linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/init.h>
  74#include <linux/delay.h>
  75#include <linux/netdevice.h>
  76#include <linux/etherdevice.h>
  77#include <linux/skbuff.h>
  78#include <linux/if_vlan.h>
  79#include <linux/spinlock.h>
  80#include <linux/mm.h>
  81#include <linux/of_mdio.h>
  82#include <linux/of_platform.h>
  83#include <linux/ip.h>
  84#include <linux/tcp.h>
  85#include <linux/udp.h>
  86#include <linux/in.h>
  87#include <linux/net_tstamp.h>
  88
  89#include <asm/io.h>
  90#include <asm/reg.h>
  91#include <asm/irq.h>
  92#include <asm/uaccess.h>
  93#include <linux/module.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/crc32.h>
  96#include <linux/mii.h>
  97#include <linux/phy.h>
  98#include <linux/phy_fixed.h>
  99#include <linux/of.h>
 100#include <linux/of_net.h>
 101
 102#include "gianfar.h"
 103
 104#define TX_TIMEOUT      (1*HZ)
 105
 106const char gfar_driver_version[] = "1.3";
 107
 108static int gfar_enet_open(struct net_device *dev);
 109static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 110static void gfar_reset_task(struct work_struct *work);
 111static void gfar_timeout(struct net_device *dev);
 112static int gfar_close(struct net_device *dev);
 113struct sk_buff *gfar_new_skb(struct net_device *dev);
 114static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 115                           struct sk_buff *skb);
 116static int gfar_set_mac_address(struct net_device *dev);
 117static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 118static irqreturn_t gfar_error(int irq, void *dev_id);
 119static irqreturn_t gfar_transmit(int irq, void *dev_id);
 120static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 121static void adjust_link(struct net_device *dev);
 122static void init_registers(struct net_device *dev);
 123static int init_phy(struct net_device *dev);
 124static int gfar_probe(struct platform_device *ofdev);
 125static int gfar_remove(struct platform_device *ofdev);
 126static void free_skb_resources(struct gfar_private *priv);
 127static void gfar_set_multi(struct net_device *dev);
 128static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 129static void gfar_configure_serdes(struct net_device *dev);
 130static int gfar_poll(struct napi_struct *napi, int budget);
 131static int gfar_poll_sq(struct napi_struct *napi, int budget);
 132#ifdef CONFIG_NET_POLL_CONTROLLER
 133static void gfar_netpoll(struct net_device *dev);
 134#endif
 135int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 136static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 137static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 138                               int amount_pull, struct napi_struct *napi);
 139void gfar_halt(struct net_device *dev);
 140static void gfar_halt_nodisable(struct net_device *dev);
 141void gfar_start(struct net_device *dev);
 142static void gfar_clear_exact_match(struct net_device *dev);
 143static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 144                                  const u8 *addr);
 145static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 146
 147MODULE_AUTHOR("Freescale Semiconductor, Inc");
 148MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 149MODULE_LICENSE("GPL");
 150
 151static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 152                            dma_addr_t buf)
 153{
 154        u32 lstatus;
 155
 156        bdp->bufPtr = buf;
 157
 158        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 159        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 160                lstatus |= BD_LFLAG(RXBD_WRAP);
 161
 162        eieio();
 163
 164        bdp->lstatus = lstatus;
 165}
 166
 167static int gfar_init_bds(struct net_device *ndev)
 168{
 169        struct gfar_private *priv = netdev_priv(ndev);
 170        struct gfar_priv_tx_q *tx_queue = NULL;
 171        struct gfar_priv_rx_q *rx_queue = NULL;
 172        struct txbd8 *txbdp;
 173        struct rxbd8 *rxbdp;
 174        int i, j;
 175
 176        for (i = 0; i < priv->num_tx_queues; i++) {
 177                tx_queue = priv->tx_queue[i];
 178                /* Initialize some variables in our dev structure */
 179                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 180                tx_queue->dirty_tx = tx_queue->tx_bd_base;
 181                tx_queue->cur_tx = tx_queue->tx_bd_base;
 182                tx_queue->skb_curtx = 0;
 183                tx_queue->skb_dirtytx = 0;
 184
 185                /* Initialize Transmit Descriptor Ring */
 186                txbdp = tx_queue->tx_bd_base;
 187                for (j = 0; j < tx_queue->tx_ring_size; j++) {
 188                        txbdp->lstatus = 0;
 189                        txbdp->bufPtr = 0;
 190                        txbdp++;
 191                }
 192
 193                /* Set the last descriptor in the ring to indicate wrap */
 194                txbdp--;
 195                txbdp->status |= TXBD_WRAP;
 196        }
 197
 198        for (i = 0; i < priv->num_rx_queues; i++) {
 199                rx_queue = priv->rx_queue[i];
 200                rx_queue->cur_rx = rx_queue->rx_bd_base;
 201                rx_queue->skb_currx = 0;
 202                rxbdp = rx_queue->rx_bd_base;
 203
 204                for (j = 0; j < rx_queue->rx_ring_size; j++) {
 205                        struct sk_buff *skb = rx_queue->rx_skbuff[j];
 206
 207                        if (skb) {
 208                                gfar_init_rxbdp(rx_queue, rxbdp,
 209                                                rxbdp->bufPtr);
 210                        } else {
 211                                skb = gfar_new_skb(ndev);
 212                                if (!skb) {
 213                                        netdev_err(ndev, "Can't allocate RX buffers\n");
 214                                        return -ENOMEM;
 215                                }
 216                                rx_queue->rx_skbuff[j] = skb;
 217
 218                                gfar_new_rxbdp(rx_queue, rxbdp, skb);
 219                        }
 220
 221                        rxbdp++;
 222                }
 223
 224        }
 225
 226        return 0;
 227}
 228
 229static int gfar_alloc_skb_resources(struct net_device *ndev)
 230{
 231        void *vaddr;
 232        dma_addr_t addr;
 233        int i, j, k;
 234        struct gfar_private *priv = netdev_priv(ndev);
 235        struct device *dev = priv->dev;
 236        struct gfar_priv_tx_q *tx_queue = NULL;
 237        struct gfar_priv_rx_q *rx_queue = NULL;
 238
 239        priv->total_tx_ring_size = 0;
 240        for (i = 0; i < priv->num_tx_queues; i++)
 241                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 242
 243        priv->total_rx_ring_size = 0;
 244        for (i = 0; i < priv->num_rx_queues; i++)
 245                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 246
 247        /* Allocate memory for the buffer descriptors */
 248        vaddr = dma_alloc_coherent(dev,
 249                                   (priv->total_tx_ring_size *
 250                                    sizeof(struct txbd8)) +
 251                                   (priv->total_rx_ring_size *
 252                                    sizeof(struct rxbd8)),
 253                                   &addr, GFP_KERNEL);
 254        if (!vaddr)
 255                return -ENOMEM;
 256
 257        for (i = 0; i < priv->num_tx_queues; i++) {
 258                tx_queue = priv->tx_queue[i];
 259                tx_queue->tx_bd_base = vaddr;
 260                tx_queue->tx_bd_dma_base = addr;
 261                tx_queue->dev = ndev;
 262                /* enet DMA only understands physical addresses */
 263                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 264                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 265        }
 266
 267        /* Start the rx descriptor ring where the tx ring leaves off */
 268        for (i = 0; i < priv->num_rx_queues; i++) {
 269                rx_queue = priv->rx_queue[i];
 270                rx_queue->rx_bd_base = vaddr;
 271                rx_queue->rx_bd_dma_base = addr;
 272                rx_queue->dev = ndev;
 273                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 274                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 275        }
 276
 277        /* Setup the skbuff rings */
 278        for (i = 0; i < priv->num_tx_queues; i++) {
 279                tx_queue = priv->tx_queue[i];
 280                tx_queue->tx_skbuff =
 281                        kmalloc_array(tx_queue->tx_ring_size,
 282                                      sizeof(*tx_queue->tx_skbuff),
 283                                      GFP_KERNEL);
 284                if (!tx_queue->tx_skbuff)
 285                        goto cleanup;
 286
 287                for (k = 0; k < tx_queue->tx_ring_size; k++)
 288                        tx_queue->tx_skbuff[k] = NULL;
 289        }
 290
 291        for (i = 0; i < priv->num_rx_queues; i++) {
 292                rx_queue = priv->rx_queue[i];
 293                rx_queue->rx_skbuff =
 294                        kmalloc_array(rx_queue->rx_ring_size,
 295                                      sizeof(*rx_queue->rx_skbuff),
 296                                      GFP_KERNEL);
 297                if (!rx_queue->rx_skbuff)
 298                        goto cleanup;
 299
 300                for (j = 0; j < rx_queue->rx_ring_size; j++)
 301                        rx_queue->rx_skbuff[j] = NULL;
 302        }
 303
 304        if (gfar_init_bds(ndev))
 305                goto cleanup;
 306
 307        return 0;
 308
 309cleanup:
 310        free_skb_resources(priv);
 311        return -ENOMEM;
 312}
 313
 314static void gfar_init_tx_rx_base(struct gfar_private *priv)
 315{
 316        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 317        u32 __iomem *baddr;
 318        int i;
 319
 320        baddr = &regs->tbase0;
 321        for (i = 0; i < priv->num_tx_queues; i++) {
 322                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 323                baddr += 2;
 324        }
 325
 326        baddr = &regs->rbase0;
 327        for (i = 0; i < priv->num_rx_queues; i++) {
 328                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 329                baddr += 2;
 330        }
 331}
 332
 333static void gfar_init_mac(struct net_device *ndev)
 334{
 335        struct gfar_private *priv = netdev_priv(ndev);
 336        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 337        u32 rctrl = 0;
 338        u32 tctrl = 0;
 339        u32 attrs = 0;
 340
 341        /* write the tx/rx base registers */
 342        gfar_init_tx_rx_base(priv);
 343
 344        /* Configure the coalescing support */
 345        gfar_configure_coalescing_all(priv);
 346
 347        /* set this when rx hw offload (TOE) functions are being used */
 348        priv->uses_rxfcb = 0;
 349
 350        if (priv->rx_filer_enable) {
 351                rctrl |= RCTRL_FILREN;
 352                /* Program the RIR0 reg with the required distribution */
 353                gfar_write(&regs->rir0, DEFAULT_RIR0);
 354        }
 355
 356        /* Restore PROMISC mode */
 357        if (ndev->flags & IFF_PROMISC)
 358                rctrl |= RCTRL_PROM;
 359
 360        if (ndev->features & NETIF_F_RXCSUM) {
 361                rctrl |= RCTRL_CHECKSUMMING;
 362                priv->uses_rxfcb = 1;
 363        }
 364
 365        if (priv->extended_hash) {
 366                rctrl |= RCTRL_EXTHASH;
 367
 368                gfar_clear_exact_match(ndev);
 369                rctrl |= RCTRL_EMEN;
 370        }
 371
 372        if (priv->padding) {
 373                rctrl &= ~RCTRL_PAL_MASK;
 374                rctrl |= RCTRL_PADDING(priv->padding);
 375        }
 376
 377        /* Insert receive time stamps into padding alignment bytes */
 378        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
 379                rctrl &= ~RCTRL_PAL_MASK;
 380                rctrl |= RCTRL_PADDING(8);
 381                priv->padding = 8;
 382        }
 383
 384        /* Enable HW time stamping if requested from user space */
 385        if (priv->hwts_rx_en) {
 386                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 387                priv->uses_rxfcb = 1;
 388        }
 389
 390        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
 391                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 392                priv->uses_rxfcb = 1;
 393        }
 394
 395        /* Init rctrl based on our settings */
 396        gfar_write(&regs->rctrl, rctrl);
 397
 398        if (ndev->features & NETIF_F_IP_CSUM)
 399                tctrl |= TCTRL_INIT_CSUM;
 400
 401        if (priv->prio_sched_en)
 402                tctrl |= TCTRL_TXSCHED_PRIO;
 403        else {
 404                tctrl |= TCTRL_TXSCHED_WRRS;
 405                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 406                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 407        }
 408
 409        gfar_write(&regs->tctrl, tctrl);
 410
 411        /* Set the extraction length and index */
 412        attrs = ATTRELI_EL(priv->rx_stash_size) |
 413                ATTRELI_EI(priv->rx_stash_index);
 414
 415        gfar_write(&regs->attreli, attrs);
 416
 417        /* Start with defaults, and add stashing or locking
 418         * depending on the approprate variables
 419         */
 420        attrs = ATTR_INIT_SETTINGS;
 421
 422        if (priv->bd_stash_en)
 423                attrs |= ATTR_BDSTASH;
 424
 425        if (priv->rx_stash_size != 0)
 426                attrs |= ATTR_BUFSTASH;
 427
 428        gfar_write(&regs->attr, attrs);
 429
 430        gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
 431        gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
 432        gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
 433}
 434
 435static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 436{
 437        struct gfar_private *priv = netdev_priv(dev);
 438        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 439        unsigned long tx_packets = 0, tx_bytes = 0;
 440        int i;
 441
 442        for (i = 0; i < priv->num_rx_queues; i++) {
 443                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 444                rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 445                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 446        }
 447
 448        dev->stats.rx_packets = rx_packets;
 449        dev->stats.rx_bytes   = rx_bytes;
 450        dev->stats.rx_dropped = rx_dropped;
 451
 452        for (i = 0; i < priv->num_tx_queues; i++) {
 453                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 454                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 455        }
 456
 457        dev->stats.tx_bytes   = tx_bytes;
 458        dev->stats.tx_packets = tx_packets;
 459
 460        return &dev->stats;
 461}
 462
 463static const struct net_device_ops gfar_netdev_ops = {
 464        .ndo_open = gfar_enet_open,
 465        .ndo_start_xmit = gfar_start_xmit,
 466        .ndo_stop = gfar_close,
 467        .ndo_change_mtu = gfar_change_mtu,
 468        .ndo_set_features = gfar_set_features,
 469        .ndo_set_rx_mode = gfar_set_multi,
 470        .ndo_tx_timeout = gfar_timeout,
 471        .ndo_do_ioctl = gfar_ioctl,
 472        .ndo_get_stats = gfar_get_stats,
 473        .ndo_set_mac_address = eth_mac_addr,
 474        .ndo_validate_addr = eth_validate_addr,
 475#ifdef CONFIG_NET_POLL_CONTROLLER
 476        .ndo_poll_controller = gfar_netpoll,
 477#endif
 478};
 479
 480void lock_rx_qs(struct gfar_private *priv)
 481{
 482        int i;
 483
 484        for (i = 0; i < priv->num_rx_queues; i++)
 485                spin_lock(&priv->rx_queue[i]->rxlock);
 486}
 487
 488void lock_tx_qs(struct gfar_private *priv)
 489{
 490        int i;
 491
 492        for (i = 0; i < priv->num_tx_queues; i++)
 493                spin_lock(&priv->tx_queue[i]->txlock);
 494}
 495
 496void unlock_rx_qs(struct gfar_private *priv)
 497{
 498        int i;
 499
 500        for (i = 0; i < priv->num_rx_queues; i++)
 501                spin_unlock(&priv->rx_queue[i]->rxlock);
 502}
 503
 504void unlock_tx_qs(struct gfar_private *priv)
 505{
 506        int i;
 507
 508        for (i = 0; i < priv->num_tx_queues; i++)
 509                spin_unlock(&priv->tx_queue[i]->txlock);
 510}
 511
 512static void free_tx_pointers(struct gfar_private *priv)
 513{
 514        int i;
 515
 516        for (i = 0; i < priv->num_tx_queues; i++)
 517                kfree(priv->tx_queue[i]);
 518}
 519
 520static void free_rx_pointers(struct gfar_private *priv)
 521{
 522        int i;
 523
 524        for (i = 0; i < priv->num_rx_queues; i++)
 525                kfree(priv->rx_queue[i]);
 526}
 527
 528static void unmap_group_regs(struct gfar_private *priv)
 529{
 530        int i;
 531
 532        for (i = 0; i < MAXGROUPS; i++)
 533                if (priv->gfargrp[i].regs)
 534                        iounmap(priv->gfargrp[i].regs);
 535}
 536
 537static void free_gfar_dev(struct gfar_private *priv)
 538{
 539        int i, j;
 540
 541        for (i = 0; i < priv->num_grps; i++)
 542                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 543                        kfree(priv->gfargrp[i].irqinfo[j]);
 544                        priv->gfargrp[i].irqinfo[j] = NULL;
 545                }
 546
 547        free_netdev(priv->ndev);
 548}
 549
 550static void disable_napi(struct gfar_private *priv)
 551{
 552        int i;
 553
 554        for (i = 0; i < priv->num_grps; i++)
 555                napi_disable(&priv->gfargrp[i].napi);
 556}
 557
 558static void enable_napi(struct gfar_private *priv)
 559{
 560        int i;
 561
 562        for (i = 0; i < priv->num_grps; i++)
 563                napi_enable(&priv->gfargrp[i].napi);
 564}
 565
 566static int gfar_parse_group(struct device_node *np,
 567                            struct gfar_private *priv, const char *model)
 568{
 569        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 570        u32 *queue_mask;
 571        int i;
 572
 573        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 574                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 575                                          GFP_KERNEL);
 576                if (!grp->irqinfo[i])
 577                        return -ENOMEM;
 578        }
 579
 580        grp->regs = of_iomap(np, 0);
 581        if (!grp->regs)
 582                return -ENOMEM;
 583
 584        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 585
 586        /* If we aren't the FEC we have multiple interrupts */
 587        if (model && strcasecmp(model, "FEC")) {
 588                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 589                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 590                if (gfar_irq(grp, TX)->irq == NO_IRQ ||
 591                    gfar_irq(grp, RX)->irq == NO_IRQ ||
 592                    gfar_irq(grp, ER)->irq == NO_IRQ)
 593                        return -EINVAL;
 594        }
 595
 596        grp->grp_id = priv->num_grps;
 597        grp->priv = priv;
 598        spin_lock_init(&grp->grplock);
 599        if (priv->mode == MQ_MG_MODE) {
 600                queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
 601                grp->rx_bit_map = queue_mask ?
 602                        *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 603                queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
 604                grp->tx_bit_map = queue_mask ?
 605                        *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 606        } else {
 607                grp->rx_bit_map = 0xFF;
 608                grp->tx_bit_map = 0xFF;
 609        }
 610        priv->num_grps++;
 611
 612        return 0;
 613}
 614
 615static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 616{
 617        const char *model;
 618        const char *ctype;
 619        const void *mac_addr;
 620        int err = 0, i;
 621        struct net_device *dev = NULL;
 622        struct gfar_private *priv = NULL;
 623        struct device_node *np = ofdev->dev.of_node;
 624        struct device_node *child = NULL;
 625        const u32 *stash;
 626        const u32 *stash_len;
 627        const u32 *stash_idx;
 628        unsigned int num_tx_qs, num_rx_qs;
 629        u32 *tx_queues, *rx_queues;
 630
 631        if (!np || !of_device_is_available(np))
 632                return -ENODEV;
 633
 634        /* parse the num of tx and rx queues */
 635        tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 636        num_tx_qs = tx_queues ? *tx_queues : 1;
 637
 638        if (num_tx_qs > MAX_TX_QS) {
 639                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 640                       num_tx_qs, MAX_TX_QS);
 641                pr_err("Cannot do alloc_etherdev, aborting\n");
 642                return -EINVAL;
 643        }
 644
 645        rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 646        num_rx_qs = rx_queues ? *rx_queues : 1;
 647
 648        if (num_rx_qs > MAX_RX_QS) {
 649                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 650                       num_rx_qs, MAX_RX_QS);
 651                pr_err("Cannot do alloc_etherdev, aborting\n");
 652                return -EINVAL;
 653        }
 654
 655        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 656        dev = *pdev;
 657        if (NULL == dev)
 658                return -ENOMEM;
 659
 660        priv = netdev_priv(dev);
 661        priv->ndev = dev;
 662
 663        priv->num_tx_queues = num_tx_qs;
 664        netif_set_real_num_rx_queues(dev, num_rx_qs);
 665        priv->num_rx_queues = num_rx_qs;
 666        priv->num_grps = 0x0;
 667
 668        /* Init Rx queue filer rule set linked list */
 669        INIT_LIST_HEAD(&priv->rx_list.list);
 670        priv->rx_list.count = 0;
 671        mutex_init(&priv->rx_queue_access);
 672
 673        model = of_get_property(np, "model", NULL);
 674
 675        for (i = 0; i < MAXGROUPS; i++)
 676                priv->gfargrp[i].regs = NULL;
 677
 678        /* Parse and initialize group specific information */
 679        if (of_device_is_compatible(np, "fsl,etsec2")) {
 680                priv->mode = MQ_MG_MODE;
 681                for_each_child_of_node(np, child) {
 682                        err = gfar_parse_group(child, priv, model);
 683                        if (err)
 684                                goto err_grp_init;
 685                }
 686        } else {
 687                priv->mode = SQ_SG_MODE;
 688                err = gfar_parse_group(np, priv, model);
 689                if (err)
 690                        goto err_grp_init;
 691        }
 692
 693        for (i = 0; i < priv->num_tx_queues; i++)
 694                priv->tx_queue[i] = NULL;
 695        for (i = 0; i < priv->num_rx_queues; i++)
 696                priv->rx_queue[i] = NULL;
 697
 698        for (i = 0; i < priv->num_tx_queues; i++) {
 699                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 700                                            GFP_KERNEL);
 701                if (!priv->tx_queue[i]) {
 702                        err = -ENOMEM;
 703                        goto tx_alloc_failed;
 704                }
 705                priv->tx_queue[i]->tx_skbuff = NULL;
 706                priv->tx_queue[i]->qindex = i;
 707                priv->tx_queue[i]->dev = dev;
 708                spin_lock_init(&(priv->tx_queue[i]->txlock));
 709        }
 710
 711        for (i = 0; i < priv->num_rx_queues; i++) {
 712                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 713                                            GFP_KERNEL);
 714                if (!priv->rx_queue[i]) {
 715                        err = -ENOMEM;
 716                        goto rx_alloc_failed;
 717                }
 718                priv->rx_queue[i]->rx_skbuff = NULL;
 719                priv->rx_queue[i]->qindex = i;
 720                priv->rx_queue[i]->dev = dev;
 721                spin_lock_init(&(priv->rx_queue[i]->rxlock));
 722        }
 723
 724
 725        stash = of_get_property(np, "bd-stash", NULL);
 726
 727        if (stash) {
 728                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 729                priv->bd_stash_en = 1;
 730        }
 731
 732        stash_len = of_get_property(np, "rx-stash-len", NULL);
 733
 734        if (stash_len)
 735                priv->rx_stash_size = *stash_len;
 736
 737        stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 738
 739        if (stash_idx)
 740                priv->rx_stash_index = *stash_idx;
 741
 742        if (stash_len || stash_idx)
 743                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 744
 745        mac_addr = of_get_mac_address(np);
 746
 747        if (mac_addr)
 748                memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 749
 750        if (model && !strcasecmp(model, "TSEC"))
 751                priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
 752                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 753                                     FSL_GIANFAR_DEV_HAS_RMON |
 754                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 755
 756        if (model && !strcasecmp(model, "eTSEC"))
 757                priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
 758                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 759                                     FSL_GIANFAR_DEV_HAS_RMON |
 760                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 761                                     FSL_GIANFAR_DEV_HAS_PADDING |
 762                                     FSL_GIANFAR_DEV_HAS_CSUM |
 763                                     FSL_GIANFAR_DEV_HAS_VLAN |
 764                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 765                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 766                                     FSL_GIANFAR_DEV_HAS_TIMER;
 767
 768        ctype = of_get_property(np, "phy-connection-type", NULL);
 769
 770        /* We only care about rgmii-id.  The rest are autodetected */
 771        if (ctype && !strcmp(ctype, "rgmii-id"))
 772                priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 773        else
 774                priv->interface = PHY_INTERFACE_MODE_MII;
 775
 776        if (of_get_property(np, "fsl,magic-packet", NULL))
 777                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 778
 779        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 780
 781        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 782        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 783
 784        return 0;
 785
 786rx_alloc_failed:
 787        free_rx_pointers(priv);
 788tx_alloc_failed:
 789        free_tx_pointers(priv);
 790err_grp_init:
 791        unmap_group_regs(priv);
 792        free_gfar_dev(priv);
 793        return err;
 794}
 795
 796static int gfar_hwtstamp_ioctl(struct net_device *netdev,
 797                               struct ifreq *ifr, int cmd)
 798{
 799        struct hwtstamp_config config;
 800        struct gfar_private *priv = netdev_priv(netdev);
 801
 802        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 803                return -EFAULT;
 804
 805        /* reserved for future extensions */
 806        if (config.flags)
 807                return -EINVAL;
 808
 809        switch (config.tx_type) {
 810        case HWTSTAMP_TX_OFF:
 811                priv->hwts_tx_en = 0;
 812                break;
 813        case HWTSTAMP_TX_ON:
 814                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 815                        return -ERANGE;
 816                priv->hwts_tx_en = 1;
 817                break;
 818        default:
 819                return -ERANGE;
 820        }
 821
 822        switch (config.rx_filter) {
 823        case HWTSTAMP_FILTER_NONE:
 824                if (priv->hwts_rx_en) {
 825                        stop_gfar(netdev);
 826                        priv->hwts_rx_en = 0;
 827                        startup_gfar(netdev);
 828                }
 829                break;
 830        default:
 831                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 832                        return -ERANGE;
 833                if (!priv->hwts_rx_en) {
 834                        stop_gfar(netdev);
 835                        priv->hwts_rx_en = 1;
 836                        startup_gfar(netdev);
 837                }
 838                config.rx_filter = HWTSTAMP_FILTER_ALL;
 839                break;
 840        }
 841
 842        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 843                -EFAULT : 0;
 844}
 845
 846/* Ioctl MII Interface */
 847static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 848{
 849        struct gfar_private *priv = netdev_priv(dev);
 850
 851        if (!netif_running(dev))
 852                return -EINVAL;
 853
 854        if (cmd == SIOCSHWTSTAMP)
 855                return gfar_hwtstamp_ioctl(dev, rq, cmd);
 856
 857        if (!priv->phydev)
 858                return -ENODEV;
 859
 860        return phy_mii_ioctl(priv->phydev, rq, cmd);
 861}
 862
 863static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
 864{
 865        unsigned int new_bit_map = 0x0;
 866        int mask = 0x1 << (max_qs - 1), i;
 867
 868        for (i = 0; i < max_qs; i++) {
 869                if (bit_map & mask)
 870                        new_bit_map = new_bit_map + (1 << i);
 871                mask = mask >> 0x1;
 872        }
 873        return new_bit_map;
 874}
 875
 876static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 877                                   u32 class)
 878{
 879        u32 rqfpr = FPR_FILER_MASK;
 880        u32 rqfcr = 0x0;
 881
 882        rqfar--;
 883        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 884        priv->ftp_rqfpr[rqfar] = rqfpr;
 885        priv->ftp_rqfcr[rqfar] = rqfcr;
 886        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 887
 888        rqfar--;
 889        rqfcr = RQFCR_CMP_NOMATCH;
 890        priv->ftp_rqfpr[rqfar] = rqfpr;
 891        priv->ftp_rqfcr[rqfar] = rqfcr;
 892        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 893
 894        rqfar--;
 895        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 896        rqfpr = class;
 897        priv->ftp_rqfcr[rqfar] = rqfcr;
 898        priv->ftp_rqfpr[rqfar] = rqfpr;
 899        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 900
 901        rqfar--;
 902        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 903        rqfpr = class;
 904        priv->ftp_rqfcr[rqfar] = rqfcr;
 905        priv->ftp_rqfpr[rqfar] = rqfpr;
 906        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 907
 908        return rqfar;
 909}
 910
 911static void gfar_init_filer_table(struct gfar_private *priv)
 912{
 913        int i = 0x0;
 914        u32 rqfar = MAX_FILER_IDX;
 915        u32 rqfcr = 0x0;
 916        u32 rqfpr = FPR_FILER_MASK;
 917
 918        /* Default rule */
 919        rqfcr = RQFCR_CMP_MATCH;
 920        priv->ftp_rqfcr[rqfar] = rqfcr;
 921        priv->ftp_rqfpr[rqfar] = rqfpr;
 922        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 923
 924        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 925        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 926        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 927        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 928        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 929        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 930
 931        /* cur_filer_idx indicated the first non-masked rule */
 932        priv->cur_filer_idx = rqfar;
 933
 934        /* Rest are masked rules */
 935        rqfcr = RQFCR_CMP_NOMATCH;
 936        for (i = 0; i < rqfar; i++) {
 937                priv->ftp_rqfcr[i] = rqfcr;
 938                priv->ftp_rqfpr[i] = rqfpr;
 939                gfar_write_filer(priv, i, rqfcr, rqfpr);
 940        }
 941}
 942
 943static void gfar_detect_errata(struct gfar_private *priv)
 944{
 945        struct device *dev = &priv->ofdev->dev;
 946        unsigned int pvr = mfspr(SPRN_PVR);
 947        unsigned int svr = mfspr(SPRN_SVR);
 948        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 949        unsigned int rev = svr & 0xffff;
 950
 951        /* MPC8313 Rev 2.0 and higher; All MPC837x */
 952        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 953            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 954                priv->errata |= GFAR_ERRATA_74;
 955
 956        /* MPC8313 and MPC837x all rev */
 957        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 958            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 959                priv->errata |= GFAR_ERRATA_76;
 960
 961        /* MPC8313 and MPC837x all rev */
 962        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 963            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 964                priv->errata |= GFAR_ERRATA_A002;
 965
 966        /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
 967        if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
 968            (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
 969                priv->errata |= GFAR_ERRATA_12;
 970
 971        if (priv->errata)
 972                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 973                         priv->errata);
 974}
 975
 976/* Set up the ethernet device structure, private data,
 977 * and anything else we need before we start
 978 */
 979static int gfar_probe(struct platform_device *ofdev)
 980{
 981        u32 tempval;
 982        struct net_device *dev = NULL;
 983        struct gfar_private *priv = NULL;
 984        struct gfar __iomem *regs = NULL;
 985        int err = 0, i, grp_idx = 0;
 986        u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
 987        u32 isrg = 0;
 988        u32 __iomem *baddr;
 989
 990        err = gfar_of_init(ofdev, &dev);
 991
 992        if (err)
 993                return err;
 994
 995        priv = netdev_priv(dev);
 996        priv->ndev = dev;
 997        priv->ofdev = ofdev;
 998        priv->dev = &ofdev->dev;
 999        SET_NETDEV_DEV(dev, &ofdev->dev);
1000
1001        spin_lock_init(&priv->bflock);
1002        INIT_WORK(&priv->reset_task, gfar_reset_task);
1003
1004        platform_set_drvdata(ofdev, priv);
1005        regs = priv->gfargrp[0].regs;
1006
1007        gfar_detect_errata(priv);
1008
1009        /* Stop the DMA engine now, in case it was running before
1010         * (The firmware could have used it, and left it running).
1011         */
1012        gfar_halt(dev);
1013
1014        /* Reset MAC layer */
1015        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1016
1017        /* We need to delay at least 3 TX clocks */
1018        udelay(2);
1019
1020        tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1021        gfar_write(&regs->maccfg1, tempval);
1022
1023        /* Initialize MACCFG2. */
1024        tempval = MACCFG2_INIT_SETTINGS;
1025        if (gfar_has_errata(priv, GFAR_ERRATA_74))
1026                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1027        gfar_write(&regs->maccfg2, tempval);
1028
1029        /* Initialize ECNTRL */
1030        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1031
1032        /* Set the dev->base_addr to the gfar reg region */
1033        dev->base_addr = (unsigned long) regs;
1034
1035        /* Fill in the dev structure */
1036        dev->watchdog_timeo = TX_TIMEOUT;
1037        dev->mtu = 1500;
1038        dev->netdev_ops = &gfar_netdev_ops;
1039        dev->ethtool_ops = &gfar_ethtool_ops;
1040
1041        /* Register for napi ...We are registering NAPI for each grp */
1042        if (priv->mode == SQ_SG_MODE)
1043                netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1044                               GFAR_DEV_WEIGHT);
1045        else
1046                for (i = 0; i < priv->num_grps; i++)
1047                        netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1048                                       GFAR_DEV_WEIGHT);
1049
1050        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1051                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1052                                   NETIF_F_RXCSUM;
1053                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1054                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1055        }
1056
1057        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1058                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1059                                    NETIF_F_HW_VLAN_CTAG_RX;
1060                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1061        }
1062
1063        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1064                priv->extended_hash = 1;
1065                priv->hash_width = 9;
1066
1067                priv->hash_regs[0] = &regs->igaddr0;
1068                priv->hash_regs[1] = &regs->igaddr1;
1069                priv->hash_regs[2] = &regs->igaddr2;
1070                priv->hash_regs[3] = &regs->igaddr3;
1071                priv->hash_regs[4] = &regs->igaddr4;
1072                priv->hash_regs[5] = &regs->igaddr5;
1073                priv->hash_regs[6] = &regs->igaddr6;
1074                priv->hash_regs[7] = &regs->igaddr7;
1075                priv->hash_regs[8] = &regs->gaddr0;
1076                priv->hash_regs[9] = &regs->gaddr1;
1077                priv->hash_regs[10] = &regs->gaddr2;
1078                priv->hash_regs[11] = &regs->gaddr3;
1079                priv->hash_regs[12] = &regs->gaddr4;
1080                priv->hash_regs[13] = &regs->gaddr5;
1081                priv->hash_regs[14] = &regs->gaddr6;
1082                priv->hash_regs[15] = &regs->gaddr7;
1083
1084        } else {
1085                priv->extended_hash = 0;
1086                priv->hash_width = 8;
1087
1088                priv->hash_regs[0] = &regs->gaddr0;
1089                priv->hash_regs[1] = &regs->gaddr1;
1090                priv->hash_regs[2] = &regs->gaddr2;
1091                priv->hash_regs[3] = &regs->gaddr3;
1092                priv->hash_regs[4] = &regs->gaddr4;
1093                priv->hash_regs[5] = &regs->gaddr5;
1094                priv->hash_regs[6] = &regs->gaddr6;
1095                priv->hash_regs[7] = &regs->gaddr7;
1096        }
1097
1098        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1099                priv->padding = DEFAULT_PADDING;
1100        else
1101                priv->padding = 0;
1102
1103        if (dev->features & NETIF_F_IP_CSUM ||
1104            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1105                dev->needed_headroom = GMAC_FCB_LEN;
1106
1107        /* Program the isrg regs only if number of grps > 1 */
1108        if (priv->num_grps > 1) {
1109                baddr = &regs->isrg0;
1110                for (i = 0; i < priv->num_grps; i++) {
1111                        isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1112                        isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1113                        gfar_write(baddr, isrg);
1114                        baddr++;
1115                        isrg = 0x0;
1116                }
1117        }
1118
1119        /* Need to reverse the bit maps as  bit_map's MSB is q0
1120         * but, for_each_set_bit parses from right to left, which
1121         * basically reverses the queue numbers
1122         */
1123        for (i = 0; i< priv->num_grps; i++) {
1124                priv->gfargrp[i].tx_bit_map =
1125                        reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1126                priv->gfargrp[i].rx_bit_map =
1127                        reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1128        }
1129
1130        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1131         * also assign queues to groups
1132         */
1133        for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1134                priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1135
1136                for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1137                                 priv->num_rx_queues) {
1138                        priv->gfargrp[grp_idx].num_rx_queues++;
1139                        priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1140                        rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1141                        rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1142                }
1143                priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1144
1145                for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1146                                 priv->num_tx_queues) {
1147                        priv->gfargrp[grp_idx].num_tx_queues++;
1148                        priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1149                        tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1150                        tqueue = tqueue | (TQUEUE_EN0 >> i);
1151                }
1152                priv->gfargrp[grp_idx].rstat = rstat;
1153                priv->gfargrp[grp_idx].tstat = tstat;
1154                rstat = tstat =0;
1155        }
1156
1157        gfar_write(&regs->rqueue, rqueue);
1158        gfar_write(&regs->tqueue, tqueue);
1159
1160        priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1161
1162        /* Initializing some of the rx/tx queue level parameters */
1163        for (i = 0; i < priv->num_tx_queues; i++) {
1164                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1165                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1166                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1167                priv->tx_queue[i]->txic = DEFAULT_TXIC;
1168        }
1169
1170        for (i = 0; i < priv->num_rx_queues; i++) {
1171                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1172                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1173                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1174        }
1175
1176        /* always enable rx filer */
1177        priv->rx_filer_enable = 1;
1178        /* Enable most messages by default */
1179        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1180        /* use pritority h/w tx queue scheduling for single queue devices */
1181        if (priv->num_tx_queues == 1)
1182                priv->prio_sched_en = 1;
1183
1184        /* Carrier starts down, phylib will bring it up */
1185        netif_carrier_off(dev);
1186
1187        err = register_netdev(dev);
1188
1189        if (err) {
1190                pr_err("%s: Cannot register net device, aborting\n", dev->name);
1191                goto register_fail;
1192        }
1193
1194        device_init_wakeup(&dev->dev,
1195                           priv->device_flags &
1196                           FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1197
1198        /* fill out IRQ number and name fields */
1199        for (i = 0; i < priv->num_grps; i++) {
1200                struct gfar_priv_grp *grp = &priv->gfargrp[i];
1201                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1202                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1203                                dev->name, "_g", '0' + i, "_tx");
1204                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1205                                dev->name, "_g", '0' + i, "_rx");
1206                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1207                                dev->name, "_g", '0' + i, "_er");
1208                } else
1209                        strcpy(gfar_irq(grp, TX)->name, dev->name);
1210        }
1211
1212        /* Initialize the filer table */
1213        gfar_init_filer_table(priv);
1214
1215        /* Create all the sysfs files */
1216        gfar_init_sysfs(dev);
1217
1218        /* Print out the device info */
1219        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1220
1221        /* Even more device info helps when determining which kernel
1222         * provided which set of benchmarks.
1223         */
1224        netdev_info(dev, "Running with NAPI enabled\n");
1225        for (i = 0; i < priv->num_rx_queues; i++)
1226                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1227                            i, priv->rx_queue[i]->rx_ring_size);
1228        for (i = 0; i < priv->num_tx_queues; i++)
1229                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1230                            i, priv->tx_queue[i]->tx_ring_size);
1231
1232        return 0;
1233
1234register_fail:
1235        unmap_group_regs(priv);
1236        free_tx_pointers(priv);
1237        free_rx_pointers(priv);
1238        if (priv->phy_node)
1239                of_node_put(priv->phy_node);
1240        if (priv->tbi_node)
1241                of_node_put(priv->tbi_node);
1242        free_gfar_dev(priv);
1243        return err;
1244}
1245
1246static int gfar_remove(struct platform_device *ofdev)
1247{
1248        struct gfar_private *priv = platform_get_drvdata(ofdev);
1249
1250        if (priv->phy_node)
1251                of_node_put(priv->phy_node);
1252        if (priv->tbi_node)
1253                of_node_put(priv->tbi_node);
1254
1255        unregister_netdev(priv->ndev);
1256        unmap_group_regs(priv);
1257        free_gfar_dev(priv);
1258
1259        return 0;
1260}
1261
1262#ifdef CONFIG_PM
1263
1264static int gfar_suspend(struct device *dev)
1265{
1266        struct gfar_private *priv = dev_get_drvdata(dev);
1267        struct net_device *ndev = priv->ndev;
1268        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269        unsigned long flags;
1270        u32 tempval;
1271
1272        int magic_packet = priv->wol_en &&
1273                           (priv->device_flags &
1274                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1275
1276        netif_device_detach(ndev);
1277
1278        if (netif_running(ndev)) {
1279
1280                local_irq_save(flags);
1281                lock_tx_qs(priv);
1282                lock_rx_qs(priv);
1283
1284                gfar_halt_nodisable(ndev);
1285
1286                /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1287                tempval = gfar_read(&regs->maccfg1);
1288
1289                tempval &= ~MACCFG1_TX_EN;
1290
1291                if (!magic_packet)
1292                        tempval &= ~MACCFG1_RX_EN;
1293
1294                gfar_write(&regs->maccfg1, tempval);
1295
1296                unlock_rx_qs(priv);
1297                unlock_tx_qs(priv);
1298                local_irq_restore(flags);
1299
1300                disable_napi(priv);
1301
1302                if (magic_packet) {
1303                        /* Enable interrupt on Magic Packet */
1304                        gfar_write(&regs->imask, IMASK_MAG);
1305
1306                        /* Enable Magic Packet mode */
1307                        tempval = gfar_read(&regs->maccfg2);
1308                        tempval |= MACCFG2_MPEN;
1309                        gfar_write(&regs->maccfg2, tempval);
1310                } else {
1311                        phy_stop(priv->phydev);
1312                }
1313        }
1314
1315        return 0;
1316}
1317
1318static int gfar_resume(struct device *dev)
1319{
1320        struct gfar_private *priv = dev_get_drvdata(dev);
1321        struct net_device *ndev = priv->ndev;
1322        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1323        unsigned long flags;
1324        u32 tempval;
1325        int magic_packet = priv->wol_en &&
1326                           (priv->device_flags &
1327                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1328
1329        if (!netif_running(ndev)) {
1330                netif_device_attach(ndev);
1331                return 0;
1332        }
1333
1334        if (!magic_packet && priv->phydev)
1335                phy_start(priv->phydev);
1336
1337        /* Disable Magic Packet mode, in case something
1338         * else woke us up.
1339         */
1340        local_irq_save(flags);
1341        lock_tx_qs(priv);
1342        lock_rx_qs(priv);
1343
1344        tempval = gfar_read(&regs->maccfg2);
1345        tempval &= ~MACCFG2_MPEN;
1346        gfar_write(&regs->maccfg2, tempval);
1347
1348        gfar_start(ndev);
1349
1350        unlock_rx_qs(priv);
1351        unlock_tx_qs(priv);
1352        local_irq_restore(flags);
1353
1354        netif_device_attach(ndev);
1355
1356        enable_napi(priv);
1357
1358        return 0;
1359}
1360
1361static int gfar_restore(struct device *dev)
1362{
1363        struct gfar_private *priv = dev_get_drvdata(dev);
1364        struct net_device *ndev = priv->ndev;
1365
1366        if (!netif_running(ndev)) {
1367                netif_device_attach(ndev);
1368
1369                return 0;
1370        }
1371
1372        if (gfar_init_bds(ndev)) {
1373                free_skb_resources(priv);
1374                return -ENOMEM;
1375        }
1376
1377        init_registers(ndev);
1378        gfar_set_mac_address(ndev);
1379        gfar_init_mac(ndev);
1380        gfar_start(ndev);
1381
1382        priv->oldlink = 0;
1383        priv->oldspeed = 0;
1384        priv->oldduplex = -1;
1385
1386        if (priv->phydev)
1387                phy_start(priv->phydev);
1388
1389        netif_device_attach(ndev);
1390        enable_napi(priv);
1391
1392        return 0;
1393}
1394
1395static struct dev_pm_ops gfar_pm_ops = {
1396        .suspend = gfar_suspend,
1397        .resume = gfar_resume,
1398        .freeze = gfar_suspend,
1399        .thaw = gfar_resume,
1400        .restore = gfar_restore,
1401};
1402
1403#define GFAR_PM_OPS (&gfar_pm_ops)
1404
1405#else
1406
1407#define GFAR_PM_OPS NULL
1408
1409#endif
1410
1411/* Reads the controller's registers to determine what interface
1412 * connects it to the PHY.
1413 */
1414static phy_interface_t gfar_get_interface(struct net_device *dev)
1415{
1416        struct gfar_private *priv = netdev_priv(dev);
1417        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1418        u32 ecntrl;
1419
1420        ecntrl = gfar_read(&regs->ecntrl);
1421
1422        if (ecntrl & ECNTRL_SGMII_MODE)
1423                return PHY_INTERFACE_MODE_SGMII;
1424
1425        if (ecntrl & ECNTRL_TBI_MODE) {
1426                if (ecntrl & ECNTRL_REDUCED_MODE)
1427                        return PHY_INTERFACE_MODE_RTBI;
1428                else
1429                        return PHY_INTERFACE_MODE_TBI;
1430        }
1431
1432        if (ecntrl & ECNTRL_REDUCED_MODE) {
1433                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1434                        return PHY_INTERFACE_MODE_RMII;
1435                }
1436                else {
1437                        phy_interface_t interface = priv->interface;
1438
1439                        /* This isn't autodetected right now, so it must
1440                         * be set by the device tree or platform code.
1441                         */
1442                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1443                                return PHY_INTERFACE_MODE_RGMII_ID;
1444
1445                        return PHY_INTERFACE_MODE_RGMII;
1446                }
1447        }
1448
1449        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1450                return PHY_INTERFACE_MODE_GMII;
1451
1452        return PHY_INTERFACE_MODE_MII;
1453}
1454
1455
1456/* Initializes driver's PHY state, and attaches to the PHY.
1457 * Returns 0 on success.
1458 */
1459static int init_phy(struct net_device *dev)
1460{
1461        struct gfar_private *priv = netdev_priv(dev);
1462        uint gigabit_support =
1463                priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1464                SUPPORTED_1000baseT_Full : 0;
1465        phy_interface_t interface;
1466
1467        priv->oldlink = 0;
1468        priv->oldspeed = 0;
1469        priv->oldduplex = -1;
1470
1471        interface = gfar_get_interface(dev);
1472
1473        priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1474                                      interface);
1475        if (!priv->phydev)
1476                priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1477                                                         interface);
1478        if (!priv->phydev) {
1479                dev_err(&dev->dev, "could not attach to PHY\n");
1480                return -ENODEV;
1481        }
1482
1483        if (interface == PHY_INTERFACE_MODE_SGMII)
1484                gfar_configure_serdes(dev);
1485
1486        /* Remove any features not supported by the controller */
1487        priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1488        priv->phydev->advertising = priv->phydev->supported;
1489
1490        return 0;
1491}
1492
1493/* Initialize TBI PHY interface for communicating with the
1494 * SERDES lynx PHY on the chip.  We communicate with this PHY
1495 * through the MDIO bus on each controller, treating it as a
1496 * "normal" PHY at the address found in the TBIPA register.  We assume
1497 * that the TBIPA register is valid.  Either the MDIO bus code will set
1498 * it to a value that doesn't conflict with other PHYs on the bus, or the
1499 * value doesn't matter, as there are no other PHYs on the bus.
1500 */
1501static void gfar_configure_serdes(struct net_device *dev)
1502{
1503        struct gfar_private *priv = netdev_priv(dev);
1504        struct phy_device *tbiphy;
1505
1506        if (!priv->tbi_node) {
1507                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1508                                    "device tree specify a tbi-handle\n");
1509                return;
1510        }
1511
1512        tbiphy = of_phy_find_device(priv->tbi_node);
1513        if (!tbiphy) {
1514                dev_err(&dev->dev, "error: Could not get TBI device\n");
1515                return;
1516        }
1517
1518        /* If the link is already up, we must already be ok, and don't need to
1519         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1520         * everything for us?  Resetting it takes the link down and requires
1521         * several seconds for it to come back.
1522         */
1523        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1524                return;
1525
1526        /* Single clk mode, mii mode off(for serdes communication) */
1527        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1528
1529        phy_write(tbiphy, MII_ADVERTISE,
1530                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1531                  ADVERTISE_1000XPSE_ASYM);
1532
1533        phy_write(tbiphy, MII_BMCR,
1534                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1535                  BMCR_SPEED1000);
1536}
1537
1538static void init_registers(struct net_device *dev)
1539{
1540        struct gfar_private *priv = netdev_priv(dev);
1541        struct gfar __iomem *regs = NULL;
1542        int i;
1543
1544        for (i = 0; i < priv->num_grps; i++) {
1545                regs = priv->gfargrp[i].regs;
1546                /* Clear IEVENT */
1547                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1548
1549                /* Initialize IMASK */
1550                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1551        }
1552
1553        regs = priv->gfargrp[0].regs;
1554        /* Init hash registers to zero */
1555        gfar_write(&regs->igaddr0, 0);
1556        gfar_write(&regs->igaddr1, 0);
1557        gfar_write(&regs->igaddr2, 0);
1558        gfar_write(&regs->igaddr3, 0);
1559        gfar_write(&regs->igaddr4, 0);
1560        gfar_write(&regs->igaddr5, 0);
1561        gfar_write(&regs->igaddr6, 0);
1562        gfar_write(&regs->igaddr7, 0);
1563
1564        gfar_write(&regs->gaddr0, 0);
1565        gfar_write(&regs->gaddr1, 0);
1566        gfar_write(&regs->gaddr2, 0);
1567        gfar_write(&regs->gaddr3, 0);
1568        gfar_write(&regs->gaddr4, 0);
1569        gfar_write(&regs->gaddr5, 0);
1570        gfar_write(&regs->gaddr6, 0);
1571        gfar_write(&regs->gaddr7, 0);
1572
1573        /* Zero out the rmon mib registers if it has them */
1574        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1575                memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1576
1577                /* Mask off the CAM interrupts */
1578                gfar_write(&regs->rmon.cam1, 0xffffffff);
1579                gfar_write(&regs->rmon.cam2, 0xffffffff);
1580        }
1581
1582        /* Initialize the max receive buffer length */
1583        gfar_write(&regs->mrblr, priv->rx_buffer_size);
1584
1585        /* Initialize the Minimum Frame Length Register */
1586        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1587}
1588
1589static int __gfar_is_rx_idle(struct gfar_private *priv)
1590{
1591        u32 res;
1592
1593        /* Normaly TSEC should not hang on GRS commands, so we should
1594         * actually wait for IEVENT_GRSC flag.
1595         */
1596        if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1597                return 0;
1598
1599        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1600         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1601         * and the Rx can be safely reset.
1602         */
1603        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1604        res &= 0x7f807f80;
1605        if ((res & 0xffff) == (res >> 16))
1606                return 1;
1607
1608        return 0;
1609}
1610
1611/* Halt the receive and transmit queues */
1612static void gfar_halt_nodisable(struct net_device *dev)
1613{
1614        struct gfar_private *priv = netdev_priv(dev);
1615        struct gfar __iomem *regs = NULL;
1616        u32 tempval;
1617        int i;
1618
1619        for (i = 0; i < priv->num_grps; i++) {
1620                regs = priv->gfargrp[i].regs;
1621                /* Mask all interrupts */
1622                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1623
1624                /* Clear all interrupts */
1625                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1626        }
1627
1628        regs = priv->gfargrp[0].regs;
1629        /* Stop the DMA, and wait for it to stop */
1630        tempval = gfar_read(&regs->dmactrl);
1631        if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1632            (DMACTRL_GRS | DMACTRL_GTS)) {
1633                int ret;
1634
1635                tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1636                gfar_write(&regs->dmactrl, tempval);
1637
1638                do {
1639                        ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1640                                 (IEVENT_GRSC | IEVENT_GTSC)) ==
1641                                 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1642                        if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1643                                ret = __gfar_is_rx_idle(priv);
1644                } while (!ret);
1645        }
1646}
1647
1648/* Halt the receive and transmit queues */
1649void gfar_halt(struct net_device *dev)
1650{
1651        struct gfar_private *priv = netdev_priv(dev);
1652        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1653        u32 tempval;
1654
1655        gfar_halt_nodisable(dev);
1656
1657        /* Disable Rx and Tx */
1658        tempval = gfar_read(&regs->maccfg1);
1659        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1660        gfar_write(&regs->maccfg1, tempval);
1661}
1662
1663static void free_grp_irqs(struct gfar_priv_grp *grp)
1664{
1665        free_irq(gfar_irq(grp, TX)->irq, grp);
1666        free_irq(gfar_irq(grp, RX)->irq, grp);
1667        free_irq(gfar_irq(grp, ER)->irq, grp);
1668}
1669
1670void stop_gfar(struct net_device *dev)
1671{
1672        struct gfar_private *priv = netdev_priv(dev);
1673        unsigned long flags;
1674        int i;
1675
1676        phy_stop(priv->phydev);
1677
1678
1679        /* Lock it down */
1680        local_irq_save(flags);
1681        lock_tx_qs(priv);
1682        lock_rx_qs(priv);
1683
1684        gfar_halt(dev);
1685
1686        unlock_rx_qs(priv);
1687        unlock_tx_qs(priv);
1688        local_irq_restore(flags);
1689
1690        /* Free the IRQs */
1691        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1692                for (i = 0; i < priv->num_grps; i++)
1693                        free_grp_irqs(&priv->gfargrp[i]);
1694        } else {
1695                for (i = 0; i < priv->num_grps; i++)
1696                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1697                                 &priv->gfargrp[i]);
1698        }
1699
1700        free_skb_resources(priv);
1701}
1702
1703static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1704{
1705        struct txbd8 *txbdp;
1706        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1707        int i, j;
1708
1709        txbdp = tx_queue->tx_bd_base;
1710
1711        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1712                if (!tx_queue->tx_skbuff[i])
1713                        continue;
1714
1715                dma_unmap_single(priv->dev, txbdp->bufPtr,
1716                                 txbdp->length, DMA_TO_DEVICE);
1717                txbdp->lstatus = 0;
1718                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1719                     j++) {
1720                        txbdp++;
1721                        dma_unmap_page(priv->dev, txbdp->bufPtr,
1722                                       txbdp->length, DMA_TO_DEVICE);
1723                }
1724                txbdp++;
1725                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1726                tx_queue->tx_skbuff[i] = NULL;
1727        }
1728        kfree(tx_queue->tx_skbuff);
1729        tx_queue->tx_skbuff = NULL;
1730}
1731
1732static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1733{
1734        struct rxbd8 *rxbdp;
1735        struct gfar_private *priv = netdev_priv(rx_queue->dev);
1736        int i;
1737
1738        rxbdp = rx_queue->rx_bd_base;
1739
1740        for (i = 0; i < rx_queue->rx_ring_size; i++) {
1741                if (rx_queue->rx_skbuff[i]) {
1742                        dma_unmap_single(priv->dev, rxbdp->bufPtr,
1743                                         priv->rx_buffer_size,
1744                                         DMA_FROM_DEVICE);
1745                        dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1746                        rx_queue->rx_skbuff[i] = NULL;
1747                }
1748                rxbdp->lstatus = 0;
1749                rxbdp->bufPtr = 0;
1750                rxbdp++;
1751        }
1752        kfree(rx_queue->rx_skbuff);
1753        rx_queue->rx_skbuff = NULL;
1754}
1755
1756/* If there are any tx skbs or rx skbs still around, free them.
1757 * Then free tx_skbuff and rx_skbuff
1758 */
1759static void free_skb_resources(struct gfar_private *priv)
1760{
1761        struct gfar_priv_tx_q *tx_queue = NULL;
1762        struct gfar_priv_rx_q *rx_queue = NULL;
1763        int i;
1764
1765        /* Go through all the buffer descriptors and free their data buffers */
1766        for (i = 0; i < priv->num_tx_queues; i++) {
1767                struct netdev_queue *txq;
1768
1769                tx_queue = priv->tx_queue[i];
1770                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1771                if (tx_queue->tx_skbuff)
1772                        free_skb_tx_queue(tx_queue);
1773                netdev_tx_reset_queue(txq);
1774        }
1775
1776        for (i = 0; i < priv->num_rx_queues; i++) {
1777                rx_queue = priv->rx_queue[i];
1778                if (rx_queue->rx_skbuff)
1779                        free_skb_rx_queue(rx_queue);
1780        }
1781
1782        dma_free_coherent(priv->dev,
1783                          sizeof(struct txbd8) * priv->total_tx_ring_size +
1784                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
1785                          priv->tx_queue[0]->tx_bd_base,
1786                          priv->tx_queue[0]->tx_bd_dma_base);
1787}
1788
1789void gfar_start(struct net_device *dev)
1790{
1791        struct gfar_private *priv = netdev_priv(dev);
1792        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1793        u32 tempval;
1794        int i = 0;
1795
1796        /* Enable Rx and Tx in MACCFG1 */
1797        tempval = gfar_read(&regs->maccfg1);
1798        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1799        gfar_write(&regs->maccfg1, tempval);
1800
1801        /* Initialize DMACTRL to have WWR and WOP */
1802        tempval = gfar_read(&regs->dmactrl);
1803        tempval |= DMACTRL_INIT_SETTINGS;
1804        gfar_write(&regs->dmactrl, tempval);
1805
1806        /* Make sure we aren't stopped */
1807        tempval = gfar_read(&regs->dmactrl);
1808        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1809        gfar_write(&regs->dmactrl, tempval);
1810
1811        for (i = 0; i < priv->num_grps; i++) {
1812                regs = priv->gfargrp[i].regs;
1813                /* Clear THLT/RHLT, so that the DMA starts polling now */
1814                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1815                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1816                /* Unmask the interrupts we look for */
1817                gfar_write(&regs->imask, IMASK_DEFAULT);
1818        }
1819
1820        dev->trans_start = jiffies; /* prevent tx timeout */
1821}
1822
1823static void gfar_configure_coalescing(struct gfar_private *priv,
1824                               unsigned long tx_mask, unsigned long rx_mask)
1825{
1826        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1827        u32 __iomem *baddr;
1828
1829        if (priv->mode == MQ_MG_MODE) {
1830                int i = 0;
1831
1832                baddr = &regs->txic0;
1833                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1834                        gfar_write(baddr + i, 0);
1835                        if (likely(priv->tx_queue[i]->txcoalescing))
1836                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
1837                }
1838
1839                baddr = &regs->rxic0;
1840                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1841                        gfar_write(baddr + i, 0);
1842                        if (likely(priv->rx_queue[i]->rxcoalescing))
1843                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1844                }
1845        } else {
1846                /* Backward compatible case -- even if we enable
1847                 * multiple queues, there's only single reg to program
1848                 */
1849                gfar_write(&regs->txic, 0);
1850                if (likely(priv->tx_queue[0]->txcoalescing))
1851                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1852
1853                gfar_write(&regs->rxic, 0);
1854                if (unlikely(priv->rx_queue[0]->rxcoalescing))
1855                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1856        }
1857}
1858
1859void gfar_configure_coalescing_all(struct gfar_private *priv)
1860{
1861        gfar_configure_coalescing(priv, 0xFF, 0xFF);
1862}
1863
1864static int register_grp_irqs(struct gfar_priv_grp *grp)
1865{
1866        struct gfar_private *priv = grp->priv;
1867        struct net_device *dev = priv->ndev;
1868        int err;
1869
1870        /* If the device has multiple interrupts, register for
1871         * them.  Otherwise, only register for the one
1872         */
1873        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1874                /* Install our interrupt handlers for Error,
1875                 * Transmit, and Receive
1876                 */
1877                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1878                                  gfar_irq(grp, ER)->name, grp);
1879                if (err < 0) {
1880                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1881                                  gfar_irq(grp, ER)->irq);
1882
1883                        goto err_irq_fail;
1884                }
1885                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1886                                  gfar_irq(grp, TX)->name, grp);
1887                if (err < 0) {
1888                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1889                                  gfar_irq(grp, TX)->irq);
1890                        goto tx_irq_fail;
1891                }
1892                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1893                                  gfar_irq(grp, RX)->name, grp);
1894                if (err < 0) {
1895                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1896                                  gfar_irq(grp, RX)->irq);
1897                        goto rx_irq_fail;
1898                }
1899        } else {
1900                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1901                                  gfar_irq(grp, TX)->name, grp);
1902                if (err < 0) {
1903                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1904                                  gfar_irq(grp, TX)->irq);
1905                        goto err_irq_fail;
1906                }
1907        }
1908
1909        return 0;
1910
1911rx_irq_fail:
1912        free_irq(gfar_irq(grp, TX)->irq, grp);
1913tx_irq_fail:
1914        free_irq(gfar_irq(grp, ER)->irq, grp);
1915err_irq_fail:
1916        return err;
1917
1918}
1919
1920/* Bring the controller up and running */
1921int startup_gfar(struct net_device *ndev)
1922{
1923        struct gfar_private *priv = netdev_priv(ndev);
1924        struct gfar __iomem *regs = NULL;
1925        int err, i, j;
1926
1927        for (i = 0; i < priv->num_grps; i++) {
1928                regs= priv->gfargrp[i].regs;
1929                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1930        }
1931
1932        regs= priv->gfargrp[0].regs;
1933        err = gfar_alloc_skb_resources(ndev);
1934        if (err)
1935                return err;
1936
1937        gfar_init_mac(ndev);
1938
1939        for (i = 0; i < priv->num_grps; i++) {
1940                err = register_grp_irqs(&priv->gfargrp[i]);
1941                if (err) {
1942                        for (j = 0; j < i; j++)
1943                                free_grp_irqs(&priv->gfargrp[j]);
1944                        goto irq_fail;
1945                }
1946        }
1947
1948        /* Start the controller */
1949        gfar_start(ndev);
1950
1951        phy_start(priv->phydev);
1952
1953        gfar_configure_coalescing_all(priv);
1954
1955        return 0;
1956
1957irq_fail:
1958        free_skb_resources(priv);
1959        return err;
1960}
1961
1962/* Called when something needs to use the ethernet device
1963 * Returns 0 for success.
1964 */
1965static int gfar_enet_open(struct net_device *dev)
1966{
1967        struct gfar_private *priv = netdev_priv(dev);
1968        int err;
1969
1970        enable_napi(priv);
1971
1972        /* Initialize a bunch of registers */
1973        init_registers(dev);
1974
1975        gfar_set_mac_address(dev);
1976
1977        err = init_phy(dev);
1978
1979        if (err) {
1980                disable_napi(priv);
1981                return err;
1982        }
1983
1984        err = startup_gfar(dev);
1985        if (err) {
1986                disable_napi(priv);
1987                return err;
1988        }
1989
1990        netif_tx_start_all_queues(dev);
1991
1992        device_set_wakeup_enable(&dev->dev, priv->wol_en);
1993
1994        return err;
1995}
1996
1997static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1998{
1999        struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2000
2001        memset(fcb, 0, GMAC_FCB_LEN);
2002
2003        return fcb;
2004}
2005
2006static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2007                                    int fcb_length)
2008{
2009        /* If we're here, it's a IP packet with a TCP or UDP
2010         * payload.  We set it to checksum, using a pseudo-header
2011         * we provide
2012         */
2013        u8 flags = TXFCB_DEFAULT;
2014
2015        /* Tell the controller what the protocol is
2016         * And provide the already calculated phcs
2017         */
2018        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2019                flags |= TXFCB_UDP;
2020                fcb->phcs = udp_hdr(skb)->check;
2021        } else
2022                fcb->phcs = tcp_hdr(skb)->check;
2023
2024        /* l3os is the distance between the start of the
2025         * frame (skb->data) and the start of the IP hdr.
2026         * l4os is the distance between the start of the
2027         * l3 hdr and the l4 hdr
2028         */
2029        fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2030        fcb->l4os = skb_network_header_len(skb);
2031
2032        fcb->flags = flags;
2033}
2034
2035void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2036{
2037        fcb->flags |= TXFCB_VLN;
2038        fcb->vlctl = vlan_tx_tag_get(skb);
2039}
2040
2041static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2042                                      struct txbd8 *base, int ring_size)
2043{
2044        struct txbd8 *new_bd = bdp + stride;
2045
2046        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2047}
2048
2049static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2050                                      int ring_size)
2051{
2052        return skip_txbd(bdp, 1, base, ring_size);
2053}
2054
2055/* This is called by the kernel when a frame is ready for transmission.
2056 * It is pointed to by the dev->hard_start_xmit function pointer
2057 */
2058static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2059{
2060        struct gfar_private *priv = netdev_priv(dev);
2061        struct gfar_priv_tx_q *tx_queue = NULL;
2062        struct netdev_queue *txq;
2063        struct gfar __iomem *regs = NULL;
2064        struct txfcb *fcb = NULL;
2065        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2066        u32 lstatus;
2067        int i, rq = 0, do_tstamp = 0;
2068        u32 bufaddr;
2069        unsigned long flags;
2070        unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2071
2072        /* TOE=1 frames larger than 2500 bytes may see excess delays
2073         * before start of transmission.
2074         */
2075        if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2076                     skb->ip_summed == CHECKSUM_PARTIAL &&
2077                     skb->len > 2500)) {
2078                int ret;
2079
2080                ret = skb_checksum_help(skb);
2081                if (ret)
2082                        return ret;
2083        }
2084
2085        rq = skb->queue_mapping;
2086        tx_queue = priv->tx_queue[rq];
2087        txq = netdev_get_tx_queue(dev, rq);
2088        base = tx_queue->tx_bd_base;
2089        regs = tx_queue->grp->regs;
2090
2091        /* check if time stamp should be generated */
2092        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2093                     priv->hwts_tx_en)) {
2094                do_tstamp = 1;
2095                fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2096        }
2097
2098        /* make space for additional header when fcb is needed */
2099        if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2100             vlan_tx_tag_present(skb) ||
2101             unlikely(do_tstamp)) &&
2102            (skb_headroom(skb) < fcb_length)) {
2103                struct sk_buff *skb_new;
2104
2105                skb_new = skb_realloc_headroom(skb, fcb_length);
2106                if (!skb_new) {
2107                        dev->stats.tx_errors++;
2108                        kfree_skb(skb);
2109                        return NETDEV_TX_OK;
2110                }
2111
2112                if (skb->sk)
2113                        skb_set_owner_w(skb_new, skb->sk);
2114                consume_skb(skb);
2115                skb = skb_new;
2116        }
2117
2118        /* total number of fragments in the SKB */
2119        nr_frags = skb_shinfo(skb)->nr_frags;
2120
2121        /* calculate the required number of TxBDs for this skb */
2122        if (unlikely(do_tstamp))
2123                nr_txbds = nr_frags + 2;
2124        else
2125                nr_txbds = nr_frags + 1;
2126
2127        /* check if there is space to queue this packet */
2128        if (nr_txbds > tx_queue->num_txbdfree) {
2129                /* no space, stop the queue */
2130                netif_tx_stop_queue(txq);
2131                dev->stats.tx_fifo_errors++;
2132                return NETDEV_TX_BUSY;
2133        }
2134
2135        /* Update transmit stats */
2136        tx_queue->stats.tx_bytes += skb->len;
2137        tx_queue->stats.tx_packets++;
2138
2139        txbdp = txbdp_start = tx_queue->cur_tx;
2140        lstatus = txbdp->lstatus;
2141
2142        /* Time stamp insertion requires one additional TxBD */
2143        if (unlikely(do_tstamp))
2144                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2145                                                 tx_queue->tx_ring_size);
2146
2147        if (nr_frags == 0) {
2148                if (unlikely(do_tstamp))
2149                        txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2150                                                          TXBD_INTERRUPT);
2151                else
2152                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2153        } else {
2154                /* Place the fragment addresses and lengths into the TxBDs */
2155                for (i = 0; i < nr_frags; i++) {
2156                        /* Point at the next BD, wrapping as needed */
2157                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2158
2159                        length = skb_shinfo(skb)->frags[i].size;
2160
2161                        lstatus = txbdp->lstatus | length |
2162                                  BD_LFLAG(TXBD_READY);
2163
2164                        /* Handle the last BD specially */
2165                        if (i == nr_frags - 1)
2166                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2167
2168                        bufaddr = skb_frag_dma_map(priv->dev,
2169                                                   &skb_shinfo(skb)->frags[i],
2170                                                   0,
2171                                                   length,
2172                                                   DMA_TO_DEVICE);
2173
2174                        /* set the TxBD length and buffer pointer */
2175                        txbdp->bufPtr = bufaddr;
2176                        txbdp->lstatus = lstatus;
2177                }
2178
2179                lstatus = txbdp_start->lstatus;
2180        }
2181
2182        /* Add TxPAL between FCB and frame if required */
2183        if (unlikely(do_tstamp)) {
2184                skb_push(skb, GMAC_TXPAL_LEN);
2185                memset(skb->data, 0, GMAC_TXPAL_LEN);
2186        }
2187
2188        /* Set up checksumming */
2189        if (CHECKSUM_PARTIAL == skb->ip_summed) {
2190                fcb = gfar_add_fcb(skb);
2191                /* as specified by errata */
2192                if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2193                             ((unsigned long)fcb % 0x20) > 0x18)) {
2194                        __skb_pull(skb, GMAC_FCB_LEN);
2195                        skb_checksum_help(skb);
2196                } else {
2197                        lstatus |= BD_LFLAG(TXBD_TOE);
2198                        gfar_tx_checksum(skb, fcb, fcb_length);
2199                }
2200        }
2201
2202        if (vlan_tx_tag_present(skb)) {
2203                if (unlikely(NULL == fcb)) {
2204                        fcb = gfar_add_fcb(skb);
2205                        lstatus |= BD_LFLAG(TXBD_TOE);
2206                }
2207
2208                gfar_tx_vlan(skb, fcb);
2209        }
2210
2211        /* Setup tx hardware time stamping if requested */
2212        if (unlikely(do_tstamp)) {
2213                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2214                if (fcb == NULL)
2215                        fcb = gfar_add_fcb(skb);
2216                fcb->ptp = 1;
2217                lstatus |= BD_LFLAG(TXBD_TOE);
2218        }
2219
2220        txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2221                                             skb_headlen(skb), DMA_TO_DEVICE);
2222
2223        /* If time stamping is requested one additional TxBD must be set up. The
2224         * first TxBD points to the FCB and must have a data length of
2225         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2226         * the full frame length.
2227         */
2228        if (unlikely(do_tstamp)) {
2229                txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2230                txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2231                                         (skb_headlen(skb) - fcb_length);
2232                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2233        } else {
2234                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2235        }
2236
2237        netdev_tx_sent_queue(txq, skb->len);
2238
2239        /* We can work in parallel with gfar_clean_tx_ring(), except
2240         * when modifying num_txbdfree. Note that we didn't grab the lock
2241         * when we were reading the num_txbdfree and checking for available
2242         * space, that's because outside of this function it can only grow,
2243         * and once we've got needed space, it cannot suddenly disappear.
2244         *
2245         * The lock also protects us from gfar_error(), which can modify
2246         * regs->tstat and thus retrigger the transfers, which is why we
2247         * also must grab the lock before setting ready bit for the first
2248         * to be transmitted BD.
2249         */
2250        spin_lock_irqsave(&tx_queue->txlock, flags);
2251
2252        /* The powerpc-specific eieio() is used, as wmb() has too strong
2253         * semantics (it requires synchronization between cacheable and
2254         * uncacheable mappings, which eieio doesn't provide and which we
2255         * don't need), thus requiring a more expensive sync instruction.  At
2256         * some point, the set of architecture-independent barrier functions
2257         * should be expanded to include weaker barriers.
2258         */
2259        eieio();
2260
2261        txbdp_start->lstatus = lstatus;
2262
2263        eieio(); /* force lstatus write before tx_skbuff */
2264
2265        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2266
2267        /* Update the current skb pointer to the next entry we will use
2268         * (wrapping if necessary)
2269         */
2270        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2271                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2272
2273        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2274
2275        /* reduce TxBD free count */
2276        tx_queue->num_txbdfree -= (nr_txbds);
2277
2278        /* If the next BD still needs to be cleaned up, then the bds
2279         * are full.  We need to tell the kernel to stop sending us stuff.
2280         */
2281        if (!tx_queue->num_txbdfree) {
2282                netif_tx_stop_queue(txq);
2283
2284                dev->stats.tx_fifo_errors++;
2285        }
2286
2287        /* Tell the DMA to go go go */
2288        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2289
2290        /* Unlock priv */
2291        spin_unlock_irqrestore(&tx_queue->txlock, flags);
2292
2293        return NETDEV_TX_OK;
2294}
2295
2296/* Stops the kernel queue, and halts the controller */
2297static int gfar_close(struct net_device *dev)
2298{
2299        struct gfar_private *priv = netdev_priv(dev);
2300
2301        disable_napi(priv);
2302
2303        cancel_work_sync(&priv->reset_task);
2304        stop_gfar(dev);
2305
2306        /* Disconnect from the PHY */
2307        phy_disconnect(priv->phydev);
2308        priv->phydev = NULL;
2309
2310        netif_tx_stop_all_queues(dev);
2311
2312        return 0;
2313}
2314
2315/* Changes the mac address if the controller is not running. */
2316static int gfar_set_mac_address(struct net_device *dev)
2317{
2318        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2319
2320        return 0;
2321}
2322
2323/* Check if rx parser should be activated */
2324void gfar_check_rx_parser_mode(struct gfar_private *priv)
2325{
2326        struct gfar __iomem *regs;
2327        u32 tempval;
2328
2329        regs = priv->gfargrp[0].regs;
2330
2331        tempval = gfar_read(&regs->rctrl);
2332        /* If parse is no longer required, then disable parser */
2333        if (tempval & RCTRL_REQ_PARSER) {
2334                tempval |= RCTRL_PRSDEP_INIT;
2335                priv->uses_rxfcb = 1;
2336        } else {
2337                tempval &= ~RCTRL_PRSDEP_INIT;
2338                priv->uses_rxfcb = 0;
2339        }
2340        gfar_write(&regs->rctrl, tempval);
2341}
2342
2343/* Enables and disables VLAN insertion/extraction */
2344void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2345{
2346        struct gfar_private *priv = netdev_priv(dev);
2347        struct gfar __iomem *regs = NULL;
2348        unsigned long flags;
2349        u32 tempval;
2350
2351        regs = priv->gfargrp[0].regs;
2352        local_irq_save(flags);
2353        lock_rx_qs(priv);
2354
2355        if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2356                /* Enable VLAN tag insertion */
2357                tempval = gfar_read(&regs->tctrl);
2358                tempval |= TCTRL_VLINS;
2359                gfar_write(&regs->tctrl, tempval);
2360        } else {
2361                /* Disable VLAN tag insertion */
2362                tempval = gfar_read(&regs->tctrl);
2363                tempval &= ~TCTRL_VLINS;
2364                gfar_write(&regs->tctrl, tempval);
2365        }
2366
2367        if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2368                /* Enable VLAN tag extraction */
2369                tempval = gfar_read(&regs->rctrl);
2370                tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2371                gfar_write(&regs->rctrl, tempval);
2372                priv->uses_rxfcb = 1;
2373        } else {
2374                /* Disable VLAN tag extraction */
2375                tempval = gfar_read(&regs->rctrl);
2376                tempval &= ~RCTRL_VLEX;
2377                gfar_write(&regs->rctrl, tempval);
2378
2379                gfar_check_rx_parser_mode(priv);
2380        }
2381
2382        gfar_change_mtu(dev, dev->mtu);
2383
2384        unlock_rx_qs(priv);
2385        local_irq_restore(flags);
2386}
2387
2388static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2389{
2390        int tempsize, tempval;
2391        struct gfar_private *priv = netdev_priv(dev);
2392        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2393        int oldsize = priv->rx_buffer_size;
2394        int frame_size = new_mtu + ETH_HLEN;
2395
2396        if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2397                netif_err(priv, drv, dev, "Invalid MTU setting\n");
2398                return -EINVAL;
2399        }
2400
2401        if (priv->uses_rxfcb)
2402                frame_size += GMAC_FCB_LEN;
2403
2404        frame_size += priv->padding;
2405
2406        tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2407                   INCREMENTAL_BUFFER_SIZE;
2408
2409        /* Only stop and start the controller if it isn't already
2410         * stopped, and we changed something
2411         */
2412        if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2413                stop_gfar(dev);
2414
2415        priv->rx_buffer_size = tempsize;
2416
2417        dev->mtu = new_mtu;
2418
2419        gfar_write(&regs->mrblr, priv->rx_buffer_size);
2420        gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2421
2422        /* If the mtu is larger than the max size for standard
2423         * ethernet frames (ie, a jumbo frame), then set maccfg2
2424         * to allow huge frames, and to check the length
2425         */
2426        tempval = gfar_read(&regs->maccfg2);
2427
2428        if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2429            gfar_has_errata(priv, GFAR_ERRATA_74))
2430                tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2431        else
2432                tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2433
2434        gfar_write(&regs->maccfg2, tempval);
2435
2436        if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2437                startup_gfar(dev);
2438
2439        return 0;
2440}
2441
2442/* gfar_reset_task gets scheduled when a packet has not been
2443 * transmitted after a set amount of time.
2444 * For now, assume that clearing out all the structures, and
2445 * starting over will fix the problem.
2446 */
2447static void gfar_reset_task(struct work_struct *work)
2448{
2449        struct gfar_private *priv = container_of(work, struct gfar_private,
2450                                                 reset_task);
2451        struct net_device *dev = priv->ndev;
2452
2453        if (dev->flags & IFF_UP) {
2454                netif_tx_stop_all_queues(dev);
2455                stop_gfar(dev);
2456                startup_gfar(dev);
2457                netif_tx_start_all_queues(dev);
2458        }
2459
2460        netif_tx_schedule_all(dev);
2461}
2462
2463static void gfar_timeout(struct net_device *dev)
2464{
2465        struct gfar_private *priv = netdev_priv(dev);
2466
2467        dev->stats.tx_errors++;
2468        schedule_work(&priv->reset_task);
2469}
2470
2471static void gfar_align_skb(struct sk_buff *skb)
2472{
2473        /* We need the data buffer to be aligned properly.  We will reserve
2474         * as many bytes as needed to align the data properly
2475         */
2476        skb_reserve(skb, RXBUF_ALIGNMENT -
2477                    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2478}
2479
2480/* Interrupt Handler for Transmit complete */
2481static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2482{
2483        struct net_device *dev = tx_queue->dev;
2484        struct netdev_queue *txq;
2485        struct gfar_private *priv = netdev_priv(dev);
2486        struct txbd8 *bdp, *next = NULL;
2487        struct txbd8 *lbdp = NULL;
2488        struct txbd8 *base = tx_queue->tx_bd_base;
2489        struct sk_buff *skb;
2490        int skb_dirtytx;
2491        int tx_ring_size = tx_queue->tx_ring_size;
2492        int frags = 0, nr_txbds = 0;
2493        int i;
2494        int howmany = 0;
2495        int tqi = tx_queue->qindex;
2496        unsigned int bytes_sent = 0;
2497        u32 lstatus;
2498        size_t buflen;
2499
2500        txq = netdev_get_tx_queue(dev, tqi);
2501        bdp = tx_queue->dirty_tx;
2502        skb_dirtytx = tx_queue->skb_dirtytx;
2503
2504        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2505                unsigned long flags;
2506
2507                frags = skb_shinfo(skb)->nr_frags;
2508
2509                /* When time stamping, one additional TxBD must be freed.
2510                 * Also, we need to dma_unmap_single() the TxPAL.
2511                 */
2512                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2513                        nr_txbds = frags + 2;
2514                else
2515                        nr_txbds = frags + 1;
2516
2517                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2518
2519                lstatus = lbdp->lstatus;
2520
2521                /* Only clean completed frames */
2522                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2523                    (lstatus & BD_LENGTH_MASK))
2524                        break;
2525
2526                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2527                        next = next_txbd(bdp, base, tx_ring_size);
2528                        buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2529                } else
2530                        buflen = bdp->length;
2531
2532                dma_unmap_single(priv->dev, bdp->bufPtr,
2533                                 buflen, DMA_TO_DEVICE);
2534
2535                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2536                        struct skb_shared_hwtstamps shhwtstamps;
2537                        u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2538
2539                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2540                        shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2541                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2542                        skb_tstamp_tx(skb, &shhwtstamps);
2543                        bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2544                        bdp = next;
2545                }
2546
2547                bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2548                bdp = next_txbd(bdp, base, tx_ring_size);
2549
2550                for (i = 0; i < frags; i++) {
2551                        dma_unmap_page(priv->dev, bdp->bufPtr,
2552                                       bdp->length, DMA_TO_DEVICE);
2553                        bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2554                        bdp = next_txbd(bdp, base, tx_ring_size);
2555                }
2556
2557                bytes_sent += skb->len;
2558
2559                dev_kfree_skb_any(skb);
2560
2561                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2562
2563                skb_dirtytx = (skb_dirtytx + 1) &
2564                              TX_RING_MOD_MASK(tx_ring_size);
2565
2566                howmany++;
2567                spin_lock_irqsave(&tx_queue->txlock, flags);
2568                tx_queue->num_txbdfree += nr_txbds;
2569                spin_unlock_irqrestore(&tx_queue->txlock, flags);
2570        }
2571
2572        /* If we freed a buffer, we can restart transmission, if necessary */
2573        if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2574                netif_wake_subqueue(dev, tqi);
2575
2576        /* Update dirty indicators */
2577        tx_queue->skb_dirtytx = skb_dirtytx;
2578        tx_queue->dirty_tx = bdp;
2579
2580        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2581}
2582
2583static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2584{
2585        unsigned long flags;
2586
2587        spin_lock_irqsave(&gfargrp->grplock, flags);
2588        if (napi_schedule_prep(&gfargrp->napi)) {
2589                gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2590                __napi_schedule(&gfargrp->napi);
2591        } else {
2592                /* Clear IEVENT, so interrupts aren't called again
2593                 * because of the packets that have already arrived.
2594                 */
2595                gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2596        }
2597        spin_unlock_irqrestore(&gfargrp->grplock, flags);
2598
2599}
2600
2601/* Interrupt Handler for Transmit complete */
2602static irqreturn_t gfar_transmit(int irq, void *grp_id)
2603{
2604        gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2605        return IRQ_HANDLED;
2606}
2607
2608static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2609                           struct sk_buff *skb)
2610{
2611        struct net_device *dev = rx_queue->dev;
2612        struct gfar_private *priv = netdev_priv(dev);
2613        dma_addr_t buf;
2614
2615        buf = dma_map_single(priv->dev, skb->data,
2616                             priv->rx_buffer_size, DMA_FROM_DEVICE);
2617        gfar_init_rxbdp(rx_queue, bdp, buf);
2618}
2619
2620static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2621{
2622        struct gfar_private *priv = netdev_priv(dev);
2623        struct sk_buff *skb;
2624
2625        skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2626        if (!skb)
2627                return NULL;
2628
2629        gfar_align_skb(skb);
2630
2631        return skb;
2632}
2633
2634struct sk_buff *gfar_new_skb(struct net_device *dev)
2635{
2636        return gfar_alloc_skb(dev);
2637}
2638
2639static inline void count_errors(unsigned short status, struct net_device *dev)
2640{
2641        struct gfar_private *priv = netdev_priv(dev);
2642        struct net_device_stats *stats = &dev->stats;
2643        struct gfar_extra_stats *estats = &priv->extra_stats;
2644
2645        /* If the packet was truncated, none of the other errors matter */
2646        if (status & RXBD_TRUNCATED) {
2647                stats->rx_length_errors++;
2648
2649                atomic64_inc(&estats->rx_trunc);
2650
2651                return;
2652        }
2653        /* Count the errors, if there were any */
2654        if (status & (RXBD_LARGE | RXBD_SHORT)) {
2655                stats->rx_length_errors++;
2656
2657                if (status & RXBD_LARGE)
2658                        atomic64_inc(&estats->rx_large);
2659                else
2660                        atomic64_inc(&estats->rx_short);
2661        }
2662        if (status & RXBD_NONOCTET) {
2663                stats->rx_frame_errors++;
2664                atomic64_inc(&estats->rx_nonoctet);
2665        }
2666        if (status & RXBD_CRCERR) {
2667                atomic64_inc(&estats->rx_crcerr);
2668                stats->rx_crc_errors++;
2669        }
2670        if (status & RXBD_OVERRUN) {
2671                atomic64_inc(&estats->rx_overrun);
2672                stats->rx_crc_errors++;
2673        }
2674}
2675
2676irqreturn_t gfar_receive(int irq, void *grp_id)
2677{
2678        gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2679        return IRQ_HANDLED;
2680}
2681
2682static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2683{
2684        /* If valid headers were found, and valid sums
2685         * were verified, then we tell the kernel that no
2686         * checksumming is necessary.  Otherwise, it is [FIXME]
2687         */
2688        if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2689                skb->ip_summed = CHECKSUM_UNNECESSARY;
2690        else
2691                skb_checksum_none_assert(skb);
2692}
2693
2694
2695/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2696static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2697                               int amount_pull, struct napi_struct *napi)
2698{
2699        struct gfar_private *priv = netdev_priv(dev);
2700        struct rxfcb *fcb = NULL;
2701
2702        /* fcb is at the beginning if exists */
2703        fcb = (struct rxfcb *)skb->data;
2704
2705        /* Remove the FCB from the skb
2706         * Remove the padded bytes, if there are any
2707         */
2708        if (amount_pull) {
2709                skb_record_rx_queue(skb, fcb->rq);
2710                skb_pull(skb, amount_pull);
2711        }
2712
2713        /* Get receive timestamp from the skb */
2714        if (priv->hwts_rx_en) {
2715                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2716                u64 *ns = (u64 *) skb->data;
2717
2718                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2719                shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2720        }
2721
2722        if (priv->padding)
2723                skb_pull(skb, priv->padding);
2724
2725        if (dev->features & NETIF_F_RXCSUM)
2726                gfar_rx_checksum(skb, fcb);
2727
2728        /* Tell the skb what kind of packet this is */
2729        skb->protocol = eth_type_trans(skb, dev);
2730
2731        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2732         * Even if vlan rx accel is disabled, on some chips
2733         * RXFCB_VLN is pseudo randomly set.
2734         */
2735        if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2736            fcb->flags & RXFCB_VLN)
2737                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2738
2739        /* Send the packet up the stack */
2740        napi_gro_receive(napi, skb);
2741
2742}
2743
2744/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2745 * until the budget/quota has been reached. Returns the number
2746 * of frames handled
2747 */
2748int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2749{
2750        struct net_device *dev = rx_queue->dev;
2751        struct rxbd8 *bdp, *base;
2752        struct sk_buff *skb;
2753        int pkt_len;
2754        int amount_pull;
2755        int howmany = 0;
2756        struct gfar_private *priv = netdev_priv(dev);
2757
2758        /* Get the first full descriptor */
2759        bdp = rx_queue->cur_rx;
2760        base = rx_queue->rx_bd_base;
2761
2762        amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2763
2764        while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2765                struct sk_buff *newskb;
2766
2767                rmb();
2768
2769                /* Add another skb for the future */
2770                newskb = gfar_new_skb(dev);
2771
2772                skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2773
2774                dma_unmap_single(priv->dev, bdp->bufPtr,
2775                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2776
2777                if (unlikely(!(bdp->status & RXBD_ERR) &&
2778                             bdp->length > priv->rx_buffer_size))
2779                        bdp->status = RXBD_LARGE;
2780
2781                /* We drop the frame if we failed to allocate a new buffer */
2782                if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2783                             bdp->status & RXBD_ERR)) {
2784                        count_errors(bdp->status, dev);
2785
2786                        if (unlikely(!newskb))
2787                                newskb = skb;
2788                        else if (skb)
2789                                dev_kfree_skb(skb);
2790                } else {
2791                        /* Increment the number of packets */
2792                        rx_queue->stats.rx_packets++;
2793                        howmany++;
2794
2795                        if (likely(skb)) {
2796                                pkt_len = bdp->length - ETH_FCS_LEN;
2797                                /* Remove the FCS from the packet length */
2798                                skb_put(skb, pkt_len);
2799                                rx_queue->stats.rx_bytes += pkt_len;
2800                                skb_record_rx_queue(skb, rx_queue->qindex);
2801                                gfar_process_frame(dev, skb, amount_pull,
2802                                                   &rx_queue->grp->napi);
2803
2804                        } else {
2805                                netif_warn(priv, rx_err, dev, "Missing skb!\n");
2806                                rx_queue->stats.rx_dropped++;
2807                                atomic64_inc(&priv->extra_stats.rx_skbmissing);
2808                        }
2809
2810                }
2811
2812                rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2813
2814                /* Setup the new bdp */
2815                gfar_new_rxbdp(rx_queue, bdp, newskb);
2816
2817                /* Update to the next pointer */
2818                bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2819
2820                /* update to point at the next skb */
2821                rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2822                                      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2823        }
2824
2825        /* Update the current rxbd pointer to be the next one */
2826        rx_queue->cur_rx = bdp;
2827
2828        return howmany;
2829}
2830
2831static int gfar_poll_sq(struct napi_struct *napi, int budget)
2832{
2833        struct gfar_priv_grp *gfargrp =
2834                container_of(napi, struct gfar_priv_grp, napi);
2835        struct gfar __iomem *regs = gfargrp->regs;
2836        struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2837        struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2838        int work_done = 0;
2839
2840        /* Clear IEVENT, so interrupts aren't called again
2841         * because of the packets that have already arrived
2842         */
2843        gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2844
2845        /* run Tx cleanup to completion */
2846        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2847                gfar_clean_tx_ring(tx_queue);
2848
2849        work_done = gfar_clean_rx_ring(rx_queue, budget);
2850
2851        if (work_done < budget) {
2852                napi_complete(napi);
2853                /* Clear the halt bit in RSTAT */
2854                gfar_write(&regs->rstat, gfargrp->rstat);
2855
2856                gfar_write(&regs->imask, IMASK_DEFAULT);
2857
2858                /* If we are coalescing interrupts, update the timer
2859                 * Otherwise, clear it
2860                 */
2861                gfar_write(&regs->txic, 0);
2862                if (likely(tx_queue->txcoalescing))
2863                        gfar_write(&regs->txic, tx_queue->txic);
2864
2865                gfar_write(&regs->rxic, 0);
2866                if (unlikely(rx_queue->rxcoalescing))
2867                        gfar_write(&regs->rxic, rx_queue->rxic);
2868        }
2869
2870        return work_done;
2871}
2872
2873static int gfar_poll(struct napi_struct *napi, int budget)
2874{
2875        struct gfar_priv_grp *gfargrp =
2876                container_of(napi, struct gfar_priv_grp, napi);
2877        struct gfar_private *priv = gfargrp->priv;
2878        struct gfar __iomem *regs = gfargrp->regs;
2879        struct gfar_priv_tx_q *tx_queue = NULL;
2880        struct gfar_priv_rx_q *rx_queue = NULL;
2881        int work_done = 0, work_done_per_q = 0;
2882        int i, budget_per_q = 0;
2883        int has_tx_work;
2884        unsigned long rstat_rxf;
2885        int num_act_queues;
2886
2887        /* Clear IEVENT, so interrupts aren't called again
2888         * because of the packets that have already arrived
2889         */
2890        gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2891
2892        rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2893
2894        num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2895        if (num_act_queues)
2896                budget_per_q = budget/num_act_queues;
2897
2898        while (1) {
2899                has_tx_work = 0;
2900                for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2901                        tx_queue = priv->tx_queue[i];
2902                        /* run Tx cleanup to completion */
2903                        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2904                                gfar_clean_tx_ring(tx_queue);
2905                                has_tx_work = 1;
2906                        }
2907                }
2908
2909                for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2910                        /* skip queue if not active */
2911                        if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2912                                continue;
2913
2914                        rx_queue = priv->rx_queue[i];
2915                        work_done_per_q =
2916                                gfar_clean_rx_ring(rx_queue, budget_per_q);
2917                        work_done += work_done_per_q;
2918
2919                        /* finished processing this queue */
2920                        if (work_done_per_q < budget_per_q) {
2921                                /* clear active queue hw indication */
2922                                gfar_write(&regs->rstat,
2923                                           RSTAT_CLEAR_RXF0 >> i);
2924                                rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2925                                num_act_queues--;
2926
2927                                if (!num_act_queues)
2928                                        break;
2929                                /* recompute budget per Rx queue */
2930                                budget_per_q =
2931                                        (budget - work_done) / num_act_queues;
2932                        }
2933                }
2934
2935                if (work_done >= budget)
2936                        break;
2937
2938                if (!num_act_queues && !has_tx_work) {
2939
2940                        napi_complete(napi);
2941
2942                        /* Clear the halt bit in RSTAT */
2943                        gfar_write(&regs->rstat, gfargrp->rstat);
2944
2945                        gfar_write(&regs->imask, IMASK_DEFAULT);
2946
2947                        /* If we are coalescing interrupts, update the timer
2948                         * Otherwise, clear it
2949                         */
2950                        gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2951                                                  gfargrp->tx_bit_map);
2952                        break;
2953                }
2954        }
2955
2956        return work_done;
2957}
2958
2959#ifdef CONFIG_NET_POLL_CONTROLLER
2960/* Polling 'interrupt' - used by things like netconsole to send skbs
2961 * without having to re-enable interrupts. It's not called while
2962 * the interrupt routine is executing.
2963 */
2964static void gfar_netpoll(struct net_device *dev)
2965{
2966        struct gfar_private *priv = netdev_priv(dev);
2967        int i;
2968
2969        /* If the device has multiple interrupts, run tx/rx */
2970        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2971                for (i = 0; i < priv->num_grps; i++) {
2972                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2973
2974                        disable_irq(gfar_irq(grp, TX)->irq);
2975                        disable_irq(gfar_irq(grp, RX)->irq);
2976                        disable_irq(gfar_irq(grp, ER)->irq);
2977                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2978                        enable_irq(gfar_irq(grp, ER)->irq);
2979                        enable_irq(gfar_irq(grp, RX)->irq);
2980                        enable_irq(gfar_irq(grp, TX)->irq);
2981                }
2982        } else {
2983                for (i = 0; i < priv->num_grps; i++) {
2984                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2985
2986                        disable_irq(gfar_irq(grp, TX)->irq);
2987                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2988                        enable_irq(gfar_irq(grp, TX)->irq);
2989                }
2990        }
2991}
2992#endif
2993
2994/* The interrupt handler for devices with one interrupt */
2995static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2996{
2997        struct gfar_priv_grp *gfargrp = grp_id;
2998
2999        /* Save ievent for future reference */
3000        u32 events = gfar_read(&gfargrp->regs->ievent);
3001
3002        /* Check for reception */
3003        if (events & IEVENT_RX_MASK)
3004                gfar_receive(irq, grp_id);
3005
3006        /* Check for transmit completion */
3007        if (events & IEVENT_TX_MASK)
3008                gfar_transmit(irq, grp_id);
3009
3010        /* Check for errors */
3011        if (events & IEVENT_ERR_MASK)
3012                gfar_error(irq, grp_id);
3013
3014        return IRQ_HANDLED;
3015}
3016
3017/* Called every time the controller might need to be made
3018 * aware of new link state.  The PHY code conveys this
3019 * information through variables in the phydev structure, and this
3020 * function converts those variables into the appropriate
3021 * register values, and can bring down the device if needed.
3022 */
3023static void adjust_link(struct net_device *dev)
3024{
3025        struct gfar_private *priv = netdev_priv(dev);
3026        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3027        unsigned long flags;
3028        struct phy_device *phydev = priv->phydev;
3029        int new_state = 0;
3030
3031        local_irq_save(flags);
3032        lock_tx_qs(priv);
3033
3034        if (phydev->link) {
3035                u32 tempval = gfar_read(&regs->maccfg2);
3036                u32 ecntrl = gfar_read(&regs->ecntrl);
3037
3038                /* Now we make sure that we can be in full duplex mode.
3039                 * If not, we operate in half-duplex mode.
3040                 */
3041                if (phydev->duplex != priv->oldduplex) {
3042                        new_state = 1;
3043                        if (!(phydev->duplex))
3044                                tempval &= ~(MACCFG2_FULL_DUPLEX);
3045                        else
3046                                tempval |= MACCFG2_FULL_DUPLEX;
3047
3048                        priv->oldduplex = phydev->duplex;
3049                }
3050
3051                if (phydev->speed != priv->oldspeed) {
3052                        new_state = 1;
3053                        switch (phydev->speed) {
3054                        case 1000:
3055                                tempval =
3056                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3057
3058                                ecntrl &= ~(ECNTRL_R100);
3059                                break;
3060                        case 100:
3061                        case 10:
3062                                tempval =
3063                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3064
3065                                /* Reduced mode distinguishes
3066                                 * between 10 and 100
3067                                 */
3068                                if (phydev->speed == SPEED_100)
3069                                        ecntrl |= ECNTRL_R100;
3070                                else
3071                                        ecntrl &= ~(ECNTRL_R100);
3072                                break;
3073                        default:
3074                                netif_warn(priv, link, dev,
3075                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
3076                                           phydev->speed);
3077                                break;
3078                        }
3079
3080                        priv->oldspeed = phydev->speed;
3081                }
3082
3083                gfar_write(&regs->maccfg2, tempval);
3084                gfar_write(&regs->ecntrl, ecntrl);
3085
3086                if (!priv->oldlink) {
3087                        new_state = 1;
3088                        priv->oldlink = 1;
3089                }
3090        } else if (priv->oldlink) {
3091                new_state = 1;
3092                priv->oldlink = 0;
3093                priv->oldspeed = 0;
3094                priv->oldduplex = -1;
3095        }
3096
3097        if (new_state && netif_msg_link(priv))
3098                phy_print_status(phydev);
3099        unlock_tx_qs(priv);
3100        local_irq_restore(flags);
3101}
3102
3103/* Update the hash table based on the current list of multicast
3104 * addresses we subscribe to.  Also, change the promiscuity of
3105 * the device based on the flags (this function is called
3106 * whenever dev->flags is changed
3107 */
3108static void gfar_set_multi(struct net_device *dev)
3109{
3110        struct netdev_hw_addr *ha;
3111        struct gfar_private *priv = netdev_priv(dev);
3112        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3113        u32 tempval;
3114
3115        if (dev->flags & IFF_PROMISC) {
3116                /* Set RCTRL to PROM */
3117                tempval = gfar_read(&regs->rctrl);
3118                tempval |= RCTRL_PROM;
3119                gfar_write(&regs->rctrl, tempval);
3120        } else {
3121                /* Set RCTRL to not PROM */
3122                tempval = gfar_read(&regs->rctrl);
3123                tempval &= ~(RCTRL_PROM);
3124                gfar_write(&regs->rctrl, tempval);
3125        }
3126
3127        if (dev->flags & IFF_ALLMULTI) {
3128                /* Set the hash to rx all multicast frames */
3129                gfar_write(&regs->igaddr0, 0xffffffff);
3130                gfar_write(&regs->igaddr1, 0xffffffff);
3131                gfar_write(&regs->igaddr2, 0xffffffff);
3132                gfar_write(&regs->igaddr3, 0xffffffff);
3133                gfar_write(&regs->igaddr4, 0xffffffff);
3134                gfar_write(&regs->igaddr5, 0xffffffff);
3135                gfar_write(&regs->igaddr6, 0xffffffff);
3136                gfar_write(&regs->igaddr7, 0xffffffff);
3137                gfar_write(&regs->gaddr0, 0xffffffff);
3138                gfar_write(&regs->gaddr1, 0xffffffff);
3139                gfar_write(&regs->gaddr2, 0xffffffff);
3140                gfar_write(&regs->gaddr3, 0xffffffff);
3141                gfar_write(&regs->gaddr4, 0xffffffff);
3142                gfar_write(&regs->gaddr5, 0xffffffff);
3143                gfar_write(&regs->gaddr6, 0xffffffff);
3144                gfar_write(&regs->gaddr7, 0xffffffff);
3145        } else {
3146                int em_num;
3147                int idx;
3148
3149                /* zero out the hash */
3150                gfar_write(&regs->igaddr0, 0x0);
3151                gfar_write(&regs->igaddr1, 0x0);
3152                gfar_write(&regs->igaddr2, 0x0);
3153                gfar_write(&regs->igaddr3, 0x0);
3154                gfar_write(&regs->igaddr4, 0x0);
3155                gfar_write(&regs->igaddr5, 0x0);
3156                gfar_write(&regs->igaddr6, 0x0);
3157                gfar_write(&regs->igaddr7, 0x0);
3158                gfar_write(&regs->gaddr0, 0x0);
3159                gfar_write(&regs->gaddr1, 0x0);
3160                gfar_write(&regs->gaddr2, 0x0);
3161                gfar_write(&regs->gaddr3, 0x0);
3162                gfar_write(&regs->gaddr4, 0x0);
3163                gfar_write(&regs->gaddr5, 0x0);
3164                gfar_write(&regs->gaddr6, 0x0);
3165                gfar_write(&regs->gaddr7, 0x0);
3166
3167                /* If we have extended hash tables, we need to
3168                 * clear the exact match registers to prepare for
3169                 * setting them
3170                 */
3171                if (priv->extended_hash) {
3172                        em_num = GFAR_EM_NUM + 1;
3173                        gfar_clear_exact_match(dev);
3174                        idx = 1;
3175                } else {
3176                        idx = 0;
3177                        em_num = 0;
3178                }
3179
3180                if (netdev_mc_empty(dev))
3181                        return;
3182
3183                /* Parse the list, and set the appropriate bits */
3184                netdev_for_each_mc_addr(ha, dev) {
3185                        if (idx < em_num) {
3186                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3187                                idx++;
3188                        } else
3189                                gfar_set_hash_for_addr(dev, ha->addr);
3190                }
3191        }
3192}
3193
3194
3195/* Clears each of the exact match registers to zero, so they
3196 * don't interfere with normal reception
3197 */
3198static void gfar_clear_exact_match(struct net_device *dev)
3199{
3200        int idx;
3201        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3202
3203        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3204                gfar_set_mac_for_addr(dev, idx, zero_arr);
3205}
3206
3207/* Set the appropriate hash bit for the given addr */
3208/* The algorithm works like so:
3209 * 1) Take the Destination Address (ie the multicast address), and
3210 * do a CRC on it (little endian), and reverse the bits of the
3211 * result.
3212 * 2) Use the 8 most significant bits as a hash into a 256-entry
3213 * table.  The table is controlled through 8 32-bit registers:
3214 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3215 * gaddr7.  This means that the 3 most significant bits in the
3216 * hash index which gaddr register to use, and the 5 other bits
3217 * indicate which bit (assuming an IBM numbering scheme, which
3218 * for PowerPC (tm) is usually the case) in the register holds
3219 * the entry.
3220 */
3221static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3222{
3223        u32 tempval;
3224        struct gfar_private *priv = netdev_priv(dev);
3225        u32 result = ether_crc(ETH_ALEN, addr);
3226        int width = priv->hash_width;
3227        u8 whichbit = (result >> (32 - width)) & 0x1f;
3228        u8 whichreg = result >> (32 - width + 5);
3229        u32 value = (1 << (31-whichbit));
3230
3231        tempval = gfar_read(priv->hash_regs[whichreg]);
3232        tempval |= value;
3233        gfar_write(priv->hash_regs[whichreg], tempval);
3234}
3235
3236
3237/* There are multiple MAC Address register pairs on some controllers
3238 * This function sets the numth pair to a given address
3239 */
3240static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3241                                  const u8 *addr)
3242{
3243        struct gfar_private *priv = netdev_priv(dev);
3244        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3245        int idx;
3246        char tmpbuf[ETH_ALEN];
3247        u32 tempval;
3248        u32 __iomem *macptr = &regs->macstnaddr1;
3249
3250        macptr += num*2;
3251
3252        /* Now copy it into the mac registers backwards, cuz
3253         * little endian is silly
3254         */
3255        for (idx = 0; idx < ETH_ALEN; idx++)
3256                tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3257
3258        gfar_write(macptr, *((u32 *) (tmpbuf)));
3259
3260        tempval = *((u32 *) (tmpbuf + 4));
3261
3262        gfar_write(macptr+1, tempval);
3263}
3264
3265/* GFAR error interrupt handler */
3266static irqreturn_t gfar_error(int irq, void *grp_id)
3267{
3268        struct gfar_priv_grp *gfargrp = grp_id;
3269        struct gfar __iomem *regs = gfargrp->regs;
3270        struct gfar_private *priv= gfargrp->priv;
3271        struct net_device *dev = priv->ndev;
3272
3273        /* Save ievent for future reference */
3274        u32 events = gfar_read(&regs->ievent);
3275
3276        /* Clear IEVENT */
3277        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3278
3279        /* Magic Packet is not an error. */
3280        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3281            (events & IEVENT_MAG))
3282                events &= ~IEVENT_MAG;
3283
3284        /* Hmm... */
3285        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3286                netdev_dbg(dev,
3287                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3288                           events, gfar_read(&regs->imask));
3289
3290        /* Update the error counters */
3291        if (events & IEVENT_TXE) {
3292                dev->stats.tx_errors++;
3293
3294                if (events & IEVENT_LC)
3295                        dev->stats.tx_window_errors++;
3296                if (events & IEVENT_CRL)
3297                        dev->stats.tx_aborted_errors++;
3298                if (events & IEVENT_XFUN) {
3299                        unsigned long flags;
3300
3301                        netif_dbg(priv, tx_err, dev,
3302                                  "TX FIFO underrun, packet dropped\n");
3303                        dev->stats.tx_dropped++;
3304                        atomic64_inc(&priv->extra_stats.tx_underrun);
3305
3306                        local_irq_save(flags);
3307                        lock_tx_qs(priv);
3308
3309                        /* Reactivate the Tx Queues */
3310                        gfar_write(&regs->tstat, gfargrp->tstat);
3311
3312                        unlock_tx_qs(priv);
3313                        local_irq_restore(flags);
3314                }
3315                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3316        }
3317        if (events & IEVENT_BSY) {
3318                dev->stats.rx_errors++;
3319                atomic64_inc(&priv->extra_stats.rx_bsy);
3320
3321                gfar_receive(irq, grp_id);
3322
3323                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3324                          gfar_read(&regs->rstat));
3325        }
3326        if (events & IEVENT_BABR) {
3327                dev->stats.rx_errors++;
3328                atomic64_inc(&priv->extra_stats.rx_babr);
3329
3330                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3331        }
3332        if (events & IEVENT_EBERR) {
3333                atomic64_inc(&priv->extra_stats.eberr);
3334                netif_dbg(priv, rx_err, dev, "bus error\n");
3335        }
3336        if (events & IEVENT_RXC)
3337                netif_dbg(priv, rx_status, dev, "control frame\n");
3338
3339        if (events & IEVENT_BABT) {
3340                atomic64_inc(&priv->extra_stats.tx_babt);
3341                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3342        }
3343        return IRQ_HANDLED;
3344}
3345
3346static struct of_device_id gfar_match[] =
3347{
3348        {
3349                .type = "network",
3350                .compatible = "gianfar",
3351        },
3352        {
3353                .compatible = "fsl,etsec2",
3354        },
3355        {},
3356};
3357MODULE_DEVICE_TABLE(of, gfar_match);
3358
3359/* Structure for a device driver */
3360static struct platform_driver gfar_driver = {
3361        .driver = {
3362                .name = "fsl-gianfar",
3363                .owner = THIS_MODULE,
3364                .pm = GFAR_PM_OPS,
3365                .of_match_table = gfar_match,
3366        },
3367        .probe = gfar_probe,
3368        .remove = gfar_remove,
3369};
3370
3371module_platform_driver(gfar_driver);
3372