linux/drivers/net/ethernet/chelsio/cxgb4/sge.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/skbuff.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/if_vlan.h>
  39#include <linux/ip.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/jiffies.h>
  42#include <linux/prefetch.h>
  43#include <linux/export.h>
  44#include <net/ipv6.h>
  45#include <net/tcp.h>
  46#include "cxgb4.h"
  47#include "t4_regs.h"
  48#include "t4_msg.h"
  49#include "t4fw_api.h"
  50
  51/*
  52 * Rx buffer size.  We use largish buffers if possible but settle for single
  53 * pages under memory shortage.
  54 */
  55#if PAGE_SHIFT >= 16
  56# define FL_PG_ORDER 0
  57#else
  58# define FL_PG_ORDER (16 - PAGE_SHIFT)
  59#endif
  60
  61/* RX_PULL_LEN should be <= RX_COPY_THRES */
  62#define RX_COPY_THRES    256
  63#define RX_PULL_LEN      128
  64
  65/*
  66 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
  67 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
  68 */
  69#define RX_PKT_SKB_LEN   512
  70
  71/*
  72 * Max number of Tx descriptors we clean up at a time.  Should be modest as
  73 * freeing skbs isn't cheap and it happens while holding locks.  We just need
  74 * to free packets faster than they arrive, we eventually catch up and keep
  75 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.
  76 */
  77#define MAX_TX_RECLAIM 16
  78
  79/*
  80 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
  81 * allocating buffers isn't cheap either.
  82 */
  83#define MAX_RX_REFILL 16U
  84
  85/*
  86 * Period of the Rx queue check timer.  This timer is infrequent as it has
  87 * something to do only when the system experiences severe memory shortage.
  88 */
  89#define RX_QCHECK_PERIOD (HZ / 2)
  90
  91/*
  92 * Period of the Tx queue check timer.
  93 */
  94#define TX_QCHECK_PERIOD (HZ / 2)
  95
  96/*
  97 * Max number of Tx descriptors to be reclaimed by the Tx timer.
  98 */
  99#define MAX_TIMER_TX_RECLAIM 100
 100
 101/*
 102 * Timer index used when backing off due to memory shortage.
 103 */
 104#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 105
 106/*
 107 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
 108 * attempt to refill it.
 109 */
 110#define FL_STARVE_THRES 4
 111
 112/*
 113 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
 114 * This is the same as calc_tx_descs() for a TSO packet with
 115 * nr_frags == MAX_SKB_FRAGS.
 116 */
 117#define ETHTXQ_STOP_THRES \
 118        (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
 119
 120/*
 121 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 122 * for a full sized WR.
 123 */
 124#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 125
 126/*
 127 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 128 * into a WR.
 129 */
 130#define MAX_IMM_TX_PKT_LEN 128
 131
 132/*
 133 * Max size of a WR sent through a control Tx queue.
 134 */
 135#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 136
 137struct tx_sw_desc {                /* SW state per Tx descriptor */
 138        struct sk_buff *skb;
 139        struct ulptx_sgl *sgl;
 140};
 141
 142struct rx_sw_desc {                /* SW state per Rx descriptor */
 143        struct page *page;
 144        dma_addr_t dma_addr;
 145};
 146
 147/*
 148 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 149 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 150 * We could easily support more but there doesn't seem to be much need for
 151 * that ...
 152 */
 153#define FL_MTU_SMALL 1500
 154#define FL_MTU_LARGE 9000
 155
 156static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
 157                                          unsigned int mtu)
 158{
 159        struct sge *s = &adapter->sge;
 160
 161        return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
 162}
 163
 164#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
 165#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
 166
 167/*
 168 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 169 * these to specify the buffer size as an index into the SGE Free List Buffer
 170 * Size register array.  We also use bit 4, when the buffer has been unmapped
 171 * for DMA, but this is of course never sent to the hardware and is only used
 172 * to prevent double unmappings.  All of the above requires that the Free List
 173 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 174 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 175 * Free List Buffer alignment is 32 bytes, this works out for us ...
 176 */
 177enum {
 178        RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
 179        RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
 180        RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
 181
 182        /*
 183         * XXX We shouldn't depend on being able to use these indices.
 184         * XXX Especially when some other Master PF has initialized the
 185         * XXX adapter or we use the Firmware Configuration File.  We
 186         * XXX should really search through the Host Buffer Size register
 187         * XXX array for the appropriately sized buffer indices.
 188         */
 189        RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
 190        RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
 191
 192        RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
 193        RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
 194};
 195
 196static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 197{
 198        return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
 199}
 200
 201static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 202{
 203        return !(d->dma_addr & RX_UNMAPPED_BUF);
 204}
 205
 206/**
 207 *      txq_avail - return the number of available slots in a Tx queue
 208 *      @q: the Tx queue
 209 *
 210 *      Returns the number of descriptors in a Tx queue available to write new
 211 *      packets.
 212 */
 213static inline unsigned int txq_avail(const struct sge_txq *q)
 214{
 215        return q->size - 1 - q->in_use;
 216}
 217
 218/**
 219 *      fl_cap - return the capacity of a free-buffer list
 220 *      @fl: the FL
 221 *
 222 *      Returns the capacity of a free-buffer list.  The capacity is less than
 223 *      the size because one descriptor needs to be left unpopulated, otherwise
 224 *      HW will think the FL is empty.
 225 */
 226static inline unsigned int fl_cap(const struct sge_fl *fl)
 227{
 228        return fl->size - 8;   /* 1 descriptor = 8 buffers */
 229}
 230
 231static inline bool fl_starving(const struct sge_fl *fl)
 232{
 233        return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
 234}
 235
 236static int map_skb(struct device *dev, const struct sk_buff *skb,
 237                   dma_addr_t *addr)
 238{
 239        const skb_frag_t *fp, *end;
 240        const struct skb_shared_info *si;
 241
 242        *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 243        if (dma_mapping_error(dev, *addr))
 244                goto out_err;
 245
 246        si = skb_shinfo(skb);
 247        end = &si->frags[si->nr_frags];
 248
 249        for (fp = si->frags; fp < end; fp++) {
 250                *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 251                                           DMA_TO_DEVICE);
 252                if (dma_mapping_error(dev, *addr))
 253                        goto unwind;
 254        }
 255        return 0;
 256
 257unwind:
 258        while (fp-- > si->frags)
 259                dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 260
 261        dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 262out_err:
 263        return -ENOMEM;
 264}
 265
 266#ifdef CONFIG_NEED_DMA_MAP_STATE
 267static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 268                      const dma_addr_t *addr)
 269{
 270        const skb_frag_t *fp, *end;
 271        const struct skb_shared_info *si;
 272
 273        dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 274
 275        si = skb_shinfo(skb);
 276        end = &si->frags[si->nr_frags];
 277        for (fp = si->frags; fp < end; fp++)
 278                dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
 279}
 280
 281/**
 282 *      deferred_unmap_destructor - unmap a packet when it is freed
 283 *      @skb: the packet
 284 *
 285 *      This is the packet destructor used for Tx packets that need to remain
 286 *      mapped until they are freed rather than until their Tx descriptors are
 287 *      freed.
 288 */
 289static void deferred_unmap_destructor(struct sk_buff *skb)
 290{
 291        unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 292}
 293#endif
 294
 295static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 296                      const struct ulptx_sgl *sgl, const struct sge_txq *q)
 297{
 298        const struct ulptx_sge_pair *p;
 299        unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 300
 301        if (likely(skb_headlen(skb)))
 302                dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 303                                 DMA_TO_DEVICE);
 304        else {
 305                dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
 306                               DMA_TO_DEVICE);
 307                nfrags--;
 308        }
 309
 310        /*
 311         * the complexity below is because of the possibility of a wrap-around
 312         * in the middle of an SGL
 313         */
 314        for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 315                if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
 316unmap:                  dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 317                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 318                        dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 319                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 320                        p++;
 321                } else if ((u8 *)p == (u8 *)q->stat) {
 322                        p = (const struct ulptx_sge_pair *)q->desc;
 323                        goto unmap;
 324                } else if ((u8 *)p + 8 == (u8 *)q->stat) {
 325                        const __be64 *addr = (const __be64 *)q->desc;
 326
 327                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 328                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 329                        dma_unmap_page(dev, be64_to_cpu(addr[1]),
 330                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 331                        p = (const struct ulptx_sge_pair *)&addr[2];
 332                } else {
 333                        const __be64 *addr = (const __be64 *)q->desc;
 334
 335                        dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 336                                       ntohl(p->len[0]), DMA_TO_DEVICE);
 337                        dma_unmap_page(dev, be64_to_cpu(addr[0]),
 338                                       ntohl(p->len[1]), DMA_TO_DEVICE);
 339                        p = (const struct ulptx_sge_pair *)&addr[1];
 340                }
 341        }
 342        if (nfrags) {
 343                __be64 addr;
 344
 345                if ((u8 *)p == (u8 *)q->stat)
 346                        p = (const struct ulptx_sge_pair *)q->desc;
 347                addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
 348                                                       *(const __be64 *)q->desc;
 349                dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
 350                               DMA_TO_DEVICE);
 351        }
 352}
 353
 354/**
 355 *      free_tx_desc - reclaims Tx descriptors and their buffers
 356 *      @adapter: the adapter
 357 *      @q: the Tx queue to reclaim descriptors from
 358 *      @n: the number of descriptors to reclaim
 359 *      @unmap: whether the buffers should be unmapped for DMA
 360 *
 361 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 362 *      Tx buffers.  Called with the Tx queue lock held.
 363 */
 364static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 365                         unsigned int n, bool unmap)
 366{
 367        struct tx_sw_desc *d;
 368        unsigned int cidx = q->cidx;
 369        struct device *dev = adap->pdev_dev;
 370
 371        d = &q->sdesc[cidx];
 372        while (n--) {
 373                if (d->skb) {                       /* an SGL is present */
 374                        if (unmap)
 375                                unmap_sgl(dev, d->skb, d->sgl, q);
 376                        kfree_skb(d->skb);
 377                        d->skb = NULL;
 378                }
 379                ++d;
 380                if (++cidx == q->size) {
 381                        cidx = 0;
 382                        d = q->sdesc;
 383                }
 384        }
 385        q->cidx = cidx;
 386}
 387
 388/*
 389 * Return the number of reclaimable descriptors in a Tx queue.
 390 */
 391static inline int reclaimable(const struct sge_txq *q)
 392{
 393        int hw_cidx = ntohs(q->stat->cidx);
 394        hw_cidx -= q->cidx;
 395        return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 396}
 397
 398/**
 399 *      reclaim_completed_tx - reclaims completed Tx descriptors
 400 *      @adap: the adapter
 401 *      @q: the Tx queue to reclaim completed descriptors from
 402 *      @unmap: whether the buffers should be unmapped for DMA
 403 *
 404 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 405 *      and frees the associated buffers if possible.  Called with the Tx
 406 *      queue locked.
 407 */
 408static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 409                                        bool unmap)
 410{
 411        int avail = reclaimable(q);
 412
 413        if (avail) {
 414                /*
 415                 * Limit the amount of clean up work we do at a time to keep
 416                 * the Tx lock hold time O(1).
 417                 */
 418                if (avail > MAX_TX_RECLAIM)
 419                        avail = MAX_TX_RECLAIM;
 420
 421                free_tx_desc(adap, q, avail, unmap);
 422                q->in_use -= avail;
 423        }
 424}
 425
 426static inline int get_buf_size(struct adapter *adapter,
 427                               const struct rx_sw_desc *d)
 428{
 429        struct sge *s = &adapter->sge;
 430        unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
 431        int buf_size;
 432
 433        switch (rx_buf_size_idx) {
 434        case RX_SMALL_PG_BUF:
 435                buf_size = PAGE_SIZE;
 436                break;
 437
 438        case RX_LARGE_PG_BUF:
 439                buf_size = PAGE_SIZE << s->fl_pg_order;
 440                break;
 441
 442        case RX_SMALL_MTU_BUF:
 443                buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
 444                break;
 445
 446        case RX_LARGE_MTU_BUF:
 447                buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
 448                break;
 449
 450        default:
 451                BUG_ON(1);
 452        }
 453
 454        return buf_size;
 455}
 456
 457/**
 458 *      free_rx_bufs - free the Rx buffers on an SGE free list
 459 *      @adap: the adapter
 460 *      @q: the SGE free list to free buffers from
 461 *      @n: how many buffers to free
 462 *
 463 *      Release the next @n buffers on an SGE free-buffer Rx queue.   The
 464 *      buffers must be made inaccessible to HW before calling this function.
 465 */
 466static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 467{
 468        while (n--) {
 469                struct rx_sw_desc *d = &q->sdesc[q->cidx];
 470
 471                if (is_buf_mapped(d))
 472                        dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 473                                       get_buf_size(adap, d),
 474                                       PCI_DMA_FROMDEVICE);
 475                put_page(d->page);
 476                d->page = NULL;
 477                if (++q->cidx == q->size)
 478                        q->cidx = 0;
 479                q->avail--;
 480        }
 481}
 482
 483/**
 484 *      unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 485 *      @adap: the adapter
 486 *      @q: the SGE free list
 487 *
 488 *      Unmap the current buffer on an SGE free-buffer Rx queue.   The
 489 *      buffer must be made inaccessible to HW before calling this function.
 490 *
 491 *      This is similar to @free_rx_bufs above but does not free the buffer.
 492 *      Do note that the FL still loses any further access to the buffer.
 493 */
 494static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 495{
 496        struct rx_sw_desc *d = &q->sdesc[q->cidx];
 497
 498        if (is_buf_mapped(d))
 499                dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 500                               get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
 501        d->page = NULL;
 502        if (++q->cidx == q->size)
 503                q->cidx = 0;
 504        q->avail--;
 505}
 506
 507static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 508{
 509        u32 val;
 510        if (q->pend_cred >= 8) {
 511                val = PIDX(q->pend_cred / 8);
 512                if (!is_t4(adap->chip))
 513                        val |= DBTYPE(1);
 514                wmb();
 515                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO(1) |
 516                             QID(q->cntxt_id) | val);
 517                q->pend_cred &= 7;
 518        }
 519}
 520
 521static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 522                                  dma_addr_t mapping)
 523{
 524        sd->page = pg;
 525        sd->dma_addr = mapping;      /* includes size low bits */
 526}
 527
 528/**
 529 *      refill_fl - refill an SGE Rx buffer ring
 530 *      @adap: the adapter
 531 *      @q: the ring to refill
 532 *      @n: the number of new buffers to allocate
 533 *      @gfp: the gfp flags for the allocations
 534 *
 535 *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 536 *      allocated with the supplied gfp flags.  The caller must assure that
 537 *      @n does not exceed the queue's capacity.  If afterwards the queue is
 538 *      found critically low mark it as starving in the bitmap of starving FLs.
 539 *
 540 *      Returns the number of buffers allocated.
 541 */
 542static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 543                              gfp_t gfp)
 544{
 545        struct sge *s = &adap->sge;
 546        struct page *pg;
 547        dma_addr_t mapping;
 548        unsigned int cred = q->avail;
 549        __be64 *d = &q->desc[q->pidx];
 550        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 551
 552        gfp |= __GFP_NOWARN | __GFP_COLD;
 553
 554        if (s->fl_pg_order == 0)
 555                goto alloc_small_pages;
 556
 557        /*
 558         * Prefer large buffers
 559         */
 560        while (n) {
 561                pg = alloc_pages(gfp | __GFP_COMP, s->fl_pg_order);
 562                if (unlikely(!pg)) {
 563                        q->large_alloc_failed++;
 564                        break;       /* fall back to single pages */
 565                }
 566
 567                mapping = dma_map_page(adap->pdev_dev, pg, 0,
 568                                       PAGE_SIZE << s->fl_pg_order,
 569                                       PCI_DMA_FROMDEVICE);
 570                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 571                        __free_pages(pg, s->fl_pg_order);
 572                        goto out;   /* do not try small pages for this error */
 573                }
 574                mapping |= RX_LARGE_PG_BUF;
 575                *d++ = cpu_to_be64(mapping);
 576
 577                set_rx_sw_desc(sd, pg, mapping);
 578                sd++;
 579
 580                q->avail++;
 581                if (++q->pidx == q->size) {
 582                        q->pidx = 0;
 583                        sd = q->sdesc;
 584                        d = q->desc;
 585                }
 586                n--;
 587        }
 588
 589alloc_small_pages:
 590        while (n--) {
 591                pg = __skb_alloc_page(gfp, NULL);
 592                if (unlikely(!pg)) {
 593                        q->alloc_failed++;
 594                        break;
 595                }
 596
 597                mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 598                                       PCI_DMA_FROMDEVICE);
 599                if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 600                        put_page(pg);
 601                        goto out;
 602                }
 603                *d++ = cpu_to_be64(mapping);
 604
 605                set_rx_sw_desc(sd, pg, mapping);
 606                sd++;
 607
 608                q->avail++;
 609                if (++q->pidx == q->size) {
 610                        q->pidx = 0;
 611                        sd = q->sdesc;
 612                        d = q->desc;
 613                }
 614        }
 615
 616out:    cred = q->avail - cred;
 617        q->pend_cred += cred;
 618        ring_fl_db(adap, q);
 619
 620        if (unlikely(fl_starving(q))) {
 621                smp_wmb();
 622                set_bit(q->cntxt_id - adap->sge.egr_start,
 623                        adap->sge.starving_fl);
 624        }
 625
 626        return cred;
 627}
 628
 629static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 630{
 631        refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 632                  GFP_ATOMIC);
 633}
 634
 635/**
 636 *      alloc_ring - allocate resources for an SGE descriptor ring
 637 *      @dev: the PCI device's core device
 638 *      @nelem: the number of descriptors
 639 *      @elem_size: the size of each descriptor
 640 *      @sw_size: the size of the SW state associated with each ring element
 641 *      @phys: the physical address of the allocated ring
 642 *      @metadata: address of the array holding the SW state for the ring
 643 *      @stat_size: extra space in HW ring for status information
 644 *      @node: preferred node for memory allocations
 645 *
 646 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 647 *      free buffer lists, or response queues.  Each SGE ring requires
 648 *      space for its HW descriptors plus, optionally, space for the SW state
 649 *      associated with each HW entry (the metadata).  The function returns
 650 *      three values: the virtual address for the HW ring (the return value
 651 *      of the function), the bus address of the HW ring, and the address
 652 *      of the SW ring.
 653 */
 654static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 655                        size_t sw_size, dma_addr_t *phys, void *metadata,
 656                        size_t stat_size, int node)
 657{
 658        size_t len = nelem * elem_size + stat_size;
 659        void *s = NULL;
 660        void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 661
 662        if (!p)
 663                return NULL;
 664        if (sw_size) {
 665                s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
 666
 667                if (!s) {
 668                        dma_free_coherent(dev, len, p, *phys);
 669                        return NULL;
 670                }
 671        }
 672        if (metadata)
 673                *(void **)metadata = s;
 674        memset(p, 0, len);
 675        return p;
 676}
 677
 678/**
 679 *      sgl_len - calculates the size of an SGL of the given capacity
 680 *      @n: the number of SGL entries
 681 *
 682 *      Calculates the number of flits needed for a scatter/gather list that
 683 *      can hold the given number of entries.
 684 */
 685static inline unsigned int sgl_len(unsigned int n)
 686{
 687        n--;
 688        return (3 * n) / 2 + (n & 1) + 2;
 689}
 690
 691/**
 692 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 693 *      @n: the number of flits
 694 *
 695 *      Returns the number of Tx descriptors needed for the supplied number
 696 *      of flits.
 697 */
 698static inline unsigned int flits_to_desc(unsigned int n)
 699{
 700        BUG_ON(n > SGE_MAX_WR_LEN / 8);
 701        return DIV_ROUND_UP(n, 8);
 702}
 703
 704/**
 705 *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 706 *      @skb: the packet
 707 *
 708 *      Returns whether an Ethernet packet is small enough to fit as
 709 *      immediate data.
 710 */
 711static inline int is_eth_imm(const struct sk_buff *skb)
 712{
 713        return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
 714}
 715
 716/**
 717 *      calc_tx_flits - calculate the number of flits for a packet Tx WR
 718 *      @skb: the packet
 719 *
 720 *      Returns the number of flits needed for a Tx WR for the given Ethernet
 721 *      packet, including the needed WR and CPL headers.
 722 */
 723static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 724{
 725        unsigned int flits;
 726
 727        if (is_eth_imm(skb))
 728                return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
 729
 730        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
 731        if (skb_shinfo(skb)->gso_size)
 732                flits += 2;
 733        return flits;
 734}
 735
 736/**
 737 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 738 *      @skb: the packet
 739 *
 740 *      Returns the number of Tx descriptors needed for the given Ethernet
 741 *      packet, including the needed WR and CPL headers.
 742 */
 743static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 744{
 745        return flits_to_desc(calc_tx_flits(skb));
 746}
 747
 748/**
 749 *      write_sgl - populate a scatter/gather list for a packet
 750 *      @skb: the packet
 751 *      @q: the Tx queue we are writing into
 752 *      @sgl: starting location for writing the SGL
 753 *      @end: points right after the end of the SGL
 754 *      @start: start offset into skb main-body data to include in the SGL
 755 *      @addr: the list of bus addresses for the SGL elements
 756 *
 757 *      Generates a gather list for the buffers that make up a packet.
 758 *      The caller must provide adequate space for the SGL that will be written.
 759 *      The SGL includes all of the packet's page fragments and the data in its
 760 *      main body except for the first @start bytes.  @sgl must be 16-byte
 761 *      aligned and within a Tx descriptor with available space.  @end points
 762 *      right after the end of the SGL but does not account for any potential
 763 *      wrap around, i.e., @end > @sgl.
 764 */
 765static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 766                      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 767                      const dma_addr_t *addr)
 768{
 769        unsigned int i, len;
 770        struct ulptx_sge_pair *to;
 771        const struct skb_shared_info *si = skb_shinfo(skb);
 772        unsigned int nfrags = si->nr_frags;
 773        struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 774
 775        len = skb_headlen(skb) - start;
 776        if (likely(len)) {
 777                sgl->len0 = htonl(len);
 778                sgl->addr0 = cpu_to_be64(addr[0] + start);
 779                nfrags++;
 780        } else {
 781                sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 782                sgl->addr0 = cpu_to_be64(addr[1]);
 783        }
 784
 785        sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
 786        if (likely(--nfrags == 0))
 787                return;
 788        /*
 789         * Most of the complexity below deals with the possibility we hit the
 790         * end of the queue in the middle of writing the SGL.  For this case
 791         * only we create the SGL in a temporary buffer and then copy it.
 792         */
 793        to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 794
 795        for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 796                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 797                to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 798                to->addr[0] = cpu_to_be64(addr[i]);
 799                to->addr[1] = cpu_to_be64(addr[++i]);
 800        }
 801        if (nfrags) {
 802                to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 803                to->len[1] = cpu_to_be32(0);
 804                to->addr[0] = cpu_to_be64(addr[i + 1]);
 805        }
 806        if (unlikely((u8 *)end > (u8 *)q->stat)) {
 807                unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 808
 809                if (likely(part0))
 810                        memcpy(sgl->sge, buf, part0);
 811                part1 = (u8 *)end - (u8 *)q->stat;
 812                memcpy(q->desc, (u8 *)buf + part0, part1);
 813                end = (void *)q->desc + part1;
 814        }
 815        if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 816                *end = 0;
 817}
 818
 819/* This function copies 64 byte coalesced work request to
 820 * memory mapped BAR2 space(user space writes).
 821 * For coalesced WR SGE, fetches data from the FIFO instead of from Host.
 822 */
 823static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
 824{
 825        int count = 8;
 826
 827        while (count) {
 828                writeq(*src, dst);
 829                src++;
 830                dst++;
 831                count--;
 832        }
 833}
 834
 835/**
 836 *      ring_tx_db - check and potentially ring a Tx queue's doorbell
 837 *      @adap: the adapter
 838 *      @q: the Tx queue
 839 *      @n: number of new descriptors to give to HW
 840 *
 841 *      Ring the doorbel for a Tx queue.
 842 */
 843static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
 844{
 845        unsigned int *wr, index;
 846
 847        wmb();            /* write descriptors before telling HW */
 848        spin_lock(&q->db_lock);
 849        if (!q->db_disabled) {
 850                if (is_t4(adap->chip)) {
 851                        t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
 852                                     QID(q->cntxt_id) | PIDX(n));
 853                } else {
 854                        if (n == 1) {
 855                                index = q->pidx ? (q->pidx - 1) : (q->size - 1);
 856                                wr = (unsigned int *)&q->desc[index];
 857                                cxgb_pio_copy((u64 __iomem *)
 858                                              (adap->bar2 + q->udb + 64),
 859                                              (u64 *)wr);
 860                        } else
 861                                writel(n,  adap->bar2 + q->udb + 8);
 862                        wmb();
 863                }
 864        }
 865        q->db_pidx = q->pidx;
 866        spin_unlock(&q->db_lock);
 867}
 868
 869/**
 870 *      inline_tx_skb - inline a packet's data into Tx descriptors
 871 *      @skb: the packet
 872 *      @q: the Tx queue where the packet will be inlined
 873 *      @pos: starting position in the Tx queue where to inline the packet
 874 *
 875 *      Inline a packet's contents directly into Tx descriptors, starting at
 876 *      the given position within the Tx DMA ring.
 877 *      Most of the complexity of this operation is dealing with wrap arounds
 878 *      in the middle of the packet we want to inline.
 879 */
 880static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
 881                          void *pos)
 882{
 883        u64 *p;
 884        int left = (void *)q->stat - pos;
 885
 886        if (likely(skb->len <= left)) {
 887                if (likely(!skb->data_len))
 888                        skb_copy_from_linear_data(skb, pos, skb->len);
 889                else
 890                        skb_copy_bits(skb, 0, pos, skb->len);
 891                pos += skb->len;
 892        } else {
 893                skb_copy_bits(skb, 0, pos, left);
 894                skb_copy_bits(skb, left, q->desc, skb->len - left);
 895                pos = (void *)q->desc + (skb->len - left);
 896        }
 897
 898        /* 0-pad to multiple of 16 */
 899        p = PTR_ALIGN(pos, 8);
 900        if ((uintptr_t)p & 8)
 901                *p = 0;
 902}
 903
 904/*
 905 * Figure out what HW csum a packet wants and return the appropriate control
 906 * bits.
 907 */
 908static u64 hwcsum(const struct sk_buff *skb)
 909{
 910        int csum_type;
 911        const struct iphdr *iph = ip_hdr(skb);
 912
 913        if (iph->version == 4) {
 914                if (iph->protocol == IPPROTO_TCP)
 915                        csum_type = TX_CSUM_TCPIP;
 916                else if (iph->protocol == IPPROTO_UDP)
 917                        csum_type = TX_CSUM_UDPIP;
 918                else {
 919nocsum:                 /*
 920                         * unknown protocol, disable HW csum
 921                         * and hope a bad packet is detected
 922                         */
 923                        return TXPKT_L4CSUM_DIS;
 924                }
 925        } else {
 926                /*
 927                 * this doesn't work with extension headers
 928                 */
 929                const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
 930
 931                if (ip6h->nexthdr == IPPROTO_TCP)
 932                        csum_type = TX_CSUM_TCPIP6;
 933                else if (ip6h->nexthdr == IPPROTO_UDP)
 934                        csum_type = TX_CSUM_UDPIP6;
 935                else
 936                        goto nocsum;
 937        }
 938
 939        if (likely(csum_type >= TX_CSUM_TCPIP))
 940                return TXPKT_CSUM_TYPE(csum_type) |
 941                        TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
 942                        TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
 943        else {
 944                int start = skb_transport_offset(skb);
 945
 946                return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
 947                        TXPKT_CSUM_LOC(start + skb->csum_offset);
 948        }
 949}
 950
 951static void eth_txq_stop(struct sge_eth_txq *q)
 952{
 953        netif_tx_stop_queue(q->txq);
 954        q->q.stops++;
 955}
 956
 957static inline void txq_advance(struct sge_txq *q, unsigned int n)
 958{
 959        q->in_use += n;
 960        q->pidx += n;
 961        if (q->pidx >= q->size)
 962                q->pidx -= q->size;
 963}
 964
 965/**
 966 *      t4_eth_xmit - add a packet to an Ethernet Tx queue
 967 *      @skb: the packet
 968 *      @dev: the egress net device
 969 *
 970 *      Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 971 */
 972netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
 973{
 974        u32 wr_mid;
 975        u64 cntrl, *end;
 976        int qidx, credits;
 977        unsigned int flits, ndesc;
 978        struct adapter *adap;
 979        struct sge_eth_txq *q;
 980        const struct port_info *pi;
 981        struct fw_eth_tx_pkt_wr *wr;
 982        struct cpl_tx_pkt_core *cpl;
 983        const struct skb_shared_info *ssi;
 984        dma_addr_t addr[MAX_SKB_FRAGS + 1];
 985
 986        /*
 987         * The chip min packet length is 10 octets but play safe and reject
 988         * anything shorter than an Ethernet header.
 989         */
 990        if (unlikely(skb->len < ETH_HLEN)) {
 991out_free:       dev_kfree_skb(skb);
 992                return NETDEV_TX_OK;
 993        }
 994
 995        pi = netdev_priv(dev);
 996        adap = pi->adapter;
 997        qidx = skb_get_queue_mapping(skb);
 998        q = &adap->sge.ethtxq[qidx + pi->first_qset];
 999
1000        reclaim_completed_tx(adap, &q->q, true);
1001
1002        flits = calc_tx_flits(skb);
1003        ndesc = flits_to_desc(flits);
1004        credits = txq_avail(&q->q) - ndesc;
1005
1006        if (unlikely(credits < 0)) {
1007                eth_txq_stop(q);
1008                dev_err(adap->pdev_dev,
1009                        "%s: Tx ring %u full while queue awake!\n",
1010                        dev->name, qidx);
1011                return NETDEV_TX_BUSY;
1012        }
1013
1014        if (!is_eth_imm(skb) &&
1015            unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1016                q->mapping_err++;
1017                goto out_free;
1018        }
1019
1020        wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1021        if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1022                eth_txq_stop(q);
1023                wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1024        }
1025
1026        wr = (void *)&q->q.desc[q->q.pidx];
1027        wr->equiq_to_len16 = htonl(wr_mid);
1028        wr->r3 = cpu_to_be64(0);
1029        end = (u64 *)wr + flits;
1030
1031        ssi = skb_shinfo(skb);
1032        if (ssi->gso_size) {
1033                struct cpl_tx_pkt_lso *lso = (void *)wr;
1034                bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1035                int l3hdr_len = skb_network_header_len(skb);
1036                int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1037
1038                wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1039                                       FW_WR_IMMDLEN(sizeof(*lso)));
1040                lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1041                                        LSO_FIRST_SLICE | LSO_LAST_SLICE |
1042                                        LSO_IPV6(v6) |
1043                                        LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1044                                        LSO_IPHDR_LEN(l3hdr_len / 4) |
1045                                        LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1046                lso->c.ipid_ofst = htons(0);
1047                lso->c.mss = htons(ssi->gso_size);
1048                lso->c.seqno_offset = htonl(0);
1049                lso->c.len = htonl(skb->len);
1050                cpl = (void *)(lso + 1);
1051                cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1052                        TXPKT_IPHDR_LEN(l3hdr_len) |
1053                        TXPKT_ETHHDR_LEN(eth_xtra_len);
1054                q->tso++;
1055                q->tx_cso += ssi->gso_segs;
1056        } else {
1057                int len;
1058
1059                len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1060                wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
1061                                       FW_WR_IMMDLEN(len));
1062                cpl = (void *)(wr + 1);
1063                if (skb->ip_summed == CHECKSUM_PARTIAL) {
1064                        cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1065                        q->tx_cso++;
1066                } else
1067                        cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1068        }
1069
1070        if (vlan_tx_tag_present(skb)) {
1071                q->vlan_ins++;
1072                cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1073        }
1074
1075        cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1076                           TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1077        cpl->pack = htons(0);
1078        cpl->len = htons(skb->len);
1079        cpl->ctrl1 = cpu_to_be64(cntrl);
1080
1081        if (is_eth_imm(skb)) {
1082                inline_tx_skb(skb, &q->q, cpl + 1);
1083                dev_kfree_skb(skb);
1084        } else {
1085                int last_desc;
1086
1087                write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1088                          addr);
1089                skb_orphan(skb);
1090
1091                last_desc = q->q.pidx + ndesc - 1;
1092                if (last_desc >= q->q.size)
1093                        last_desc -= q->q.size;
1094                q->q.sdesc[last_desc].skb = skb;
1095                q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1096        }
1097
1098        txq_advance(&q->q, ndesc);
1099
1100        ring_tx_db(adap, &q->q, ndesc);
1101        return NETDEV_TX_OK;
1102}
1103
1104/**
1105 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1106 *      @q: the SGE control Tx queue
1107 *
1108 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1109 *      that send only immediate data (presently just the control queues) and
1110 *      thus do not have any sk_buffs to release.
1111 */
1112static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1113{
1114        int hw_cidx = ntohs(q->stat->cidx);
1115        int reclaim = hw_cidx - q->cidx;
1116
1117        if (reclaim < 0)
1118                reclaim += q->size;
1119
1120        q->in_use -= reclaim;
1121        q->cidx = hw_cidx;
1122}
1123
1124/**
1125 *      is_imm - check whether a packet can be sent as immediate data
1126 *      @skb: the packet
1127 *
1128 *      Returns true if a packet can be sent as a WR with immediate data.
1129 */
1130static inline int is_imm(const struct sk_buff *skb)
1131{
1132        return skb->len <= MAX_CTRL_WR_LEN;
1133}
1134
1135/**
1136 *      ctrlq_check_stop - check if a control queue is full and should stop
1137 *      @q: the queue
1138 *      @wr: most recent WR written to the queue
1139 *
1140 *      Check if a control queue has become full and should be stopped.
1141 *      We clean up control queue descriptors very lazily, only when we are out.
1142 *      If the queue is still full after reclaiming any completed descriptors
1143 *      we suspend it and have the last WR wake it up.
1144 */
1145static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1146{
1147        reclaim_completed_tx_imm(&q->q);
1148        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1149                wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1150                q->q.stops++;
1151                q->full = 1;
1152        }
1153}
1154
1155/**
1156 *      ctrl_xmit - send a packet through an SGE control Tx queue
1157 *      @q: the control queue
1158 *      @skb: the packet
1159 *
1160 *      Send a packet through an SGE control Tx queue.  Packets sent through
1161 *      a control queue must fit entirely as immediate data.
1162 */
1163static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1164{
1165        unsigned int ndesc;
1166        struct fw_wr_hdr *wr;
1167
1168        if (unlikely(!is_imm(skb))) {
1169                WARN_ON(1);
1170                dev_kfree_skb(skb);
1171                return NET_XMIT_DROP;
1172        }
1173
1174        ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1175        spin_lock(&q->sendq.lock);
1176
1177        if (unlikely(q->full)) {
1178                skb->priority = ndesc;                  /* save for restart */
1179                __skb_queue_tail(&q->sendq, skb);
1180                spin_unlock(&q->sendq.lock);
1181                return NET_XMIT_CN;
1182        }
1183
1184        wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1185        inline_tx_skb(skb, &q->q, wr);
1186
1187        txq_advance(&q->q, ndesc);
1188        if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1189                ctrlq_check_stop(q, wr);
1190
1191        ring_tx_db(q->adap, &q->q, ndesc);
1192        spin_unlock(&q->sendq.lock);
1193
1194        kfree_skb(skb);
1195        return NET_XMIT_SUCCESS;
1196}
1197
1198/**
1199 *      restart_ctrlq - restart a suspended control queue
1200 *      @data: the control queue to restart
1201 *
1202 *      Resumes transmission on a suspended Tx control queue.
1203 */
1204static void restart_ctrlq(unsigned long data)
1205{
1206        struct sk_buff *skb;
1207        unsigned int written = 0;
1208        struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1209
1210        spin_lock(&q->sendq.lock);
1211        reclaim_completed_tx_imm(&q->q);
1212        BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
1213
1214        while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1215                struct fw_wr_hdr *wr;
1216                unsigned int ndesc = skb->priority;     /* previously saved */
1217
1218                /*
1219                 * Write descriptors and free skbs outside the lock to limit
1220                 * wait times.  q->full is still set so new skbs will be queued.
1221                 */
1222                spin_unlock(&q->sendq.lock);
1223
1224                wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1225                inline_tx_skb(skb, &q->q, wr);
1226                kfree_skb(skb);
1227
1228                written += ndesc;
1229                txq_advance(&q->q, ndesc);
1230                if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1231                        unsigned long old = q->q.stops;
1232
1233                        ctrlq_check_stop(q, wr);
1234                        if (q->q.stops != old) {          /* suspended anew */
1235                                spin_lock(&q->sendq.lock);
1236                                goto ringdb;
1237                        }
1238                }
1239                if (written > 16) {
1240                        ring_tx_db(q->adap, &q->q, written);
1241                        written = 0;
1242                }
1243                spin_lock(&q->sendq.lock);
1244        }
1245        q->full = 0;
1246ringdb: if (written)
1247                ring_tx_db(q->adap, &q->q, written);
1248        spin_unlock(&q->sendq.lock);
1249}
1250
1251/**
1252 *      t4_mgmt_tx - send a management message
1253 *      @adap: the adapter
1254 *      @skb: the packet containing the management message
1255 *
1256 *      Send a management message through control queue 0.
1257 */
1258int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1259{
1260        int ret;
1261
1262        local_bh_disable();
1263        ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1264        local_bh_enable();
1265        return ret;
1266}
1267
1268/**
1269 *      is_ofld_imm - check whether a packet can be sent as immediate data
1270 *      @skb: the packet
1271 *
1272 *      Returns true if a packet can be sent as an offload WR with immediate
1273 *      data.  We currently use the same limit as for Ethernet packets.
1274 */
1275static inline int is_ofld_imm(const struct sk_buff *skb)
1276{
1277        return skb->len <= MAX_IMM_TX_PKT_LEN;
1278}
1279
1280/**
1281 *      calc_tx_flits_ofld - calculate # of flits for an offload packet
1282 *      @skb: the packet
1283 *
1284 *      Returns the number of flits needed for the given offload packet.
1285 *      These packets are already fully constructed and no additional headers
1286 *      will be added.
1287 */
1288static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1289{
1290        unsigned int flits, cnt;
1291
1292        if (is_ofld_imm(skb))
1293                return DIV_ROUND_UP(skb->len, 8);
1294
1295        flits = skb_transport_offset(skb) / 8U;   /* headers */
1296        cnt = skb_shinfo(skb)->nr_frags;
1297        if (skb_tail_pointer(skb) != skb_transport_header(skb))
1298                cnt++;
1299        return flits + sgl_len(cnt);
1300}
1301
1302/**
1303 *      txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1304 *      @adap: the adapter
1305 *      @q: the queue to stop
1306 *
1307 *      Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1308 *      inability to map packets.  A periodic timer attempts to restart
1309 *      queues so marked.
1310 */
1311static void txq_stop_maperr(struct sge_ofld_txq *q)
1312{
1313        q->mapping_err++;
1314        q->q.stops++;
1315        set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1316                q->adap->sge.txq_maperr);
1317}
1318
1319/**
1320 *      ofldtxq_stop - stop an offload Tx queue that has become full
1321 *      @q: the queue to stop
1322 *      @skb: the packet causing the queue to become full
1323 *
1324 *      Stops an offload Tx queue that has become full and modifies the packet
1325 *      being written to request a wakeup.
1326 */
1327static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1328{
1329        struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1330
1331        wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1332        q->q.stops++;
1333        q->full = 1;
1334}
1335
1336/**
1337 *      service_ofldq - restart a suspended offload queue
1338 *      @q: the offload queue
1339 *
1340 *      Services an offload Tx queue by moving packets from its packet queue
1341 *      to the HW Tx ring.  The function starts and ends with the queue locked.
1342 */
1343static void service_ofldq(struct sge_ofld_txq *q)
1344{
1345        u64 *pos;
1346        int credits;
1347        struct sk_buff *skb;
1348        unsigned int written = 0;
1349        unsigned int flits, ndesc;
1350
1351        while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1352                /*
1353                 * We drop the lock but leave skb on sendq, thus retaining
1354                 * exclusive access to the state of the queue.
1355                 */
1356                spin_unlock(&q->sendq.lock);
1357
1358                reclaim_completed_tx(q->adap, &q->q, false);
1359
1360                flits = skb->priority;                /* previously saved */
1361                ndesc = flits_to_desc(flits);
1362                credits = txq_avail(&q->q) - ndesc;
1363                BUG_ON(credits < 0);
1364                if (unlikely(credits < TXQ_STOP_THRES))
1365                        ofldtxq_stop(q, skb);
1366
1367                pos = (u64 *)&q->q.desc[q->q.pidx];
1368                if (is_ofld_imm(skb))
1369                        inline_tx_skb(skb, &q->q, pos);
1370                else if (map_skb(q->adap->pdev_dev, skb,
1371                                 (dma_addr_t *)skb->head)) {
1372                        txq_stop_maperr(q);
1373                        spin_lock(&q->sendq.lock);
1374                        break;
1375                } else {
1376                        int last_desc, hdr_len = skb_transport_offset(skb);
1377
1378                        memcpy(pos, skb->data, hdr_len);
1379                        write_sgl(skb, &q->q, (void *)pos + hdr_len,
1380                                  pos + flits, hdr_len,
1381                                  (dma_addr_t *)skb->head);
1382#ifdef CONFIG_NEED_DMA_MAP_STATE
1383                        skb->dev = q->adap->port[0];
1384                        skb->destructor = deferred_unmap_destructor;
1385#endif
1386                        last_desc = q->q.pidx + ndesc - 1;
1387                        if (last_desc >= q->q.size)
1388                                last_desc -= q->q.size;
1389                        q->q.sdesc[last_desc].skb = skb;
1390                }
1391
1392                txq_advance(&q->q, ndesc);
1393                written += ndesc;
1394                if (unlikely(written > 32)) {
1395                        ring_tx_db(q->adap, &q->q, written);
1396                        written = 0;
1397                }
1398
1399                spin_lock(&q->sendq.lock);
1400                __skb_unlink(skb, &q->sendq);
1401                if (is_ofld_imm(skb))
1402                        kfree_skb(skb);
1403        }
1404        if (likely(written))
1405                ring_tx_db(q->adap, &q->q, written);
1406}
1407
1408/**
1409 *      ofld_xmit - send a packet through an offload queue
1410 *      @q: the Tx offload queue
1411 *      @skb: the packet
1412 *
1413 *      Send an offload packet through an SGE offload queue.
1414 */
1415static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1416{
1417        skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
1418        spin_lock(&q->sendq.lock);
1419        __skb_queue_tail(&q->sendq, skb);
1420        if (q->sendq.qlen == 1)
1421                service_ofldq(q);
1422        spin_unlock(&q->sendq.lock);
1423        return NET_XMIT_SUCCESS;
1424}
1425
1426/**
1427 *      restart_ofldq - restart a suspended offload queue
1428 *      @data: the offload queue to restart
1429 *
1430 *      Resumes transmission on a suspended Tx offload queue.
1431 */
1432static void restart_ofldq(unsigned long data)
1433{
1434        struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1435
1436        spin_lock(&q->sendq.lock);
1437        q->full = 0;            /* the queue actually is completely empty now */
1438        service_ofldq(q);
1439        spin_unlock(&q->sendq.lock);
1440}
1441
1442/**
1443 *      skb_txq - return the Tx queue an offload packet should use
1444 *      @skb: the packet
1445 *
1446 *      Returns the Tx queue an offload packet should use as indicated by bits
1447 *      1-15 in the packet's queue_mapping.
1448 */
1449static inline unsigned int skb_txq(const struct sk_buff *skb)
1450{
1451        return skb->queue_mapping >> 1;
1452}
1453
1454/**
1455 *      is_ctrl_pkt - return whether an offload packet is a control packet
1456 *      @skb: the packet
1457 *
1458 *      Returns whether an offload packet should use an OFLD or a CTRL
1459 *      Tx queue as indicated by bit 0 in the packet's queue_mapping.
1460 */
1461static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1462{
1463        return skb->queue_mapping & 1;
1464}
1465
1466static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1467{
1468        unsigned int idx = skb_txq(skb);
1469
1470        if (unlikely(is_ctrl_pkt(skb)))
1471                return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1472        return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1473}
1474
1475/**
1476 *      t4_ofld_send - send an offload packet
1477 *      @adap: the adapter
1478 *      @skb: the packet
1479 *
1480 *      Sends an offload packet.  We use the packet queue_mapping to select the
1481 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1482 *      should be sent as regular or control, bits 1-15 select the queue.
1483 */
1484int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1485{
1486        int ret;
1487
1488        local_bh_disable();
1489        ret = ofld_send(adap, skb);
1490        local_bh_enable();
1491        return ret;
1492}
1493
1494/**
1495 *      cxgb4_ofld_send - send an offload packet
1496 *      @dev: the net device
1497 *      @skb: the packet
1498 *
1499 *      Sends an offload packet.  This is an exported version of @t4_ofld_send,
1500 *      intended for ULDs.
1501 */
1502int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1503{
1504        return t4_ofld_send(netdev2adap(dev), skb);
1505}
1506EXPORT_SYMBOL(cxgb4_ofld_send);
1507
1508static inline void copy_frags(struct sk_buff *skb,
1509                              const struct pkt_gl *gl, unsigned int offset)
1510{
1511        int i;
1512
1513        /* usually there's just one frag */
1514        __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1515                             gl->frags[0].offset + offset,
1516                             gl->frags[0].size - offset);
1517        skb_shinfo(skb)->nr_frags = gl->nfrags;
1518        for (i = 1; i < gl->nfrags; i++)
1519                __skb_fill_page_desc(skb, i, gl->frags[i].page,
1520                                     gl->frags[i].offset,
1521                                     gl->frags[i].size);
1522
1523        /* get a reference to the last page, we don't own it */
1524        get_page(gl->frags[gl->nfrags - 1].page);
1525}
1526
1527/**
1528 *      cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1529 *      @gl: the gather list
1530 *      @skb_len: size of sk_buff main body if it carries fragments
1531 *      @pull_len: amount of data to move to the sk_buff's main body
1532 *
1533 *      Builds an sk_buff from the given packet gather list.  Returns the
1534 *      sk_buff or %NULL if sk_buff allocation failed.
1535 */
1536struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1537                                   unsigned int skb_len, unsigned int pull_len)
1538{
1539        struct sk_buff *skb;
1540
1541        /*
1542         * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1543         * size, which is expected since buffers are at least PAGE_SIZEd.
1544         * In this case packets up to RX_COPY_THRES have only one fragment.
1545         */
1546        if (gl->tot_len <= RX_COPY_THRES) {
1547                skb = dev_alloc_skb(gl->tot_len);
1548                if (unlikely(!skb))
1549                        goto out;
1550                __skb_put(skb, gl->tot_len);
1551                skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1552        } else {
1553                skb = dev_alloc_skb(skb_len);
1554                if (unlikely(!skb))
1555                        goto out;
1556                __skb_put(skb, pull_len);
1557                skb_copy_to_linear_data(skb, gl->va, pull_len);
1558
1559                copy_frags(skb, gl, pull_len);
1560                skb->len = gl->tot_len;
1561                skb->data_len = skb->len - pull_len;
1562                skb->truesize += skb->data_len;
1563        }
1564out:    return skb;
1565}
1566EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1567
1568/**
1569 *      t4_pktgl_free - free a packet gather list
1570 *      @gl: the gather list
1571 *
1572 *      Releases the pages of a packet gather list.  We do not own the last
1573 *      page on the list and do not free it.
1574 */
1575static void t4_pktgl_free(const struct pkt_gl *gl)
1576{
1577        int n;
1578        const struct page_frag *p;
1579
1580        for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1581                put_page(p->page);
1582}
1583
1584/*
1585 * Process an MPS trace packet.  Give it an unused protocol number so it won't
1586 * be delivered to anyone and send it to the stack for capture.
1587 */
1588static noinline int handle_trace_pkt(struct adapter *adap,
1589                                     const struct pkt_gl *gl)
1590{
1591        struct sk_buff *skb;
1592
1593        skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1594        if (unlikely(!skb)) {
1595                t4_pktgl_free(gl);
1596                return 0;
1597        }
1598
1599        if (is_t4(adap->chip))
1600                __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1601        else
1602                __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1603
1604        skb_reset_mac_header(skb);
1605        skb->protocol = htons(0xffff);
1606        skb->dev = adap->port[0];
1607        netif_receive_skb(skb);
1608        return 0;
1609}
1610
1611static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1612                   const struct cpl_rx_pkt *pkt)
1613{
1614        struct adapter *adapter = rxq->rspq.adap;
1615        struct sge *s = &adapter->sge;
1616        int ret;
1617        struct sk_buff *skb;
1618
1619        skb = napi_get_frags(&rxq->rspq.napi);
1620        if (unlikely(!skb)) {
1621                t4_pktgl_free(gl);
1622                rxq->stats.rx_drops++;
1623                return;
1624        }
1625
1626        copy_frags(skb, gl, s->pktshift);
1627        skb->len = gl->tot_len - s->pktshift;
1628        skb->data_len = skb->len;
1629        skb->truesize += skb->data_len;
1630        skb->ip_summed = CHECKSUM_UNNECESSARY;
1631        skb_record_rx_queue(skb, rxq->rspq.idx);
1632        if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1633                skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1634
1635        if (unlikely(pkt->vlan_ex)) {
1636                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1637                rxq->stats.vlan_ex++;
1638        }
1639        ret = napi_gro_frags(&rxq->rspq.napi);
1640        if (ret == GRO_HELD)
1641                rxq->stats.lro_pkts++;
1642        else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1643                rxq->stats.lro_merged++;
1644        rxq->stats.pkts++;
1645        rxq->stats.rx_cso++;
1646}
1647
1648/**
1649 *      t4_ethrx_handler - process an ingress ethernet packet
1650 *      @q: the response queue that received the packet
1651 *      @rsp: the response queue descriptor holding the RX_PKT message
1652 *      @si: the gather list of packet fragments
1653 *
1654 *      Process an ingress ethernet packet and deliver it to the stack.
1655 */
1656int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1657                     const struct pkt_gl *si)
1658{
1659        bool csum_ok;
1660        struct sk_buff *skb;
1661        const struct cpl_rx_pkt *pkt;
1662        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1663        struct sge *s = &q->adap->sge;
1664        int cpl_trace_pkt = is_t4(q->adap->chip) ?
1665                            CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1666
1667        if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1668                return handle_trace_pkt(q->adap, si);
1669
1670        pkt = (const struct cpl_rx_pkt *)rsp;
1671        csum_ok = pkt->csum_calc && !pkt->err_vec;
1672        if ((pkt->l2info & htonl(RXF_TCP)) &&
1673            (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1674                do_gro(rxq, si, pkt);
1675                return 0;
1676        }
1677
1678        skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1679        if (unlikely(!skb)) {
1680                t4_pktgl_free(si);
1681                rxq->stats.rx_drops++;
1682                return 0;
1683        }
1684
1685        __skb_pull(skb, s->pktshift);      /* remove ethernet header padding */
1686        skb->protocol = eth_type_trans(skb, q->netdev);
1687        skb_record_rx_queue(skb, q->idx);
1688        if (skb->dev->features & NETIF_F_RXHASH)
1689                skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1690
1691        rxq->stats.pkts++;
1692
1693        if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
1694            (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1695                if (!pkt->ip_frag) {
1696                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1697                        rxq->stats.rx_cso++;
1698                } else if (pkt->l2info & htonl(RXF_IP)) {
1699                        __sum16 c = (__force __sum16)pkt->csum;
1700                        skb->csum = csum_unfold(c);
1701                        skb->ip_summed = CHECKSUM_COMPLETE;
1702                        rxq->stats.rx_cso++;
1703                }
1704        } else
1705                skb_checksum_none_assert(skb);
1706
1707        if (unlikely(pkt->vlan_ex)) {
1708                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1709                rxq->stats.vlan_ex++;
1710        }
1711        netif_receive_skb(skb);
1712        return 0;
1713}
1714
1715/**
1716 *      restore_rx_bufs - put back a packet's Rx buffers
1717 *      @si: the packet gather list
1718 *      @q: the SGE free list
1719 *      @frags: number of FL buffers to restore
1720 *
1721 *      Puts back on an FL the Rx buffers associated with @si.  The buffers
1722 *      have already been unmapped and are left unmapped, we mark them so to
1723 *      prevent further unmapping attempts.
1724 *
1725 *      This function undoes a series of @unmap_rx_buf calls when we find out
1726 *      that the current packet can't be processed right away afterall and we
1727 *      need to come back to it later.  This is a very rare event and there's
1728 *      no effort to make this particularly efficient.
1729 */
1730static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1731                            int frags)
1732{
1733        struct rx_sw_desc *d;
1734
1735        while (frags--) {
1736                if (q->cidx == 0)
1737                        q->cidx = q->size - 1;
1738                else
1739                        q->cidx--;
1740                d = &q->sdesc[q->cidx];
1741                d->page = si->frags[frags].page;
1742                d->dma_addr |= RX_UNMAPPED_BUF;
1743                q->avail++;
1744        }
1745}
1746
1747/**
1748 *      is_new_response - check if a response is newly written
1749 *      @r: the response descriptor
1750 *      @q: the response queue
1751 *
1752 *      Returns true if a response descriptor contains a yet unprocessed
1753 *      response.
1754 */
1755static inline bool is_new_response(const struct rsp_ctrl *r,
1756                                   const struct sge_rspq *q)
1757{
1758        return RSPD_GEN(r->type_gen) == q->gen;
1759}
1760
1761/**
1762 *      rspq_next - advance to the next entry in a response queue
1763 *      @q: the queue
1764 *
1765 *      Updates the state of a response queue to advance it to the next entry.
1766 */
1767static inline void rspq_next(struct sge_rspq *q)
1768{
1769        q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1770        if (unlikely(++q->cidx == q->size)) {
1771                q->cidx = 0;
1772                q->gen ^= 1;
1773                q->cur_desc = q->desc;
1774        }
1775}
1776
1777/**
1778 *      process_responses - process responses from an SGE response queue
1779 *      @q: the ingress queue to process
1780 *      @budget: how many responses can be processed in this round
1781 *
1782 *      Process responses from an SGE response queue up to the supplied budget.
1783 *      Responses include received packets as well as control messages from FW
1784 *      or HW.
1785 *
1786 *      Additionally choose the interrupt holdoff time for the next interrupt
1787 *      on this queue.  If the system is under memory shortage use a fairly
1788 *      long delay to help recovery.
1789 */
1790static int process_responses(struct sge_rspq *q, int budget)
1791{
1792        int ret, rsp_type;
1793        int budget_left = budget;
1794        const struct rsp_ctrl *rc;
1795        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1796        struct adapter *adapter = q->adap;
1797        struct sge *s = &adapter->sge;
1798
1799        while (likely(budget_left)) {
1800                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1801                if (!is_new_response(rc, q))
1802                        break;
1803
1804                rmb();
1805                rsp_type = RSPD_TYPE(rc->type_gen);
1806                if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1807                        struct page_frag *fp;
1808                        struct pkt_gl si;
1809                        const struct rx_sw_desc *rsd;
1810                        u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1811
1812                        if (len & RSPD_NEWBUF) {
1813                                if (likely(q->offset > 0)) {
1814                                        free_rx_bufs(q->adap, &rxq->fl, 1);
1815                                        q->offset = 0;
1816                                }
1817                                len = RSPD_LEN(len);
1818                        }
1819                        si.tot_len = len;
1820
1821                        /* gather packet fragments */
1822                        for (frags = 0, fp = si.frags; ; frags++, fp++) {
1823                                rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1824                                bufsz = get_buf_size(adapter, rsd);
1825                                fp->page = rsd->page;
1826                                fp->offset = q->offset;
1827                                fp->size = min(bufsz, len);
1828                                len -= fp->size;
1829                                if (!len)
1830                                        break;
1831                                unmap_rx_buf(q->adap, &rxq->fl);
1832                        }
1833
1834                        /*
1835                         * Last buffer remains mapped so explicitly make it
1836                         * coherent for CPU access.
1837                         */
1838                        dma_sync_single_for_cpu(q->adap->pdev_dev,
1839                                                get_buf_addr(rsd),
1840                                                fp->size, DMA_FROM_DEVICE);
1841
1842                        si.va = page_address(si.frags[0].page) +
1843                                si.frags[0].offset;
1844                        prefetch(si.va);
1845
1846                        si.nfrags = frags + 1;
1847                        ret = q->handler(q, q->cur_desc, &si);
1848                        if (likely(ret == 0))
1849                                q->offset += ALIGN(fp->size, s->fl_align);
1850                        else
1851                                restore_rx_bufs(&si, &rxq->fl, frags);
1852                } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1853                        ret = q->handler(q, q->cur_desc, NULL);
1854                } else {
1855                        ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1856                }
1857
1858                if (unlikely(ret)) {
1859                        /* couldn't process descriptor, back off for recovery */
1860                        q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1861                        break;
1862                }
1863
1864                rspq_next(q);
1865                budget_left--;
1866        }
1867
1868        if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1869                __refill_fl(q->adap, &rxq->fl);
1870        return budget - budget_left;
1871}
1872
1873/**
1874 *      napi_rx_handler - the NAPI handler for Rx processing
1875 *      @napi: the napi instance
1876 *      @budget: how many packets we can process in this round
1877 *
1878 *      Handler for new data events when using NAPI.  This does not need any
1879 *      locking or protection from interrupts as data interrupts are off at
1880 *      this point and other adapter interrupts do not interfere (the latter
1881 *      in not a concern at all with MSI-X as non-data interrupts then have
1882 *      a separate handler).
1883 */
1884static int napi_rx_handler(struct napi_struct *napi, int budget)
1885{
1886        unsigned int params;
1887        struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1888        int work_done = process_responses(q, budget);
1889
1890        if (likely(work_done < budget)) {
1891                napi_complete(napi);
1892                params = q->next_intr_params;
1893                q->next_intr_params = q->intr_params;
1894        } else
1895                params = QINTR_TIMER_IDX(7);
1896
1897        t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1898                     INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1899        return work_done;
1900}
1901
1902/*
1903 * The MSI-X interrupt handler for an SGE response queue.
1904 */
1905irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1906{
1907        struct sge_rspq *q = cookie;
1908
1909        napi_schedule(&q->napi);
1910        return IRQ_HANDLED;
1911}
1912
1913/*
1914 * Process the indirect interrupt entries in the interrupt queue and kick off
1915 * NAPI for each queue that has generated an entry.
1916 */
1917static unsigned int process_intrq(struct adapter *adap)
1918{
1919        unsigned int credits;
1920        const struct rsp_ctrl *rc;
1921        struct sge_rspq *q = &adap->sge.intrq;
1922
1923        spin_lock(&adap->sge.intrq_lock);
1924        for (credits = 0; ; credits++) {
1925                rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1926                if (!is_new_response(rc, q))
1927                        break;
1928
1929                rmb();
1930                if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1931                        unsigned int qid = ntohl(rc->pldbuflen_qid);
1932
1933                        qid -= adap->sge.ingr_start;
1934                        napi_schedule(&adap->sge.ingr_map[qid]->napi);
1935                }
1936
1937                rspq_next(q);
1938        }
1939
1940        t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1941                     INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1942        spin_unlock(&adap->sge.intrq_lock);
1943        return credits;
1944}
1945
1946/*
1947 * The MSI interrupt handler, which handles data events from SGE response queues
1948 * as well as error and other async events as they all use the same MSI vector.
1949 */
1950static irqreturn_t t4_intr_msi(int irq, void *cookie)
1951{
1952        struct adapter *adap = cookie;
1953
1954        t4_slow_intr_handler(adap);
1955        process_intrq(adap);
1956        return IRQ_HANDLED;
1957}
1958
1959/*
1960 * Interrupt handler for legacy INTx interrupts.
1961 * Handles data events from SGE response queues as well as error and other
1962 * async events as they all use the same interrupt line.
1963 */
1964static irqreturn_t t4_intr_intx(int irq, void *cookie)
1965{
1966        struct adapter *adap = cookie;
1967
1968        t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1969        if (t4_slow_intr_handler(adap) | process_intrq(adap))
1970                return IRQ_HANDLED;
1971        return IRQ_NONE;             /* probably shared interrupt */
1972}
1973
1974/**
1975 *      t4_intr_handler - select the top-level interrupt handler
1976 *      @adap: the adapter
1977 *
1978 *      Selects the top-level interrupt handler based on the type of interrupts
1979 *      (MSI-X, MSI, or INTx).
1980 */
1981irq_handler_t t4_intr_handler(struct adapter *adap)
1982{
1983        if (adap->flags & USING_MSIX)
1984                return t4_sge_intr_msix;
1985        if (adap->flags & USING_MSI)
1986                return t4_intr_msi;
1987        return t4_intr_intx;
1988}
1989
1990static void sge_rx_timer_cb(unsigned long data)
1991{
1992        unsigned long m;
1993        unsigned int i, cnt[2];
1994        struct adapter *adap = (struct adapter *)data;
1995        struct sge *s = &adap->sge;
1996
1997        for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1998                for (m = s->starving_fl[i]; m; m &= m - 1) {
1999                        struct sge_eth_rxq *rxq;
2000                        unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2001                        struct sge_fl *fl = s->egr_map[id];
2002
2003                        clear_bit(id, s->starving_fl);
2004                        smp_mb__after_clear_bit();
2005
2006                        if (fl_starving(fl)) {
2007                                rxq = container_of(fl, struct sge_eth_rxq, fl);
2008                                if (napi_reschedule(&rxq->rspq.napi))
2009                                        fl->starving++;
2010                                else
2011                                        set_bit(id, s->starving_fl);
2012                        }
2013                }
2014
2015        t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
2016        cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
2017        cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
2018
2019        for (i = 0; i < 2; i++)
2020                if (cnt[i] >= s->starve_thres) {
2021                        if (s->idma_state[i] || cnt[i] == 0xffffffff)
2022                                continue;
2023                        s->idma_state[i] = 1;
2024                        t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
2025                        m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
2026                        dev_warn(adap->pdev_dev,
2027                                 "SGE idma%u starvation detected for "
2028                                 "queue %lu\n", i, m & 0xffff);
2029                } else if (s->idma_state[i])
2030                        s->idma_state[i] = 0;
2031
2032        mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2033}
2034
2035static void sge_tx_timer_cb(unsigned long data)
2036{
2037        unsigned long m;
2038        unsigned int i, budget;
2039        struct adapter *adap = (struct adapter *)data;
2040        struct sge *s = &adap->sge;
2041
2042        for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
2043                for (m = s->txq_maperr[i]; m; m &= m - 1) {
2044                        unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2045                        struct sge_ofld_txq *txq = s->egr_map[id];
2046
2047                        clear_bit(id, s->txq_maperr);
2048                        tasklet_schedule(&txq->qresume_tsk);
2049                }
2050
2051        budget = MAX_TIMER_TX_RECLAIM;
2052        i = s->ethtxq_rover;
2053        do {
2054                struct sge_eth_txq *q = &s->ethtxq[i];
2055
2056                if (q->q.in_use &&
2057                    time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2058                    __netif_tx_trylock(q->txq)) {
2059                        int avail = reclaimable(&q->q);
2060
2061                        if (avail) {
2062                                if (avail > budget)
2063                                        avail = budget;
2064
2065                                free_tx_desc(adap, &q->q, avail, true);
2066                                q->q.in_use -= avail;
2067                                budget -= avail;
2068                        }
2069                        __netif_tx_unlock(q->txq);
2070                }
2071
2072                if (++i >= s->ethqsets)
2073                        i = 0;
2074        } while (budget && i != s->ethtxq_rover);
2075        s->ethtxq_rover = i;
2076        mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2077}
2078
2079int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2080                     struct net_device *dev, int intr_idx,
2081                     struct sge_fl *fl, rspq_handler_t hnd)
2082{
2083        int ret, flsz = 0;
2084        struct fw_iq_cmd c;
2085        struct sge *s = &adap->sge;
2086        struct port_info *pi = netdev_priv(dev);
2087
2088        /* Size needs to be multiple of 16, including status entry. */
2089        iq->size = roundup(iq->size, 16);
2090
2091        iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2092                              &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2093        if (!iq->desc)
2094                return -ENOMEM;
2095
2096        memset(&c, 0, sizeof(c));
2097        c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
2098                            FW_CMD_WRITE | FW_CMD_EXEC |
2099                            FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
2100        c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
2101                                 FW_LEN16(c));
2102        c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2103                FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
2104                FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
2105                FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
2106                                                        -intr_idx - 1));
2107        c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2108                FW_IQ_CMD_IQGTSMODE |
2109                FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2110                FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2111        c.iqsize = htons(iq->size);
2112        c.iqaddr = cpu_to_be64(iq->phys_addr);
2113
2114        if (fl) {
2115                fl->size = roundup(fl->size, 8);
2116                fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2117                                      sizeof(struct rx_sw_desc), &fl->addr,
2118                                      &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2119                if (!fl->desc)
2120                        goto fl_nomem;
2121
2122                flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2123                c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN(1) |
2124                                            FW_IQ_CMD_FL0FETCHRO(1) |
2125                                            FW_IQ_CMD_FL0DATARO(1) |
2126                                            FW_IQ_CMD_FL0PADEN(1));
2127                c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2128                                FW_IQ_CMD_FL0FBMAX(3));
2129                c.fl0size = htons(flsz);
2130                c.fl0addr = cpu_to_be64(fl->addr);
2131        }
2132
2133        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2134        if (ret)
2135                goto err;
2136
2137        netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2138        iq->cur_desc = iq->desc;
2139        iq->cidx = 0;
2140        iq->gen = 1;
2141        iq->next_intr_params = iq->intr_params;
2142        iq->cntxt_id = ntohs(c.iqid);
2143        iq->abs_id = ntohs(c.physiqid);
2144        iq->size--;                           /* subtract status entry */
2145        iq->adap = adap;
2146        iq->netdev = dev;
2147        iq->handler = hnd;
2148
2149        /* set offset to -1 to distinguish ingress queues without FL */
2150        iq->offset = fl ? 0 : -1;
2151
2152        adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2153
2154        if (fl) {
2155                fl->cntxt_id = ntohs(c.fl0id);
2156                fl->avail = fl->pend_cred = 0;
2157                fl->pidx = fl->cidx = 0;
2158                fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2159                adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2160                refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2161        }
2162        return 0;
2163
2164fl_nomem:
2165        ret = -ENOMEM;
2166err:
2167        if (iq->desc) {
2168                dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2169                                  iq->desc, iq->phys_addr);
2170                iq->desc = NULL;
2171        }
2172        if (fl && fl->desc) {
2173                kfree(fl->sdesc);
2174                fl->sdesc = NULL;
2175                dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2176                                  fl->desc, fl->addr);
2177                fl->desc = NULL;
2178        }
2179        return ret;
2180}
2181
2182static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2183{
2184        q->cntxt_id = id;
2185        if (!is_t4(adap->chip)) {
2186                unsigned int s_qpp;
2187                unsigned short udb_density;
2188                unsigned long qpshift;
2189                int page;
2190
2191                s_qpp = QUEUESPERPAGEPF1 * adap->fn;
2192                udb_density = 1 << QUEUESPERPAGEPF0_GET((t4_read_reg(adap,
2193                                SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp));
2194                qpshift = PAGE_SHIFT - ilog2(udb_density);
2195                q->udb = q->cntxt_id << qpshift;
2196                q->udb &= PAGE_MASK;
2197                page = q->udb / PAGE_SIZE;
2198                q->udb += (q->cntxt_id - (page * udb_density)) * 128;
2199        }
2200
2201        q->in_use = 0;
2202        q->cidx = q->pidx = 0;
2203        q->stops = q->restarts = 0;
2204        q->stat = (void *)&q->desc[q->size];
2205        spin_lock_init(&q->db_lock);
2206        adap->sge.egr_map[id - adap->sge.egr_start] = q;
2207}
2208
2209int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2210                         struct net_device *dev, struct netdev_queue *netdevq,
2211                         unsigned int iqid)
2212{
2213        int ret, nentries;
2214        struct fw_eq_eth_cmd c;
2215        struct sge *s = &adap->sge;
2216        struct port_info *pi = netdev_priv(dev);
2217
2218        /* Add status entries */
2219        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2220
2221        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2222                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2223                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2224                        netdev_queue_numa_node_read(netdevq));
2225        if (!txq->q.desc)
2226                return -ENOMEM;
2227
2228        memset(&c, 0, sizeof(c));
2229        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2230                            FW_CMD_WRITE | FW_CMD_EXEC |
2231                            FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2232        c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2233                                 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2234        c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2235        c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2236                                   FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2237                                   FW_EQ_ETH_CMD_FETCHRO(1) |
2238                                   FW_EQ_ETH_CMD_IQID(iqid));
2239        c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2240                                  FW_EQ_ETH_CMD_FBMAX(3) |
2241                                  FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2242                                  FW_EQ_ETH_CMD_EQSIZE(nentries));
2243        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2244
2245        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2246        if (ret) {
2247                kfree(txq->q.sdesc);
2248                txq->q.sdesc = NULL;
2249                dma_free_coherent(adap->pdev_dev,
2250                                  nentries * sizeof(struct tx_desc),
2251                                  txq->q.desc, txq->q.phys_addr);
2252                txq->q.desc = NULL;
2253                return ret;
2254        }
2255
2256        init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2257        txq->txq = netdevq;
2258        txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2259        txq->mapping_err = 0;
2260        return 0;
2261}
2262
2263int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2264                          struct net_device *dev, unsigned int iqid,
2265                          unsigned int cmplqid)
2266{
2267        int ret, nentries;
2268        struct fw_eq_ctrl_cmd c;
2269        struct sge *s = &adap->sge;
2270        struct port_info *pi = netdev_priv(dev);
2271
2272        /* Add status entries */
2273        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2274
2275        txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2276                                 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2277                                 NULL, 0, NUMA_NO_NODE);
2278        if (!txq->q.desc)
2279                return -ENOMEM;
2280
2281        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2282                            FW_CMD_WRITE | FW_CMD_EXEC |
2283                            FW_EQ_CTRL_CMD_PFN(adap->fn) |
2284                            FW_EQ_CTRL_CMD_VFN(0));
2285        c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2286                                 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2287        c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2288        c.physeqid_pkd = htonl(0);
2289        c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2290                                   FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2291                                   FW_EQ_CTRL_CMD_FETCHRO |
2292                                   FW_EQ_CTRL_CMD_IQID(iqid));
2293        c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2294                                  FW_EQ_CTRL_CMD_FBMAX(3) |
2295                                  FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2296                                  FW_EQ_CTRL_CMD_EQSIZE(nentries));
2297        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2298
2299        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2300        if (ret) {
2301                dma_free_coherent(adap->pdev_dev,
2302                                  nentries * sizeof(struct tx_desc),
2303                                  txq->q.desc, txq->q.phys_addr);
2304                txq->q.desc = NULL;
2305                return ret;
2306        }
2307
2308        init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2309        txq->adap = adap;
2310        skb_queue_head_init(&txq->sendq);
2311        tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2312        txq->full = 0;
2313        return 0;
2314}
2315
2316int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2317                          struct net_device *dev, unsigned int iqid)
2318{
2319        int ret, nentries;
2320        struct fw_eq_ofld_cmd c;
2321        struct sge *s = &adap->sge;
2322        struct port_info *pi = netdev_priv(dev);
2323
2324        /* Add status entries */
2325        nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2326
2327        txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2328                        sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2329                        &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2330                        NUMA_NO_NODE);
2331        if (!txq->q.desc)
2332                return -ENOMEM;
2333
2334        memset(&c, 0, sizeof(c));
2335        c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2336                            FW_CMD_WRITE | FW_CMD_EXEC |
2337                            FW_EQ_OFLD_CMD_PFN(adap->fn) |
2338                            FW_EQ_OFLD_CMD_VFN(0));
2339        c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2340                                 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2341        c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2342                                   FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2343                                   FW_EQ_OFLD_CMD_FETCHRO(1) |
2344                                   FW_EQ_OFLD_CMD_IQID(iqid));
2345        c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2346                                  FW_EQ_OFLD_CMD_FBMAX(3) |
2347                                  FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2348                                  FW_EQ_OFLD_CMD_EQSIZE(nentries));
2349        c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2350
2351        ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2352        if (ret) {
2353                kfree(txq->q.sdesc);
2354                txq->q.sdesc = NULL;
2355                dma_free_coherent(adap->pdev_dev,
2356                                  nentries * sizeof(struct tx_desc),
2357                                  txq->q.desc, txq->q.phys_addr);
2358                txq->q.desc = NULL;
2359                return ret;
2360        }
2361
2362        init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2363        txq->adap = adap;
2364        skb_queue_head_init(&txq->sendq);
2365        tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2366        txq->full = 0;
2367        txq->mapping_err = 0;
2368        return 0;
2369}
2370
2371static void free_txq(struct adapter *adap, struct sge_txq *q)
2372{
2373        struct sge *s = &adap->sge;
2374
2375        dma_free_coherent(adap->pdev_dev,
2376                          q->size * sizeof(struct tx_desc) + s->stat_len,
2377                          q->desc, q->phys_addr);
2378        q->cntxt_id = 0;
2379        q->sdesc = NULL;
2380        q->desc = NULL;
2381}
2382
2383static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2384                         struct sge_fl *fl)
2385{
2386        struct sge *s = &adap->sge;
2387        unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2388
2389        adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2390        t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2391                   rq->cntxt_id, fl_id, 0xffff);
2392        dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2393                          rq->desc, rq->phys_addr);
2394        netif_napi_del(&rq->napi);
2395        rq->netdev = NULL;
2396        rq->cntxt_id = rq->abs_id = 0;
2397        rq->desc = NULL;
2398
2399        if (fl) {
2400                free_rx_bufs(adap, fl, fl->avail);
2401                dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2402                                  fl->desc, fl->addr);
2403                kfree(fl->sdesc);
2404                fl->sdesc = NULL;
2405                fl->cntxt_id = 0;
2406                fl->desc = NULL;
2407        }
2408}
2409
2410/**
2411 *      t4_free_sge_resources - free SGE resources
2412 *      @adap: the adapter
2413 *
2414 *      Frees resources used by the SGE queue sets.
2415 */
2416void t4_free_sge_resources(struct adapter *adap)
2417{
2418        int i;
2419        struct sge_eth_rxq *eq = adap->sge.ethrxq;
2420        struct sge_eth_txq *etq = adap->sge.ethtxq;
2421        struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2422
2423        /* clean up Ethernet Tx/Rx queues */
2424        for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2425                if (eq->rspq.desc)
2426                        free_rspq_fl(adap, &eq->rspq, &eq->fl);
2427                if (etq->q.desc) {
2428                        t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2429                                       etq->q.cntxt_id);
2430                        free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2431                        kfree(etq->q.sdesc);
2432                        free_txq(adap, &etq->q);
2433                }
2434        }
2435
2436        /* clean up RDMA and iSCSI Rx queues */
2437        for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2438                if (oq->rspq.desc)
2439                        free_rspq_fl(adap, &oq->rspq, &oq->fl);
2440        }
2441        for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2442                if (oq->rspq.desc)
2443                        free_rspq_fl(adap, &oq->rspq, &oq->fl);
2444        }
2445
2446        /* clean up offload Tx queues */
2447        for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2448                struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2449
2450                if (q->q.desc) {
2451                        tasklet_kill(&q->qresume_tsk);
2452                        t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2453                                        q->q.cntxt_id);
2454                        free_tx_desc(adap, &q->q, q->q.in_use, false);
2455                        kfree(q->q.sdesc);
2456                        __skb_queue_purge(&q->sendq);
2457                        free_txq(adap, &q->q);
2458                }
2459        }
2460
2461        /* clean up control Tx queues */
2462        for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2463                struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2464
2465                if (cq->q.desc) {
2466                        tasklet_kill(&cq->qresume_tsk);
2467                        t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2468                                        cq->q.cntxt_id);
2469                        __skb_queue_purge(&cq->sendq);
2470                        free_txq(adap, &cq->q);
2471                }
2472        }
2473
2474        if (adap->sge.fw_evtq.desc)
2475                free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2476
2477        if (adap->sge.intrq.desc)
2478                free_rspq_fl(adap, &adap->sge.intrq, NULL);
2479
2480        /* clear the reverse egress queue map */
2481        memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2482}
2483
2484void t4_sge_start(struct adapter *adap)
2485{
2486        adap->sge.ethtxq_rover = 0;
2487        mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2488        mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2489}
2490
2491/**
2492 *      t4_sge_stop - disable SGE operation
2493 *      @adap: the adapter
2494 *
2495 *      Stop tasklets and timers associated with the DMA engine.  Note that
2496 *      this is effective only if measures have been taken to disable any HW
2497 *      events that may restart them.
2498 */
2499void t4_sge_stop(struct adapter *adap)
2500{
2501        int i;
2502        struct sge *s = &adap->sge;
2503
2504        if (in_interrupt())  /* actions below require waiting */
2505                return;
2506
2507        if (s->rx_timer.function)
2508                del_timer_sync(&s->rx_timer);
2509        if (s->tx_timer.function)
2510                del_timer_sync(&s->tx_timer);
2511
2512        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2513                struct sge_ofld_txq *q = &s->ofldtxq[i];
2514
2515                if (q->q.desc)
2516                        tasklet_kill(&q->qresume_tsk);
2517        }
2518        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2519                struct sge_ctrl_txq *cq = &s->ctrlq[i];
2520
2521                if (cq->q.desc)
2522                        tasklet_kill(&cq->qresume_tsk);
2523        }
2524}
2525
2526/**
2527 *      t4_sge_init - initialize SGE
2528 *      @adap: the adapter
2529 *
2530 *      Performs SGE initialization needed every time after a chip reset.
2531 *      We do not initialize any of the queues here, instead the driver
2532 *      top-level must request them individually.
2533 *
2534 *      Called in two different modes:
2535 *
2536 *       1. Perform actual hardware initialization and record hard-coded
2537 *          parameters which were used.  This gets used when we're the
2538 *          Master PF and the Firmware Configuration File support didn't
2539 *          work for some reason.
2540 *
2541 *       2. We're not the Master PF or initialization was performed with
2542 *          a Firmware Configuration File.  In this case we need to grab
2543 *          any of the SGE operating parameters that we need to have in
2544 *          order to do our job and make sure we can live with them ...
2545 */
2546
2547static int t4_sge_init_soft(struct adapter *adap)
2548{
2549        struct sge *s = &adap->sge;
2550        u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2551        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2552        u32 ingress_rx_threshold;
2553
2554        /*
2555         * Verify that CPL messages are going to the Ingress Queue for
2556         * process_responses() and that only packet data is going to the
2557         * Free Lists.
2558         */
2559        if ((t4_read_reg(adap, SGE_CONTROL) & RXPKTCPLMODE_MASK) !=
2560            RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) {
2561                dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2562                return -EINVAL;
2563        }
2564
2565        /*
2566         * Validate the Host Buffer Register Array indices that we want to
2567         * use ...
2568         *
2569         * XXX Note that we should really read through the Host Buffer Size
2570         * XXX register array and find the indices of the Buffer Sizes which
2571         * XXX meet our needs!
2572         */
2573        #define READ_FL_BUF(x) \
2574                t4_read_reg(adap, SGE_FL_BUFFER_SIZE0+(x)*sizeof(u32))
2575
2576        fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2577        fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2578        fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2579        fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2580
2581        #undef READ_FL_BUF
2582
2583        if (fl_small_pg != PAGE_SIZE ||
2584            (fl_large_pg != 0 && (fl_large_pg <= fl_small_pg ||
2585                                  (fl_large_pg & (fl_large_pg-1)) != 0))) {
2586                dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2587                        fl_small_pg, fl_large_pg);
2588                return -EINVAL;
2589        }
2590        if (fl_large_pg)
2591                s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2592
2593        if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2594            fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2595                dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2596                        fl_small_mtu, fl_large_mtu);
2597                return -EINVAL;
2598        }
2599
2600        /*
2601         * Retrieve our RX interrupt holdoff timer values and counter
2602         * threshold values from the SGE parameters.
2603         */
2604        timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1);
2605        timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3);
2606        timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5);
2607        s->timer_val[0] = core_ticks_to_us(adap,
2608                TIMERVALUE0_GET(timer_value_0_and_1));
2609        s->timer_val[1] = core_ticks_to_us(adap,
2610                TIMERVALUE1_GET(timer_value_0_and_1));
2611        s->timer_val[2] = core_ticks_to_us(adap,
2612                TIMERVALUE2_GET(timer_value_2_and_3));
2613        s->timer_val[3] = core_ticks_to_us(adap,
2614                TIMERVALUE3_GET(timer_value_2_and_3));
2615        s->timer_val[4] = core_ticks_to_us(adap,
2616                TIMERVALUE4_GET(timer_value_4_and_5));
2617        s->timer_val[5] = core_ticks_to_us(adap,
2618                TIMERVALUE5_GET(timer_value_4_and_5));
2619
2620        ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD);
2621        s->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
2622        s->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
2623        s->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
2624        s->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
2625
2626        return 0;
2627}
2628
2629static int t4_sge_init_hard(struct adapter *adap)
2630{
2631        struct sge *s = &adap->sge;
2632
2633        /*
2634         * Set up our basic SGE mode to deliver CPL messages to our Ingress
2635         * Queue and Packet Date to the Free List.
2636         */
2637        t4_set_reg_field(adap, SGE_CONTROL, RXPKTCPLMODE_MASK,
2638                         RXPKTCPLMODE_MASK);
2639
2640        /*
2641         * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
2642         * and generate an interrupt when this occurs so we can recover.
2643         */
2644        if (is_t4(adap->chip)) {
2645                t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2646                                 V_HP_INT_THRESH(M_HP_INT_THRESH) |
2647                                 V_LP_INT_THRESH(M_LP_INT_THRESH),
2648                                 V_HP_INT_THRESH(dbfifo_int_thresh) |
2649                                 V_LP_INT_THRESH(dbfifo_int_thresh));
2650        } else {
2651                t4_set_reg_field(adap, A_SGE_DBFIFO_STATUS,
2652                                 V_LP_INT_THRESH_T5(M_LP_INT_THRESH_T5),
2653                                 V_LP_INT_THRESH_T5(dbfifo_int_thresh));
2654                t4_set_reg_field(adap, SGE_DBFIFO_STATUS2,
2655                                 V_HP_INT_THRESH_T5(M_HP_INT_THRESH_T5),
2656                                 V_HP_INT_THRESH_T5(dbfifo_int_thresh));
2657        }
2658        t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_ENABLE_DROP,
2659                        F_ENABLE_DROP);
2660
2661        /*
2662         * SGE_FL_BUFFER_SIZE0 (RX_SMALL_PG_BUF) is set up by
2663         * t4_fixup_host_params().
2664         */
2665        s->fl_pg_order = FL_PG_ORDER;
2666        if (s->fl_pg_order)
2667                t4_write_reg(adap,
2668                             SGE_FL_BUFFER_SIZE0+RX_LARGE_PG_BUF*sizeof(u32),
2669                             PAGE_SIZE << FL_PG_ORDER);
2670        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_SMALL_MTU_BUF*sizeof(u32),
2671                     FL_MTU_SMALL_BUFSIZE(adap));
2672        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0+RX_LARGE_MTU_BUF*sizeof(u32),
2673                     FL_MTU_LARGE_BUFSIZE(adap));
2674
2675        /*
2676         * Note that the SGE Ingress Packet Count Interrupt Threshold and
2677         * Timer Holdoff values must be supplied by our caller.
2678         */
2679        t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2680                     THRESHOLD_0(s->counter_val[0]) |
2681                     THRESHOLD_1(s->counter_val[1]) |
2682                     THRESHOLD_2(s->counter_val[2]) |
2683                     THRESHOLD_3(s->counter_val[3]));
2684        t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2685                     TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2686                     TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2687        t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2688                     TIMERVALUE2(us_to_core_ticks(adap, s->timer_val[2])) |
2689                     TIMERVALUE3(us_to_core_ticks(adap, s->timer_val[3])));
2690        t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2691                     TIMERVALUE4(us_to_core_ticks(adap, s->timer_val[4])) |
2692                     TIMERVALUE5(us_to_core_ticks(adap, s->timer_val[5])));
2693
2694        return 0;
2695}
2696
2697int t4_sge_init(struct adapter *adap)
2698{
2699        struct sge *s = &adap->sge;
2700        u32 sge_control;
2701        int ret;
2702
2703        /*
2704         * Ingress Padding Boundary and Egress Status Page Size are set up by
2705         * t4_fixup_host_params().
2706         */
2707        sge_control = t4_read_reg(adap, SGE_CONTROL);
2708        s->pktshift = PKTSHIFT_GET(sge_control);
2709        s->stat_len = (sge_control & EGRSTATUSPAGESIZE_MASK) ? 128 : 64;
2710        s->fl_align = 1 << (INGPADBOUNDARY_GET(sge_control) +
2711                            X_INGPADBOUNDARY_SHIFT);
2712
2713        if (adap->flags & USING_SOFT_PARAMS)
2714                ret = t4_sge_init_soft(adap);
2715        else
2716                ret = t4_sge_init_hard(adap);
2717        if (ret < 0)
2718                return ret;
2719
2720        /*
2721         * A FL with <= fl_starve_thres buffers is starving and a periodic
2722         * timer will attempt to refill it.  This needs to be larger than the
2723         * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2724         * stuck waiting for new packets while the SGE is waiting for us to
2725         * give it more Free List entries.  (Note that the SGE's Egress
2726         * Congestion Threshold is in units of 2 Free List pointers.)
2727         */
2728        s->fl_starve_thres
2729                = EGRTHRESHOLD_GET(t4_read_reg(adap, SGE_CONM_CTRL))*2 + 1;
2730
2731        setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2732        setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2733        s->starve_thres = core_ticks_per_usec(adap) * 1000000;  /* 1 s */
2734        s->idma_state[0] = s->idma_state[1] = 0;
2735        spin_lock_init(&s->intrq_lock);
2736
2737        return 0;
2738}
2739