                if (!oob_required || (step < start_step) || (step > end_step))
2022                        memset(oob_buf, 0xff, oob_bytes);
2023
2024                data_buf += ecc_size;
2025                ecc_calc += ecc_bytes;
2026                oob_buf  += oob_bytes;
2027        }
2028
2029        /* copy calculated ECC for whole page to chip->buffer->oob */
2030        /* this include masked-value(0xFF) for unwritten subpages */
2031        ecc_calc = chip->buffers->ecccalc;
2032        for (i = 0; i < chip->ecc.total; i++)
2033                chip->oob_poi[eccpos[i]] = ecc_calc[i];
2034
2035        /* write OOB buffer to NAND device */
2036        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2037
2038        return 0;
2039}
2040
2041
2042/**
2043 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2044 * @mtd: mtd info structure
2045 * @chip: nand chip info structure
2046 * @buf: data buffer
2047 * @oob_required: must write chip->oob_poi to OOB
2048 *
2049 * The hw generator calculates the error syndrome automatically. Therefore we
2050 * need a special oob layout and handling.
2051 */
2052static int nand_write_page_syndrome(struct mtd_info *mtd,
2053                                    struct nand_chip *chip,
2054                                    const uint8_t *buf, int oob_required)
2055{
2056        int i, eccsize = chip->ecc.size;
2057        int eccbytes = chip->ecc.bytes;
2058        int eccsteps = chip->ecc.steps;
2059        const uint8_t *p = buf;
2060        uint8_t *oob = chip->oob_poi;
2061
2062        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2063
2064                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2065                chip->write_buf(mtd, p, eccsize);
2066
2067                if (chip->ecc.prepad) {
2068                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2069                        oob += chip->ecc.prepad;
2070                }
2071
2072                chip->ecc.calculate(mtd, p, oob);
2073                chip->write_buf(mtd, oob, eccbytes);
2074                oob += eccbytes;
2075
2076                if (chip->ecc.postpad) {
2077                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2078                        oob += chip->ecc.postpad;
2079                }
2080        }
2081
2082        /* Calculate remaining oob bytes */
2083        i = mtd->oobsize - (oob - chip->oob_poi);
2084        if (i)
2085                chip->write_buf(mtd, oob, i);
2086
2087        return 0;
2088}
2089
2090/**
2091 * nand_write_page - [REPLACEABLE] write one page
2092 * @mtd: MTD device structure
2093 * @chip: NAND chip descriptor
2094 * @offset: address offset within the page
2095 * @data_len: length of actual data to be written
2096 * @buf: the data to write
2097 * @oob_required: must write chip->oob_poi to OOB
2098 * @page: page number to write
2099 * @cached: cached programming
2100 * @raw: use _raw version of write_page
2101 */
2102static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2103                uint32_t offset, int data_len, const uint8_t *buf,
2104                int oob_required, int page, int cached, int raw)
2105{
2106        int status, subpage;
2107
2108        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2109                chip->ecc.write_subpage)
2110                subpage = offset || (data_len < mtd->writesize);
2111        else
2112                subpage = 0;
2113
2114        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2115
2116        if (unlikely(raw))
2117                status = chip->ecc.write_page_raw(mtd, chip, buf,
2118                                                        oob_required);
2119        else if (subpage)
2120                status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2121                                                         buf, oob_required);
2122        else
2123                status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2124
2125        if (status < 0)
2126                return status;
2127
2128        /*
2129         * Cached progamming disabled for now. Not sure if it's worth the
2130         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2131         */
2132        cached = 0;
2133
2134        if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2135
2136                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2137                status = chip->waitfunc(mtd, chip);
2138                /*
2139                 * See if operation failed and additional status checks are
2140                 * available.
2141                 */
2142                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2143                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2144                                               page);
2145
2146                if (status & NAND_STATUS_FAIL)
2147                        return -EIO;
2148        } else {
2149                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2150                status = chip->waitfunc(mtd, chip);
2151        }
2152
2153        return 0;
2154}
2155
2156/**
2157 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2158 * @mtd: MTD device structure
2159 * @oob: oob data buffer
2160 * @len: oob data write length
2161 * @ops: oob ops structure
2162 */
2163static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2164                              struct mtd_oob_ops *ops)
2165{
2166        struct nand_chip *chip = mtd->priv;
2167
2168        /*
2169         * Initialise to all 0xFF, to avoid the possibility of left over OOB
2170         * data from a previous OOB read.
2171         */
2172        memset(chip->oob_poi, 0xff, mtd->oobsize);
2173
2174        switch (ops->mode) {
2175
2176        case MTD_OPS_PLACE_OOB:
2177        case MTD_OPS_RAW:
2178                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2179                return oob + len;
2180
2181        case MTD_OPS_AUTO_OOB: {
2182                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2183                uint32_t boffs = 0, woffs = ops->ooboffs;
2184                size_t bytes = 0;
2185
2186                for (; free->length && len; free++, len -= bytes) {
2187                        /* Write request not from offset 0? */
2188                        if (unlikely(woffs)) {
2189                                if (woffs >= free->length) {
2190                                        woffs -= free->length;
2191                                        continue;
2192                                }
2193                                boffs = free->offset + woffs;
2194                                bytes = min_t(size_t, len,
2195                                              (free->length - woffs));
2196                                woffs = 0;
2197                        } else {
2198                                bytes = min_t(size_t, len, free->length);
2199                                boffs = free->offset;
2200                        }
2201                        memcpy(chip->oob_poi + boffs, oob, bytes);
2202                        oob += bytes;
2203                }
2204                return oob;
2205        }
2206        default:
2207                BUG();
2208        }
2209        return NULL;
2210}
2211
2212#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2213
2214/**
2215 * nand_do_write_ops - [INTERN] NAND write with ECC
2216 * @mtd: MTD device structure
2217 * @to: offset to write to
2218 * @ops: oob operations description structure
2219 *
2220 * NAND write with ECC.
2221 */
2222static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2223                             struct mtd_oob_ops *ops)
2224{
2225        int chipnr, realpage, page, blockmask, column;
2226        struct nand_chip *chip = mtd->priv;
2227        uint32_t writelen = ops->len;
2228
2229        uint32_t oobwritelen = ops->ooblen;
2230        uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2231                                mtd->oobavail : mtd->oobsize;
2232
2233        uint8_t *oob = ops->oobbuf;
2234        uint8_t *buf = ops->datbuf;
2235        int ret;
2236        int oob_required = oob ? 1 : 0;
2237
2238        ops->retlen = 0;
2239        if (!writelen)
2240                return 0;
2241
2242        /* Reject writes, which are not page aligned */
2243        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2244                pr_notice("%s: attempt to write non page aligned data\n",
2245                           __func__);
2246                return -EINVAL;
2247        }
2248
2249        column = to & (mtd->writesize - 1);
2250
2251        chipnr = (int)(to >> chip->chip_shift);
2252        chip->select_chip(mtd, chipnr);
2253
2254        /* Check, if it is write protected */
2255        if (nand_check_wp(mtd)) {
2256                ret = -EIO;
2257                goto err_out;
2258        }
2259
2260        realpage = (int)(to >> chip->page_shift);
2261        page = realpage & chip->pagemask;
2262        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2263
2264        /* Invalidate the page cache, when we write to the cached page */
2265        if (to <= (chip->pagebuf << chip->page_shift) &&
2266            (chip->pagebuf << chip->page_shift) < (to + ops->len))
2267                chip->pagebuf = -1;
2268
2269        /* Don't allow multipage oob writes with offset */
2270        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2271                ret = -EINVAL;
2272                goto err_out;
2273        }
2274
2275        while (1) {
2276                int bytes = mtd->writesize;
2277                int cached = writelen > bytes && page != blockmask;
2278                uint8_t *wbuf = buf;
2279
2280                /* Partial page write? */
2281                if (unlikely(column || writelen < (mtd->writesize - 1))) {
2282                        cached = 0;
2283                        bytes = min_t(int, bytes - column, (int) writelen);
2284                        chip->pagebuf = -1;
2285                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2286                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2287                        wbuf = chip->buffers->databuf;
2288                }
2289
2290                if (unlikely(oob)) {
2291                        size_t len = min(oobwritelen, oobmaxlen);
2292                        oob = nand_fill_oob(mtd, oob, len, ops);
2293                        oobwritelen -= len;
2294                } else {
2295                        /* We still need to erase leftover OOB data */
2296                        memset(chip->oob_poi, 0xff, mtd->oobsize);
2297                }
2298                ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2299                                        oob_required, page, cached,
2300                                        (ops->mode == MTD_OPS_RAW));
2301                if (ret)
2302                        break;
2303
2304                writelen -= bytes;
2305                if (!writelen)
2306                        break;
2307
2308                column = 0;
2309                buf += bytes;
2310                realpage++;
2311
2312                page = realpage & chip->pagemask;
2313                /* Check, if we cross a chip boundary */
2314                if (!page) {
2315                        chipnr++;
2316                        chip->select_chip(mtd, -1);
2317                        chip->select_chip(mtd, chipnr);
2318                }
2319        }
2320
2321        ops->retlen = ops->len - writelen;
2322        if (unlikely(oob))
2323                ops->oobretlen = ops->ooblen;
2324
2325err_out:
2326        chip->select_chip(mtd, -1);
2327        return ret;
2328}
2329
2330/**
2331 * panic_nand_write - [MTD Interface] NAND write with ECC
2332 * @mtd: MTD device structure
2333 * @to: offset to write to
2334 * @len: number of bytes to write
2335 * @retlen: pointer to variable to store the number of written bytes
2336 * @buf: the data to write
2337 *
2338 * NAND write with ECC. Used when performing writes in interrupt context, this
2339 * may for example be called by mtdoops when writing an oops while in panic.
2340 */
2341static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2342                            size_t *retlen, const uint8_t *buf)
2343{
2344        struct nand_chip *chip = mtd->priv;
2345        struct mtd_oob_ops ops;
2346        int ret;
2347
2348        /* Wait for the device to get ready */
2349        panic_nand_wait(mtd, chip, 400);
2350
2351        /* Grab the device */
2352        panic_nand_get_device(chip, mtd, FL_WRITING);
2353
2354        ops.len = len;
2355        ops.datbuf = (uint8_t *)buf;
2356        ops.oobbuf = NULL;
2357        ops.mode = MTD_OPS_PLACE_OOB;
2358
2359        ret = nand_do_write_ops(mtd, to, &ops);
2360
2361        *retlen = ops.retlen;
2362        return ret;
2363}
2364
2365/**
2366 * nand_write - [MTD Interface] NAND write with ECC
2367 * @mtd: MTD device structure
2368 * @to: offset to write to
2369 * @len: number of bytes to write
2370 * @retlen: pointer to variable to store the number of written bytes
2371 * @buf: the data to write
2372 *
2373 * NAND write with ECC.
2374 */
2375static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2376                          size_t *retlen, const uint8_t *buf)
2377{
2378        struct mtd_oob_ops ops;
2379        int ret;
2380
2381        nand_get_device(mtd, FL_WRITING);
2382        ops.len = len;
2383        ops.datbuf = (uint8_t *)buf;
2384        ops.oobbuf = NULL;
2385        ops.mode = MTD_OPS_PLACE_OOB;
2386        ret = nand_do_write_ops(mtd, to, &ops);
2387        *retlen = ops.retlen;
2388        nand_release_device(mtd);
2389        return ret;
2390}
2391
2392/**
2393 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2394 * @mtd: MTD device structure
2395 * @to: offset to write to
2396 * @ops: oob operation description structure
2397 *
2398 * NAND write out-of-band.
2399 */
2400static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2401                             struct mtd_oob_ops *ops)
2402{
2403        int chipnr, page, status, len;
2404        struct nand_chip *chip = mtd->priv;
2405
2406        pr_debug("%s: to = 0x%08x, len = %i\n",
2407                         __func__, (unsigned int)to, (int)ops->ooblen);
2408
2409        if (ops->mode == MTD_OPS_AUTO_OOB)
2410                len = chip->ecc.layout->oobavail;
2411        else
2412                len = mtd->oobsize;
2413
2414        /* Do not allow write past end of page */
2415        if ((ops->ooboffs + ops->ooblen) > len) {
2416                pr_debug("%s: attempt to write past end of page\n",
2417                                __func__);
2418                return -EINVAL;
2419        }
2420
2421        if (unlikely(ops->ooboffs >= len)) {
2422                pr_debug("%s: attempt to start write outside oob\n",
2423                                __func__);
2424                return -EINVAL;
2425        }
2426
2427        /* Do not allow write past end of device */
2428        if (unlikely(to >= mtd->size ||
2429                     ops->ooboffs + ops->ooblen >
2430                        ((mtd->size >> chip->page_shift) -
2431                         (to >> chip->page_shift)) * len)) {
2432                pr_debug("%s: attempt to write beyond end of device\n",
2433                                __func__);
2434                return -EINVAL;
2435        }
2436
2437        chipnr = (int)(to >> chip->chip_shift);
2438        chip->select_chip(mtd, chipnr);
2439
2440        /* Shift to get page */
2441        page = (int)(to >> chip->page_shift);
2442
2443        /*
2444         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2445         * of my DiskOnChip 2000 test units) will clear the whole data page too
2446         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2447         * it in the doc2000 driver in August 1999.  dwmw2.
2448         */
2449        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2450
2451        /* Check, if it is write protected */
2452        if (nand_check_wp(mtd)) {
2453                chip->select_chip(mtd, -1);
2454                return -EROFS;
2455        }
2456
2457        /* Invalidate the page cache, if we write to the cached page */
2458        if (page == chip->pagebuf)
2459                chip->pagebuf = -1;
2460
2461        nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2462
2463        if (ops->mode == MTD_OPS_RAW)
2464                status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2465        else
2466                status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2467
2468        chip->select_chip(mtd, -1);
2469
2470        if (status)
2471                return status;
2472
2473        ops->oobretlen = ops->ooblen;
2474
2475        return 0;
2476}
2477
2478/**
2479 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2480 * @mtd: MTD device structure
2481 * @to: offset to write to
2482 * @ops: oob operation description structure
2483 */
2484static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2485                          struct mtd_oob_ops *ops)
2486{
2487        int ret = -ENOTSUPP;
2488
2489        ops->retlen = 0;
2490
2491        /* Do not allow writes past end of device */
2492        if (ops->datbuf && (to + ops->len) > mtd->size) {
2493                pr_debug("%s: attempt to write beyond end of device\n",
2494                                __func__);
2495                return -EINVAL;
2496        }
2497
2498        nand_get_device(mtd, FL_WRITING);
2499
2500        switch (ops->mode) {
2501        case MTD_OPS_PLACE_OOB:
2502        case MTD_OPS_AUTO_OOB:
2503        case MTD_OPS_RAW:
2504                break;
2505
2506        default:
2507                goto out;
2508        }
2509
2510        if (!ops->datbuf)
2511                ret = nand_do_write_oob(mtd, to, ops);
2512        else
2513                ret = nand_do_write_ops(mtd, to, ops);
2514
2515out:
2516        nand_release_device(mtd);
2517        return ret;
2518}
2519
2520/**
2521 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2522 * @mtd: MTD device structure
2523 * @page: the page address of the block which will be erased
2524 *
2525 * Standard erase command for NAND chips.
2526 */
2527static void single_erase_cmd(struct mtd_info *mtd, int page)
2528{
2529        struct nand_chip *chip = mtd->priv;
2530        /* Send commands to erase a block */
2531        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2532        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2533}
2534
2535/**
2536 * nand_erase - [MTD Interface] erase block(s)
2537 * @mtd: MTD device structure
2538 * @instr: erase instruction
2539 *
2540 * Erase one ore more blocks.
2541 */
2542static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2543{
2544        return nand_erase_nand(mtd, instr, 0);
2545}
2546
2547/**
2548 * nand_erase_nand - [INTERN] erase block(s)
2549 * @mtd: MTD device structure
2550 * @instr: erase instruction
2551 * @allowbbt: allow erasing the bbt area
2552 *
2553 * Erase one ore more blocks.
2554 */
2555int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2556                    int allowbbt)
2557{
2558        int page, status, pages_per_block, ret, chipnr;
2559        struct nand_chip *chip = mtd->priv;
2560        loff_t len;
2561
2562        pr_debug("%s: start = 0x%012llx, len = %llu\n",
2563                        __func__, (unsigned long long)instr->addr,
2564                        (unsigned long long)instr->len);
2565
2566        if (check_offs_len(mtd, instr->addr, instr->len))
2567                return -EINVAL;
2568
2569        /* Grab the lock and see if the device is available */
2570        nand_get_device(mtd, FL_ERASING);
2571
2572        /* Shift to get first page */
2573        page = (int)(instr->addr >> chip->page_shift);
2574        chipnr = (int)(instr->addr >> chip->chip_shift);
2575
2576        /* Calculate pages in each block */
2577        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2578
2579        /* Select the NAND device */
2580        chip->select_chip(mtd, chipnr);
2581
2582        /* Check, if it is write protected */
2583        if (nand_check_wp(mtd)) {
2584                pr_debug("%s: device is write protected!\n",
2585                                __func__);
2586                instr->state = MTD_ERASE_FAILED;
2587                goto erase_exit;
2588        }
2589
2590        /* Loop through the pages */
2591        len = instr->len;
2592
2593        instr->state = MTD_ERASING;
2594
2595        while (len) {
2596                /* Check if we have a bad block, we do not erase bad blocks! */
2597                if (nand_block_checkbad(mtd, ((loff_t) page) <<
2598                                        chip->page_shift, 0, allowbbt)) {
2599                        pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2600                                    __func__, page);
2601                        instr->state = MTD_ERASE_FAILED;
2602                        goto erase_exit;
2603                }
2604
2605                /*
2606                 * Invalidate the page cache, if we erase the block which
2607                 * contains the current cached page.
2608                 */
2609                if (page <= chip->pagebuf && chip->pagebuf <
2610                    (page + pages_per_block))
2611                        chip->pagebuf = -1;
2612
2613                chip->erase_cmd(mtd, page & chip->pagemask);
2614
2615                status = chip->waitfunc(mtd, chip);
2616
2617                /*
2618                 * See if operation failed and additional status checks are
2619                 * available
2620                 */
2621                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2622                        status = chip->errstat(mtd, chip, FL_ERASING,
2623                                               status, page);
2624
2625                /* See if block erase succeeded */
2626                if (status & NAND_STATUS_FAIL) {
2627                        pr_debug("%s: failed erase, page 0x%08x\n",
2628                                        __func__, page);
2629                        instr->state = MTD_ERASE_FAILED;
2630                        instr->fail_addr =
2631                                ((loff_t)page << chip->page_shift);
2632                        goto erase_exit;
2633                }
2634
2635                /* Increment page address and decrement length */
2636                len -= (1 << chip->phys_erase_shift);
2637                page += pages_per_block;
2638
2639                /* Check, if we cross a chip boundary */
2640                if (len && !(page & chip->pagemask)) {
2641                        chipnr++;
2642                        chip->select_chip(mtd, -1);
2643                        chip->select_chip(mtd, chipnr);
2644                }
2645        }
2646        instr->state = MTD_ERASE_DONE;
2647
2648erase_exit:
2649
2650        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2651
2652        /* Deselect and wake up anyone waiting on the device */
2653        chip->select_chip(mtd, -1);
2654        nand_release_device(mtd);
2655
2656        /* Do call back function */
2657        if (!ret)
2658                mtd_erase_callback(instr);
2659
2660        /* Return more or less happy */
2661        return ret;
2662}
2663
2664/**
2665 * nand_sync - [MTD Interface] sync
2666 * @mtd: MTD device structure
2667 *
2668 * Sync is actually a wait for chip ready function.
2669 */
2670static void nand_sync(struct mtd_info *mtd)
2671{
2672        pr_debug("%s: called\n", __func__);
2673
2674        /* Grab the lock and see if the device is available */
2675        nand_get_device(mtd, FL_SYNCING);
2676        /* Release it and go back */
2677        nand_release_device(mtd);
2678}
2679
2680/**
2681 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2682 * @mtd: MTD device structure
2683 * @offs: offset relative to mtd start
2684 */
2685static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2686{
2687        return nand_block_checkbad(mtd, offs, 1, 0);
2688}
2689
2690/**
2691 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2692 * @mtd: MTD device structure
2693 * @ofs: offset relative to mtd start
2694 */
2695static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2696{
2697        struct nand_chip *chip = mtd->priv;
2698        int ret;
2699
2700        ret = nand_block_isbad(mtd, ofs);
2701        if (ret) {
2702                /* If it was bad already, return success and do nothing */
2703                if (ret > 0)
2704                        return 0;
2705                return ret;
2706        }
2707
2708        return chip->block_markbad(mtd, ofs);
2709}
2710
2711/**
2712 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2713 * @mtd: MTD device structure
2714 * @chip: nand chip info structure
2715 * @addr: feature address.
2716 * @subfeature_param: the subfeature parameters, a four bytes array.
2717 */
2718static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2719                        int addr, uint8_t *subfeature_param)
2720{
2721        int status;
2722
2723        if (!chip->onfi_version)
2724                return -EINVAL;
2725
2726        chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2727        chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2728        status = chip->waitfunc(mtd, chip);
2729        if (status & NAND_STATUS_FAIL)
2730                return -EIO;
2731        return 0;
2732}
2733
2734/**
2735 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2736 * @mtd: MTD device structure
2737 * @chip: nand chip info structure
2738 * @addr: feature address.
2739 * @subfeature_param: the subfeature parameters, a four bytes array.
2740 */
2741static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2742                        int addr, uint8_t *subfeature_param)
2743{
2744        if (!chip->onfi_version)
2745                return -EINVAL;
2746
2747        /* clear the sub feature parameters */
2748        memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2749
2750        chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2751        chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2752        return 0;
2753}
2754
2755/**
2756 * nand_suspend - [MTD Interface] Suspend the NAND flash
2757 * @mtd: MTD device structure
2758 */
2759static int nand_suspend(struct mtd_info *mtd)
2760{
2761        return nand_get_device(mtd, FL_PM_SUSPENDED);
2762}
2763
2764/**
2765 * nand_resume - [MTD Interface] Resume the NAND flash
2766 * @mtd: MTD device structure
2767 */
2768static void nand_resume(struct mtd_info *mtd)
2769{
2770        struct nand_chip *chip = mtd->priv;
2771
2772        if (chip->state == FL_PM_SUSPENDED)
2773                nand_release_device(mtd);
2774        else
2775                pr_err("%s called for a chip which is not in suspended state\n",
2776                        __func__);
2777}
2778
2779/* Set default functions */
2780static void nand_set_defaults(struct nand_chip *chip, int busw)
2781{
2782        /* check for proper chip_delay setup, set 20us if not */
2783        if (!chip->chip_delay)
2784                chip->chip_delay = 20;
2785
2786        /* check, if a user supplied command function given */
2787        if (chip->cmdfunc == NULL)
2788                chip->cmdfunc = nand_command;
2789
2790        /* check, if a user supplied wait function given */
2791        if (chip->waitfunc == NULL)
2792                chip->waitfunc = nand_wait;
2793
2794        if (!chip->select_chip)
2795                chip->select_chip = nand_select_chip;
2796        if (!chip->read_byte)
2797                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2798        if (!chip->read_word)
2799                chip->read_word = nand_read_word;
2800        if (!chip->block_bad)
2801                chip->block_bad = nand_block_bad;
2802        if (!chip->block_markbad)
2803                chip->block_markbad = nand_default_block_markbad;
2804        if (!chip->write_buf)
2805                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2806        if (!chip->read_buf)
2807                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2808        if (!chip->scan_bbt)
2809                chip->scan_bbt = nand_default_bbt;
2810
2811        if (!chip->controller) {
2812                chip->controller = &chip->hwcontrol;
2813                spin_lock_init(&chip->controller->lock);
2814                init_waitqueue_head(&chip->controller->wq);
2815        }
2816
2817}
2818
2819/* Sanitize ONFI strings so we can safely print them */
2820static void sanitize_string(uint8_t *s, size_t len)
2821{
2822        ssize_t i;
2823
2824        /* Null terminate */
2825        s[len - 1] = 0;
2826
2827        /* Remove non printable chars */
2828        for (i = 0; i < len - 1; i++) {
2829                if (s[i] < ' ' || s[i] > 127)
2830                        s[i] = '?';
2831        }
2832
2833        /* Remove trailing spaces */
2834        strim(s);
2835}
2836
2837static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2838{
2839        int i;
2840        while (len--) {
2841                crc ^= *p++ << 8;
2842                for (i = 0; i < 8; i++)
2843                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2844        }
2845
2846        return crc;
2847}
2848
2849/*
2850 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2851 */
2852static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2853                                        int *busw)
2854{
2855        struct nand_onfi_params *p = &chip->onfi_params;
2856        int i;
2857        int val;
2858
2859        /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2860        if (chip->options & NAND_BUSWIDTH_16) {
2861                pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2862                return 0;
2863        }
2864        /* Try ONFI for unknown chip or LP */
2865        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2866        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2867                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2868                return 0;
2869
2870        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2871        for (i = 0; i < 3; i++) {
2872                chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2873                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2874                                le16_to_cpu(p->crc)) {
2875                        pr_info("ONFI param page %d valid\n", i);
2876                        break;
2877                }
2878        }
2879
2880        if (i == 3)
2881                return 0;
2882
2883        /* Check version */
2884        val = le16_to_cpu(p->revision);
2885        if (val & (1 << 5))
2886                chip->onfi_version = 23;
2887        else if (val & (1 << 4))
2888                chip->onfi_version = 22;
2889        else if (val & (1 << 3))
2890                chip->onfi_version = 21;
2891        else if (val & (1 << 2))
2892                chip->onfi_version = 20;
2893        else if (val & (1 << 1))
2894                chip->onfi_version = 10;
2895
2896        if (!chip->onfi_version) {
2897                pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2898                return 0;
2899        }
2900
2901        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2902        sanitize_string(p->model, sizeof(p->model));
2903        if (!mtd->name)
2904                mtd->name = p->model;
2905        mtd->writesize = le32_to_cpu(p->byte_per_page);
2906        mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2907        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2908        chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2909        chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2910        *busw = 0;
2911        if (le16_to_cpu(p->features) & 1)
2912                *busw = NAND_BUSWIDTH_16;
2913
2914        pr_info("ONFI flash detected\n");
2915        return 1;
2916}
2917
2918/*
2919 * nand_id_has_period - Check if an ID string has a given wraparound period
2920 * @id_data: the ID string
2921 * @arrlen: the length of the @id_data array
2922 * @period: the period of repitition
2923 *
2924 * Check if an ID string is repeated within a given sequence of bytes at
2925 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2926 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
2927 * if the repetition has a period of @period; otherwise, returns zero.
2928 */
2929static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2930{
2931        int i, j;
2932        for (i = 0; i < period; i++)
2933                for (j = i + period; j < arrlen; j += period)
2934                        if (id_data[i] != id_data[j])
2935                                return 0;
2936        return 1;
2937}
2938
2939/*
2940 * nand_id_len - Get the length of an ID string returned by CMD_READID
2941 * @id_data: the ID string
2942 * @arrlen: the length of the @id_data array
2943
2944 * Returns the length of the ID string, according to known wraparound/trailing
2945 * zero patterns. If no pattern exists, returns the length of the array.
2946 */
2947static int nand_id_len(u8 *id_data, int arrlen)
2948{
2949        int last_nonzero, period;
2950
2951        /* Find last non-zero byte */
2952        for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2953                if (id_data[last_nonzero])
2954                        break;
2955
2956        /* All zeros */
2957        if (last_nonzero < 0)
2958                return 0;
2959
2960        /* Calculate wraparound period */
2961        for (period = 1; period < arrlen; period++)
2962                if (nand_id_has_period(id_data, arrlen, period))
2963                        break;
2964
2965        /* There's a repeated pattern */
2966        if (period < arrlen)
2967                return period;
2968
2969        /* There are trailing zeros */
2970        if (last_nonzero < arrlen - 1)
2971                return last_nonzero + 1;
2972
2973        /* No pattern detected */
2974        return arrlen;
2975}
2976
2977/*
2978 * Many new NAND share similar device ID codes, which represent the size of the
2979 * chip. The rest of the parameters must be decoded according to generic or
2980 * manufacturer-specific "extended ID" decoding patterns.
2981 */
2982static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2983                                u8 id_data[8], int *busw)
2984{
2985        int extid, id_len;
2986        /* The 3rd id byte holds MLC / multichip data */
2987        chip->cellinfo = id_data[2];
2988        /* The 4th id byte is the important one */
2989        extid = id_data[3];
2990
2991        id_len = nand_id_len(id_data, 8);
2992
2993        /*
2994         * Field definitions are in the following datasheets:
2995         * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2996         * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
2997         * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
2998         *
2999         * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3000         * ID to decide what to do.
3001         */
3002        if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3003                        (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3004                        id_data[5] != 0x00) {
3005                /* Calc pagesize */
3006                mtd->writesize = 2048 << (extid & 0x03);
3007                extid >>= 2;
3008                /* Calc oobsize */
3009                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3010                case 1:
3011                        mtd->oobsize = 128;
3012                        break;
3013                case 2:
3014                        mtd->oobsize = 218;
3015                        break;
3016                case 3:
3017                        mtd->oobsize = 400;
3018                        break;
3019                case 4:
3020                        mtd->oobsize = 436;
3021                        break;
3022                case 5:
3023                        mtd->oobsize = 512;
3024                        break;
3025                case 6:
3026                default: /* Other cases are "reserved" (unknown) */
3027                        mtd->oobsize = 640;
3028                        break;
3029                }
3030                extid >>= 2;
3031                /* Calc blocksize */
3032                mtd->erasesize = (128 * 1024) <<
3033                        (((extid >> 1) & 0x04) | (extid & 0x03));
3034                *busw = 0;
3035        } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3036                        (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3037                unsigned int tmp;
3038
3039                /* Calc pagesize */
3040                mtd->writesize = 2048 << (extid & 0x03);
3041                extid >>= 2;
3042                /* Calc oobsize */
3043                switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3044                case 0:
3045                        mtd->oobsize = 128;
3046                        break;
3047                case 1:
3048                        mtd->oobsize = 224;
3049                        break;
3050                case 2:
3051                        mtd->oobsize = 448;
3052                        break;
3053                case 3:
3054                        mtd->oobsize = 64;
3055                        break;
3056                case 4:
3057                        mtd->oobsize = 32;
3058                        break;
3059                case 5:
3060                        mtd->oobsize = 16;
3061                        break;
3062                default:
3063                        mtd->oobsize = 640;
3064                        break;
3065                }
3066                extid >>= 2;
3067                /* Calc blocksize */
3068                tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3069                if (tmp < 0x03)
3070                        mtd->erasesize = (128 * 1024) << tmp;
3071                else if (tmp == 0x03)
3072                        mtd->erasesize = 768 * 1024;
3073                else
3074                        mtd->erasesize = (64 * 1024) << tmp;
3075                *busw = 0;
3076        } else {
3077                /* Calc pagesize */
3078                mtd->writesize = 1024 << (extid & 0x03);
3079                extid >>= 2;
3080                /* Calc oobsize */
3081                mtd->oobsize = (8 << (extid & 0x01)) *
3082                        (mtd->writesize >> 9);
3083                extid >>= 2;
3084                /* Calc blocksize. Blocksize is multiples of 64KiB */
3085                mtd->erasesize = (64 * 1024) << (extid & 0x03);
3086                extid >>= 2;
3087                /* Get buswidth information */
3088                *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3089        }
3090}
3091
3092/*
3093 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3094 * decodes a matching ID table entry and assigns the MTD size parameters for
3095 * the chip.
3096 */
3097static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3098                                struct nand_flash_dev *type, u8 id_data[8],
3099                                int *busw)
3100{
3101        int maf_id = id_data[0];
3102
3103        mtd->erasesize = type->erasesize;
3104        mtd->writesize = type->pagesize;
3105        mtd->oobsize = mtd->writesize / 32;
3106        *busw = type->options & NAND_BUSWIDTH_16;
3107
3108        /*
3109         * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3110         * some Spansion chips have erasesize that conflicts with size
3111         * listed in nand_ids table.
3112         * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3113         */
3114        if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3115                        && id_data[6] == 0x00 && id_data[7] == 0x00
3116                        && mtd->writesize == 512) {
3117                mtd->erasesize = 128 * 1024;
3118                mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3119        }
3120}
3121
3122/*
3123 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3124 * heuristic patterns using various detected parameters (e.g., manufacturer,
3125 * page size, cell-type information).
3126 */
3127static void nand_decode_bbm_options(struct mtd_info *mtd,
3128                                    struct nand_chip *chip, u8 id_data[8])
3129{
3130        int maf_id = id_data[0];
3131
3132        /* Set the bad block position */
3133        if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3134                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3135        else
3136                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3137
3138        /*
3139         * Bad block marker is stored in the last page of each block on Samsung
3140         * and Hynix MLC devices; stored in first two pages of each block on
3141         * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3142         * AMD/Spansion, and Macronix.  All others scan only the first page.
3143         */
3144        if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3145                        (maf_id == NAND_MFR_SAMSUNG ||
3146                         maf_id == NAND_MFR_HYNIX))
3147                chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3148        else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3149                                (maf_id == NAND_MFR_SAMSUNG ||
3150                                 maf_id == NAND_MFR_HYNIX ||
3151                                 maf_id == NAND_MFR_TOSHIBA ||
3152                                 maf_id == NAND_MFR_AMD ||
3153                                 maf_id == NAND_MFR_MACRONIX)) ||
3154                        (mtd->writesize == 2048 &&
3155                         maf_id == NAND_MFR_MICRON))
3156                chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3157}
3158
3159static inline bool is_full_id_nand(struct nand_flash_dev *type)
3160{
3161        return type->id_len;
3162}
3163
3164static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3165                   struct nand_flash_dev *type, u8 *id_data, int *busw)
3166{
3167        if (!strncmp(type->id, id_data, type->id_len)) {
3168                mtd->writesize = type->pagesize;
3169                mtd->erasesize = type->erasesize;
3170                mtd->oobsize = type->oobsize;
3171
3172                chip->cellinfo = id_data[2];
3173                chip->chipsize = (uint64_t)type->chipsize << 20;
3174                chip->options |= type->options;
3175
3176                *busw = type->options & NAND_BUSWIDTH_16;
3177
3178                return true;
3179        }
3180        return false;
3181}
3182
3183/*
3184 * Get the flash and manufacturer id and lookup if the type is supported.
3185 */
3186static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3187                                                  struct nand_chip *chip,
3188                                                  int busw,
3189                                                  int *maf_id, int *dev_id,
3190                                                  struct nand_flash_dev *type)
3191{
3192        int i, maf_idx;
3193        u8 id_data[8];
3194
3195        /* Select the device */
3196        chip->select_chip(mtd, 0);
3197
3198        /*
3199         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3200         * after power-up.
3201         */
3202        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3203
3204        /* Send the command for reading device ID */
3205        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3206
3207        /* Read manufacturer and device IDs */
3208        *maf_id = chip->read_byte(mtd);
3209        *dev_id = chip->read_byte(mtd);
3210
3211        /*
3212         * Try again to make sure, as some systems the bus-hold or other
3213         * interface concerns can cause random data which looks like a
3214         * possibly credible NAND flash to appear. If the two results do
3215         * not match, ignore the device completely.
3216         */
3217
3218        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3219
3220        /* Read entire ID string */
3221        for (i = 0; i < 8; i++)
3222                id_data[i] = chip->read_byte(mtd);
3223
3224        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3225                pr_info("%s: second ID read did not match "
3226                        "%02x,%02x against %02x,%02x\n", __func__,
3227                        *maf_id, *dev_id, id_data[0], id_data[1]);
3228                return ERR_PTR(-ENODEV);
3229        }
3230
3231        if (!type)
3232                type = nand_flash_ids;
3233
3234        for (; type->name != NULL; type++) {
3235                if (is_full_id_nand(type)) {
3236                        if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3237                                goto ident_done;
3238                } else if (*dev_id == type->dev_id) {
3239                                break;
3240                }
3241        }
3242
3243        chip->onfi_version = 0;
3244        if (!type->name || !type->pagesize) {
3245                /* Check is chip is ONFI compliant */
3246                if (nand_flash_detect_onfi(mtd, chip, &busw))
3247                        goto ident_done;
3248        }
3249
3250        if (!type->name)
3251                return ERR_PTR(-ENODEV);
3252
3253        if (!mtd->name)
3254                mtd->name = type->name;
3255
3256        chip->chipsize = (uint64_t)type->chipsize << 20;
3257
3258        if (!type->pagesize && chip->init_size) {
3259                /* Set the pagesize, oobsize, erasesize by the driver */
3260                busw = chip->init_size(mtd, chip, id_data);
3261        } else if (!type->pagesize) {
3262                /* Decode parameters from extended ID */
3263                nand_decode_ext_id(mtd, chip, id_data, &busw);
3264        } else {
3265                nand_decode_id(mtd, chip, type, id_data, &busw);
3266        }
3267        /* Get chip options */
3268        chip->options |= type->options;
3269
3270        /*
3271         * Check if chip is not a Samsung device. Do not clear the
3272         * options for chips which do not have an extended id.
3273         */
3274        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3275                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3276ident_done:
3277
3278        /* Try to identify manufacturer */
3279        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3280                if (nand_manuf_ids[maf_idx].id == *maf_id)
3281                        break;
3282        }
3283
3284        if (chip->options & NAND_BUSWIDTH_AUTO) {
3285                WARN_ON(chip->options & NAND_BUSWIDTH_16);
3286                chip->options |= busw;
3287                nand_set_defaults(chip, busw);
3288        } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3289                /*
3290                 * Check, if buswidth is correct. Hardware drivers should set
3291                 * chip correct!
3292                 */
3293                pr_info("NAND device: Manufacturer ID:"
3294                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3295                        *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3296                pr_warn("NAND bus width %d instead %d bit\n",
3297                           (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3298                           busw ? 16 : 8);
3299                return ERR_PTR(-EINVAL);
3300        }
3301
3302        nand_decode_bbm_options(mtd, chip, id_data);
3303
3304        /* Calculate the address shift from the page size */
3305        chip->page_shift = ffs(mtd->writesize) - 1;
3306        /* Convert chipsize to number of pages per chip -1 */
3307        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3308
3309        chip->bbt_erase_shift = chip->phys_erase_shift =
3310                ffs(mtd->erasesize) - 1;
3311        if (chip->chipsize & 0xffffffff)
3312                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3313        else {
3314                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3315                chip->chip_shift += 32 - 1;
3316        }
3317
3318        chip->badblockbits = 8;
3319        chip->erase_cmd = single_erase_cmd;
3320
3321        /* Do not replace user supplied command function! */
3322        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3323                chip->cmdfunc = nand_command_lp;
3324
3325        pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3326                " %dMiB, page size: %d, OOB size: %d\n",
3327                *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3328                chip->onfi_version ? chip->onfi_params.model : type->name,
3329                (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
3330
3331        return type;
3332}
3333
3334/**
3335 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3336 * @mtd: MTD device structure
3337 * @maxchips: number of chips to scan for
3338 * @table: alternative NAND ID table
3339 *
3340 * This is the first phase of the normal nand_scan() function. It reads the
3341 * flash ID and sets up MTD fields accordingly.
3342 *
3343 * The mtd->owner field must be set to the module of the caller.
3344 */
3345int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3346                    struct nand_flash_dev *table)
3347{
3348        int i, busw, nand_maf_id, nand_dev_id;
3349        struct nand_chip *chip = mtd->priv;
3350        struct nand_flash_dev *type;
3351
3352        /* Get buswidth to select the correct functions */
3353        busw = chip->options & NAND_BUSWIDTH_16;
3354        /* Set the default functions */
3355        nand_set_defaults(chip, busw);
3356
3357        /* Read the flash type */
3358        type = nand_get_flash_type(mtd, chip, busw,
3359                                &nand_maf_id, &nand_dev_id, table);
3360
3361        if (IS_ERR(type)) {
3362                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3363                        pr_warn("No NAND device found\n");
3364                chip->select_chip(mtd, -1);
3365                return PTR_ERR(type);
3366        }
3367
3368        chip->select_chip(mtd, -1);
3369
3370        /* Check for a chip array */
3371        for (i = 1; i < maxchips; i++) {
3372                chip->select_chip(mtd, i);
3373                /* See comment in nand_get_flash_type for reset */
3374                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3375                /* Send the command for reading device ID */
3376                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3377                /* Read manufacturer and device IDs */
3378                if (nand_maf_id != chip->read_byte(mtd) ||
3379                    nand_dev_id != chip->read_byte(mtd)) {
3380                        chip->select_chip(mtd, -1);
3381                        break;
3382                }
3383                chip->select_chip(mtd, -1);
3384        }
3385        if (i > 1)
3386                pr_info("%d NAND chips detected\n", i);
3387
3388        /* Store the number of chips and calc total size for mtd */
3389        chip->numchips = i;
3390        mtd->size = i * chip->chipsize;
3391
3392        return 0;
3393}
3394EXPORT_SYMBOL(nand_scan_ident);
3395
3396
3397/**
3398 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3399 * @mtd: MTD device structure
3400 *
3401 * This is the second phase of the normal nand_scan() function. It fills out
3402 * all the uninitialized function pointers with the defaults and scans for a
3403 * bad block table if appropriate.
3404 */
3405int nand_scan_tail(struct mtd_info *mtd)
3406{
3407        int i;
3408        struct nand_chip *chip = mtd->priv;
3409
3410        /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3411        BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3412                        !(chip->bbt_options & NAND_BBT_USE_FLASH));
3413
3414        if (!(chip->options & NAND_OWN_BUFFERS))
3415                chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3416        if (!chip->buffers)
3417                return -ENOMEM;
3418
3419        /* Set the internal oob buffer location, just after the page data */
3420        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3421
3422        /*
3423         * If no default placement scheme is given, select an appropriate one.
3424         */
3425        if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3426                switch (mtd->oobsize) {
3427                case 8:
3428                        chip->ecc.layout = &nand_oob_8;
3429                        break;
3430                case 16:
3431                        chip->ecc.layout = &nand_oob_16;
3432                        break;
3433                case 64:
3434                        chip->ecc.layout = &nand_oob_64;
3435                        break;
3436                case 128:
3437                        chip->ecc.layout = &nand_oob_128;
3438                        break;
3439                default:
3440                        pr_warn("No oob scheme defined for oobsize %d\n",
3441                                   mtd->oobsize);
3442                        BUG();
3443                }
3444        }
3445
3446        if (!chip->write_page)
3447                chip->write_page = nand_write_page;
3448
3449        /* set for ONFI nand */
3450        if (!chip->onfi_set_features)
3451                chip->onfi_set_features = nand_onfi_set_features;
3452        if (!chip->onfi_get_features)
3453                chip->onfi_get_features = nand_onfi_get_features;
3454
3455        /*
3456         * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3457         * selected and we have 256 byte pagesize fallback to software ECC
3458         */
3459
3460        switch (chip->ecc.mode) {
3461        case NAND_ECC_HW_OOB_FIRST:
3462                /* Similar to NAND_ECC_HW, but a separate read_page handle */
3463                if (!chip->ecc.calculate || !chip->ecc.correct ||
3464                     !chip->ecc.hwctl) {
3465                        pr_warn("No ECC functions supplied; "
3466                                   "hardware ECC not possible\n");
3467                        BUG();
3468                }
3469                if (!chip->ecc.read_page)
3470                        chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3471
3472        case NAND_ECC_HW:
3473                /* Use standard hwecc read page function? */
3474                if (!chip->ecc.read_page)
3475                        chip->ecc.read_page = nand_read_page_hwecc;
3476                if (!chip->ecc.write_page)
3477                        chip->ecc.write_page = nand_write_page_hwecc;
3478                if (!chip->ecc.read_page_raw)
3479                        chip->ecc.read_page_raw = nand_read_page_raw;
3480                if (!chip->ecc.write_page_raw)
3481                        chip->ecc.write_page_raw = nand_write_page_raw;
3482                if (!chip->ecc.read_oob)
3483                        chip->ecc.read_oob = nand_read_oob_std;
3484                if (!chip->ecc.write_oob)
3485                        chip->ecc.write_oob = nand_write_oob_std;
3486                if (!chip->ecc.read_subpage)
3487                        chip->ecc.read_subpage = nand_read_subpage;
3488                if (!chip->ecc.write_subpage)
3489                        chip->ecc.write_subpage = nand_write_subpage_hwecc;
3490
3491        case NAND_ECC_HW_SYNDROME:
3492                if ((!chip->ecc.calculate || !chip->ecc.correct ||
3493                     !chip->ecc.hwctl) &&
3494                    (!chip->ecc.read_page ||
3495                     chip->ecc.read_page == nand_read_page_hwecc ||
3496                     !chip->ecc.write_page ||
3497                     chip->ecc.write_page == nand_write_page_hwecc)) {
3498                        pr_warn("No ECC functions supplied; "
3499                                   "hardware ECC not possible\n");
3500                        BUG();
3501                }
3502                /* Use standard syndrome read/write page function? */
3503                if (!chip->ecc.read_page)
3504                        chip->ecc.read_page = nand_read_page_syndrome;
3505                if (!chip->ecc.write_page)
3506                        chip->ecc.write_page = nand_write_page_syndrome;
3507                if (!chip->ecc.read_page_raw)
3508                        chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3509                if (!chip->ecc.write_page_raw)
3510                        chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3511                if (!chip->ecc.read_oob)
3512                        chip->ecc.read_oob = nand_read_oob_syndrome;
3513                if (!chip->ecc.write_oob)
3514                        chip->ecc.write_oob = nand_write_oob_syndrome;
3515
3516                if (mtd->writesize >= chip->ecc.size) {
3517                        if (!chip->ecc.strength) {
3518                                pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3519                                BUG();
3520                        }
3521                        break;
3522                }
3523                pr_warn("%d byte HW ECC not possible on "
3524                           "%d byte page size, fallback to SW ECC\n",
3525                           chip->ecc.size, mtd->writesize);
3526                chip->ecc.mode = NAND_ECC_SOFT;
3527
3528        case NAND_ECC_SOFT:
3529                chip->ecc.calculate = nand_calculate_ecc;
3530                chip->ecc.correct = nand_correct_data;
3531                chip->ecc.read_page = nand_read_page_swecc;
3532                chip->ecc.read_subpage = nand_read_subpage;
3533                chip->ecc.write_page = nand_write_page_swecc;
3534                chip->ecc.read_page_raw = nand_read_page_raw;
3535                chip->ecc.write_page_raw = nand_write_page_raw;
3536                chip->ecc.read_oob = nand_read_oob_std;
3537                chip->ecc.write_oob = nand_write_oob_std;
3538                if (!chip->ecc.size)
3539                        chip->ecc.size = 256;
3540                chip->ecc.bytes = 3;
3541                chip->ecc.strength = 1;
3542                break;
3543
3544        case NAND_ECC_SOFT_BCH:
3545                if (!mtd_nand_has_bch()) {
3546                        pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3547                        BUG();
3548                }
3549                chip->ecc.calculate = nand_bch_calculate_ecc;
3550                chip->ecc.correct = nand_bch_correct_data;
3551                chip->ecc.read_page = nand_read_page_swecc;
3552                chip->ecc.read_subpage = nand_read_subpage;
3553                chip->ecc.write_page = nand_write_page_swecc;
3554                chip->ecc.read_page_raw = nand_read_page_raw;
3555                chip->ecc.write_page_raw = nand_write_page_raw;
3556                chip->ecc.read_oob = nand_read_oob_std;
3557                chip->ecc.write_oob = nand_write_oob_std;
3558                /*
3559                 * Board driver should supply ecc.size and ecc.bytes values to
3560                 * select how many bits are correctable; see nand_bch_init()
3561                 * for details. Otherwise, default to 4 bits for large page
3562                 * devices.
3563                 */
3564                if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3565                        chip->ecc.size = 512;
3566                        chip->ecc.bytes = 7;
3567                }
3568                chip->ecc.priv = nand_bch_init(mtd,
3569                                               chip->ecc.size,
3570                                               chip->ecc.bytes,
3571                                               &chip->ecc.layout);
3572                if (!chip->ecc.priv) {
3573                        pr_warn("BCH ECC initialization failed!\n");
3574                        BUG();
3575                }
3576                chip->ecc.strength =
3577                        chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3578                break;
3579
3580        case NAND_ECC_NONE:
3581                pr_warn("NAND_ECC_NONE selected by board driver. "
3582                           "This is not recommended!\n");
3583                chip->ecc.read_page = nand_read_page_raw;
3584                chip->ecc.write_page = nand_write_page_raw;
3585                chip->ecc.read_oob = nand_read_oob_std;
3586                chip->ecc.read_page_raw = nand_read_page_raw;
3587                chip->ecc.write_page_raw = nand_write_page_raw;
3588                chip->ecc.write_oob = nand_write_oob_std;
3589                chip->ecc.size = mtd->writesize;
3590                chip->ecc.bytes = 0;
3591                chip->ecc.strength = 0;
3592                break;
3593
3594        default:
3595                pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3596                BUG();
3597        }
3598
3599        /* For many systems, the standard OOB write also works for raw */
3600        if (!chip->ecc.read_oob_raw)
3601                chip->ecc.read_oob_raw = chip->ecc.read_oob;
3602        if (!chip->ecc.write_oob_raw)
3603                chip->ecc.write_oob_raw = chip->ecc.write_oob;
3604
3605        /*
3606         * The number of bytes available for a client to place data into
3607         * the out of band area.
3608         */
3609        chip->ecc.layout->oobavail = 0;
3610        for (i = 0; chip->ecc.layout->oobfree[i].length
3611                        && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3612                chip->ecc.layout->oobavail +=
3613                        chip->ecc.layout->oobfree[i].length;
3614        mtd->oobavail = chip->ecc.layout->oobavail;
3615
3616        /*
3617         * Set the number of read / write steps for one page depending on ECC
3618         * mode.
3619         */
3620        chip->ecc.steps = mtd->writesize / chip->ecc.size;
3621        if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3622                pr_warn("Invalid ECC parameters\n");
3623                BUG();
3624        }
3625        chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3626
3627        /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3628        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3629            !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3630                switch (chip->ecc.steps) {
3631                case 2:
3632                        mtd->subpage_sft = 1;
3633                        break;
3634                case 4:
3635                case 8:
3636                case 16:
3637                        mtd->subpage_sft = 2;
3638                        break;
3639                }
3640        }
3641        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3642
3643        /* Initialize state */
3644        chip->state = FL_READY;
3645
3646        /* Invalidate the pagebuffer reference */
3647        chip->pagebuf = -1;
3648
3649        /* Large page NAND with SOFT_ECC should support subpage reads */
3650        if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3651                chip->options |= NAND_SUBPAGE_READ;
3652
3653        /* Fill in remaining MTD driver data */
3654        mtd->type = MTD_NANDFLASH;
3655        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3656                                                MTD_CAP_NANDFLASH;
3657        mtd->_erase = nand_erase;
3658        mtd->_point = NULL;
3659        mtd->_unpoint = NULL;
3660        mtd->_read = nand_read;
3661        mtd->_write = nand_write;
3662        mtd->_panic_write = panic_nand_write;
3663        mtd->_read_oob = nand_read_oob;
3664        mtd->_write_oob = nand_write_oob;
3665        mtd->_sync = nand_sync;
3666        mtd->_lock = NULL;
3667        mtd->_unlock = NULL;
3668        mtd->_suspend = nand_suspend;
3669        mtd->_resume = nand_resume;
3670        mtd->_block_isbad = nand_block_isbad;
3671        mtd->_block_markbad = nand_block_markbad;
3672        mtd->writebufsize = mtd->writesize;
3673
3674        /* propagate ecc info to mtd_info */
3675        mtd->ecclayout = chip->ecc.layout;
3676        mtd->ecc_strength = chip->ecc.strength;
3677        /*
3678         * Initialize bitflip_threshold to its default prior scan_bbt() call.
3679         * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3680         * properly set.
3681         */
3682        if (!mtd->bitflip_threshold)
3683                mtd->bitflip_threshold = mtd->ecc_strength;
3684
3685        /* Check, if we should skip the bad block table scan */
3686        if (chip->options & NAND_SKIP_BBTSCAN)
3687                return 0;
3688
3689        /* Build bad block table */
3690        return chip->scan_bbt(mtd);
3691}
3692EXPORT_SYMBOL(nand_scan_tail);
3693
3694/*
3695 * is_module_text_address() isn't exported, and it's mostly a pointless
3696 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3697 * to call us from in-kernel code if the core NAND support is modular.
3698 */
3699#ifdef MODULE
3700#define caller_is_module() (1)
3701#else
3702#define caller_is_module() \
3703        is_module_text_address((unsigned long)__builtin_return_address(0))
3704#endif
3705
3706/**
3707 * nand_scan - [NAND Interface] Scan for the NAND device
3708 * @mtd: MTD device structure
3709 * @maxchips: number of chips to scan for
3710 *
3711 * This fills out all the uninitialized function pointers with the defaults.
3712 * The flash ID is read and the mtd/chip structures are filled with the
3713 * appropriate values. The mtd->owner field must be set to the module of the
3714 * caller.
3715 */
3716int nand_scan(struct mtd_info *mtd, int maxchips)
3717{
3718        int ret;
3719
3720        /* Many callers got this wrong, so check for it for a while... */
3721        if (!mtd->owner && caller_is_module()) {
3722                pr_crit("%s called with NULL mtd->owner!\n", __func__);
3723                BUG();
3724        }
3725
3726        ret = nand_scan_ident(mtd, maxchips, NULL);
3727        if (!ret)
3728                ret = nand_scan_tail(mtd);
3729        return ret;
3730}
3731EXPORT_SYMBOL(nand_scan);
3732
3733/**
3734 * nand_release - [NAND Interface] Free resources held by the NAND device
3735 * @mtd: MTD device structure
3736 */
3737void nand_release(struct mtd_info *mtd)
3738{
3739        struct nand_chip *chip = mtd->priv;
3740
3741        if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3742                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3743
3744        mtd_device_unregister(mtd);
3745
3746        /* Free bad block table memory */
3747        kfree(chip->bbt);
3748        if (!(chip->options & NAND_OWN_BUFFERS))
3749                kfree(chip->buffers);
3750
3751        /* Free bad block descriptor memory */
3752        if (chip->badblock_pattern && chip->badblock_pattern->options
3753                        & NAND_BBT_DYNAMICSTRUCT)
3754                kfree(chip->badblock_pattern);
3755}
3756EXPORT_SYMBOL_GPL(nand_release);
3757
3758static int __init nand_base_init(void)
3759{
3760        led_trigger_register_simple("nand-disk", &nand_led_trigger);
3761        return 0;
3762}
3763
3764static void __exit nand_base_exit(void)
3765{
3766        led_trigger_unregister_simple(nand_led_trigger);
3767}
3768
3769module_init(nand_base_init);
3770module_exit(nand_base_exit);
3771
3772MODULE_LICENSE("GPL");
3773MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3774MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3775MODULE_DESCRIPTION("Generic NAND flash driver code");
3776