linux/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/pci.h>
  37
  38#include "t4vf_common.h"
  39#include "t4vf_defs.h"
  40
  41#include "../cxgb4/t4_regs.h"
  42#include "../cxgb4/t4fw_api.h"
  43
  44/*
  45 * Wait for the device to become ready (signified by our "who am I" register
  46 * returning a value other than all 1's).  Return an error if it doesn't
  47 * become ready ...
  48 */
  49int t4vf_wait_dev_ready(struct adapter *adapter)
  50{
  51        const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  52        const u32 notready1 = 0xffffffff;
  53        const u32 notready2 = 0xeeeeeeee;
  54        u32 val;
  55
  56        val = t4_read_reg(adapter, whoami);
  57        if (val != notready1 && val != notready2)
  58                return 0;
  59        msleep(500);
  60        val = t4_read_reg(adapter, whoami);
  61        if (val != notready1 && val != notready2)
  62                return 0;
  63        else
  64                return -EIO;
  65}
  66
  67/*
  68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
  69 * (since the firmware data structures are specified in a big-endian layout).
  70 */
  71static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  72                         u32 mbox_data)
  73{
  74        for ( ; size; size -= 8, mbox_data += 8)
  75                *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  76}
  77
  78/*
  79 * Dump contents of mailbox with a leading tag.
  80 */
  81static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
  82{
  83        dev_err(adapter->pdev_dev,
  84                "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
  85                (unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
  86                (unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
  87                (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
  88                (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
  89                (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
  90                (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
  91                (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
  92                (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
  93}
  94
  95/**
  96 *      t4vf_wr_mbox_core - send a command to FW through the mailbox
  97 *      @adapter: the adapter
  98 *      @cmd: the command to write
  99 *      @size: command length in bytes
 100 *      @rpl: where to optionally store the reply
 101 *      @sleep_ok: if true we may sleep while awaiting command completion
 102 *
 103 *      Sends the given command to FW through the mailbox and waits for the
 104 *      FW to execute the command.  If @rpl is not %NULL it is used to store
 105 *      the FW's reply to the command.  The command and its optional reply
 106 *      are of the same length.  FW can take up to 500 ms to respond.
 107 *      @sleep_ok determines whether we may sleep while awaiting the response.
 108 *      If sleeping is allowed we use progressive backoff otherwise we spin.
 109 *
 110 *      The return value is 0 on success or a negative errno on failure.  A
 111 *      failure can happen either because we are not able to execute the
 112 *      command or FW executes it but signals an error.  In the latter case
 113 *      the return value is the error code indicated by FW (negated).
 114 */
 115int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 116                      void *rpl, bool sleep_ok)
 117{
 118        static const int delay[] = {
 119                1, 1, 3, 5, 10, 10, 20, 50, 100
 120        };
 121
 122        u32 v;
 123        int i, ms, delay_idx;
 124        const __be64 *p;
 125        u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
 126        u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 127
 128        /*
 129         * Commands must be multiples of 16 bytes in length and may not be
 130         * larger than the size of the Mailbox Data register array.
 131         */
 132        if ((size % 16) != 0 ||
 133            size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 134                return -EINVAL;
 135
 136        /*
 137         * Loop trying to get ownership of the mailbox.  Return an error
 138         * if we can't gain ownership.
 139         */
 140        v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
 141        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 142                v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
 143        if (v != MBOX_OWNER_DRV)
 144                return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
 145
 146        /*
 147         * Write the command array into the Mailbox Data register array and
 148         * transfer ownership of the mailbox to the firmware.
 149         *
 150         * For the VFs, the Mailbox Data "registers" are actually backed by
 151         * T4's "MA" interface rather than PL Registers (as is the case for
 152         * the PFs).  Because these are in different coherency domains, the
 153         * write to the VF's PL-register-backed Mailbox Control can race in
 154         * front of the writes to the MA-backed VF Mailbox Data "registers".
 155         * So we need to do a read-back on at least one byte of the VF Mailbox
 156         * Data registers before doing the write to the VF Mailbox Control
 157         * register.
 158         */
 159        for (i = 0, p = cmd; i < size; i += 8)
 160                t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 161        t4_read_reg(adapter, mbox_data);         /* flush write */
 162
 163        t4_write_reg(adapter, mbox_ctl,
 164                     MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
 165        t4_read_reg(adapter, mbox_ctl);          /* flush write */
 166
 167        /*
 168         * Spin waiting for firmware to acknowledge processing our command.
 169         */
 170        delay_idx = 0;
 171        ms = delay[0];
 172
 173        for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 174                if (sleep_ok) {
 175                        ms = delay[delay_idx];
 176                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 177                                delay_idx++;
 178                        msleep(ms);
 179                } else
 180                        mdelay(ms);
 181
 182                /*
 183                 * If we're the owner, see if this is the reply we wanted.
 184                 */
 185                v = t4_read_reg(adapter, mbox_ctl);
 186                if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
 187                        /*
 188                         * If the Message Valid bit isn't on, revoke ownership
 189                         * of the mailbox and continue waiting for our reply.
 190                         */
 191                        if ((v & MBMSGVALID) == 0) {
 192                                t4_write_reg(adapter, mbox_ctl,
 193                                             MBOWNER(MBOX_OWNER_NONE));
 194                                continue;
 195                        }
 196
 197                        /*
 198                         * We now have our reply.  Extract the command return
 199                         * value, copy the reply back to our caller's buffer
 200                         * (if specified) and revoke ownership of the mailbox.
 201                         * We return the (negated) firmware command return
 202                         * code (this depends on FW_SUCCESS == 0).
 203                         */
 204
 205                        /* return value in low-order little-endian word */
 206                        v = t4_read_reg(adapter, mbox_data);
 207                        if (FW_CMD_RETVAL_GET(v))
 208                                dump_mbox(adapter, "FW Error", mbox_data);
 209
 210                        if (rpl) {
 211                                /* request bit in high-order BE word */
 212                                WARN_ON((be32_to_cpu(*(const u32 *)cmd)
 213                                         & FW_CMD_REQUEST) == 0);
 214                                get_mbox_rpl(adapter, rpl, size, mbox_data);
 215                                WARN_ON((be32_to_cpu(*(u32 *)rpl)
 216                                         & FW_CMD_REQUEST) != 0);
 217                        }
 218                        t4_write_reg(adapter, mbox_ctl,
 219                                     MBOWNER(MBOX_OWNER_NONE));
 220                        return -FW_CMD_RETVAL_GET(v);
 221                }
 222        }
 223
 224        /*
 225         * We timed out.  Return the error ...
 226         */
 227        dump_mbox(adapter, "FW Timeout", mbox_data);
 228        return -ETIMEDOUT;
 229}
 230
 231/**
 232 *      hash_mac_addr - return the hash value of a MAC address
 233 *      @addr: the 48-bit Ethernet MAC address
 234 *
 235 *      Hashes a MAC address according to the hash function used by hardware
 236 *      inexact (hash) address matching.
 237 */
 238static int hash_mac_addr(const u8 *addr)
 239{
 240        u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
 241        u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
 242        a ^= b;
 243        a ^= (a >> 12);
 244        a ^= (a >> 6);
 245        return a & 0x3f;
 246}
 247
 248/**
 249 *      init_link_config - initialize a link's SW state
 250 *      @lc: structure holding the link state
 251 *      @caps: link capabilities
 252 *
 253 *      Initializes the SW state maintained for each link, including the link's
 254 *      capabilities and default speed/flow-control/autonegotiation settings.
 255 */
 256static void init_link_config(struct link_config *lc, unsigned int caps)
 257{
 258        lc->supported = caps;
 259        lc->requested_speed = 0;
 260        lc->speed = 0;
 261        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 262        if (lc->supported & SUPPORTED_Autoneg) {
 263                lc->advertising = lc->supported;
 264                lc->autoneg = AUTONEG_ENABLE;
 265                lc->requested_fc |= PAUSE_AUTONEG;
 266        } else {
 267                lc->advertising = 0;
 268                lc->autoneg = AUTONEG_DISABLE;
 269        }
 270}
 271
 272/**
 273 *      t4vf_port_init - initialize port hardware/software state
 274 *      @adapter: the adapter
 275 *      @pidx: the adapter port index
 276 */
 277int t4vf_port_init(struct adapter *adapter, int pidx)
 278{
 279        struct port_info *pi = adap2pinfo(adapter, pidx);
 280        struct fw_vi_cmd vi_cmd, vi_rpl;
 281        struct fw_port_cmd port_cmd, port_rpl;
 282        int v;
 283        u32 word;
 284
 285        /*
 286         * Execute a VI Read command to get our Virtual Interface information
 287         * like MAC address, etc.
 288         */
 289        memset(&vi_cmd, 0, sizeof(vi_cmd));
 290        vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
 291                                       FW_CMD_REQUEST |
 292                                       FW_CMD_READ);
 293        vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 294        vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
 295        v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 296        if (v)
 297                return v;
 298
 299        BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
 300        pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
 301        t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 302
 303        /*
 304         * If we don't have read access to our port information, we're done
 305         * now.  Otherwise, execute a PORT Read command to get it ...
 306         */
 307        if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 308                return 0;
 309
 310        memset(&port_cmd, 0, sizeof(port_cmd));
 311        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
 312                                            FW_CMD_REQUEST |
 313                                            FW_CMD_READ |
 314                                            FW_PORT_CMD_PORTID(pi->port_id));
 315        port_cmd.action_to_len16 =
 316                cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
 317                            FW_LEN16(port_cmd));
 318        v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 319        if (v)
 320                return v;
 321
 322        v = 0;
 323        word = be16_to_cpu(port_rpl.u.info.pcap);
 324        if (word & FW_PORT_CAP_SPEED_100M)
 325                v |= SUPPORTED_100baseT_Full;
 326        if (word & FW_PORT_CAP_SPEED_1G)
 327                v |= SUPPORTED_1000baseT_Full;
 328        if (word & FW_PORT_CAP_SPEED_10G)
 329                v |= SUPPORTED_10000baseT_Full;
 330        if (word & FW_PORT_CAP_ANEG)
 331                v |= SUPPORTED_Autoneg;
 332        init_link_config(&pi->link_cfg, v);
 333
 334        return 0;
 335}
 336
 337/**
 338 *      t4vf_fw_reset - issue a reset to FW
 339 *      @adapter: the adapter
 340 *
 341 *      Issues a reset command to FW.  For a Physical Function this would
 342 *      result in the Firmware reseting all of its state.  For a Virtual
 343 *      Function this just resets the state associated with the VF.
 344 */
 345int t4vf_fw_reset(struct adapter *adapter)
 346{
 347        struct fw_reset_cmd cmd;
 348
 349        memset(&cmd, 0, sizeof(cmd));
 350        cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
 351                                      FW_CMD_WRITE);
 352        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 353        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 354}
 355
 356/**
 357 *      t4vf_query_params - query FW or device parameters
 358 *      @adapter: the adapter
 359 *      @nparams: the number of parameters
 360 *      @params: the parameter names
 361 *      @vals: the parameter values
 362 *
 363 *      Reads the values of firmware or device parameters.  Up to 7 parameters
 364 *      can be queried at once.
 365 */
 366int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 367                      const u32 *params, u32 *vals)
 368{
 369        int i, ret;
 370        struct fw_params_cmd cmd, rpl;
 371        struct fw_params_param *p;
 372        size_t len16;
 373
 374        if (nparams > 7)
 375                return -EINVAL;
 376
 377        memset(&cmd, 0, sizeof(cmd));
 378        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
 379                                    FW_CMD_REQUEST |
 380                                    FW_CMD_READ);
 381        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 382                                      param[nparams].mnem), 16);
 383        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
 384        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 385                p->mnem = htonl(*params++);
 386
 387        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 388        if (ret == 0)
 389                for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 390                        *vals++ = be32_to_cpu(p->val);
 391        return ret;
 392}
 393
 394/**
 395 *      t4vf_set_params - sets FW or device parameters
 396 *      @adapter: the adapter
 397 *      @nparams: the number of parameters
 398 *      @params: the parameter names
 399 *      @vals: the parameter values
 400 *
 401 *      Sets the values of firmware or device parameters.  Up to 7 parameters
 402 *      can be specified at once.
 403 */
 404int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 405                    const u32 *params, const u32 *vals)
 406{
 407        int i;
 408        struct fw_params_cmd cmd;
 409        struct fw_params_param *p;
 410        size_t len16;
 411
 412        if (nparams > 7)
 413                return -EINVAL;
 414
 415        memset(&cmd, 0, sizeof(cmd));
 416        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
 417                                    FW_CMD_REQUEST |
 418                                    FW_CMD_WRITE);
 419        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 420                                      param[nparams]), 16);
 421        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
 422        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 423                p->mnem = cpu_to_be32(*params++);
 424                p->val = cpu_to_be32(*vals++);
 425        }
 426
 427        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 428}
 429
 430/**
 431 *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 432 *      @adapter: the adapter
 433 *
 434 *      Retrieves various core SGE parameters in the form of hardware SGE
 435 *      register values.  The caller is responsible for decoding these as
 436 *      needed.  The SGE parameters are stored in @adapter->params.sge.
 437 */
 438int t4vf_get_sge_params(struct adapter *adapter)
 439{
 440        struct sge_params *sge_params = &adapter->params.sge;
 441        u32 params[7], vals[7];
 442        int v;
 443
 444        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 445                     FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
 446        params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 447                     FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
 448        params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 449                     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
 450        params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 451                     FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
 452        params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 453                     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
 454        params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 455                     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
 456        params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 457                     FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
 458        v = t4vf_query_params(adapter, 7, params, vals);
 459        if (v)
 460                return v;
 461        sge_params->sge_control = vals[0];
 462        sge_params->sge_host_page_size = vals[1];
 463        sge_params->sge_fl_buffer_size[0] = vals[2];
 464        sge_params->sge_fl_buffer_size[1] = vals[3];
 465        sge_params->sge_timer_value_0_and_1 = vals[4];
 466        sge_params->sge_timer_value_2_and_3 = vals[5];
 467        sge_params->sge_timer_value_4_and_5 = vals[6];
 468
 469        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
 470                     FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
 471        v = t4vf_query_params(adapter, 1, params, vals);
 472        if (v)
 473                return v;
 474        sge_params->sge_ingress_rx_threshold = vals[0];
 475
 476        return 0;
 477}
 478
 479/**
 480 *      t4vf_get_vpd_params - retrieve device VPD paremeters
 481 *      @adapter: the adapter
 482 *
 483 *      Retrives various device Vital Product Data parameters.  The parameters
 484 *      are stored in @adapter->params.vpd.
 485 */
 486int t4vf_get_vpd_params(struct adapter *adapter)
 487{
 488        struct vpd_params *vpd_params = &adapter->params.vpd;
 489        u32 params[7], vals[7];
 490        int v;
 491
 492        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
 493                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
 494        v = t4vf_query_params(adapter, 1, params, vals);
 495        if (v)
 496                return v;
 497        vpd_params->cclk = vals[0];
 498
 499        return 0;
 500}
 501
 502/**
 503 *      t4vf_get_dev_params - retrieve device paremeters
 504 *      @adapter: the adapter
 505 *
 506 *      Retrives various device parameters.  The parameters are stored in
 507 *      @adapter->params.dev.
 508 */
 509int t4vf_get_dev_params(struct adapter *adapter)
 510{
 511        struct dev_params *dev_params = &adapter->params.dev;
 512        u32 params[7], vals[7];
 513        int v;
 514
 515        params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
 516                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
 517        params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
 518                     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
 519        v = t4vf_query_params(adapter, 2, params, vals);
 520        if (v)
 521                return v;
 522        dev_params->fwrev = vals[0];
 523        dev_params->tprev = vals[1];
 524
 525        return 0;
 526}
 527
 528/**
 529 *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
 530 *      @adapter: the adapter
 531 *
 532 *      Retrieves global RSS mode and parameters with which we have to live
 533 *      and stores them in the @adapter's RSS parameters.
 534 */
 535int t4vf_get_rss_glb_config(struct adapter *adapter)
 536{
 537        struct rss_params *rss = &adapter->params.rss;
 538        struct fw_rss_glb_config_cmd cmd, rpl;
 539        int v;
 540
 541        /*
 542         * Execute an RSS Global Configuration read command to retrieve
 543         * our RSS configuration.
 544         */
 545        memset(&cmd, 0, sizeof(cmd));
 546        cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
 547                                      FW_CMD_REQUEST |
 548                                      FW_CMD_READ);
 549        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 550        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 551        if (v)
 552                return v;
 553
 554        /*
 555         * Transate the big-endian RSS Global Configuration into our
 556         * cpu-endian format based on the RSS mode.  We also do first level
 557         * filtering at this point to weed out modes which don't support
 558         * VF Drivers ...
 559         */
 560        rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
 561                        be32_to_cpu(rpl.u.manual.mode_pkd));
 562        switch (rss->mode) {
 563        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 564                u32 word = be32_to_cpu(
 565                                rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
 566
 567                rss->u.basicvirtual.synmapen =
 568                        ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
 569                rss->u.basicvirtual.syn4tupenipv6 =
 570                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
 571                rss->u.basicvirtual.syn2tupenipv6 =
 572                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
 573                rss->u.basicvirtual.syn4tupenipv4 =
 574                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
 575                rss->u.basicvirtual.syn2tupenipv4 =
 576                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
 577
 578                rss->u.basicvirtual.ofdmapen =
 579                        ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
 580
 581                rss->u.basicvirtual.tnlmapen =
 582                        ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
 583                rss->u.basicvirtual.tnlalllookup =
 584                        ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
 585
 586                rss->u.basicvirtual.hashtoeplitz =
 587                        ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
 588
 589                /* we need at least Tunnel Map Enable to be set */
 590                if (!rss->u.basicvirtual.tnlmapen)
 591                        return -EINVAL;
 592                break;
 593        }
 594
 595        default:
 596                /* all unknown/unsupported RSS modes result in an error */
 597                return -EINVAL;
 598        }
 599
 600        return 0;
 601}
 602
 603/**
 604 *      t4vf_get_vfres - retrieve VF resource limits
 605 *      @adapter: the adapter
 606 *
 607 *      Retrieves configured resource limits and capabilities for a virtual
 608 *      function.  The results are stored in @adapter->vfres.
 609 */
 610int t4vf_get_vfres(struct adapter *adapter)
 611{
 612        struct vf_resources *vfres = &adapter->params.vfres;
 613        struct fw_pfvf_cmd cmd, rpl;
 614        int v;
 615        u32 word;
 616
 617        /*
 618         * Execute PFVF Read command to get VF resource limits; bail out early
 619         * with error on command failure.
 620         */
 621        memset(&cmd, 0, sizeof(cmd));
 622        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
 623                                    FW_CMD_REQUEST |
 624                                    FW_CMD_READ);
 625        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 626        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 627        if (v)
 628                return v;
 629
 630        /*
 631         * Extract VF resource limits and return success.
 632         */
 633        word = be32_to_cpu(rpl.niqflint_niq);
 634        vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
 635        vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
 636
 637        word = be32_to_cpu(rpl.type_to_neq);
 638        vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
 639        vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
 640
 641        word = be32_to_cpu(rpl.tc_to_nexactf);
 642        vfres->tc = FW_PFVF_CMD_TC_GET(word);
 643        vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
 644        vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
 645
 646        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
 647        vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
 648        vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
 649        vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
 650
 651        return 0;
 652}
 653
 654/**
 655 *      t4vf_read_rss_vi_config - read a VI's RSS configuration
 656 *      @adapter: the adapter
 657 *      @viid: Virtual Interface ID
 658 *      @config: pointer to host-native VI RSS Configuration buffer
 659 *
 660 *      Reads the Virtual Interface's RSS configuration information and
 661 *      translates it into CPU-native format.
 662 */
 663int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
 664                            union rss_vi_config *config)
 665{
 666        struct fw_rss_vi_config_cmd cmd, rpl;
 667        int v;
 668
 669        memset(&cmd, 0, sizeof(cmd));
 670        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
 671                                     FW_CMD_REQUEST |
 672                                     FW_CMD_READ |
 673                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
 674        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 675        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 676        if (v)
 677                return v;
 678
 679        switch (adapter->params.rss.mode) {
 680        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 681                u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
 682
 683                config->basicvirtual.ip6fourtupen =
 684                        ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
 685                config->basicvirtual.ip6twotupen =
 686                        ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
 687                config->basicvirtual.ip4fourtupen =
 688                        ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
 689                config->basicvirtual.ip4twotupen =
 690                        ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
 691                config->basicvirtual.udpen =
 692                        ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
 693                config->basicvirtual.defaultq =
 694                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
 695                break;
 696        }
 697
 698        default:
 699                return -EINVAL;
 700        }
 701
 702        return 0;
 703}
 704
 705/**
 706 *      t4vf_write_rss_vi_config - write a VI's RSS configuration
 707 *      @adapter: the adapter
 708 *      @viid: Virtual Interface ID
 709 *      @config: pointer to host-native VI RSS Configuration buffer
 710 *
 711 *      Write the Virtual Interface's RSS configuration information
 712 *      (translating it into firmware-native format before writing).
 713 */
 714int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
 715                             union rss_vi_config *config)
 716{
 717        struct fw_rss_vi_config_cmd cmd, rpl;
 718
 719        memset(&cmd, 0, sizeof(cmd));
 720        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
 721                                     FW_CMD_REQUEST |
 722                                     FW_CMD_WRITE |
 723                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
 724        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 725        switch (adapter->params.rss.mode) {
 726        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 727                u32 word = 0;
 728
 729                if (config->basicvirtual.ip6fourtupen)
 730                        word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
 731                if (config->basicvirtual.ip6twotupen)
 732                        word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
 733                if (config->basicvirtual.ip4fourtupen)
 734                        word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
 735                if (config->basicvirtual.ip4twotupen)
 736                        word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
 737                if (config->basicvirtual.udpen)
 738                        word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
 739                word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
 740                                config->basicvirtual.defaultq);
 741                cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
 742                break;
 743        }
 744
 745        default:
 746                return -EINVAL;
 747        }
 748
 749        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 750}
 751
 752/**
 753 *      t4vf_config_rss_range - configure a portion of the RSS mapping table
 754 *      @adapter: the adapter
 755 *      @viid: Virtual Interface of RSS Table Slice
 756 *      @start: starting entry in the table to write
 757 *      @n: how many table entries to write
 758 *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
 759 *      @nrspq: number of values in @rspq
 760 *
 761 *      Programs the selected part of the VI's RSS mapping table with the
 762 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
 763 *      until the full table range is populated.
 764 *
 765 *      The caller must ensure the values in @rspq are in the range 0..1023.
 766 */
 767int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
 768                          int start, int n, const u16 *rspq, int nrspq)
 769{
 770        const u16 *rsp = rspq;
 771        const u16 *rsp_end = rspq+nrspq;
 772        struct fw_rss_ind_tbl_cmd cmd;
 773
 774        /*
 775         * Initialize firmware command template to write the RSS table.
 776         */
 777        memset(&cmd, 0, sizeof(cmd));
 778        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
 779                                     FW_CMD_REQUEST |
 780                                     FW_CMD_WRITE |
 781                                     FW_RSS_IND_TBL_CMD_VIID(viid));
 782        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 783
 784        /*
 785         * Each firmware RSS command can accommodate up to 32 RSS Ingress
 786         * Queue Identifiers.  These Ingress Queue IDs are packed three to
 787         * a 32-bit word as 10-bit values with the upper remaining 2 bits
 788         * reserved.
 789         */
 790        while (n > 0) {
 791                __be32 *qp = &cmd.iq0_to_iq2;
 792                int nq = min(n, 32);
 793                int ret;
 794
 795                /*
 796                 * Set up the firmware RSS command header to send the next
 797                 * "nq" Ingress Queue IDs to the firmware.
 798                 */
 799                cmd.niqid = cpu_to_be16(nq);
 800                cmd.startidx = cpu_to_be16(start);
 801
 802                /*
 803                 * "nq" more done for the start of the next loop.
 804                 */
 805                start += nq;
 806                n -= nq;
 807
 808                /*
 809                 * While there are still Ingress Queue IDs to stuff into the
 810                 * current firmware RSS command, retrieve them from the
 811                 * Ingress Queue ID array and insert them into the command.
 812                 */
 813                while (nq > 0) {
 814                        /*
 815                         * Grab up to the next 3 Ingress Queue IDs (wrapping
 816                         * around the Ingress Queue ID array if necessary) and
 817                         * insert them into the firmware RSS command at the
 818                         * current 3-tuple position within the commad.
 819                         */
 820                        u16 qbuf[3];
 821                        u16 *qbp = qbuf;
 822                        int nqbuf = min(3, nq);
 823
 824                        nq -= nqbuf;
 825                        qbuf[0] = qbuf[1] = qbuf[2] = 0;
 826                        while (nqbuf) {
 827                                nqbuf--;
 828                                *qbp++ = *rsp++;
 829                                if (rsp >= rsp_end)
 830                                        rsp = rspq;
 831                        }
 832                        *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
 833                                            FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
 834                                            FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
 835                }
 836
 837                /*
 838                 * Send this portion of the RRS table update to the firmware;
 839                 * bail out on any errors.
 840                 */
 841                ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 842                if (ret)
 843                        return ret;
 844        }
 845        return 0;
 846}
 847
 848/**
 849 *      t4vf_alloc_vi - allocate a virtual interface on a port
 850 *      @adapter: the adapter
 851 *      @port_id: physical port associated with the VI
 852 *
 853 *      Allocate a new Virtual Interface and bind it to the indicated
 854 *      physical port.  Return the new Virtual Interface Identifier on
 855 *      success, or a [negative] error number on failure.
 856 */
 857int t4vf_alloc_vi(struct adapter *adapter, int port_id)
 858{
 859        struct fw_vi_cmd cmd, rpl;
 860        int v;
 861
 862        /*
 863         * Execute a VI command to allocate Virtual Interface and return its
 864         * VIID.
 865         */
 866        memset(&cmd, 0, sizeof(cmd));
 867        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
 868                                    FW_CMD_REQUEST |
 869                                    FW_CMD_WRITE |
 870                                    FW_CMD_EXEC);
 871        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
 872                                         FW_VI_CMD_ALLOC);
 873        cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
 874        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 875        if (v)
 876                return v;
 877
 878        return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
 879}
 880
 881/**
 882 *      t4vf_free_vi -- free a virtual interface
 883 *      @adapter: the adapter
 884 *      @viid: the virtual interface identifier
 885 *
 886 *      Free a previously allocated Virtual Interface.  Return an error on
 887 *      failure.
 888 */
 889int t4vf_free_vi(struct adapter *adapter, int viid)
 890{
 891        struct fw_vi_cmd cmd;
 892
 893        /*
 894         * Execute a VI command to free the Virtual Interface.
 895         */
 896        memset(&cmd, 0, sizeof(cmd));
 897        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
 898                                    FW_CMD_REQUEST |
 899                                    FW_CMD_EXEC);
 900        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
 901                                         FW_VI_CMD_FREE);
 902        cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
 903        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 904}
 905
 906/**
 907 *      t4vf_enable_vi - enable/disable a virtual interface
 908 *      @adapter: the adapter
 909 *      @viid: the Virtual Interface ID
 910 *      @rx_en: 1=enable Rx, 0=disable Rx
 911 *      @tx_en: 1=enable Tx, 0=disable Tx
 912 *
 913 *      Enables/disables a virtual interface.
 914 */
 915int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
 916                   bool rx_en, bool tx_en)
 917{
 918        struct fw_vi_enable_cmd cmd;
 919
 920        memset(&cmd, 0, sizeof(cmd));
 921        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
 922                                     FW_CMD_REQUEST |
 923                                     FW_CMD_EXEC |
 924                                     FW_VI_ENABLE_CMD_VIID(viid));
 925        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
 926                                       FW_VI_ENABLE_CMD_EEN(tx_en) |
 927                                       FW_LEN16(cmd));
 928        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 929}
 930
 931/**
 932 *      t4vf_identify_port - identify a VI's port by blinking its LED
 933 *      @adapter: the adapter
 934 *      @viid: the Virtual Interface ID
 935 *      @nblinks: how many times to blink LED at 2.5 Hz
 936 *
 937 *      Identifies a VI's port by blinking its LED.
 938 */
 939int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
 940                       unsigned int nblinks)
 941{
 942        struct fw_vi_enable_cmd cmd;
 943
 944        memset(&cmd, 0, sizeof(cmd));
 945        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
 946                                     FW_CMD_REQUEST |
 947                                     FW_CMD_EXEC |
 948                                     FW_VI_ENABLE_CMD_VIID(viid));
 949        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
 950                                       FW_LEN16(cmd));
 951        cmd.blinkdur = cpu_to_be16(nblinks);
 952        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 953}
 954
 955/**
 956 *      t4vf_set_rxmode - set Rx properties of a virtual interface
 957 *      @adapter: the adapter
 958 *      @viid: the VI id
 959 *      @mtu: the new MTU or -1 for no change
 960 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 961 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 962 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
 963 *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
 964 *              -1 no change
 965 *
 966 *      Sets Rx properties of a virtual interface.
 967 */
 968int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
 969                    int mtu, int promisc, int all_multi, int bcast, int vlanex,
 970                    bool sleep_ok)
 971{
 972        struct fw_vi_rxmode_cmd cmd;
 973
 974        /* convert to FW values */
 975        if (mtu < 0)
 976                mtu = FW_VI_RXMODE_CMD_MTU_MASK;
 977        if (promisc < 0)
 978                promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
 979        if (all_multi < 0)
 980                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
 981        if (bcast < 0)
 982                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
 983        if (vlanex < 0)
 984                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
 985
 986        memset(&cmd, 0, sizeof(cmd));
 987        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
 988                                     FW_CMD_REQUEST |
 989                                     FW_CMD_WRITE |
 990                                     FW_VI_RXMODE_CMD_VIID(viid));
 991        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 992        cmd.mtu_to_vlanexen =
 993                cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
 994                            FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
 995                            FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
 996                            FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
 997                            FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
 998        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
 999}
1000
1001/**
1002 *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1003 *      @adapter: the adapter
1004 *      @viid: the Virtual Interface Identifier
1005 *      @free: if true any existing filters for this VI id are first removed
1006 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1007 *      @addr: the MAC address(es)
1008 *      @idx: where to store the index of each allocated filter
1009 *      @hash: pointer to hash address filter bitmap
1010 *      @sleep_ok: call is allowed to sleep
1011 *
1012 *      Allocates an exact-match filter for each of the supplied addresses and
1013 *      sets it to the corresponding address.  If @idx is not %NULL it should
1014 *      have at least @naddr entries, each of which will be set to the index of
1015 *      the filter allocated for the corresponding MAC address.  If a filter
1016 *      could not be allocated for an address its index is set to 0xffff.
1017 *      If @hash is not %NULL addresses that fail to allocate an exact filter
1018 *      are hashed and update the hash filter bitmap pointed at by @hash.
1019 *
1020 *      Returns a negative error number or the number of filters allocated.
1021 */
1022int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1023                        unsigned int naddr, const u8 **addr, u16 *idx,
1024                        u64 *hash, bool sleep_ok)
1025{
1026        int offset, ret = 0;
1027        unsigned nfilters = 0;
1028        unsigned int rem = naddr;
1029        struct fw_vi_mac_cmd cmd, rpl;
1030        unsigned int max_naddr = is_t4(adapter->chip) ?
1031                                 NUM_MPS_CLS_SRAM_L_INSTANCES :
1032                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1033
1034        if (naddr > max_naddr)
1035                return -EINVAL;
1036
1037        for (offset = 0; offset < naddr; /**/) {
1038                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1039                                         ? rem
1040                                         : ARRAY_SIZE(cmd.u.exact));
1041                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1042                                                     u.exact[fw_naddr]), 16);
1043                struct fw_vi_mac_exact *p;
1044                int i;
1045
1046                memset(&cmd, 0, sizeof(cmd));
1047                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1048                                             FW_CMD_REQUEST |
1049                                             FW_CMD_WRITE |
1050                                             (free ? FW_CMD_EXEC : 0) |
1051                                             FW_VI_MAC_CMD_VIID(viid));
1052                cmd.freemacs_to_len16 =
1053                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1054                                    FW_CMD_LEN16(len16));
1055
1056                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1057                        p->valid_to_idx = cpu_to_be16(
1058                                FW_VI_MAC_CMD_VALID |
1059                                FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1060                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1061                }
1062
1063
1064                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1065                                        sleep_ok);
1066                if (ret && ret != -ENOMEM)
1067                        break;
1068
1069                for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1070                        u16 index = FW_VI_MAC_CMD_IDX_GET(
1071                                be16_to_cpu(p->valid_to_idx));
1072
1073                        if (idx)
1074                                idx[offset+i] =
1075                                        (index >= max_naddr
1076                                         ? 0xffff
1077                                         : index);
1078                        if (index < max_naddr)
1079                                nfilters++;
1080                        else if (hash)
1081                                *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1082                }
1083
1084                free = false;
1085                offset += fw_naddr;
1086                rem -= fw_naddr;
1087        }
1088
1089        /*
1090         * If there were no errors or we merely ran out of room in our MAC
1091         * address arena, return the number of filters actually written.
1092         */
1093        if (ret == 0 || ret == -ENOMEM)
1094                ret = nfilters;
1095        return ret;
1096}
1097
1098/**
1099 *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1100 *      @adapter: the adapter
1101 *      @viid: the Virtual Interface ID
1102 *      @idx: index of existing filter for old value of MAC address, or -1
1103 *      @addr: the new MAC address value
1104 *      @persist: if idx < 0, the new MAC allocation should be persistent
1105 *
1106 *      Modifies an exact-match filter and sets it to the new MAC address.
1107 *      Note that in general it is not possible to modify the value of a given
1108 *      filter so the generic way to modify an address filter is to free the
1109 *      one being used by the old address value and allocate a new filter for
1110 *      the new address value.  @idx can be -1 if the address is a new
1111 *      addition.
1112 *
1113 *      Returns a negative error number or the index of the filter with the new
1114 *      MAC value.
1115 */
1116int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1117                    int idx, const u8 *addr, bool persist)
1118{
1119        int ret;
1120        struct fw_vi_mac_cmd cmd, rpl;
1121        struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1122        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1123                                             u.exact[1]), 16);
1124        unsigned int max_naddr = is_t4(adapter->chip) ?
1125                                 NUM_MPS_CLS_SRAM_L_INSTANCES :
1126                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1127
1128        /*
1129         * If this is a new allocation, determine whether it should be
1130         * persistent (across a "freemacs" operation) or not.
1131         */
1132        if (idx < 0)
1133                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1134
1135        memset(&cmd, 0, sizeof(cmd));
1136        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1137                                     FW_CMD_REQUEST |
1138                                     FW_CMD_WRITE |
1139                                     FW_VI_MAC_CMD_VIID(viid));
1140        cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1141        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1142                                      FW_VI_MAC_CMD_IDX(idx));
1143        memcpy(p->macaddr, addr, sizeof(p->macaddr));
1144
1145        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1146        if (ret == 0) {
1147                p = &rpl.u.exact[0];
1148                ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
1149                if (ret >= max_naddr)
1150                        ret = -ENOMEM;
1151        }
1152        return ret;
1153}
1154
1155/**
1156 *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1157 *      @adapter: the adapter
1158 *      @viid: the Virtual Interface Identifier
1159 *      @ucast: whether the hash filter should also match unicast addresses
1160 *      @vec: the value to be written to the hash filter
1161 *      @sleep_ok: call is allowed to sleep
1162 *
1163 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1164 */
1165int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1166                       bool ucast, u64 vec, bool sleep_ok)
1167{
1168        struct fw_vi_mac_cmd cmd;
1169        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1170                                             u.exact[0]), 16);
1171
1172        memset(&cmd, 0, sizeof(cmd));
1173        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1174                                     FW_CMD_REQUEST |
1175                                     FW_CMD_WRITE |
1176                                     FW_VI_ENABLE_CMD_VIID(viid));
1177        cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1178                                            FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1179                                            FW_CMD_LEN16(len16));
1180        cmd.u.hash.hashvec = cpu_to_be64(vec);
1181        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1182}
1183
1184/**
1185 *      t4vf_get_port_stats - collect "port" statistics
1186 *      @adapter: the adapter
1187 *      @pidx: the port index
1188 *      @s: the stats structure to fill
1189 *
1190 *      Collect statistics for the "port"'s Virtual Interface.
1191 */
1192int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1193                        struct t4vf_port_stats *s)
1194{
1195        struct port_info *pi = adap2pinfo(adapter, pidx);
1196        struct fw_vi_stats_vf fwstats;
1197        unsigned int rem = VI_VF_NUM_STATS;
1198        __be64 *fwsp = (__be64 *)&fwstats;
1199
1200        /*
1201         * Grab the Virtual Interface statistics a chunk at a time via mailbox
1202         * commands.  We could use a Work Request and get all of them at once
1203         * but that's an asynchronous interface which is awkward to use.
1204         */
1205        while (rem) {
1206                unsigned int ix = VI_VF_NUM_STATS - rem;
1207                unsigned int nstats = min(6U, rem);
1208                struct fw_vi_stats_cmd cmd, rpl;
1209                size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1210                              sizeof(struct fw_vi_stats_ctl));
1211                size_t len16 = DIV_ROUND_UP(len, 16);
1212                int ret;
1213
1214                memset(&cmd, 0, sizeof(cmd));
1215                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1216                                             FW_VI_STATS_CMD_VIID(pi->viid) |
1217                                             FW_CMD_REQUEST |
1218                                             FW_CMD_READ);
1219                cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1220                cmd.u.ctl.nstats_ix =
1221                        cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1222                                    FW_VI_STATS_CMD_NSTATS(nstats));
1223                ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1224                if (ret)
1225                        return ret;
1226
1227                memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1228
1229                rem -= nstats;
1230                fwsp += nstats;
1231        }
1232
1233        /*
1234         * Translate firmware statistics into host native statistics.
1235         */
1236        s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1237        s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1238        s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1239        s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1240        s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1241        s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1242        s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1243        s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1244        s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1245
1246        s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1247        s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1248        s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1249        s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1250        s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1251        s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1252
1253        s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1254
1255        return 0;
1256}
1257
1258/**
1259 *      t4vf_iq_free - free an ingress queue and its free lists
1260 *      @adapter: the adapter
1261 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1262 *      @iqid: ingress queue ID
1263 *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1264 *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1265 *
1266 *      Frees an ingress queue and its associated free lists, if any.
1267 */
1268int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1269                 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1270{
1271        struct fw_iq_cmd cmd;
1272
1273        memset(&cmd, 0, sizeof(cmd));
1274        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1275                                    FW_CMD_REQUEST |
1276                                    FW_CMD_EXEC);
1277        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1278                                         FW_LEN16(cmd));
1279        cmd.type_to_iqandstindex =
1280                cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1281
1282        cmd.iqid = cpu_to_be16(iqid);
1283        cmd.fl0id = cpu_to_be16(fl0id);
1284        cmd.fl1id = cpu_to_be16(fl1id);
1285        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1286}
1287
1288/**
1289 *      t4vf_eth_eq_free - free an Ethernet egress queue
1290 *      @adapter: the adapter
1291 *      @eqid: egress queue ID
1292 *
1293 *      Frees an Ethernet egress queue.
1294 */
1295int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1296{
1297        struct fw_eq_eth_cmd cmd;
1298
1299        memset(&cmd, 0, sizeof(cmd));
1300        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1301                                    FW_CMD_REQUEST |
1302                                    FW_CMD_EXEC);
1303        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1304                                         FW_LEN16(cmd));
1305        cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1306        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1307}
1308
1309/**
1310 *      t4vf_handle_fw_rpl - process a firmware reply message
1311 *      @adapter: the adapter
1312 *      @rpl: start of the firmware message
1313 *
1314 *      Processes a firmware message, such as link state change messages.
1315 */
1316int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1317{
1318        const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1319        u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1320
1321        switch (opcode) {
1322        case FW_PORT_CMD: {
1323                /*
1324                 * Link/module state change message.
1325                 */
1326                const struct fw_port_cmd *port_cmd =
1327                        (const struct fw_port_cmd *)rpl;
1328                u32 word;
1329                int action, port_id, link_ok, speed, fc, pidx;
1330
1331                /*
1332                 * Extract various fields from port status change message.
1333                 */
1334                action = FW_PORT_CMD_ACTION_GET(
1335                        be32_to_cpu(port_cmd->action_to_len16));
1336                if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1337                        dev_err(adapter->pdev_dev,
1338                                "Unknown firmware PORT reply action %x\n",
1339                                action);
1340                        break;
1341                }
1342
1343                port_id = FW_PORT_CMD_PORTID_GET(
1344                        be32_to_cpu(port_cmd->op_to_portid));
1345
1346                word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1347                link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1348                speed = 0;
1349                fc = 0;
1350                if (word & FW_PORT_CMD_RXPAUSE)
1351                        fc |= PAUSE_RX;
1352                if (word & FW_PORT_CMD_TXPAUSE)
1353                        fc |= PAUSE_TX;
1354                if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
1355                        speed = SPEED_100;
1356                else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
1357                        speed = SPEED_1000;
1358                else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
1359                        speed = SPEED_10000;
1360
1361                /*
1362                 * Scan all of our "ports" (Virtual Interfaces) looking for
1363                 * those bound to the physical port which has changed.  If
1364                 * our recorded state doesn't match the current state,
1365                 * signal that change to the OS code.
1366                 */
1367                for_each_port(adapter, pidx) {
1368                        struct port_info *pi = adap2pinfo(adapter, pidx);
1369                        struct link_config *lc;
1370
1371                        if (pi->port_id != port_id)
1372                                continue;
1373
1374                        lc = &pi->link_cfg;
1375                        if (link_ok != lc->link_ok || speed != lc->speed ||
1376                            fc != lc->fc) {
1377                                /* something changed */
1378                                lc->link_ok = link_ok;
1379                                lc->speed = speed;
1380                                lc->fc = fc;
1381                                t4vf_os_link_changed(adapter, pidx, link_ok);
1382                        }
1383                }
1384                break;
1385        }
1386
1387        default:
1388                dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1389                        opcode);
1390        }
1391        return 0;
1392}
1393