linux/drivers/net/ethernet/chelsio/cxgb/sge.c
<<
>>
Prefs
   1/*****************************************************************************
   2 *                                                                           *
   3 * File: sge.c                                                               *
   4 * $Revision: 1.26 $                                                         *
   5 * $Date: 2005/06/21 18:29:48 $                                              *
   6 * Description:                                                              *
   7 *  DMA engine.                                                              *
   8 *  part of the Chelsio 10Gb Ethernet Driver.                                *
   9 *                                                                           *
  10 * This program is free software; you can redistribute it and/or modify      *
  11 * it under the terms of the GNU General Public License, version 2, as       *
  12 * published by the Free Software Foundation.                                *
  13 *                                                                           *
  14 * You should have received a copy of the GNU General Public License along   *
  15 * with this program; if not, write to the Free Software Foundation, Inc.,   *
  16 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
  17 *                                                                           *
  18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
  19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
  20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
  21 *                                                                           *
  22 * http://www.chelsio.com                                                    *
  23 *                                                                           *
  24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
  25 * All rights reserved.                                                      *
  26 *                                                                           *
  27 * Maintainers: maintainers@chelsio.com                                      *
  28 *                                                                           *
  29 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
  30 *          Tina Yang               <tainay@chelsio.com>                     *
  31 *          Felix Marti             <felix@chelsio.com>                      *
  32 *          Scott Bardone           <sbardone@chelsio.com>                   *
  33 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
  34 *          Frank DiMambro          <frank@chelsio.com>                      *
  35 *                                                                           *
  36 * History:                                                                  *
  37 *                                                                           *
  38 ****************************************************************************/
  39
  40#include "common.h"
  41
  42#include <linux/types.h>
  43#include <linux/errno.h>
  44#include <linux/pci.h>
  45#include <linux/ktime.h>
  46#include <linux/netdevice.h>
  47#include <linux/etherdevice.h>
  48#include <linux/if_vlan.h>
  49#include <linux/skbuff.h>
  50#include <linux/init.h>
  51#include <linux/mm.h>
  52#include <linux/tcp.h>
  53#include <linux/ip.h>
  54#include <linux/in.h>
  55#include <linux/if_arp.h>
  56#include <linux/slab.h>
  57#include <linux/prefetch.h>
  58
  59#include "cpl5_cmd.h"
  60#include "sge.h"
  61#include "regs.h"
  62#include "espi.h"
  63
  64/* This belongs in if_ether.h */
  65#define ETH_P_CPL5 0xf
  66
  67#define SGE_CMDQ_N              2
  68#define SGE_FREELQ_N            2
  69#define SGE_CMDQ0_E_N           1024
  70#define SGE_CMDQ1_E_N           128
  71#define SGE_FREEL_SIZE          4096
  72#define SGE_JUMBO_FREEL_SIZE    512
  73#define SGE_FREEL_REFILL_THRESH 16
  74#define SGE_RESPQ_E_N           1024
  75#define SGE_INTRTIMER_NRES      1000
  76#define SGE_RX_SM_BUF_SIZE      1536
  77#define SGE_TX_DESC_MAX_PLEN    16384
  78
  79#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  80
  81/*
  82 * Period of the TX buffer reclaim timer.  This timer does not need to run
  83 * frequently as TX buffers are usually reclaimed by new TX packets.
  84 */
  85#define TX_RECLAIM_PERIOD (HZ / 4)
  86
  87#define M_CMD_LEN       0x7fffffff
  88#define V_CMD_LEN(v)    (v)
  89#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
  90#define V_CMD_GEN1(v)   ((v) << 31)
  91#define V_CMD_GEN2(v)   (v)
  92#define F_CMD_DATAVALID (1 << 1)
  93#define F_CMD_SOP       (1 << 2)
  94#define V_CMD_EOP(v)    ((v) << 3)
  95
  96/*
  97 * Command queue, receive buffer list, and response queue descriptors.
  98 */
  99#if defined(__BIG_ENDIAN_BITFIELD)
 100struct cmdQ_e {
 101        u32 addr_lo;
 102        u32 len_gen;
 103        u32 flags;
 104        u32 addr_hi;
 105};
 106
 107struct freelQ_e {
 108        u32 addr_lo;
 109        u32 len_gen;
 110        u32 gen2;
 111        u32 addr_hi;
 112};
 113
 114struct respQ_e {
 115        u32 Qsleeping           : 4;
 116        u32 Cmdq1CreditReturn   : 5;
 117        u32 Cmdq1DmaComplete    : 5;
 118        u32 Cmdq0CreditReturn   : 5;
 119        u32 Cmdq0DmaComplete    : 5;
 120        u32 FreelistQid         : 2;
 121        u32 CreditValid         : 1;
 122        u32 DataValid           : 1;
 123        u32 Offload             : 1;
 124        u32 Eop                 : 1;
 125        u32 Sop                 : 1;
 126        u32 GenerationBit       : 1;
 127        u32 BufferLength;
 128};
 129#elif defined(__LITTLE_ENDIAN_BITFIELD)
 130struct cmdQ_e {
 131        u32 len_gen;
 132        u32 addr_lo;
 133        u32 addr_hi;
 134        u32 flags;
 135};
 136
 137struct freelQ_e {
 138        u32 len_gen;
 139        u32 addr_lo;
 140        u32 addr_hi;
 141        u32 gen2;
 142};
 143
 144struct respQ_e {
 145        u32 BufferLength;
 146        u32 GenerationBit       : 1;
 147        u32 Sop                 : 1;
 148        u32 Eop                 : 1;
 149        u32 Offload             : 1;
 150        u32 DataValid           : 1;
 151        u32 CreditValid         : 1;
 152        u32 FreelistQid         : 2;
 153        u32 Cmdq0DmaComplete    : 5;
 154        u32 Cmdq0CreditReturn   : 5;
 155        u32 Cmdq1DmaComplete    : 5;
 156        u32 Cmdq1CreditReturn   : 5;
 157        u32 Qsleeping           : 4;
 158} ;
 159#endif
 160
 161/*
 162 * SW Context Command and Freelist Queue Descriptors
 163 */
 164struct cmdQ_ce {
 165        struct sk_buff *skb;
 166        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 167        DEFINE_DMA_UNMAP_LEN(dma_len);
 168};
 169
 170struct freelQ_ce {
 171        struct sk_buff *skb;
 172        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 173        DEFINE_DMA_UNMAP_LEN(dma_len);
 174};
 175
 176/*
 177 * SW command, freelist and response rings
 178 */
 179struct cmdQ {
 180        unsigned long   status;         /* HW DMA fetch status */
 181        unsigned int    in_use;         /* # of in-use command descriptors */
 182        unsigned int    size;           /* # of descriptors */
 183        unsigned int    processed;      /* total # of descs HW has processed */
 184        unsigned int    cleaned;        /* total # of descs SW has reclaimed */
 185        unsigned int    stop_thres;     /* SW TX queue suspend threshold */
 186        u16             pidx;           /* producer index (SW) */
 187        u16             cidx;           /* consumer index (HW) */
 188        u8              genbit;         /* current generation (=valid) bit */
 189        u8              sop;            /* is next entry start of packet? */
 190        struct cmdQ_e  *entries;        /* HW command descriptor Q */
 191        struct cmdQ_ce *centries;       /* SW command context descriptor Q */
 192        dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
 193        spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
 194};
 195
 196struct freelQ {
 197        unsigned int    credits;        /* # of available RX buffers */
 198        unsigned int    size;           /* free list capacity */
 199        u16             pidx;           /* producer index (SW) */
 200        u16             cidx;           /* consumer index (HW) */
 201        u16             rx_buffer_size; /* Buffer size on this free list */
 202        u16             dma_offset;     /* DMA offset to align IP headers */
 203        u16             recycleq_idx;   /* skb recycle q to use */
 204        u8              genbit;         /* current generation (=valid) bit */
 205        struct freelQ_e *entries;       /* HW freelist descriptor Q */
 206        struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
 207        dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
 208};
 209
 210struct respQ {
 211        unsigned int    credits;        /* credits to be returned to SGE */
 212        unsigned int    size;           /* # of response Q descriptors */
 213        u16             cidx;           /* consumer index (SW) */
 214        u8              genbit;         /* current generation(=valid) bit */
 215        struct respQ_e *entries;        /* HW response descriptor Q */
 216        dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
 217};
 218
 219/* Bit flags for cmdQ.status */
 220enum {
 221        CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
 222        CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
 223};
 224
 225/* T204 TX SW scheduler */
 226
 227/* Per T204 TX port */
 228struct sched_port {
 229        unsigned int    avail;          /* available bits - quota */
 230        unsigned int    drain_bits_per_1024ns; /* drain rate */
 231        unsigned int    speed;          /* drain rate, mbps */
 232        unsigned int    mtu;            /* mtu size */
 233        struct sk_buff_head skbq;       /* pending skbs */
 234};
 235
 236/* Per T204 device */
 237struct sched {
 238        ktime_t         last_updated;   /* last time quotas were computed */
 239        unsigned int    max_avail;      /* max bits to be sent to any port */
 240        unsigned int    port;           /* port index (round robin ports) */
 241        unsigned int    num;            /* num skbs in per port queues */
 242        struct sched_port p[MAX_NPORTS];
 243        struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
 244};
 245static void restart_sched(unsigned long);
 246
 247
 248/*
 249 * Main SGE data structure
 250 *
 251 * Interrupts are handled by a single CPU and it is likely that on a MP system
 252 * the application is migrated to another CPU. In that scenario, we try to
 253 * separate the RX(in irq context) and TX state in order to decrease memory
 254 * contention.
 255 */
 256struct sge {
 257        struct adapter *adapter;        /* adapter backpointer */
 258        struct net_device *netdev;      /* netdevice backpointer */
 259        struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
 260        struct respQ    respQ;          /* response Q */
 261        unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
 262        unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
 263        unsigned int    jumbo_fl;       /* jumbo freelist Q index */
 264        unsigned int    intrtimer_nres; /* no-resource interrupt timer */
 265        unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
 266        struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
 267        struct timer_list espibug_timer;
 268        unsigned long   espibug_timeout;
 269        struct sk_buff  *espibug_skb[MAX_NPORTS];
 270        u32             sge_control;    /* shadow value of sge control reg */
 271        struct sge_intr_counts stats;
 272        struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
 273        struct sched    *tx_sched;
 274        struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
 275};
 276
 277static const u8 ch_mac_addr[ETH_ALEN] = {
 278        0x0, 0x7, 0x43, 0x0, 0x0, 0x0
 279};
 280
 281/*
 282 * stop tasklet and free all pending skb's
 283 */
 284static void tx_sched_stop(struct sge *sge)
 285{
 286        struct sched *s = sge->tx_sched;
 287        int i;
 288
 289        tasklet_kill(&s->sched_tsk);
 290
 291        for (i = 0; i < MAX_NPORTS; i++)
 292                __skb_queue_purge(&s->p[s->port].skbq);
 293}
 294
 295/*
 296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
 297 * re-computes scheduler parameters to scope with the change.
 298 */
 299unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
 300                                   unsigned int mtu, unsigned int speed)
 301{
 302        struct sched *s = sge->tx_sched;
 303        struct sched_port *p = &s->p[port];
 304        unsigned int max_avail_segs;
 305
 306        pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
 307        if (speed)
 308                p->speed = speed;
 309        if (mtu)
 310                p->mtu = mtu;
 311
 312        if (speed || mtu) {
 313                unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
 314                do_div(drain, (p->mtu + 50) * 1000);
 315                p->drain_bits_per_1024ns = (unsigned int) drain;
 316
 317                if (p->speed < 1000)
 318                        p->drain_bits_per_1024ns =
 319                                90 * p->drain_bits_per_1024ns / 100;
 320        }
 321
 322        if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
 323                p->drain_bits_per_1024ns -= 16;
 324                s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
 325                max_avail_segs = max(1U, 4096 / (p->mtu - 40));
 326        } else {
 327                s->max_avail = 16384;
 328                max_avail_segs = max(1U, 9000 / (p->mtu - 40));
 329        }
 330
 331        pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
 332                 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
 333                 p->speed, s->max_avail, max_avail_segs,
 334                 p->drain_bits_per_1024ns);
 335
 336        return max_avail_segs * (p->mtu - 40);
 337}
 338
 339#if 0
 340
 341/*
 342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
 343 * data that can be pushed per port.
 344 */
 345void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
 346{
 347        struct sched *s = sge->tx_sched;
 348        unsigned int i;
 349
 350        s->max_avail = val;
 351        for (i = 0; i < MAX_NPORTS; i++)
 352                t1_sched_update_parms(sge, i, 0, 0);
 353}
 354
 355/*
 356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
 357 * is draining.
 358 */
 359void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
 360                                         unsigned int val)
 361{
 362        struct sched *s = sge->tx_sched;
 363        struct sched_port *p = &s->p[port];
 364        p->drain_bits_per_1024ns = val * 1024 / 1000;
 365        t1_sched_update_parms(sge, port, 0, 0);
 366}
 367
 368#endif  /*  0  */
 369
 370/*
 371 * tx_sched_init() allocates resources and does basic initialization.
 372 */
 373static int tx_sched_init(struct sge *sge)
 374{
 375        struct sched *s;
 376        int i;
 377
 378        s = kzalloc(sizeof (struct sched), GFP_KERNEL);
 379        if (!s)
 380                return -ENOMEM;
 381
 382        pr_debug("tx_sched_init\n");
 383        tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
 384        sge->tx_sched = s;
 385
 386        for (i = 0; i < MAX_NPORTS; i++) {
 387                skb_queue_head_init(&s->p[i].skbq);
 388                t1_sched_update_parms(sge, i, 1500, 1000);
 389        }
 390
 391        return 0;
 392}
 393
 394/*
 395 * sched_update_avail() computes the delta since the last time it was called
 396 * and updates the per port quota (number of bits that can be sent to the any
 397 * port).
 398 */
 399static inline int sched_update_avail(struct sge *sge)
 400{
 401        struct sched *s = sge->tx_sched;
 402        ktime_t now = ktime_get();
 403        unsigned int i;
 404        long long delta_time_ns;
 405
 406        delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
 407
 408        pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
 409        if (delta_time_ns < 15000)
 410                return 0;
 411
 412        for (i = 0; i < MAX_NPORTS; i++) {
 413                struct sched_port *p = &s->p[i];
 414                unsigned int delta_avail;
 415
 416                delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
 417                p->avail = min(p->avail + delta_avail, s->max_avail);
 418        }
 419
 420        s->last_updated = now;
 421
 422        return 1;
 423}
 424
 425/*
 426 * sched_skb() is called from two different places. In the tx path, any
 427 * packet generating load on an output port will call sched_skb()
 428 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
 429 * context (skb == NULL).
 430 * The scheduler only returns a skb (which will then be sent) if the
 431 * length of the skb is <= the current quota of the output port.
 432 */
 433static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
 434                                unsigned int credits)
 435{
 436        struct sched *s = sge->tx_sched;
 437        struct sk_buff_head *skbq;
 438        unsigned int i, len, update = 1;
 439
 440        pr_debug("sched_skb %p\n", skb);
 441        if (!skb) {
 442                if (!s->num)
 443                        return NULL;
 444        } else {
 445                skbq = &s->p[skb->dev->if_port].skbq;
 446                __skb_queue_tail(skbq, skb);
 447                s->num++;
 448                skb = NULL;
 449        }
 450
 451        if (credits < MAX_SKB_FRAGS + 1)
 452                goto out;
 453
 454again:
 455        for (i = 0; i < MAX_NPORTS; i++) {
 456                s->port = (s->port + 1) & (MAX_NPORTS - 1);
 457                skbq = &s->p[s->port].skbq;
 458
 459                skb = skb_peek(skbq);
 460
 461                if (!skb)
 462                        continue;
 463
 464                len = skb->len;
 465                if (len <= s->p[s->port].avail) {
 466                        s->p[s->port].avail -= len;
 467                        s->num--;
 468                        __skb_unlink(skb, skbq);
 469                        goto out;
 470                }
 471                skb = NULL;
 472        }
 473
 474        if (update-- && sched_update_avail(sge))
 475                goto again;
 476
 477out:
 478        /* If there are more pending skbs, we use the hardware to schedule us
 479         * again.
 480         */
 481        if (s->num && !skb) {
 482                struct cmdQ *q = &sge->cmdQ[0];
 483                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 484                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 485                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 486                        writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
 487                }
 488        }
 489        pr_debug("sched_skb ret %p\n", skb);
 490
 491        return skb;
 492}
 493
 494/*
 495 * PIO to indicate that memory mapped Q contains valid descriptor(s).
 496 */
 497static inline void doorbell_pio(struct adapter *adapter, u32 val)
 498{
 499        wmb();
 500        writel(val, adapter->regs + A_SG_DOORBELL);
 501}
 502
 503/*
 504 * Frees all RX buffers on the freelist Q. The caller must make sure that
 505 * the SGE is turned off before calling this function.
 506 */
 507static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
 508{
 509        unsigned int cidx = q->cidx;
 510
 511        while (q->credits--) {
 512                struct freelQ_ce *ce = &q->centries[cidx];
 513
 514                pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
 515                                 dma_unmap_len(ce, dma_len),
 516                                 PCI_DMA_FROMDEVICE);
 517                dev_kfree_skb(ce->skb);
 518                ce->skb = NULL;
 519                if (++cidx == q->size)
 520                        cidx = 0;
 521        }
 522}
 523
 524/*
 525 * Free RX free list and response queue resources.
 526 */
 527static void free_rx_resources(struct sge *sge)
 528{
 529        struct pci_dev *pdev = sge->adapter->pdev;
 530        unsigned int size, i;
 531
 532        if (sge->respQ.entries) {
 533                size = sizeof(struct respQ_e) * sge->respQ.size;
 534                pci_free_consistent(pdev, size, sge->respQ.entries,
 535                                    sge->respQ.dma_addr);
 536        }
 537
 538        for (i = 0; i < SGE_FREELQ_N; i++) {
 539                struct freelQ *q = &sge->freelQ[i];
 540
 541                if (q->centries) {
 542                        free_freelQ_buffers(pdev, q);
 543                        kfree(q->centries);
 544                }
 545                if (q->entries) {
 546                        size = sizeof(struct freelQ_e) * q->size;
 547                        pci_free_consistent(pdev, size, q->entries,
 548                                            q->dma_addr);
 549                }
 550        }
 551}
 552
 553/*
 554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
 555 * response queue.
 556 */
 557static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
 558{
 559        struct pci_dev *pdev = sge->adapter->pdev;
 560        unsigned int size, i;
 561
 562        for (i = 0; i < SGE_FREELQ_N; i++) {
 563                struct freelQ *q = &sge->freelQ[i];
 564
 565                q->genbit = 1;
 566                q->size = p->freelQ_size[i];
 567                q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
 568                size = sizeof(struct freelQ_e) * q->size;
 569                q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 570                if (!q->entries)
 571                        goto err_no_mem;
 572
 573                size = sizeof(struct freelQ_ce) * q->size;
 574                q->centries = kzalloc(size, GFP_KERNEL);
 575                if (!q->centries)
 576                        goto err_no_mem;
 577        }
 578
 579        /*
 580         * Calculate the buffer sizes for the two free lists.  FL0 accommodates
 581         * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
 582         * including all the sk_buff overhead.
 583         *
 584         * Note: For T2 FL0 and FL1 are reversed.
 585         */
 586        sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
 587                sizeof(struct cpl_rx_data) +
 588                sge->freelQ[!sge->jumbo_fl].dma_offset;
 589
 590                size = (16 * 1024) -
 591                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 592
 593        sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
 594
 595        /*
 596         * Setup which skb recycle Q should be used when recycling buffers from
 597         * each free list.
 598         */
 599        sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
 600        sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
 601
 602        sge->respQ.genbit = 1;
 603        sge->respQ.size = SGE_RESPQ_E_N;
 604        sge->respQ.credits = 0;
 605        size = sizeof(struct respQ_e) * sge->respQ.size;
 606        sge->respQ.entries =
 607                pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
 608        if (!sge->respQ.entries)
 609                goto err_no_mem;
 610        return 0;
 611
 612err_no_mem:
 613        free_rx_resources(sge);
 614        return -ENOMEM;
 615}
 616
 617/*
 618 * Reclaims n TX descriptors and frees the buffers associated with them.
 619 */
 620static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
 621{
 622        struct cmdQ_ce *ce;
 623        struct pci_dev *pdev = sge->adapter->pdev;
 624        unsigned int cidx = q->cidx;
 625
 626        q->in_use -= n;
 627        ce = &q->centries[cidx];
 628        while (n--) {
 629                if (likely(dma_unmap_len(ce, dma_len))) {
 630                        pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
 631                                         dma_unmap_len(ce, dma_len),
 632                                         PCI_DMA_TODEVICE);
 633                        if (q->sop)
 634                                q->sop = 0;
 635                }
 636                if (ce->skb) {
 637                        dev_kfree_skb_any(ce->skb);
 638                        q->sop = 1;
 639                }
 640                ce++;
 641                if (++cidx == q->size) {
 642                        cidx = 0;
 643                        ce = q->centries;
 644                }
 645        }
 646        q->cidx = cidx;
 647}
 648
 649/*
 650 * Free TX resources.
 651 *
 652 * Assumes that SGE is stopped and all interrupts are disabled.
 653 */
 654static void free_tx_resources(struct sge *sge)
 655{
 656        struct pci_dev *pdev = sge->adapter->pdev;
 657        unsigned int size, i;
 658
 659        for (i = 0; i < SGE_CMDQ_N; i++) {
 660                struct cmdQ *q = &sge->cmdQ[i];
 661
 662                if (q->centries) {
 663                        if (q->in_use)
 664                                free_cmdQ_buffers(sge, q, q->in_use);
 665                        kfree(q->centries);
 666                }
 667                if (q->entries) {
 668                        size = sizeof(struct cmdQ_e) * q->size;
 669                        pci_free_consistent(pdev, size, q->entries,
 670                                            q->dma_addr);
 671                }
 672        }
 673}
 674
 675/*
 676 * Allocates basic TX resources, consisting of memory mapped command Qs.
 677 */
 678static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
 679{
 680        struct pci_dev *pdev = sge->adapter->pdev;
 681        unsigned int size, i;
 682
 683        for (i = 0; i < SGE_CMDQ_N; i++) {
 684                struct cmdQ *q = &sge->cmdQ[i];
 685
 686                q->genbit = 1;
 687                q->sop = 1;
 688                q->size = p->cmdQ_size[i];
 689                q->in_use = 0;
 690                q->status = 0;
 691                q->processed = q->cleaned = 0;
 692                q->stop_thres = 0;
 693                spin_lock_init(&q->lock);
 694                size = sizeof(struct cmdQ_e) * q->size;
 695                q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 696                if (!q->entries)
 697                        goto err_no_mem;
 698
 699                size = sizeof(struct cmdQ_ce) * q->size;
 700                q->centries = kzalloc(size, GFP_KERNEL);
 701                if (!q->centries)
 702                        goto err_no_mem;
 703        }
 704
 705        /*
 706         * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
 707         * only.  For queue 0 set the stop threshold so we can handle one more
 708         * packet from each port, plus reserve an additional 24 entries for
 709         * Ethernet packets only.  Queue 1 never suspends nor do we reserve
 710         * space for Ethernet packets.
 711         */
 712        sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
 713                (MAX_SKB_FRAGS + 1);
 714        return 0;
 715
 716err_no_mem:
 717        free_tx_resources(sge);
 718        return -ENOMEM;
 719}
 720
 721static inline void setup_ring_params(struct adapter *adapter, u64 addr,
 722                                     u32 size, int base_reg_lo,
 723                                     int base_reg_hi, int size_reg)
 724{
 725        writel((u32)addr, adapter->regs + base_reg_lo);
 726        writel(addr >> 32, adapter->regs + base_reg_hi);
 727        writel(size, adapter->regs + size_reg);
 728}
 729
 730/*
 731 * Enable/disable VLAN acceleration.
 732 */
 733void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
 734{
 735        struct sge *sge = adapter->sge;
 736
 737        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 738                sge->sge_control |= F_VLAN_XTRACT;
 739        else
 740                sge->sge_control &= ~F_VLAN_XTRACT;
 741        if (adapter->open_device_map) {
 742                writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
 743                readl(adapter->regs + A_SG_CONTROL);   /* flush */
 744        }
 745}
 746
 747/*
 748 * Programs the various SGE registers. However, the engine is not yet enabled,
 749 * but sge->sge_control is setup and ready to go.
 750 */
 751static void configure_sge(struct sge *sge, struct sge_params *p)
 752{
 753        struct adapter *ap = sge->adapter;
 754
 755        writel(0, ap->regs + A_SG_CONTROL);
 756        setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
 757                          A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
 758        setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
 759                          A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
 760        setup_ring_params(ap, sge->freelQ[0].dma_addr,
 761                          sge->freelQ[0].size, A_SG_FL0BASELWR,
 762                          A_SG_FL0BASEUPR, A_SG_FL0SIZE);
 763        setup_ring_params(ap, sge->freelQ[1].dma_addr,
 764                          sge->freelQ[1].size, A_SG_FL1BASELWR,
 765                          A_SG_FL1BASEUPR, A_SG_FL1SIZE);
 766
 767        /* The threshold comparison uses <. */
 768        writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
 769
 770        setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
 771                          A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
 772        writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
 773
 774        sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
 775                F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
 776                V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
 777                V_RX_PKT_OFFSET(sge->rx_pkt_pad);
 778
 779#if defined(__BIG_ENDIAN_BITFIELD)
 780        sge->sge_control |= F_ENABLE_BIG_ENDIAN;
 781#endif
 782
 783        /* Initialize no-resource timer */
 784        sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
 785
 786        t1_sge_set_coalesce_params(sge, p);
 787}
 788
 789/*
 790 * Return the payload capacity of the jumbo free-list buffers.
 791 */
 792static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
 793{
 794        return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
 795                sge->freelQ[sge->jumbo_fl].dma_offset -
 796                sizeof(struct cpl_rx_data);
 797}
 798
 799/*
 800 * Frees all SGE related resources and the sge structure itself
 801 */
 802void t1_sge_destroy(struct sge *sge)
 803{
 804        int i;
 805
 806        for_each_port(sge->adapter, i)
 807                free_percpu(sge->port_stats[i]);
 808
 809        kfree(sge->tx_sched);
 810        free_tx_resources(sge);
 811        free_rx_resources(sge);
 812        kfree(sge);
 813}
 814
 815/*
 816 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
 817 * context Q) until the Q is full or alloc_skb fails.
 818 *
 819 * It is possible that the generation bits already match, indicating that the
 820 * buffer is already valid and nothing needs to be done. This happens when we
 821 * copied a received buffer into a new sk_buff during the interrupt processing.
 822 *
 823 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
 824 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
 825 * aligned.
 826 */
 827static void refill_free_list(struct sge *sge, struct freelQ *q)
 828{
 829        struct pci_dev *pdev = sge->adapter->pdev;
 830        struct freelQ_ce *ce = &q->centries[q->pidx];
 831        struct freelQ_e *e = &q->entries[q->pidx];
 832        unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
 833
 834        while (q->credits < q->size) {
 835                struct sk_buff *skb;
 836                dma_addr_t mapping;
 837
 838                skb = dev_alloc_skb(q->rx_buffer_size);
 839                if (!skb)
 840                        break;
 841
 842                skb_reserve(skb, q->dma_offset);
 843                mapping = pci_map_single(pdev, skb->data, dma_len,
 844                                         PCI_DMA_FROMDEVICE);
 845                skb_reserve(skb, sge->rx_pkt_pad);
 846
 847                ce->skb = skb;
 848                dma_unmap_addr_set(ce, dma_addr, mapping);
 849                dma_unmap_len_set(ce, dma_len, dma_len);
 850                e->addr_lo = (u32)mapping;
 851                e->addr_hi = (u64)mapping >> 32;
 852                e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
 853                wmb();
 854                e->gen2 = V_CMD_GEN2(q->genbit);
 855
 856                e++;
 857                ce++;
 858                if (++q->pidx == q->size) {
 859                        q->pidx = 0;
 860                        q->genbit ^= 1;
 861                        ce = q->centries;
 862                        e = q->entries;
 863                }
 864                q->credits++;
 865        }
 866}
 867
 868/*
 869 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
 870 * of both rings, we go into 'few interrupt mode' in order to give the system
 871 * time to free up resources.
 872 */
 873static void freelQs_empty(struct sge *sge)
 874{
 875        struct adapter *adapter = sge->adapter;
 876        u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
 877        u32 irqholdoff_reg;
 878
 879        refill_free_list(sge, &sge->freelQ[0]);
 880        refill_free_list(sge, &sge->freelQ[1]);
 881
 882        if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
 883            sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
 884                irq_reg |= F_FL_EXHAUSTED;
 885                irqholdoff_reg = sge->fixed_intrtimer;
 886        } else {
 887                /* Clear the F_FL_EXHAUSTED interrupts for now */
 888                irq_reg &= ~F_FL_EXHAUSTED;
 889                irqholdoff_reg = sge->intrtimer_nres;
 890        }
 891        writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
 892        writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
 893
 894        /* We reenable the Qs to force a freelist GTS interrupt later */
 895        doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
 896}
 897
 898#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
 899#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 900#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
 901                        F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 902
 903/*
 904 * Disable SGE Interrupts
 905 */
 906void t1_sge_intr_disable(struct sge *sge)
 907{
 908        u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 909
 910        writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 911        writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
 912}
 913
 914/*
 915 * Enable SGE interrupts.
 916 */
 917void t1_sge_intr_enable(struct sge *sge)
 918{
 919        u32 en = SGE_INT_ENABLE;
 920        u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 921
 922        if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
 923                en &= ~F_PACKET_TOO_BIG;
 924        writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
 925        writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 926}
 927
 928/*
 929 * Clear SGE interrupts.
 930 */
 931void t1_sge_intr_clear(struct sge *sge)
 932{
 933        writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
 934        writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
 935}
 936
 937/*
 938 * SGE 'Error' interrupt handler
 939 */
 940int t1_sge_intr_error_handler(struct sge *sge)
 941{
 942        struct adapter *adapter = sge->adapter;
 943        u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
 944
 945        if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
 946                cause &= ~F_PACKET_TOO_BIG;
 947        if (cause & F_RESPQ_EXHAUSTED)
 948                sge->stats.respQ_empty++;
 949        if (cause & F_RESPQ_OVERFLOW) {
 950                sge->stats.respQ_overflow++;
 951                pr_alert("%s: SGE response queue overflow\n",
 952                         adapter->name);
 953        }
 954        if (cause & F_FL_EXHAUSTED) {
 955                sge->stats.freelistQ_empty++;
 956                freelQs_empty(sge);
 957        }
 958        if (cause & F_PACKET_TOO_BIG) {
 959                sge->stats.pkt_too_big++;
 960                pr_alert("%s: SGE max packet size exceeded\n",
 961                         adapter->name);
 962        }
 963        if (cause & F_PACKET_MISMATCH) {
 964                sge->stats.pkt_mismatch++;
 965                pr_alert("%s: SGE packet mismatch\n", adapter->name);
 966        }
 967        if (cause & SGE_INT_FATAL)
 968                t1_fatal_err(adapter);
 969
 970        writel(cause, adapter->regs + A_SG_INT_CAUSE);
 971        return 0;
 972}
 973
 974const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
 975{
 976        return &sge->stats;
 977}
 978
 979void t1_sge_get_port_stats(const struct sge *sge, int port,
 980                           struct sge_port_stats *ss)
 981{
 982        int cpu;
 983
 984        memset(ss, 0, sizeof(*ss));
 985        for_each_possible_cpu(cpu) {
 986                struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
 987
 988                ss->rx_cso_good += st->rx_cso_good;
 989                ss->tx_cso += st->tx_cso;
 990                ss->tx_tso += st->tx_tso;
 991                ss->tx_need_hdrroom += st->tx_need_hdrroom;
 992                ss->vlan_xtract += st->vlan_xtract;
 993                ss->vlan_insert += st->vlan_insert;
 994        }
 995}
 996
 997/**
 998 *      recycle_fl_buf - recycle a free list buffer
 999 *      @fl: the free list
1000 *      @idx: index of buffer to recycle
1001 *
1002 *      Recycles the specified buffer on the given free list by adding it at
1003 *      the next available slot on the list.
1004 */
1005static void recycle_fl_buf(struct freelQ *fl, int idx)
1006{
1007        struct freelQ_e *from = &fl->entries[idx];
1008        struct freelQ_e *to = &fl->entries[fl->pidx];
1009
1010        fl->centries[fl->pidx] = fl->centries[idx];
1011        to->addr_lo = from->addr_lo;
1012        to->addr_hi = from->addr_hi;
1013        to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1014        wmb();
1015        to->gen2 = V_CMD_GEN2(fl->genbit);
1016        fl->credits++;
1017
1018        if (++fl->pidx == fl->size) {
1019                fl->pidx = 0;
1020                fl->genbit ^= 1;
1021        }
1022}
1023
1024static int copybreak __read_mostly = 256;
1025module_param(copybreak, int, 0);
1026MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1027
1028/**
1029 *      get_packet - return the next ingress packet buffer
1030 *      @pdev: the PCI device that received the packet
1031 *      @fl: the SGE free list holding the packet
1032 *      @len: the actual packet length, excluding any SGE padding
1033 *
1034 *      Get the next packet from a free list and complete setup of the
1035 *      sk_buff.  If the packet is small we make a copy and recycle the
1036 *      original buffer, otherwise we use the original buffer itself.  If a
1037 *      positive drop threshold is supplied packets are dropped and their
1038 *      buffers recycled if (a) the number of remaining buffers is under the
1039 *      threshold and the packet is too big to copy, or (b) the packet should
1040 *      be copied but there is no memory for the copy.
1041 */
1042static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1043                                         struct freelQ *fl, unsigned int len)
1044{
1045        struct sk_buff *skb;
1046        const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1047
1048        if (len < copybreak) {
1049                skb = netdev_alloc_skb_ip_align(NULL, len);
1050                if (!skb)
1051                        goto use_orig_buf;
1052
1053                skb_put(skb, len);
1054                pci_dma_sync_single_for_cpu(pdev,
1055                                            dma_unmap_addr(ce, dma_addr),
1056                                            dma_unmap_len(ce, dma_len),
1057                                            PCI_DMA_FROMDEVICE);
1058                skb_copy_from_linear_data(ce->skb, skb->data, len);
1059                pci_dma_sync_single_for_device(pdev,
1060                                               dma_unmap_addr(ce, dma_addr),
1061                                               dma_unmap_len(ce, dma_len),
1062                                               PCI_DMA_FROMDEVICE);
1063                recycle_fl_buf(fl, fl->cidx);
1064                return skb;
1065        }
1066
1067use_orig_buf:
1068        if (fl->credits < 2) {
1069                recycle_fl_buf(fl, fl->cidx);
1070                return NULL;
1071        }
1072
1073        pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1074                         dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1075        skb = ce->skb;
1076        prefetch(skb->data);
1077
1078        skb_put(skb, len);
1079        return skb;
1080}
1081
1082/**
1083 *      unexpected_offload - handle an unexpected offload packet
1084 *      @adapter: the adapter
1085 *      @fl: the free list that received the packet
1086 *
1087 *      Called when we receive an unexpected offload packet (e.g., the TOE
1088 *      function is disabled or the card is a NIC).  Prints a message and
1089 *      recycles the buffer.
1090 */
1091static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1092{
1093        struct freelQ_ce *ce = &fl->centries[fl->cidx];
1094        struct sk_buff *skb = ce->skb;
1095
1096        pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1097                            dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1098        pr_err("%s: unexpected offload packet, cmd %u\n",
1099               adapter->name, *skb->data);
1100        recycle_fl_buf(fl, fl->cidx);
1101}
1102
1103/*
1104 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1105 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1106 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1107 * Note that the *_large_page_tx_descs stuff will be optimized out when
1108 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1109 *
1110 * compute_large_page_descs() computes how many additional descriptors are
1111 * required to break down the stack's request.
1112 */
1113static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1114{
1115        unsigned int count = 0;
1116
1117        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1118                unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1119                unsigned int i, len = skb_headlen(skb);
1120                while (len > SGE_TX_DESC_MAX_PLEN) {
1121                        count++;
1122                        len -= SGE_TX_DESC_MAX_PLEN;
1123                }
1124                for (i = 0; nfrags--; i++) {
1125                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126                        len = skb_frag_size(frag);
1127                        while (len > SGE_TX_DESC_MAX_PLEN) {
1128                                count++;
1129                                len -= SGE_TX_DESC_MAX_PLEN;
1130                        }
1131                }
1132        }
1133        return count;
1134}
1135
1136/*
1137 * Write a cmdQ entry.
1138 *
1139 * Since this function writes the 'flags' field, it must not be used to
1140 * write the first cmdQ entry.
1141 */
1142static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1143                                 unsigned int len, unsigned int gen,
1144                                 unsigned int eop)
1145{
1146        BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1147
1148        e->addr_lo = (u32)mapping;
1149        e->addr_hi = (u64)mapping >> 32;
1150        e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1151        e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1152}
1153
1154/*
1155 * See comment for previous function.
1156 *
1157 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1158 * *desc_len exceeds HW's capability.
1159 */
1160static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1161                                                     struct cmdQ_e **e,
1162                                                     struct cmdQ_ce **ce,
1163                                                     unsigned int *gen,
1164                                                     dma_addr_t *desc_mapping,
1165                                                     unsigned int *desc_len,
1166                                                     unsigned int nfrags,
1167                                                     struct cmdQ *q)
1168{
1169        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1170                struct cmdQ_e *e1 = *e;
1171                struct cmdQ_ce *ce1 = *ce;
1172
1173                while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1174                        *desc_len -= SGE_TX_DESC_MAX_PLEN;
1175                        write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1176                                      *gen, nfrags == 0 && *desc_len == 0);
1177                        ce1->skb = NULL;
1178                        dma_unmap_len_set(ce1, dma_len, 0);
1179                        *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1180                        if (*desc_len) {
1181                                ce1++;
1182                                e1++;
1183                                if (++pidx == q->size) {
1184                                        pidx = 0;
1185                                        *gen ^= 1;
1186                                        ce1 = q->centries;
1187                                        e1 = q->entries;
1188                                }
1189                        }
1190                }
1191                *e = e1;
1192                *ce = ce1;
1193        }
1194        return pidx;
1195}
1196
1197/*
1198 * Write the command descriptors to transmit the given skb starting at
1199 * descriptor pidx with the given generation.
1200 */
1201static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1202                                  unsigned int pidx, unsigned int gen,
1203                                  struct cmdQ *q)
1204{
1205        dma_addr_t mapping, desc_mapping;
1206        struct cmdQ_e *e, *e1;
1207        struct cmdQ_ce *ce;
1208        unsigned int i, flags, first_desc_len, desc_len,
1209            nfrags = skb_shinfo(skb)->nr_frags;
1210
1211        e = e1 = &q->entries[pidx];
1212        ce = &q->centries[pidx];
1213
1214        mapping = pci_map_single(adapter->pdev, skb->data,
1215                                 skb_headlen(skb), PCI_DMA_TODEVICE);
1216
1217        desc_mapping = mapping;
1218        desc_len = skb_headlen(skb);
1219
1220        flags = F_CMD_DATAVALID | F_CMD_SOP |
1221            V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1222            V_CMD_GEN2(gen);
1223        first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1224            desc_len : SGE_TX_DESC_MAX_PLEN;
1225        e->addr_lo = (u32)desc_mapping;
1226        e->addr_hi = (u64)desc_mapping >> 32;
1227        e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1228        ce->skb = NULL;
1229        dma_unmap_len_set(ce, dma_len, 0);
1230
1231        if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1232            desc_len > SGE_TX_DESC_MAX_PLEN) {
1233                desc_mapping += first_desc_len;
1234                desc_len -= first_desc_len;
1235                e1++;
1236                ce++;
1237                if (++pidx == q->size) {
1238                        pidx = 0;
1239                        gen ^= 1;
1240                        e1 = q->entries;
1241                        ce = q->centries;
1242                }
1243                pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1244                                                 &desc_mapping, &desc_len,
1245                                                 nfrags, q);
1246
1247                if (likely(desc_len))
1248                        write_tx_desc(e1, desc_mapping, desc_len, gen,
1249                                      nfrags == 0);
1250        }
1251
1252        ce->skb = NULL;
1253        dma_unmap_addr_set(ce, dma_addr, mapping);
1254        dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1255
1256        for (i = 0; nfrags--; i++) {
1257                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1258                e1++;
1259                ce++;
1260                if (++pidx == q->size) {
1261                        pidx = 0;
1262                        gen ^= 1;
1263                        e1 = q->entries;
1264                        ce = q->centries;
1265                }
1266
1267                mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1268                                           skb_frag_size(frag), DMA_TO_DEVICE);
1269                desc_mapping = mapping;
1270                desc_len = skb_frag_size(frag);
1271
1272                pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1273                                                 &desc_mapping, &desc_len,
1274                                                 nfrags, q);
1275                if (likely(desc_len))
1276                        write_tx_desc(e1, desc_mapping, desc_len, gen,
1277                                      nfrags == 0);
1278                ce->skb = NULL;
1279                dma_unmap_addr_set(ce, dma_addr, mapping);
1280                dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1281        }
1282        ce->skb = skb;
1283        wmb();
1284        e->flags = flags;
1285}
1286
1287/*
1288 * Clean up completed Tx buffers.
1289 */
1290static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1291{
1292        unsigned int reclaim = q->processed - q->cleaned;
1293
1294        if (reclaim) {
1295                pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1296                         q->processed, q->cleaned);
1297                free_cmdQ_buffers(sge, q, reclaim);
1298                q->cleaned += reclaim;
1299        }
1300}
1301
1302/*
1303 * Called from tasklet. Checks the scheduler for any
1304 * pending skbs that can be sent.
1305 */
1306static void restart_sched(unsigned long arg)
1307{
1308        struct sge *sge = (struct sge *) arg;
1309        struct adapter *adapter = sge->adapter;
1310        struct cmdQ *q = &sge->cmdQ[0];
1311        struct sk_buff *skb;
1312        unsigned int credits, queued_skb = 0;
1313
1314        spin_lock(&q->lock);
1315        reclaim_completed_tx(sge, q);
1316
1317        credits = q->size - q->in_use;
1318        pr_debug("restart_sched credits=%d\n", credits);
1319        while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1320                unsigned int genbit, pidx, count;
1321                count = 1 + skb_shinfo(skb)->nr_frags;
1322                count += compute_large_page_tx_descs(skb);
1323                q->in_use += count;
1324                genbit = q->genbit;
1325                pidx = q->pidx;
1326                q->pidx += count;
1327                if (q->pidx >= q->size) {
1328                        q->pidx -= q->size;
1329                        q->genbit ^= 1;
1330                }
1331                write_tx_descs(adapter, skb, pidx, genbit, q);
1332                credits = q->size - q->in_use;
1333                queued_skb = 1;
1334        }
1335
1336        if (queued_skb) {
1337                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1338                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1339                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1340                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1341                }
1342        }
1343        spin_unlock(&q->lock);
1344}
1345
1346/**
1347 *      sge_rx - process an ingress ethernet packet
1348 *      @sge: the sge structure
1349 *      @fl: the free list that contains the packet buffer
1350 *      @len: the packet length
1351 *
1352 *      Process an ingress ethernet pakcet and deliver it to the stack.
1353 */
1354static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1355{
1356        struct sk_buff *skb;
1357        const struct cpl_rx_pkt *p;
1358        struct adapter *adapter = sge->adapter;
1359        struct sge_port_stats *st;
1360        struct net_device *dev;
1361
1362        skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1363        if (unlikely(!skb)) {
1364                sge->stats.rx_drops++;
1365                return;
1366        }
1367
1368        p = (const struct cpl_rx_pkt *) skb->data;
1369        if (p->iff >= adapter->params.nports) {
1370                kfree_skb(skb);
1371                return;
1372        }
1373        __skb_pull(skb, sizeof(*p));
1374
1375        st = this_cpu_ptr(sge->port_stats[p->iff]);
1376        dev = adapter->port[p->iff].dev;
1377
1378        skb->protocol = eth_type_trans(skb, dev);
1379        if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1380            skb->protocol == htons(ETH_P_IP) &&
1381            (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1382                ++st->rx_cso_good;
1383                skb->ip_summed = CHECKSUM_UNNECESSARY;
1384        } else
1385                skb_checksum_none_assert(skb);
1386
1387        if (p->vlan_valid) {
1388                st->vlan_xtract++;
1389                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1390        }
1391        netif_receive_skb(skb);
1392}
1393
1394/*
1395 * Returns true if a command queue has enough available descriptors that
1396 * we can resume Tx operation after temporarily disabling its packet queue.
1397 */
1398static inline int enough_free_Tx_descs(const struct cmdQ *q)
1399{
1400        unsigned int r = q->processed - q->cleaned;
1401
1402        return q->in_use - r < (q->size >> 1);
1403}
1404
1405/*
1406 * Called when sufficient space has become available in the SGE command queues
1407 * after the Tx packet schedulers have been suspended to restart the Tx path.
1408 */
1409static void restart_tx_queues(struct sge *sge)
1410{
1411        struct adapter *adap = sge->adapter;
1412        int i;
1413
1414        if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1415                return;
1416
1417        for_each_port(adap, i) {
1418                struct net_device *nd = adap->port[i].dev;
1419
1420                if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1421                    netif_running(nd)) {
1422                        sge->stats.cmdQ_restarted[2]++;
1423                        netif_wake_queue(nd);
1424                }
1425        }
1426}
1427
1428/*
1429 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1430 * information.
1431 */
1432static unsigned int update_tx_info(struct adapter *adapter,
1433                                          unsigned int flags,
1434                                          unsigned int pr0)
1435{
1436        struct sge *sge = adapter->sge;
1437        struct cmdQ *cmdq = &sge->cmdQ[0];
1438
1439        cmdq->processed += pr0;
1440        if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1441                freelQs_empty(sge);
1442                flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1443        }
1444        if (flags & F_CMDQ0_ENABLE) {
1445                clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1446
1447                if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1448                    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1449                        set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1450                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1451                }
1452                if (sge->tx_sched)
1453                        tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1454
1455                flags &= ~F_CMDQ0_ENABLE;
1456        }
1457
1458        if (unlikely(sge->stopped_tx_queues != 0))
1459                restart_tx_queues(sge);
1460
1461        return flags;
1462}
1463
1464/*
1465 * Process SGE responses, up to the supplied budget.  Returns the number of
1466 * responses processed.  A negative budget is effectively unlimited.
1467 */
1468static int process_responses(struct adapter *adapter, int budget)
1469{
1470        struct sge *sge = adapter->sge;
1471        struct respQ *q = &sge->respQ;
1472        struct respQ_e *e = &q->entries[q->cidx];
1473        int done = 0;
1474        unsigned int flags = 0;
1475        unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1476
1477        while (done < budget && e->GenerationBit == q->genbit) {
1478                flags |= e->Qsleeping;
1479
1480                cmdq_processed[0] += e->Cmdq0CreditReturn;
1481                cmdq_processed[1] += e->Cmdq1CreditReturn;
1482
1483                /* We batch updates to the TX side to avoid cacheline
1484                 * ping-pong of TX state information on MP where the sender
1485                 * might run on a different CPU than this function...
1486                 */
1487                if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1488                        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1489                        cmdq_processed[0] = 0;
1490                }
1491
1492                if (unlikely(cmdq_processed[1] > 16)) {
1493                        sge->cmdQ[1].processed += cmdq_processed[1];
1494                        cmdq_processed[1] = 0;
1495                }
1496
1497                if (likely(e->DataValid)) {
1498                        struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1499
1500                        BUG_ON(!e->Sop || !e->Eop);
1501                        if (unlikely(e->Offload))
1502                                unexpected_offload(adapter, fl);
1503                        else
1504                                sge_rx(sge, fl, e->BufferLength);
1505
1506                        ++done;
1507
1508                        /*
1509                         * Note: this depends on each packet consuming a
1510                         * single free-list buffer; cf. the BUG above.
1511                         */
1512                        if (++fl->cidx == fl->size)
1513                                fl->cidx = 0;
1514                        prefetch(fl->centries[fl->cidx].skb);
1515
1516                        if (unlikely(--fl->credits <
1517                                     fl->size - SGE_FREEL_REFILL_THRESH))
1518                                refill_free_list(sge, fl);
1519                } else
1520                        sge->stats.pure_rsps++;
1521
1522                e++;
1523                if (unlikely(++q->cidx == q->size)) {
1524                        q->cidx = 0;
1525                        q->genbit ^= 1;
1526                        e = q->entries;
1527                }
1528                prefetch(e);
1529
1530                if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1531                        writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1532                        q->credits = 0;
1533                }
1534        }
1535
1536        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1537        sge->cmdQ[1].processed += cmdq_processed[1];
1538
1539        return done;
1540}
1541
1542static inline int responses_pending(const struct adapter *adapter)
1543{
1544        const struct respQ *Q = &adapter->sge->respQ;
1545        const struct respQ_e *e = &Q->entries[Q->cidx];
1546
1547        return e->GenerationBit == Q->genbit;
1548}
1549
1550/*
1551 * A simpler version of process_responses() that handles only pure (i.e.,
1552 * non data-carrying) responses.  Such respones are too light-weight to justify
1553 * calling a softirq when using NAPI, so we handle them specially in hard
1554 * interrupt context.  The function is called with a pointer to a response,
1555 * which the caller must ensure is a valid pure response.  Returns 1 if it
1556 * encounters a valid data-carrying response, 0 otherwise.
1557 */
1558static int process_pure_responses(struct adapter *adapter)
1559{
1560        struct sge *sge = adapter->sge;
1561        struct respQ *q = &sge->respQ;
1562        struct respQ_e *e = &q->entries[q->cidx];
1563        const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1564        unsigned int flags = 0;
1565        unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1566
1567        prefetch(fl->centries[fl->cidx].skb);
1568        if (e->DataValid)
1569                return 1;
1570
1571        do {
1572                flags |= e->Qsleeping;
1573
1574                cmdq_processed[0] += e->Cmdq0CreditReturn;
1575                cmdq_processed[1] += e->Cmdq1CreditReturn;
1576
1577                e++;
1578                if (unlikely(++q->cidx == q->size)) {
1579                        q->cidx = 0;
1580                        q->genbit ^= 1;
1581                        e = q->entries;
1582                }
1583                prefetch(e);
1584
1585                if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1586                        writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1587                        q->credits = 0;
1588                }
1589                sge->stats.pure_rsps++;
1590        } while (e->GenerationBit == q->genbit && !e->DataValid);
1591
1592        flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1593        sge->cmdQ[1].processed += cmdq_processed[1];
1594
1595        return e->GenerationBit == q->genbit;
1596}
1597
1598/*
1599 * Handler for new data events when using NAPI.  This does not need any locking
1600 * or protection from interrupts as data interrupts are off at this point and
1601 * other adapter interrupts do not interfere.
1602 */
1603int t1_poll(struct napi_struct *napi, int budget)
1604{
1605        struct adapter *adapter = container_of(napi, struct adapter, napi);
1606        int work_done = process_responses(adapter, budget);
1607
1608        if (likely(work_done < budget)) {
1609                napi_complete(napi);
1610                writel(adapter->sge->respQ.cidx,
1611                       adapter->regs + A_SG_SLEEPING);
1612        }
1613        return work_done;
1614}
1615
1616irqreturn_t t1_interrupt(int irq, void *data)
1617{
1618        struct adapter *adapter = data;
1619        struct sge *sge = adapter->sge;
1620        int handled;
1621
1622        if (likely(responses_pending(adapter))) {
1623                writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1624
1625                if (napi_schedule_prep(&adapter->napi)) {
1626                        if (process_pure_responses(adapter))
1627                                __napi_schedule(&adapter->napi);
1628                        else {
1629                                /* no data, no NAPI needed */
1630                                writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1631                                /* undo schedule_prep */
1632                                napi_enable(&adapter->napi);
1633                        }
1634                }
1635                return IRQ_HANDLED;
1636        }
1637
1638        spin_lock(&adapter->async_lock);
1639        handled = t1_slow_intr_handler(adapter);
1640        spin_unlock(&adapter->async_lock);
1641
1642        if (!handled)
1643                sge->stats.unhandled_irqs++;
1644
1645        return IRQ_RETVAL(handled != 0);
1646}
1647
1648/*
1649 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1650 *
1651 * The code figures out how many entries the sk_buff will require in the
1652 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1653 * has complete. Then, it doesn't access the global structure anymore, but
1654 * uses the corresponding fields on the stack. In conjunction with a spinlock
1655 * around that code, we can make the function reentrant without holding the
1656 * lock when we actually enqueue (which might be expensive, especially on
1657 * architectures with IO MMUs).
1658 *
1659 * This runs with softirqs disabled.
1660 */
1661static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1662                     unsigned int qid, struct net_device *dev)
1663{
1664        struct sge *sge = adapter->sge;
1665        struct cmdQ *q = &sge->cmdQ[qid];
1666        unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1667
1668        if (!spin_trylock(&q->lock))
1669                return NETDEV_TX_LOCKED;
1670
1671        reclaim_completed_tx(sge, q);
1672
1673        pidx = q->pidx;
1674        credits = q->size - q->in_use;
1675        count = 1 + skb_shinfo(skb)->nr_frags;
1676        count += compute_large_page_tx_descs(skb);
1677
1678        /* Ethernet packet */
1679        if (unlikely(credits < count)) {
1680                if (!netif_queue_stopped(dev)) {
1681                        netif_stop_queue(dev);
1682                        set_bit(dev->if_port, &sge->stopped_tx_queues);
1683                        sge->stats.cmdQ_full[2]++;
1684                        pr_err("%s: Tx ring full while queue awake!\n",
1685                               adapter->name);
1686                }
1687                spin_unlock(&q->lock);
1688                return NETDEV_TX_BUSY;
1689        }
1690
1691        if (unlikely(credits - count < q->stop_thres)) {
1692                netif_stop_queue(dev);
1693                set_bit(dev->if_port, &sge->stopped_tx_queues);
1694                sge->stats.cmdQ_full[2]++;
1695        }
1696
1697        /* T204 cmdQ0 skbs that are destined for a certain port have to go
1698         * through the scheduler.
1699         */
1700        if (sge->tx_sched && !qid && skb->dev) {
1701use_sched:
1702                use_sched_skb = 1;
1703                /* Note that the scheduler might return a different skb than
1704                 * the one passed in.
1705                 */
1706                skb = sched_skb(sge, skb, credits);
1707                if (!skb) {
1708                        spin_unlock(&q->lock);
1709                        return NETDEV_TX_OK;
1710                }
1711                pidx = q->pidx;
1712                count = 1 + skb_shinfo(skb)->nr_frags;
1713                count += compute_large_page_tx_descs(skb);
1714        }
1715
1716        q->in_use += count;
1717        genbit = q->genbit;
1718        pidx = q->pidx;
1719        q->pidx += count;
1720        if (q->pidx >= q->size) {
1721                q->pidx -= q->size;
1722                q->genbit ^= 1;
1723        }
1724        spin_unlock(&q->lock);
1725
1726        write_tx_descs(adapter, skb, pidx, genbit, q);
1727
1728        /*
1729         * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1730         * the doorbell if the Q is asleep. There is a natural race, where
1731         * the hardware is going to sleep just after we checked, however,
1732         * then the interrupt handler will detect the outstanding TX packet
1733         * and ring the doorbell for us.
1734         */
1735        if (qid)
1736                doorbell_pio(adapter, F_CMDQ1_ENABLE);
1737        else {
1738                clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1739                if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1740                        set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1741                        writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1742                }
1743        }
1744
1745        if (use_sched_skb) {
1746                if (spin_trylock(&q->lock)) {
1747                        credits = q->size - q->in_use;
1748                        skb = NULL;
1749                        goto use_sched;
1750                }
1751        }
1752        return NETDEV_TX_OK;
1753}
1754
1755#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1756
1757/*
1758 *      eth_hdr_len - return the length of an Ethernet header
1759 *      @data: pointer to the start of the Ethernet header
1760 *
1761 *      Returns the length of an Ethernet header, including optional VLAN tag.
1762 */
1763static inline int eth_hdr_len(const void *data)
1764{
1765        const struct ethhdr *e = data;
1766
1767        return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1768}
1769
1770/*
1771 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1772 */
1773netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1774{
1775        struct adapter *adapter = dev->ml_priv;
1776        struct sge *sge = adapter->sge;
1777        struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1778        struct cpl_tx_pkt *cpl;
1779        struct sk_buff *orig_skb = skb;
1780        int ret;
1781
1782        if (skb->protocol == htons(ETH_P_CPL5))
1783                goto send;
1784
1785        /*
1786         * We are using a non-standard hard_header_len.
1787         * Allocate more header room in the rare cases it is not big enough.
1788         */
1789        if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1790                skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1791                ++st->tx_need_hdrroom;
1792                dev_kfree_skb_any(orig_skb);
1793                if (!skb)
1794                        return NETDEV_TX_OK;
1795        }
1796
1797        if (skb_shinfo(skb)->gso_size) {
1798                int eth_type;
1799                struct cpl_tx_pkt_lso *hdr;
1800
1801                ++st->tx_tso;
1802
1803                eth_type = skb_network_offset(skb) == ETH_HLEN ?
1804                        CPL_ETH_II : CPL_ETH_II_VLAN;
1805
1806                hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1807                hdr->opcode = CPL_TX_PKT_LSO;
1808                hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1809                hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1810                hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1811                hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1812                                                          skb_shinfo(skb)->gso_size));
1813                hdr->len = htonl(skb->len - sizeof(*hdr));
1814                cpl = (struct cpl_tx_pkt *)hdr;
1815        } else {
1816                /*
1817                 * Packets shorter than ETH_HLEN can break the MAC, drop them
1818                 * early.  Also, we may get oversized packets because some
1819                 * parts of the kernel don't handle our unusual hard_header_len
1820                 * right, drop those too.
1821                 */
1822                if (unlikely(skb->len < ETH_HLEN ||
1823                             skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1824                        netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1825                                   skb->len, eth_hdr_len(skb->data), dev->mtu);
1826                        dev_kfree_skb_any(skb);
1827                        return NETDEV_TX_OK;
1828                }
1829
1830                if (skb->ip_summed == CHECKSUM_PARTIAL &&
1831                    ip_hdr(skb)->protocol == IPPROTO_UDP) {
1832                        if (unlikely(skb_checksum_help(skb))) {
1833                                netdev_dbg(dev, "unable to do udp checksum\n");
1834                                dev_kfree_skb_any(skb);
1835                                return NETDEV_TX_OK;
1836                        }
1837                }
1838
1839                /* Hmmm, assuming to catch the gratious arp... and we'll use
1840                 * it to flush out stuck espi packets...
1841                 */
1842                if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1843                        if (skb->protocol == htons(ETH_P_ARP) &&
1844                            arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1845                                adapter->sge->espibug_skb[dev->if_port] = skb;
1846                                /* We want to re-use this skb later. We
1847                                 * simply bump the reference count and it
1848                                 * will not be freed...
1849                                 */
1850                                skb = skb_get(skb);
1851                        }
1852                }
1853
1854                cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1855                cpl->opcode = CPL_TX_PKT;
1856                cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1857                cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1858                /* the length field isn't used so don't bother setting it */
1859
1860                st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1861        }
1862        cpl->iff = dev->if_port;
1863
1864        if (vlan_tx_tag_present(skb)) {
1865                cpl->vlan_valid = 1;
1866                cpl->vlan = htons(vlan_tx_tag_get(skb));
1867                st->vlan_insert++;
1868        } else
1869                cpl->vlan_valid = 0;
1870
1871send:
1872        ret = t1_sge_tx(skb, adapter, 0, dev);
1873
1874        /* If transmit busy, and we reallocated skb's due to headroom limit,
1875         * then silently discard to avoid leak.
1876         */
1877        if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1878                dev_kfree_skb_any(skb);
1879                ret = NETDEV_TX_OK;
1880        }
1881        return ret;
1882}
1883
1884/*
1885 * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1886 */
1887static void sge_tx_reclaim_cb(unsigned long data)
1888{
1889        int i;
1890        struct sge *sge = (struct sge *)data;
1891
1892        for (i = 0; i < SGE_CMDQ_N; ++i) {
1893                struct cmdQ *q = &sge->cmdQ[i];
1894
1895                if (!spin_trylock(&q->lock))
1896                        continue;
1897
1898                reclaim_completed_tx(sge, q);
1899                if (i == 0 && q->in_use) {    /* flush pending credits */
1900                        writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1901                }
1902                spin_unlock(&q->lock);
1903        }
1904        mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1905}
1906
1907/*
1908 * Propagate changes of the SGE coalescing parameters to the HW.
1909 */
1910int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1911{
1912        sge->fixed_intrtimer = p->rx_coalesce_usecs *
1913                core_ticks_per_usec(sge->adapter);
1914        writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1915        return 0;
1916}
1917
1918/*
1919 * Allocates both RX and TX resources and configures the SGE. However,
1920 * the hardware is not enabled yet.
1921 */
1922int t1_sge_configure(struct sge *sge, struct sge_params *p)
1923{
1924        if (alloc_rx_resources(sge, p))
1925                return -ENOMEM;
1926        if (alloc_tx_resources(sge, p)) {
1927                free_rx_resources(sge);
1928                return -ENOMEM;
1929        }
1930        configure_sge(sge, p);
1931
1932        /*
1933         * Now that we have sized the free lists calculate the payload
1934         * capacity of the large buffers.  Other parts of the driver use
1935         * this to set the max offload coalescing size so that RX packets
1936         * do not overflow our large buffers.
1937         */
1938        p->large_buf_capacity = jumbo_payload_capacity(sge);
1939        return 0;
1940}
1941
1942/*
1943 * Disables the DMA engine.
1944 */
1945void t1_sge_stop(struct sge *sge)
1946{
1947        int i;
1948        writel(0, sge->adapter->regs + A_SG_CONTROL);
1949        readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1950
1951        if (is_T2(sge->adapter))
1952                del_timer_sync(&sge->espibug_timer);
1953
1954        del_timer_sync(&sge->tx_reclaim_timer);
1955        if (sge->tx_sched)
1956                tx_sched_stop(sge);
1957
1958        for (i = 0; i < MAX_NPORTS; i++)
1959                kfree_skb(sge->espibug_skb[i]);
1960}
1961
1962/*
1963 * Enables the DMA engine.
1964 */
1965void t1_sge_start(struct sge *sge)
1966{
1967        refill_free_list(sge, &sge->freelQ[0]);
1968        refill_free_list(sge, &sge->freelQ[1]);
1969
1970        writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1971        doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1972        readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1973
1974        mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1975
1976        if (is_T2(sge->adapter))
1977                mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1978}
1979
1980/*
1981 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1982 */
1983static void espibug_workaround_t204(unsigned long data)
1984{
1985        struct adapter *adapter = (struct adapter *)data;
1986        struct sge *sge = adapter->sge;
1987        unsigned int nports = adapter->params.nports;
1988        u32 seop[MAX_NPORTS];
1989
1990        if (adapter->open_device_map & PORT_MASK) {
1991                int i;
1992
1993                if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1994                        return;
1995
1996                for (i = 0; i < nports; i++) {
1997                        struct sk_buff *skb = sge->espibug_skb[i];
1998
1999                        if (!netif_running(adapter->port[i].dev) ||
2000                            netif_queue_stopped(adapter->port[i].dev) ||
2001                            !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2002                                continue;
2003
2004                        if (!skb->cb[0]) {
2005                                skb_copy_to_linear_data_offset(skb,
2006                                                    sizeof(struct cpl_tx_pkt),
2007                                                               ch_mac_addr,
2008                                                               ETH_ALEN);
2009                                skb_copy_to_linear_data_offset(skb,
2010                                                               skb->len - 10,
2011                                                               ch_mac_addr,
2012                                                               ETH_ALEN);
2013                                skb->cb[0] = 0xff;
2014                        }
2015
2016                        /* bump the reference count to avoid freeing of
2017                         * the skb once the DMA has completed.
2018                         */
2019                        skb = skb_get(skb);
2020                        t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2021                }
2022        }
2023        mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2024}
2025
2026static void espibug_workaround(unsigned long data)
2027{
2028        struct adapter *adapter = (struct adapter *)data;
2029        struct sge *sge = adapter->sge;
2030
2031        if (netif_running(adapter->port[0].dev)) {
2032                struct sk_buff *skb = sge->espibug_skb[0];
2033                u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2034
2035                if ((seop & 0xfff0fff) == 0xfff && skb) {
2036                        if (!skb->cb[0]) {
2037                                skb_copy_to_linear_data_offset(skb,
2038                                                     sizeof(struct cpl_tx_pkt),
2039                                                               ch_mac_addr,
2040                                                               ETH_ALEN);
2041                                skb_copy_to_linear_data_offset(skb,
2042                                                               skb->len - 10,
2043                                                               ch_mac_addr,
2044                                                               ETH_ALEN);
2045                                skb->cb[0] = 0xff;
2046                        }
2047
2048                        /* bump the reference count to avoid freeing of the
2049                         * skb once the DMA has completed.
2050                         */
2051                        skb = skb_get(skb);
2052                        t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2053                }
2054        }
2055        mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2056}
2057
2058/*
2059 * Creates a t1_sge structure and returns suggested resource parameters.
2060 */
2061struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2062{
2063        struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2064        int i;
2065
2066        if (!sge)
2067                return NULL;
2068
2069        sge->adapter = adapter;
2070        sge->netdev = adapter->port[0].dev;
2071        sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2072        sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2073
2074        for_each_port(adapter, i) {
2075                sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2076                if (!sge->port_stats[i])
2077                        goto nomem_port;
2078        }
2079
2080        init_timer(&sge->tx_reclaim_timer);
2081        sge->tx_reclaim_timer.data = (unsigned long)sge;
2082        sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2083
2084        if (is_T2(sge->adapter)) {
2085                init_timer(&sge->espibug_timer);
2086
2087                if (adapter->params.nports > 1) {
2088                        tx_sched_init(sge);
2089                        sge->espibug_timer.function = espibug_workaround_t204;
2090                } else
2091                        sge->espibug_timer.function = espibug_workaround;
2092                sge->espibug_timer.data = (unsigned long)sge->adapter;
2093
2094                sge->espibug_timeout = 1;
2095                /* for T204, every 10ms */
2096                if (adapter->params.nports > 1)
2097                        sge->espibug_timeout = HZ/100;
2098        }
2099
2100
2101        p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2102        p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2103        p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2104        p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2105        if (sge->tx_sched) {
2106                if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2107                        p->rx_coalesce_usecs = 15;
2108                else
2109                        p->rx_coalesce_usecs = 50;
2110        } else
2111                p->rx_coalesce_usecs = 50;
2112
2113        p->coalesce_enable = 0;
2114        p->sample_interval_usecs = 0;
2115
2116        return sge;
2117nomem_port:
2118        while (i >= 0) {
2119                free_percpu(sge->port_stats[i]);
2120                --i;
2121        }
2122        kfree(sge);
2123        return NULL;
2124
2125}
2126