linux/drivers/net/ethernet/intel/e100.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/100 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 *      e100.c: Intel(R) PRO/100 ethernet driver
  31 *
  32 *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
  33 *      original e100 driver, but better described as a munging of
  34 *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  35 *
  36 *      References:
  37 *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  38 *              Open Source Software Developers Manual,
  39 *              http://sourceforge.net/projects/e1000
  40 *
  41 *
  42 *                            Theory of Operation
  43 *
  44 *      I.   General
  45 *
  46 *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  47 *      controller family, which includes the 82557, 82558, 82559, 82550,
  48 *      82551, and 82562 devices.  82558 and greater controllers
  49 *      integrate the Intel 82555 PHY.  The controllers are used in
  50 *      server and client network interface cards, as well as in
  51 *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  52 *      configurations.  8255x supports a 32-bit linear addressing
  53 *      mode and operates at 33Mhz PCI clock rate.
  54 *
  55 *      II.  Driver Operation
  56 *
  57 *      Memory-mapped mode is used exclusively to access the device's
  58 *      shared-memory structure, the Control/Status Registers (CSR). All
  59 *      setup, configuration, and control of the device, including queuing
  60 *      of Tx, Rx, and configuration commands is through the CSR.
  61 *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  62 *      protects the shared Command Block List (CBL).
  63 *
  64 *      8255x is highly MII-compliant and all access to the PHY go
  65 *      through the Management Data Interface (MDI).  Consequently, the
  66 *      driver leverages the mii.c library shared with other MII-compliant
  67 *      devices.
  68 *
  69 *      Big- and Little-Endian byte order as well as 32- and 64-bit
  70 *      archs are supported.  Weak-ordered memory and non-cache-coherent
  71 *      archs are supported.
  72 *
  73 *      III. Transmit
  74 *
  75 *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  76 *      together in a fixed-size ring (CBL) thus forming the flexible mode
  77 *      memory structure.  A TCB marked with the suspend-bit indicates
  78 *      the end of the ring.  The last TCB processed suspends the
  79 *      controller, and the controller can be restarted by issue a CU
  80 *      resume command to continue from the suspend point, or a CU start
  81 *      command to start at a given position in the ring.
  82 *
  83 *      Non-Tx commands (config, multicast setup, etc) are linked
  84 *      into the CBL ring along with Tx commands.  The common structure
  85 *      used for both Tx and non-Tx commands is the Command Block (CB).
  86 *
  87 *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  88 *      is the next CB to check for completion; cb_to_send is the first
  89 *      CB to start on in case of a previous failure to resume.  CB clean
  90 *      up happens in interrupt context in response to a CU interrupt.
  91 *      cbs_avail keeps track of number of free CB resources available.
  92 *
  93 *      Hardware padding of short packets to minimum packet size is
  94 *      enabled.  82557 pads with 7Eh, while the later controllers pad
  95 *      with 00h.
  96 *
  97 *      IV.  Receive
  98 *
  99 *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
 100 *      Descriptors (RFD) + data buffer, thus forming the simplified mode
 101 *      memory structure.  Rx skbs are allocated to contain both the RFD
 102 *      and the data buffer, but the RFD is pulled off before the skb is
 103 *      indicated.  The data buffer is aligned such that encapsulated
 104 *      protocol headers are u32-aligned.  Since the RFD is part of the
 105 *      mapped shared memory, and completion status is contained within
 106 *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
 107 *      view from software and hardware.
 108 *
 109 *      In order to keep updates to the RFD link field from colliding with
 110 *      hardware writes to mark packets complete, we use the feature that
 111 *      hardware will not write to a size 0 descriptor and mark the previous
 112 *      packet as end-of-list (EL).   After updating the link, we remove EL
 113 *      and only then restore the size such that hardware may use the
 114 *      previous-to-end RFD.
 115 *
 116 *      Under typical operation, the  receive unit (RU) is start once,
 117 *      and the controller happily fills RFDs as frames arrive.  If
 118 *      replacement RFDs cannot be allocated, or the RU goes non-active,
 119 *      the RU must be restarted.  Frame arrival generates an interrupt,
 120 *      and Rx indication and re-allocation happen in the same context,
 121 *      therefore no locking is required.  A software-generated interrupt
 122 *      is generated from the watchdog to recover from a failed allocation
 123 *      scenario where all Rx resources have been indicated and none re-
 124 *      placed.
 125 *
 126 *      V.   Miscellaneous
 127 *
 128 *      VLAN offloading of tagging, stripping and filtering is not
 129 *      supported, but driver will accommodate the extra 4-byte VLAN tag
 130 *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 131 *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 132 *      not supported (hardware limitation).
 133 *
 134 *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 135 *
 136 *      Thanks to JC (jchapman@katalix.com) for helping with
 137 *      testing/troubleshooting the development driver.
 138 *
 139 *      TODO:
 140 *      o several entry points race with dev->close
 141 *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 142 *
 143 *      FIXES:
 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 145 *      - Stratus87247: protect MDI control register manipulations
 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 147 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 148 */
 149
 150#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 151
 152#include <linux/hardirq.h>
 153#include <linux/interrupt.h>
 154#include <linux/module.h>
 155#include <linux/moduleparam.h>
 156#include <linux/kernel.h>
 157#include <linux/types.h>
 158#include <linux/sched.h>
 159#include <linux/slab.h>
 160#include <linux/delay.h>
 161#include <linux/init.h>
 162#include <linux/pci.h>
 163#include <linux/dma-mapping.h>
 164#include <linux/dmapool.h>
 165#include <linux/netdevice.h>
 166#include <linux/etherdevice.h>
 167#include <linux/mii.h>
 168#include <linux/if_vlan.h>
 169#include <linux/skbuff.h>
 170#include <linux/ethtool.h>
 171#include <linux/string.h>
 172#include <linux/firmware.h>
 173#include <linux/rtnetlink.h>
 174#include <asm/unaligned.h>
 175
 176
 177#define DRV_NAME                "e100"
 178#define DRV_EXT                 "-NAPI"
 179#define DRV_VERSION             "3.5.24-k2"DRV_EXT
 180#define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 181#define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 182
 183#define E100_WATCHDOG_PERIOD    (2 * HZ)
 184#define E100_NAPI_WEIGHT        16
 185
 186#define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 187#define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 188#define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 189
 190MODULE_DESCRIPTION(DRV_DESCRIPTION);
 191MODULE_AUTHOR(DRV_COPYRIGHT);
 192MODULE_LICENSE("GPL");
 193MODULE_VERSION(DRV_VERSION);
 194MODULE_FIRMWARE(FIRMWARE_D101M);
 195MODULE_FIRMWARE(FIRMWARE_D101S);
 196MODULE_FIRMWARE(FIRMWARE_D102E);
 197
 198static int debug = 3;
 199static int eeprom_bad_csum_allow = 0;
 200static int use_io = 0;
 201module_param(debug, int, 0);
 202module_param(eeprom_bad_csum_allow, int, 0);
 203module_param(use_io, int, 0);
 204MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 205MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 206MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 207
 208#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 209        PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 210        PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 211static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
 212        INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 213        INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 214        INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 215        INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 216        INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 217        INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 218        INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 219        INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 220        INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 221        INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 222        INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 223        INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 224        INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 225        INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 226        INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 227        INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 228        INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 229        INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 230        INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 231        INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 232        INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 233        INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 234        INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 235        INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 236        INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 237        INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 238        INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 239        INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 240        INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 241        INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 242        INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 243        INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 244        INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 245        INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 246        INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 247        INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 248        INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 249        INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 250        INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 251        INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 252        INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 253        INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 254        { 0, }
 255};
 256MODULE_DEVICE_TABLE(pci, e100_id_table);
 257
 258enum mac {
 259        mac_82557_D100_A  = 0,
 260        mac_82557_D100_B  = 1,
 261        mac_82557_D100_C  = 2,
 262        mac_82558_D101_A4 = 4,
 263        mac_82558_D101_B0 = 5,
 264        mac_82559_D101M   = 8,
 265        mac_82559_D101S   = 9,
 266        mac_82550_D102    = 12,
 267        mac_82550_D102_C  = 13,
 268        mac_82551_E       = 14,
 269        mac_82551_F       = 15,
 270        mac_82551_10      = 16,
 271        mac_unknown       = 0xFF,
 272};
 273
 274enum phy {
 275        phy_100a     = 0x000003E0,
 276        phy_100c     = 0x035002A8,
 277        phy_82555_tx = 0x015002A8,
 278        phy_nsc_tx   = 0x5C002000,
 279        phy_82562_et = 0x033002A8,
 280        phy_82562_em = 0x032002A8,
 281        phy_82562_ek = 0x031002A8,
 282        phy_82562_eh = 0x017002A8,
 283        phy_82552_v  = 0xd061004d,
 284        phy_unknown  = 0xFFFFFFFF,
 285};
 286
 287/* CSR (Control/Status Registers) */
 288struct csr {
 289        struct {
 290                u8 status;
 291                u8 stat_ack;
 292                u8 cmd_lo;
 293                u8 cmd_hi;
 294                u32 gen_ptr;
 295        } scb;
 296        u32 port;
 297        u16 flash_ctrl;
 298        u8 eeprom_ctrl_lo;
 299        u8 eeprom_ctrl_hi;
 300        u32 mdi_ctrl;
 301        u32 rx_dma_count;
 302};
 303
 304enum scb_status {
 305        rus_no_res       = 0x08,
 306        rus_ready        = 0x10,
 307        rus_mask         = 0x3C,
 308};
 309
 310enum ru_state  {
 311        RU_SUSPENDED = 0,
 312        RU_RUNNING       = 1,
 313        RU_UNINITIALIZED = -1,
 314};
 315
 316enum scb_stat_ack {
 317        stat_ack_not_ours    = 0x00,
 318        stat_ack_sw_gen      = 0x04,
 319        stat_ack_rnr         = 0x10,
 320        stat_ack_cu_idle     = 0x20,
 321        stat_ack_frame_rx    = 0x40,
 322        stat_ack_cu_cmd_done = 0x80,
 323        stat_ack_not_present = 0xFF,
 324        stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 325        stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 326};
 327
 328enum scb_cmd_hi {
 329        irq_mask_none = 0x00,
 330        irq_mask_all  = 0x01,
 331        irq_sw_gen    = 0x02,
 332};
 333
 334enum scb_cmd_lo {
 335        cuc_nop        = 0x00,
 336        ruc_start      = 0x01,
 337        ruc_load_base  = 0x06,
 338        cuc_start      = 0x10,
 339        cuc_resume     = 0x20,
 340        cuc_dump_addr  = 0x40,
 341        cuc_dump_stats = 0x50,
 342        cuc_load_base  = 0x60,
 343        cuc_dump_reset = 0x70,
 344};
 345
 346enum cuc_dump {
 347        cuc_dump_complete       = 0x0000A005,
 348        cuc_dump_reset_complete = 0x0000A007,
 349};
 350
 351enum port {
 352        software_reset  = 0x0000,
 353        selftest        = 0x0001,
 354        selective_reset = 0x0002,
 355};
 356
 357enum eeprom_ctrl_lo {
 358        eesk = 0x01,
 359        eecs = 0x02,
 360        eedi = 0x04,
 361        eedo = 0x08,
 362};
 363
 364enum mdi_ctrl {
 365        mdi_write = 0x04000000,
 366        mdi_read  = 0x08000000,
 367        mdi_ready = 0x10000000,
 368};
 369
 370enum eeprom_op {
 371        op_write = 0x05,
 372        op_read  = 0x06,
 373        op_ewds  = 0x10,
 374        op_ewen  = 0x13,
 375};
 376
 377enum eeprom_offsets {
 378        eeprom_cnfg_mdix  = 0x03,
 379        eeprom_phy_iface  = 0x06,
 380        eeprom_id         = 0x0A,
 381        eeprom_config_asf = 0x0D,
 382        eeprom_smbus_addr = 0x90,
 383};
 384
 385enum eeprom_cnfg_mdix {
 386        eeprom_mdix_enabled = 0x0080,
 387};
 388
 389enum eeprom_phy_iface {
 390        NoSuchPhy = 0,
 391        I82553AB,
 392        I82553C,
 393        I82503,
 394        DP83840,
 395        S80C240,
 396        S80C24,
 397        I82555,
 398        DP83840A = 10,
 399};
 400
 401enum eeprom_id {
 402        eeprom_id_wol = 0x0020,
 403};
 404
 405enum eeprom_config_asf {
 406        eeprom_asf = 0x8000,
 407        eeprom_gcl = 0x4000,
 408};
 409
 410enum cb_status {
 411        cb_complete = 0x8000,
 412        cb_ok       = 0x2000,
 413};
 414
 415/**
 416 * cb_command - Command Block flags
 417 * @cb_tx_nc:  0: controler does CRC (normal),  1: CRC from skb memory
 418 */
 419enum cb_command {
 420        cb_nop    = 0x0000,
 421        cb_iaaddr = 0x0001,
 422        cb_config = 0x0002,
 423        cb_multi  = 0x0003,
 424        cb_tx     = 0x0004,
 425        cb_ucode  = 0x0005,
 426        cb_dump   = 0x0006,
 427        cb_tx_sf  = 0x0008,
 428        cb_tx_nc  = 0x0010,
 429        cb_cid    = 0x1f00,
 430        cb_i      = 0x2000,
 431        cb_s      = 0x4000,
 432        cb_el     = 0x8000,
 433};
 434
 435struct rfd {
 436        __le16 status;
 437        __le16 command;
 438        __le32 link;
 439        __le32 rbd;
 440        __le16 actual_size;
 441        __le16 size;
 442};
 443
 444struct rx {
 445        struct rx *next, *prev;
 446        struct sk_buff *skb;
 447        dma_addr_t dma_addr;
 448};
 449
 450#if defined(__BIG_ENDIAN_BITFIELD)
 451#define X(a,b)  b,a
 452#else
 453#define X(a,b)  a,b
 454#endif
 455struct config {
 456/*0*/   u8 X(byte_count:6, pad0:2);
 457/*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 458/*2*/   u8 adaptive_ifs;
 459/*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 460           term_write_cache_line:1), pad3:4);
 461/*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 462/*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 463/*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 464           tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 465           rx_save_overruns : 1), rx_save_bad_frames : 1);
 466/*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 467           pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 468           tx_dynamic_tbd:1);
 469/*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 470/*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 471           link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 472/*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 473           loopback:2);
 474/*11*/  u8 X(linear_priority:3, pad11:5);
 475/*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 476/*13*/  u8 ip_addr_lo;
 477/*14*/  u8 ip_addr_hi;
 478/*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 479           wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 480           pad15_2:1), crs_or_cdt:1);
 481/*16*/  u8 fc_delay_lo;
 482/*17*/  u8 fc_delay_hi;
 483/*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 484           rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 485/*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 486           fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 487           full_duplex_force:1), full_duplex_pin:1);
 488/*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 489/*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 490/*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 491        u8 pad_d102[9];
 492};
 493
 494#define E100_MAX_MULTICAST_ADDRS        64
 495struct multi {
 496        __le16 count;
 497        u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 498};
 499
 500/* Important: keep total struct u32-aligned */
 501#define UCODE_SIZE                      134
 502struct cb {
 503        __le16 status;
 504        __le16 command;
 505        __le32 link;
 506        union {
 507                u8 iaaddr[ETH_ALEN];
 508                __le32 ucode[UCODE_SIZE];
 509                struct config config;
 510                struct multi multi;
 511                struct {
 512                        u32 tbd_array;
 513                        u16 tcb_byte_count;
 514                        u8 threshold;
 515                        u8 tbd_count;
 516                        struct {
 517                                __le32 buf_addr;
 518                                __le16 size;
 519                                u16 eol;
 520                        } tbd;
 521                } tcb;
 522                __le32 dump_buffer_addr;
 523        } u;
 524        struct cb *next, *prev;
 525        dma_addr_t dma_addr;
 526        struct sk_buff *skb;
 527};
 528
 529enum loopback {
 530        lb_none = 0, lb_mac = 1, lb_phy = 3,
 531};
 532
 533struct stats {
 534        __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 535                tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 536                tx_multiple_collisions, tx_total_collisions;
 537        __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 538                rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 539                rx_short_frame_errors;
 540        __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 541        __le16 xmt_tco_frames, rcv_tco_frames;
 542        __le32 complete;
 543};
 544
 545struct mem {
 546        struct {
 547                u32 signature;
 548                u32 result;
 549        } selftest;
 550        struct stats stats;
 551        u8 dump_buf[596];
 552};
 553
 554struct param_range {
 555        u32 min;
 556        u32 max;
 557        u32 count;
 558};
 559
 560struct params {
 561        struct param_range rfds;
 562        struct param_range cbs;
 563};
 564
 565struct nic {
 566        /* Begin: frequently used values: keep adjacent for cache effect */
 567        u32 msg_enable                          ____cacheline_aligned;
 568        struct net_device *netdev;
 569        struct pci_dev *pdev;
 570        u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 571
 572        struct rx *rxs                          ____cacheline_aligned;
 573        struct rx *rx_to_use;
 574        struct rx *rx_to_clean;
 575        struct rfd blank_rfd;
 576        enum ru_state ru_running;
 577
 578        spinlock_t cb_lock                      ____cacheline_aligned;
 579        spinlock_t cmd_lock;
 580        struct csr __iomem *csr;
 581        enum scb_cmd_lo cuc_cmd;
 582        unsigned int cbs_avail;
 583        struct napi_struct napi;
 584        struct cb *cbs;
 585        struct cb *cb_to_use;
 586        struct cb *cb_to_send;
 587        struct cb *cb_to_clean;
 588        __le16 tx_command;
 589        /* End: frequently used values: keep adjacent for cache effect */
 590
 591        enum {
 592                ich                = (1 << 0),
 593                promiscuous        = (1 << 1),
 594                multicast_all      = (1 << 2),
 595                wol_magic          = (1 << 3),
 596                ich_10h_workaround = (1 << 4),
 597        } flags                                 ____cacheline_aligned;
 598
 599        enum mac mac;
 600        enum phy phy;
 601        struct params params;
 602        struct timer_list watchdog;
 603        struct mii_if_info mii;
 604        struct work_struct tx_timeout_task;
 605        enum loopback loopback;
 606
 607        struct mem *mem;
 608        dma_addr_t dma_addr;
 609
 610        struct pci_pool *cbs_pool;
 611        dma_addr_t cbs_dma_addr;
 612        u8 adaptive_ifs;
 613        u8 tx_threshold;
 614        u32 tx_frames;
 615        u32 tx_collisions;
 616        u32 tx_deferred;
 617        u32 tx_single_collisions;
 618        u32 tx_multiple_collisions;
 619        u32 tx_fc_pause;
 620        u32 tx_tco_frames;
 621
 622        u32 rx_fc_pause;
 623        u32 rx_fc_unsupported;
 624        u32 rx_tco_frames;
 625        u32 rx_short_frame_errors;
 626        u32 rx_over_length_errors;
 627
 628        u16 eeprom_wc;
 629        __le16 eeprom[256];
 630        spinlock_t mdio_lock;
 631        const struct firmware *fw;
 632};
 633
 634static inline void e100_write_flush(struct nic *nic)
 635{
 636        /* Flush previous PCI writes through intermediate bridges
 637         * by doing a benign read */
 638        (void)ioread8(&nic->csr->scb.status);
 639}
 640
 641static void e100_enable_irq(struct nic *nic)
 642{
 643        unsigned long flags;
 644
 645        spin_lock_irqsave(&nic->cmd_lock, flags);
 646        iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 647        e100_write_flush(nic);
 648        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 649}
 650
 651static void e100_disable_irq(struct nic *nic)
 652{
 653        unsigned long flags;
 654
 655        spin_lock_irqsave(&nic->cmd_lock, flags);
 656        iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 657        e100_write_flush(nic);
 658        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 659}
 660
 661static void e100_hw_reset(struct nic *nic)
 662{
 663        /* Put CU and RU into idle with a selective reset to get
 664         * device off of PCI bus */
 665        iowrite32(selective_reset, &nic->csr->port);
 666        e100_write_flush(nic); udelay(20);
 667
 668        /* Now fully reset device */
 669        iowrite32(software_reset, &nic->csr->port);
 670        e100_write_flush(nic); udelay(20);
 671
 672        /* Mask off our interrupt line - it's unmasked after reset */
 673        e100_disable_irq(nic);
 674}
 675
 676static int e100_self_test(struct nic *nic)
 677{
 678        u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 679
 680        /* Passing the self-test is a pretty good indication
 681         * that the device can DMA to/from host memory */
 682
 683        nic->mem->selftest.signature = 0;
 684        nic->mem->selftest.result = 0xFFFFFFFF;
 685
 686        iowrite32(selftest | dma_addr, &nic->csr->port);
 687        e100_write_flush(nic);
 688        /* Wait 10 msec for self-test to complete */
 689        msleep(10);
 690
 691        /* Interrupts are enabled after self-test */
 692        e100_disable_irq(nic);
 693
 694        /* Check results of self-test */
 695        if (nic->mem->selftest.result != 0) {
 696                netif_err(nic, hw, nic->netdev,
 697                          "Self-test failed: result=0x%08X\n",
 698                          nic->mem->selftest.result);
 699                return -ETIMEDOUT;
 700        }
 701        if (nic->mem->selftest.signature == 0) {
 702                netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 703                return -ETIMEDOUT;
 704        }
 705
 706        return 0;
 707}
 708
 709static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 710{
 711        u32 cmd_addr_data[3];
 712        u8 ctrl;
 713        int i, j;
 714
 715        /* Three cmds: write/erase enable, write data, write/erase disable */
 716        cmd_addr_data[0] = op_ewen << (addr_len - 2);
 717        cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 718                le16_to_cpu(data);
 719        cmd_addr_data[2] = op_ewds << (addr_len - 2);
 720
 721        /* Bit-bang cmds to write word to eeprom */
 722        for (j = 0; j < 3; j++) {
 723
 724                /* Chip select */
 725                iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 726                e100_write_flush(nic); udelay(4);
 727
 728                for (i = 31; i >= 0; i--) {
 729                        ctrl = (cmd_addr_data[j] & (1 << i)) ?
 730                                eecs | eedi : eecs;
 731                        iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 732                        e100_write_flush(nic); udelay(4);
 733
 734                        iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 735                        e100_write_flush(nic); udelay(4);
 736                }
 737                /* Wait 10 msec for cmd to complete */
 738                msleep(10);
 739
 740                /* Chip deselect */
 741                iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 742                e100_write_flush(nic); udelay(4);
 743        }
 744};
 745
 746/* General technique stolen from the eepro100 driver - very clever */
 747static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 748{
 749        u32 cmd_addr_data;
 750        u16 data = 0;
 751        u8 ctrl;
 752        int i;
 753
 754        cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 755
 756        /* Chip select */
 757        iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 758        e100_write_flush(nic); udelay(4);
 759
 760        /* Bit-bang to read word from eeprom */
 761        for (i = 31; i >= 0; i--) {
 762                ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 763                iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 764                e100_write_flush(nic); udelay(4);
 765
 766                iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 767                e100_write_flush(nic); udelay(4);
 768
 769                /* Eeprom drives a dummy zero to EEDO after receiving
 770                 * complete address.  Use this to adjust addr_len. */
 771                ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 772                if (!(ctrl & eedo) && i > 16) {
 773                        *addr_len -= (i - 16);
 774                        i = 17;
 775                }
 776
 777                data = (data << 1) | (ctrl & eedo ? 1 : 0);
 778        }
 779
 780        /* Chip deselect */
 781        iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 782        e100_write_flush(nic); udelay(4);
 783
 784        return cpu_to_le16(data);
 785};
 786
 787/* Load entire EEPROM image into driver cache and validate checksum */
 788static int e100_eeprom_load(struct nic *nic)
 789{
 790        u16 addr, addr_len = 8, checksum = 0;
 791
 792        /* Try reading with an 8-bit addr len to discover actual addr len */
 793        e100_eeprom_read(nic, &addr_len, 0);
 794        nic->eeprom_wc = 1 << addr_len;
 795
 796        for (addr = 0; addr < nic->eeprom_wc; addr++) {
 797                nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 798                if (addr < nic->eeprom_wc - 1)
 799                        checksum += le16_to_cpu(nic->eeprom[addr]);
 800        }
 801
 802        /* The checksum, stored in the last word, is calculated such that
 803         * the sum of words should be 0xBABA */
 804        if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 805                netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 806                if (!eeprom_bad_csum_allow)
 807                        return -EAGAIN;
 808        }
 809
 810        return 0;
 811}
 812
 813/* Save (portion of) driver EEPROM cache to device and update checksum */
 814static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 815{
 816        u16 addr, addr_len = 8, checksum = 0;
 817
 818        /* Try reading with an 8-bit addr len to discover actual addr len */
 819        e100_eeprom_read(nic, &addr_len, 0);
 820        nic->eeprom_wc = 1 << addr_len;
 821
 822        if (start + count >= nic->eeprom_wc)
 823                return -EINVAL;
 824
 825        for (addr = start; addr < start + count; addr++)
 826                e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 827
 828        /* The checksum, stored in the last word, is calculated such that
 829         * the sum of words should be 0xBABA */
 830        for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 831                checksum += le16_to_cpu(nic->eeprom[addr]);
 832        nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 833        e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 834                nic->eeprom[nic->eeprom_wc - 1]);
 835
 836        return 0;
 837}
 838
 839#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 840#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 841static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 842{
 843        unsigned long flags;
 844        unsigned int i;
 845        int err = 0;
 846
 847        spin_lock_irqsave(&nic->cmd_lock, flags);
 848
 849        /* Previous command is accepted when SCB clears */
 850        for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 851                if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 852                        break;
 853                cpu_relax();
 854                if (unlikely(i > E100_WAIT_SCB_FAST))
 855                        udelay(5);
 856        }
 857        if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 858                err = -EAGAIN;
 859                goto err_unlock;
 860        }
 861
 862        if (unlikely(cmd != cuc_resume))
 863                iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 864        iowrite8(cmd, &nic->csr->scb.cmd_lo);
 865
 866err_unlock:
 867        spin_unlock_irqrestore(&nic->cmd_lock, flags);
 868
 869        return err;
 870}
 871
 872static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 873        int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 874{
 875        struct cb *cb;
 876        unsigned long flags;
 877        int err = 0;
 878
 879        spin_lock_irqsave(&nic->cb_lock, flags);
 880
 881        if (unlikely(!nic->cbs_avail)) {
 882                err = -ENOMEM;
 883                goto err_unlock;
 884        }
 885
 886        cb = nic->cb_to_use;
 887        nic->cb_to_use = cb->next;
 888        nic->cbs_avail--;
 889        cb->skb = skb;
 890
 891        err = cb_prepare(nic, cb, skb);
 892        if (err)
 893                goto err_unlock;
 894
 895        if (unlikely(!nic->cbs_avail))
 896                err = -ENOSPC;
 897
 898
 899        /* Order is important otherwise we'll be in a race with h/w:
 900         * set S-bit in current first, then clear S-bit in previous. */
 901        cb->command |= cpu_to_le16(cb_s);
 902        wmb();
 903        cb->prev->command &= cpu_to_le16(~cb_s);
 904
 905        while (nic->cb_to_send != nic->cb_to_use) {
 906                if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 907                        nic->cb_to_send->dma_addr))) {
 908                        /* Ok, here's where things get sticky.  It's
 909                         * possible that we can't schedule the command
 910                         * because the controller is too busy, so
 911                         * let's just queue the command and try again
 912                         * when another command is scheduled. */
 913                        if (err == -ENOSPC) {
 914                                //request a reset
 915                                schedule_work(&nic->tx_timeout_task);
 916                        }
 917                        break;
 918                } else {
 919                        nic->cuc_cmd = cuc_resume;
 920                        nic->cb_to_send = nic->cb_to_send->next;
 921                }
 922        }
 923
 924err_unlock:
 925        spin_unlock_irqrestore(&nic->cb_lock, flags);
 926
 927        return err;
 928}
 929
 930static int mdio_read(struct net_device *netdev, int addr, int reg)
 931{
 932        struct nic *nic = netdev_priv(netdev);
 933        return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 934}
 935
 936static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 937{
 938        struct nic *nic = netdev_priv(netdev);
 939
 940        nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 941}
 942
 943/* the standard mdio_ctrl() function for usual MII-compliant hardware */
 944static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 945{
 946        u32 data_out = 0;
 947        unsigned int i;
 948        unsigned long flags;
 949
 950
 951        /*
 952         * Stratus87247: we shouldn't be writing the MDI control
 953         * register until the Ready bit shows True.  Also, since
 954         * manipulation of the MDI control registers is a multi-step
 955         * procedure it should be done under lock.
 956         */
 957        spin_lock_irqsave(&nic->mdio_lock, flags);
 958        for (i = 100; i; --i) {
 959                if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 960                        break;
 961                udelay(20);
 962        }
 963        if (unlikely(!i)) {
 964                netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 965                spin_unlock_irqrestore(&nic->mdio_lock, flags);
 966                return 0;               /* No way to indicate timeout error */
 967        }
 968        iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 969
 970        for (i = 0; i < 100; i++) {
 971                udelay(20);
 972                if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 973                        break;
 974        }
 975        spin_unlock_irqrestore(&nic->mdio_lock, flags);
 976        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 977                     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 978                     dir == mdi_read ? "READ" : "WRITE",
 979                     addr, reg, data, data_out);
 980        return (u16)data_out;
 981}
 982
 983/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 984static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 985                                 u32 addr,
 986                                 u32 dir,
 987                                 u32 reg,
 988                                 u16 data)
 989{
 990        if ((reg == MII_BMCR) && (dir == mdi_write)) {
 991                if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 992                        u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 993                                                        MII_ADVERTISE);
 994
 995                        /*
 996                         * Workaround Si issue where sometimes the part will not
 997                         * autoneg to 100Mbps even when advertised.
 998                         */
 999                        if (advert & ADVERTISE_100FULL)
1000                                data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1001                        else if (advert & ADVERTISE_100HALF)
1002                                data |= BMCR_SPEED100;
1003                }
1004        }
1005        return mdio_ctrl_hw(nic, addr, dir, reg, data);
1006}
1007
1008/* Fully software-emulated mdio_ctrl() function for cards without
1009 * MII-compliant PHYs.
1010 * For now, this is mainly geared towards 80c24 support; in case of further
1011 * requirements for other types (i82503, ...?) either extend this mechanism
1012 * or split it, whichever is cleaner.
1013 */
1014static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1015                                      u32 addr,
1016                                      u32 dir,
1017                                      u32 reg,
1018                                      u16 data)
1019{
1020        /* might need to allocate a netdev_priv'ed register array eventually
1021         * to be able to record state changes, but for now
1022         * some fully hardcoded register handling ought to be ok I guess. */
1023
1024        if (dir == mdi_read) {
1025                switch (reg) {
1026                case MII_BMCR:
1027                        /* Auto-negotiation, right? */
1028                        return  BMCR_ANENABLE |
1029                                BMCR_FULLDPLX;
1030                case MII_BMSR:
1031                        return  BMSR_LSTATUS /* for mii_link_ok() */ |
1032                                BMSR_ANEGCAPABLE |
1033                                BMSR_10FULL;
1034                case MII_ADVERTISE:
1035                        /* 80c24 is a "combo card" PHY, right? */
1036                        return  ADVERTISE_10HALF |
1037                                ADVERTISE_10FULL;
1038                default:
1039                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041                                     dir == mdi_read ? "READ" : "WRITE",
1042                                     addr, reg, data);
1043                        return 0xFFFF;
1044                }
1045        } else {
1046                switch (reg) {
1047                default:
1048                        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1049                                     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1050                                     dir == mdi_read ? "READ" : "WRITE",
1051                                     addr, reg, data);
1052                        return 0xFFFF;
1053                }
1054        }
1055}
1056static inline int e100_phy_supports_mii(struct nic *nic)
1057{
1058        /* for now, just check it by comparing whether we
1059           are using MII software emulation.
1060        */
1061        return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1062}
1063
1064static void e100_get_defaults(struct nic *nic)
1065{
1066        struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1067        struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1068
1069        /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1070        nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1071        if (nic->mac == mac_unknown)
1072                nic->mac = mac_82557_D100_A;
1073
1074        nic->params.rfds = rfds;
1075        nic->params.cbs = cbs;
1076
1077        /* Quadwords to DMA into FIFO before starting frame transmit */
1078        nic->tx_threshold = 0xE0;
1079
1080        /* no interrupt for every tx completion, delay = 256us if not 557 */
1081        nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1082                ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1083
1084        /* Template for a freshly allocated RFD */
1085        nic->blank_rfd.command = 0;
1086        nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1087        nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1088
1089        /* MII setup */
1090        nic->mii.phy_id_mask = 0x1F;
1091        nic->mii.reg_num_mask = 0x1F;
1092        nic->mii.dev = nic->netdev;
1093        nic->mii.mdio_read = mdio_read;
1094        nic->mii.mdio_write = mdio_write;
1095}
1096
1097static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1098{
1099        struct config *config = &cb->u.config;
1100        u8 *c = (u8 *)config;
1101        struct net_device *netdev = nic->netdev;
1102
1103        cb->command = cpu_to_le16(cb_config);
1104
1105        memset(config, 0, sizeof(struct config));
1106
1107        config->byte_count = 0x16;              /* bytes in this struct */
1108        config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1109        config->direct_rx_dma = 0x1;            /* reserved */
1110        config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1111        config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1112        config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1113        config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1114        if (e100_phy_supports_mii(nic))
1115                config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1116        config->pad10 = 0x6;
1117        config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1118        config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1119        config->ifs = 0x6;                      /* x16 = inter frame spacing */
1120        config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1121        config->pad15_1 = 0x1;
1122        config->pad15_2 = 0x1;
1123        config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1124        config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1125        config->tx_padding = 0x1;               /* 1=pad short frames */
1126        config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1127        config->pad18 = 0x1;
1128        config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1129        config->pad20_1 = 0x1F;
1130        config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1131        config->pad21_1 = 0x5;
1132
1133        config->adaptive_ifs = nic->adaptive_ifs;
1134        config->loopback = nic->loopback;
1135
1136        if (nic->mii.force_media && nic->mii.full_duplex)
1137                config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1138
1139        if (nic->flags & promiscuous || nic->loopback) {
1140                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1141                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1142                config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1143        }
1144
1145        if (unlikely(netdev->features & NETIF_F_RXFCS))
1146                config->rx_crc_transfer = 0x1;  /* 1=save, 0=discard */
1147
1148        if (nic->flags & multicast_all)
1149                config->multicast_all = 0x1;            /* 1=accept, 0=no */
1150
1151        /* disable WoL when up */
1152        if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1153                config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1154
1155        if (nic->mac >= mac_82558_D101_A4) {
1156                config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1157                config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1158                config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1159                config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1160                if (nic->mac >= mac_82559_D101M) {
1161                        config->tno_intr = 0x1;         /* TCO stats enable */
1162                        /* Enable TCO in extended config */
1163                        if (nic->mac >= mac_82551_10) {
1164                                config->byte_count = 0x20; /* extended bytes */
1165                                config->rx_d102_mode = 0x1; /* GMRC for TCO */
1166                        }
1167                } else {
1168                        config->standard_stat_counter = 0x0;
1169                }
1170        }
1171
1172        if (netdev->features & NETIF_F_RXALL) {
1173                config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1174                config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1175                config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1176        }
1177
1178        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1179                     "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1180                     c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1181        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1182                     "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1183                     c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1184        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1185                     "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1186                     c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1187        return 0;
1188}
1189
1190/*************************************************************************
1191*  CPUSaver parameters
1192*
1193*  All CPUSaver parameters are 16-bit literals that are part of a
1194*  "move immediate value" instruction.  By changing the value of
1195*  the literal in the instruction before the code is loaded, the
1196*  driver can change the algorithm.
1197*
1198*  INTDELAY - This loads the dead-man timer with its initial value.
1199*    When this timer expires the interrupt is asserted, and the
1200*    timer is reset each time a new packet is received.  (see
1201*    BUNDLEMAX below to set the limit on number of chained packets)
1202*    The current default is 0x600 or 1536.  Experiments show that
1203*    the value should probably stay within the 0x200 - 0x1000.
1204*
1205*  BUNDLEMAX -
1206*    This sets the maximum number of frames that will be bundled.  In
1207*    some situations, such as the TCP windowing algorithm, it may be
1208*    better to limit the growth of the bundle size than let it go as
1209*    high as it can, because that could cause too much added latency.
1210*    The default is six, because this is the number of packets in the
1211*    default TCP window size.  A value of 1 would make CPUSaver indicate
1212*    an interrupt for every frame received.  If you do not want to put
1213*    a limit on the bundle size, set this value to xFFFF.
1214*
1215*  BUNDLESMALL -
1216*    This contains a bit-mask describing the minimum size frame that
1217*    will be bundled.  The default masks the lower 7 bits, which means
1218*    that any frame less than 128 bytes in length will not be bundled,
1219*    but will instead immediately generate an interrupt.  This does
1220*    not affect the current bundle in any way.  Any frame that is 128
1221*    bytes or large will be bundled normally.  This feature is meant
1222*    to provide immediate indication of ACK frames in a TCP environment.
1223*    Customers were seeing poor performance when a machine with CPUSaver
1224*    enabled was sending but not receiving.  The delay introduced when
1225*    the ACKs were received was enough to reduce total throughput, because
1226*    the sender would sit idle until the ACK was finally seen.
1227*
1228*    The current default is 0xFF80, which masks out the lower 7 bits.
1229*    This means that any frame which is x7F (127) bytes or smaller
1230*    will cause an immediate interrupt.  Because this value must be a
1231*    bit mask, there are only a few valid values that can be used.  To
1232*    turn this feature off, the driver can write the value xFFFF to the
1233*    lower word of this instruction (in the same way that the other
1234*    parameters are used).  Likewise, a value of 0xF800 (2047) would
1235*    cause an interrupt to be generated for every frame, because all
1236*    standard Ethernet frames are <= 2047 bytes in length.
1237*************************************************************************/
1238
1239/* if you wish to disable the ucode functionality, while maintaining the
1240 * workarounds it provides, set the following defines to:
1241 * BUNDLESMALL 0
1242 * BUNDLEMAX 1
1243 * INTDELAY 1
1244 */
1245#define BUNDLESMALL 1
1246#define BUNDLEMAX (u16)6
1247#define INTDELAY (u16)1536 /* 0x600 */
1248
1249/* Initialize firmware */
1250static const struct firmware *e100_request_firmware(struct nic *nic)
1251{
1252        const char *fw_name;
1253        const struct firmware *fw = nic->fw;
1254        u8 timer, bundle, min_size;
1255        int err = 0;
1256        bool required = false;
1257
1258        /* do not load u-code for ICH devices */
1259        if (nic->flags & ich)
1260                return NULL;
1261
1262        /* Search for ucode match against h/w revision
1263         *
1264         * Based on comments in the source code for the FreeBSD fxp
1265         * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1266         *
1267         *    "fixes for bugs in the B-step hardware (specifically, bugs
1268         *     with Inline Receive)."
1269         *
1270         * So we must fail if it cannot be loaded.
1271         *
1272         * The other microcode files are only required for the optional
1273         * CPUSaver feature.  Nice to have, but no reason to fail.
1274         */
1275        if (nic->mac == mac_82559_D101M) {
1276                fw_name = FIRMWARE_D101M;
1277        } else if (nic->mac == mac_82559_D101S) {
1278                fw_name = FIRMWARE_D101S;
1279        } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1280                fw_name = FIRMWARE_D102E;
1281                required = true;
1282        } else { /* No ucode on other devices */
1283                return NULL;
1284        }
1285
1286        /* If the firmware has not previously been loaded, request a pointer
1287         * to it. If it was previously loaded, we are reinitializing the
1288         * adapter, possibly in a resume from hibernate, in which case
1289         * request_firmware() cannot be used.
1290         */
1291        if (!fw)
1292                err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1293
1294        if (err) {
1295                if (required) {
1296                        netif_err(nic, probe, nic->netdev,
1297                                  "Failed to load firmware \"%s\": %d\n",
1298                                  fw_name, err);
1299                        return ERR_PTR(err);
1300                } else {
1301                        netif_info(nic, probe, nic->netdev,
1302                                   "CPUSaver disabled. Needs \"%s\": %d\n",
1303                                   fw_name, err);
1304                        return NULL;
1305                }
1306        }
1307
1308        /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1309           indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1310        if (fw->size != UCODE_SIZE * 4 + 3) {
1311                netif_err(nic, probe, nic->netdev,
1312                          "Firmware \"%s\" has wrong size %zu\n",
1313                          fw_name, fw->size);
1314                release_firmware(fw);
1315                return ERR_PTR(-EINVAL);
1316        }
1317
1318        /* Read timer, bundle and min_size from end of firmware blob */
1319        timer = fw->data[UCODE_SIZE * 4];
1320        bundle = fw->data[UCODE_SIZE * 4 + 1];
1321        min_size = fw->data[UCODE_SIZE * 4 + 2];
1322
1323        if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1324            min_size >= UCODE_SIZE) {
1325                netif_err(nic, probe, nic->netdev,
1326                          "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1327                          fw_name, timer, bundle, min_size);
1328                release_firmware(fw);
1329                return ERR_PTR(-EINVAL);
1330        }
1331
1332        /* OK, firmware is validated and ready to use. Save a pointer
1333         * to it in the nic */
1334        nic->fw = fw;
1335        return fw;
1336}
1337
1338static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1339                             struct sk_buff *skb)
1340{
1341        const struct firmware *fw = (void *)skb;
1342        u8 timer, bundle, min_size;
1343
1344        /* It's not a real skb; we just abused the fact that e100_exec_cb
1345           will pass it through to here... */
1346        cb->skb = NULL;
1347
1348        /* firmware is stored as little endian already */
1349        memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1350
1351        /* Read timer, bundle and min_size from end of firmware blob */
1352        timer = fw->data[UCODE_SIZE * 4];
1353        bundle = fw->data[UCODE_SIZE * 4 + 1];
1354        min_size = fw->data[UCODE_SIZE * 4 + 2];
1355
1356        /* Insert user-tunable settings in cb->u.ucode */
1357        cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1358        cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1359        cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1360        cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1361        cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1362        cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1363
1364        cb->command = cpu_to_le16(cb_ucode | cb_el);
1365        return 0;
1366}
1367
1368static inline int e100_load_ucode_wait(struct nic *nic)
1369{
1370        const struct firmware *fw;
1371        int err = 0, counter = 50;
1372        struct cb *cb = nic->cb_to_clean;
1373
1374        fw = e100_request_firmware(nic);
1375        /* If it's NULL, then no ucode is required */
1376        if (!fw || IS_ERR(fw))
1377                return PTR_ERR(fw);
1378
1379        if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1380                netif_err(nic, probe, nic->netdev,
1381                          "ucode cmd failed with error %d\n", err);
1382
1383        /* must restart cuc */
1384        nic->cuc_cmd = cuc_start;
1385
1386        /* wait for completion */
1387        e100_write_flush(nic);
1388        udelay(10);
1389
1390        /* wait for possibly (ouch) 500ms */
1391        while (!(cb->status & cpu_to_le16(cb_complete))) {
1392                msleep(10);
1393                if (!--counter) break;
1394        }
1395
1396        /* ack any interrupts, something could have been set */
1397        iowrite8(~0, &nic->csr->scb.stat_ack);
1398
1399        /* if the command failed, or is not OK, notify and return */
1400        if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1401                netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1402                err = -EPERM;
1403        }
1404
1405        return err;
1406}
1407
1408static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1409        struct sk_buff *skb)
1410{
1411        cb->command = cpu_to_le16(cb_iaaddr);
1412        memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1413        return 0;
1414}
1415
1416static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1417{
1418        cb->command = cpu_to_le16(cb_dump);
1419        cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1420                offsetof(struct mem, dump_buf));
1421        return 0;
1422}
1423
1424static int e100_phy_check_without_mii(struct nic *nic)
1425{
1426        u8 phy_type;
1427        int without_mii;
1428
1429        phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1430
1431        switch (phy_type) {
1432        case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1433        case I82503: /* Non-MII PHY; UNTESTED! */
1434        case S80C24: /* Non-MII PHY; tested and working */
1435                /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1436                 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1437                 * doesn't have a programming interface of any sort.  The
1438                 * media is sensed automatically based on how the link partner
1439                 * is configured.  This is, in essence, manual configuration.
1440                 */
1441                netif_info(nic, probe, nic->netdev,
1442                           "found MII-less i82503 or 80c24 or other PHY\n");
1443
1444                nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1445                nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1446
1447                /* these might be needed for certain MII-less cards...
1448                 * nic->flags |= ich;
1449                 * nic->flags |= ich_10h_workaround; */
1450
1451                without_mii = 1;
1452                break;
1453        default:
1454                without_mii = 0;
1455                break;
1456        }
1457        return without_mii;
1458}
1459
1460#define NCONFIG_AUTO_SWITCH     0x0080
1461#define MII_NSC_CONG            MII_RESV1
1462#define NSC_CONG_ENABLE         0x0100
1463#define NSC_CONG_TXREADY        0x0400
1464#define ADVERTISE_FC_SUPPORTED  0x0400
1465static int e100_phy_init(struct nic *nic)
1466{
1467        struct net_device *netdev = nic->netdev;
1468        u32 addr;
1469        u16 bmcr, stat, id_lo, id_hi, cong;
1470
1471        /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1472        for (addr = 0; addr < 32; addr++) {
1473                nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1474                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1475                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1476                stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1477                if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1478                        break;
1479        }
1480        if (addr == 32) {
1481                /* uhoh, no PHY detected: check whether we seem to be some
1482                 * weird, rare variant which is *known* to not have any MII.
1483                 * But do this AFTER MII checking only, since this does
1484                 * lookup of EEPROM values which may easily be unreliable. */
1485                if (e100_phy_check_without_mii(nic))
1486                        return 0; /* simply return and hope for the best */
1487                else {
1488                        /* for unknown cases log a fatal error */
1489                        netif_err(nic, hw, nic->netdev,
1490                                  "Failed to locate any known PHY, aborting\n");
1491                        return -EAGAIN;
1492                }
1493        } else
1494                netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1495                             "phy_addr = %d\n", nic->mii.phy_id);
1496
1497        /* Get phy ID */
1498        id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1499        id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1500        nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1501        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1502                     "phy ID = 0x%08X\n", nic->phy);
1503
1504        /* Select the phy and isolate the rest */
1505        for (addr = 0; addr < 32; addr++) {
1506                if (addr != nic->mii.phy_id) {
1507                        mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1508                } else if (nic->phy != phy_82552_v) {
1509                        bmcr = mdio_read(netdev, addr, MII_BMCR);
1510                        mdio_write(netdev, addr, MII_BMCR,
1511                                bmcr & ~BMCR_ISOLATE);
1512                }
1513        }
1514        /*
1515         * Workaround for 82552:
1516         * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1517         * other phy_id's) using bmcr value from addr discovery loop above.
1518         */
1519        if (nic->phy == phy_82552_v)
1520                mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1521                        bmcr & ~BMCR_ISOLATE);
1522
1523        /* Handle National tx phys */
1524#define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1525        if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1526                /* Disable congestion control */
1527                cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1528                cong |= NSC_CONG_TXREADY;
1529                cong &= ~NSC_CONG_ENABLE;
1530                mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1531        }
1532
1533        if (nic->phy == phy_82552_v) {
1534                u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1535
1536                /* assign special tweaked mdio_ctrl() function */
1537                nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1538
1539                /* Workaround Si not advertising flow-control during autoneg */
1540                advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1541                mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1542
1543                /* Reset for the above changes to take effect */
1544                bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1545                bmcr |= BMCR_RESET;
1546                mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1547        } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1548           (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1549                !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1550                /* enable/disable MDI/MDI-X auto-switching. */
1551                mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1552                                nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1553        }
1554
1555        return 0;
1556}
1557
1558static int e100_hw_init(struct nic *nic)
1559{
1560        int err = 0;
1561
1562        e100_hw_reset(nic);
1563
1564        netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1565        if (!in_interrupt() && (err = e100_self_test(nic)))
1566                return err;
1567
1568        if ((err = e100_phy_init(nic)))
1569                return err;
1570        if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1571                return err;
1572        if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1573                return err;
1574        if ((err = e100_load_ucode_wait(nic)))
1575                return err;
1576        if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1577                return err;
1578        if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1579                return err;
1580        if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1581                nic->dma_addr + offsetof(struct mem, stats))))
1582                return err;
1583        if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1584                return err;
1585
1586        e100_disable_irq(nic);
1587
1588        return 0;
1589}
1590
1591static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1592{
1593        struct net_device *netdev = nic->netdev;
1594        struct netdev_hw_addr *ha;
1595        u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1596
1597        cb->command = cpu_to_le16(cb_multi);
1598        cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1599        i = 0;
1600        netdev_for_each_mc_addr(ha, netdev) {
1601                if (i == count)
1602                        break;
1603                memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1604                        ETH_ALEN);
1605        }
1606        return 0;
1607}
1608
1609static void e100_set_multicast_list(struct net_device *netdev)
1610{
1611        struct nic *nic = netdev_priv(netdev);
1612
1613        netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1614                     "mc_count=%d, flags=0x%04X\n",
1615                     netdev_mc_count(netdev), netdev->flags);
1616
1617        if (netdev->flags & IFF_PROMISC)
1618                nic->flags |= promiscuous;
1619        else
1620                nic->flags &= ~promiscuous;
1621
1622        if (netdev->flags & IFF_ALLMULTI ||
1623                netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1624                nic->flags |= multicast_all;
1625        else
1626                nic->flags &= ~multicast_all;
1627
1628        e100_exec_cb(nic, NULL, e100_configure);
1629        e100_exec_cb(nic, NULL, e100_multi);
1630}
1631
1632static void e100_update_stats(struct nic *nic)
1633{
1634        struct net_device *dev = nic->netdev;
1635        struct net_device_stats *ns = &dev->stats;
1636        struct stats *s = &nic->mem->stats;
1637        __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1638                (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1639                &s->complete;
1640
1641        /* Device's stats reporting may take several microseconds to
1642         * complete, so we're always waiting for results of the
1643         * previous command. */
1644
1645        if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1646                *complete = 0;
1647                nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1648                nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1649                ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1650                ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1651                ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1652                ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1653                ns->collisions += nic->tx_collisions;
1654                ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1655                        le32_to_cpu(s->tx_lost_crs);
1656                nic->rx_short_frame_errors +=
1657                        le32_to_cpu(s->rx_short_frame_errors);
1658                ns->rx_length_errors = nic->rx_short_frame_errors +
1659                        nic->rx_over_length_errors;
1660                ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1661                ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1662                ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1663                ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1664                ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1665                ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1666                        le32_to_cpu(s->rx_alignment_errors) +
1667                        le32_to_cpu(s->rx_short_frame_errors) +
1668                        le32_to_cpu(s->rx_cdt_errors);
1669                nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1670                nic->tx_single_collisions +=
1671                        le32_to_cpu(s->tx_single_collisions);
1672                nic->tx_multiple_collisions +=
1673                        le32_to_cpu(s->tx_multiple_collisions);
1674                if (nic->mac >= mac_82558_D101_A4) {
1675                        nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1676                        nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1677                        nic->rx_fc_unsupported +=
1678                                le32_to_cpu(s->fc_rcv_unsupported);
1679                        if (nic->mac >= mac_82559_D101M) {
1680                                nic->tx_tco_frames +=
1681                                        le16_to_cpu(s->xmt_tco_frames);
1682                                nic->rx_tco_frames +=
1683                                        le16_to_cpu(s->rcv_tco_frames);
1684                        }
1685                }
1686        }
1687
1688
1689        if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1690                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1691                             "exec cuc_dump_reset failed\n");
1692}
1693
1694static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1695{
1696        /* Adjust inter-frame-spacing (IFS) between two transmits if
1697         * we're getting collisions on a half-duplex connection. */
1698
1699        if (duplex == DUPLEX_HALF) {
1700                u32 prev = nic->adaptive_ifs;
1701                u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1702
1703                if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1704                   (nic->tx_frames > min_frames)) {
1705                        if (nic->adaptive_ifs < 60)
1706                                nic->adaptive_ifs += 5;
1707                } else if (nic->tx_frames < min_frames) {
1708                        if (nic->adaptive_ifs >= 5)
1709                                nic->adaptive_ifs -= 5;
1710                }
1711                if (nic->adaptive_ifs != prev)
1712                        e100_exec_cb(nic, NULL, e100_configure);
1713        }
1714}
1715
1716static void e100_watchdog(unsigned long data)
1717{
1718        struct nic *nic = (struct nic *)data;
1719        struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1720        u32 speed;
1721
1722        netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1723                     "right now = %ld\n", jiffies);
1724
1725        /* mii library handles link maintenance tasks */
1726
1727        mii_ethtool_gset(&nic->mii, &cmd);
1728        speed = ethtool_cmd_speed(&cmd);
1729
1730        if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1731                netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1732                            speed == SPEED_100 ? 100 : 10,
1733                            cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1734        } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1735                netdev_info(nic->netdev, "NIC Link is Down\n");
1736        }
1737
1738        mii_check_link(&nic->mii);
1739
1740        /* Software generated interrupt to recover from (rare) Rx
1741         * allocation failure.
1742         * Unfortunately have to use a spinlock to not re-enable interrupts
1743         * accidentally, due to hardware that shares a register between the
1744         * interrupt mask bit and the SW Interrupt generation bit */
1745        spin_lock_irq(&nic->cmd_lock);
1746        iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1747        e100_write_flush(nic);
1748        spin_unlock_irq(&nic->cmd_lock);
1749
1750        e100_update_stats(nic);
1751        e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1752
1753        if (nic->mac <= mac_82557_D100_C)
1754                /* Issue a multicast command to workaround a 557 lock up */
1755                e100_set_multicast_list(nic->netdev);
1756
1757        if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1758                /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1759                nic->flags |= ich_10h_workaround;
1760        else
1761                nic->flags &= ~ich_10h_workaround;
1762
1763        mod_timer(&nic->watchdog,
1764                  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1765}
1766
1767static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1768        struct sk_buff *skb)
1769{
1770        dma_addr_t dma_addr;
1771        cb->command = nic->tx_command;
1772
1773        dma_addr = pci_map_single(nic->pdev,
1774                                  skb->data, skb->len, PCI_DMA_TODEVICE);
1775        /* If we can't map the skb, have the upper layer try later */
1776        if (pci_dma_mapping_error(nic->pdev, dma_addr))
1777                return -ENOMEM;
1778
1779        /*
1780         * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1781         * testing, ie sending frames with bad CRC.
1782         */
1783        if (unlikely(skb->no_fcs))
1784                cb->command |= __constant_cpu_to_le16(cb_tx_nc);
1785        else
1786                cb->command &= ~__constant_cpu_to_le16(cb_tx_nc);
1787
1788        /* interrupt every 16 packets regardless of delay */
1789        if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1790                cb->command |= cpu_to_le16(cb_i);
1791        cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1792        cb->u.tcb.tcb_byte_count = 0;
1793        cb->u.tcb.threshold = nic->tx_threshold;
1794        cb->u.tcb.tbd_count = 1;
1795        cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1796        cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1797        skb_tx_timestamp(skb);
1798        return 0;
1799}
1800
1801static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1802                                   struct net_device *netdev)
1803{
1804        struct nic *nic = netdev_priv(netdev);
1805        int err;
1806
1807        if (nic->flags & ich_10h_workaround) {
1808                /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1809                   Issue a NOP command followed by a 1us delay before
1810                   issuing the Tx command. */
1811                if (e100_exec_cmd(nic, cuc_nop, 0))
1812                        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1813                                     "exec cuc_nop failed\n");
1814                udelay(1);
1815        }
1816
1817        err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1818
1819        switch (err) {
1820        case -ENOSPC:
1821                /* We queued the skb, but now we're out of space. */
1822                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1823                             "No space for CB\n");
1824                netif_stop_queue(netdev);
1825                break;
1826        case -ENOMEM:
1827                /* This is a hard error - log it. */
1828                netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1829                             "Out of Tx resources, returning skb\n");
1830                netif_stop_queue(netdev);
1831                return NETDEV_TX_BUSY;
1832        }
1833
1834        return NETDEV_TX_OK;
1835}
1836
1837static int e100_tx_clean(struct nic *nic)
1838{
1839        struct net_device *dev = nic->netdev;
1840        struct cb *cb;
1841        int tx_cleaned = 0;
1842
1843        spin_lock(&nic->cb_lock);
1844
1845        /* Clean CBs marked complete */
1846        for (cb = nic->cb_to_clean;
1847            cb->status & cpu_to_le16(cb_complete);
1848            cb = nic->cb_to_clean = cb->next) {
1849                rmb(); /* read skb after status */
1850                netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1851                             "cb[%d]->status = 0x%04X\n",
1852                             (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1853                             cb->status);
1854
1855                if (likely(cb->skb != NULL)) {
1856                        dev->stats.tx_packets++;
1857                        dev->stats.tx_bytes += cb->skb->len;
1858
1859                        pci_unmap_single(nic->pdev,
1860                                le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1861                                le16_to_cpu(cb->u.tcb.tbd.size),
1862                                PCI_DMA_TODEVICE);
1863                        dev_kfree_skb_any(cb->skb);
1864                        cb->skb = NULL;
1865                        tx_cleaned = 1;
1866                }
1867                cb->status = 0;
1868                nic->cbs_avail++;
1869        }
1870
1871        spin_unlock(&nic->cb_lock);
1872
1873        /* Recover from running out of Tx resources in xmit_frame */
1874        if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1875                netif_wake_queue(nic->netdev);
1876
1877        return tx_cleaned;
1878}
1879
1880static void e100_clean_cbs(struct nic *nic)
1881{
1882        if (nic->cbs) {
1883                while (nic->cbs_avail != nic->params.cbs.count) {
1884                        struct cb *cb = nic->cb_to_clean;
1885                        if (cb->skb) {
1886                                pci_unmap_single(nic->pdev,
1887                                        le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1888                                        le16_to_cpu(cb->u.tcb.tbd.size),
1889                                        PCI_DMA_TODEVICE);
1890                                dev_kfree_skb(cb->skb);
1891                        }
1892                        nic->cb_to_clean = nic->cb_to_clean->next;
1893                        nic->cbs_avail++;
1894                }
1895                pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1896                nic->cbs = NULL;
1897                nic->cbs_avail = 0;
1898        }
1899        nic->cuc_cmd = cuc_start;
1900        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1901                nic->cbs;
1902}
1903
1904static int e100_alloc_cbs(struct nic *nic)
1905{
1906        struct cb *cb;
1907        unsigned int i, count = nic->params.cbs.count;
1908
1909        nic->cuc_cmd = cuc_start;
1910        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1911        nic->cbs_avail = 0;
1912
1913        nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1914                                  &nic->cbs_dma_addr);
1915        if (!nic->cbs)
1916                return -ENOMEM;
1917        memset(nic->cbs, 0, count * sizeof(struct cb));
1918
1919        for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1920                cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1921                cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1922
1923                cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1924                cb->link = cpu_to_le32(nic->cbs_dma_addr +
1925                        ((i+1) % count) * sizeof(struct cb));
1926        }
1927
1928        nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1929        nic->cbs_avail = count;
1930
1931        return 0;
1932}
1933
1934static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1935{
1936        if (!nic->rxs) return;
1937        if (RU_SUSPENDED != nic->ru_running) return;
1938
1939        /* handle init time starts */
1940        if (!rx) rx = nic->rxs;
1941
1942        /* (Re)start RU if suspended or idle and RFA is non-NULL */
1943        if (rx->skb) {
1944                e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1945                nic->ru_running = RU_RUNNING;
1946        }
1947}
1948
1949#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1950static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1951{
1952        if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1953                return -ENOMEM;
1954
1955        /* Init, and map the RFD. */
1956        skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1957        rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1958                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959
1960        if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1961                dev_kfree_skb_any(rx->skb);
1962                rx->skb = NULL;
1963                rx->dma_addr = 0;
1964                return -ENOMEM;
1965        }
1966
1967        /* Link the RFD to end of RFA by linking previous RFD to
1968         * this one.  We are safe to touch the previous RFD because
1969         * it is protected by the before last buffer's el bit being set */
1970        if (rx->prev->skb) {
1971                struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1972                put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1973                pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1974                        sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1975        }
1976
1977        return 0;
1978}
1979
1980static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1981        unsigned int *work_done, unsigned int work_to_do)
1982{
1983        struct net_device *dev = nic->netdev;
1984        struct sk_buff *skb = rx->skb;
1985        struct rfd *rfd = (struct rfd *)skb->data;
1986        u16 rfd_status, actual_size;
1987        u16 fcs_pad = 0;
1988
1989        if (unlikely(work_done && *work_done >= work_to_do))
1990                return -EAGAIN;
1991
1992        /* Need to sync before taking a peek at cb_complete bit */
1993        pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1994                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1995        rfd_status = le16_to_cpu(rfd->status);
1996
1997        netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1998                     "status=0x%04X\n", rfd_status);
1999        rmb(); /* read size after status bit */
2000
2001        /* If data isn't ready, nothing to indicate */
2002        if (unlikely(!(rfd_status & cb_complete))) {
2003                /* If the next buffer has the el bit, but we think the receiver
2004                 * is still running, check to see if it really stopped while
2005                 * we had interrupts off.
2006                 * This allows for a fast restart without re-enabling
2007                 * interrupts */
2008                if ((le16_to_cpu(rfd->command) & cb_el) &&
2009                    (RU_RUNNING == nic->ru_running))
2010
2011                        if (ioread8(&nic->csr->scb.status) & rus_no_res)
2012                                nic->ru_running = RU_SUSPENDED;
2013                pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2014                                               sizeof(struct rfd),
2015                                               PCI_DMA_FROMDEVICE);
2016                return -ENODATA;
2017        }
2018
2019        /* Get actual data size */
2020        if (unlikely(dev->features & NETIF_F_RXFCS))
2021                fcs_pad = 4;
2022        actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2023        if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2024                actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2025
2026        /* Get data */
2027        pci_unmap_single(nic->pdev, rx->dma_addr,
2028                RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2029
2030        /* If this buffer has the el bit, but we think the receiver
2031         * is still running, check to see if it really stopped while
2032         * we had interrupts off.
2033         * This allows for a fast restart without re-enabling interrupts.
2034         * This can happen when the RU sees the size change but also sees
2035         * the el bit set. */
2036        if ((le16_to_cpu(rfd->command) & cb_el) &&
2037            (RU_RUNNING == nic->ru_running)) {
2038
2039            if (ioread8(&nic->csr->scb.status) & rus_no_res)
2040                nic->ru_running = RU_SUSPENDED;
2041        }
2042
2043        /* Pull off the RFD and put the actual data (minus eth hdr) */
2044        skb_reserve(skb, sizeof(struct rfd));
2045        skb_put(skb, actual_size);
2046        skb->protocol = eth_type_trans(skb, nic->netdev);
2047
2048        /* If we are receiving all frames, then don't bother
2049         * checking for errors.
2050         */
2051        if (unlikely(dev->features & NETIF_F_RXALL)) {
2052                if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2053                        /* Received oversized frame, but keep it. */
2054                        nic->rx_over_length_errors++;
2055                goto process_skb;
2056        }
2057
2058        if (unlikely(!(rfd_status & cb_ok))) {
2059                /* Don't indicate if hardware indicates errors */
2060                dev_kfree_skb_any(skb);
2061        } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2062                /* Don't indicate oversized frames */
2063                nic->rx_over_length_errors++;
2064                dev_kfree_skb_any(skb);
2065        } else {
2066process_skb:
2067                dev->stats.rx_packets++;
2068                dev->stats.rx_bytes += (actual_size - fcs_pad);
2069                netif_receive_skb(skb);
2070                if (work_done)
2071                        (*work_done)++;
2072        }
2073
2074        rx->skb = NULL;
2075
2076        return 0;
2077}
2078
2079static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2080        unsigned int work_to_do)
2081{
2082        struct rx *rx;
2083        int restart_required = 0, err = 0;
2084        struct rx *old_before_last_rx, *new_before_last_rx;
2085        struct rfd *old_before_last_rfd, *new_before_last_rfd;
2086
2087        /* Indicate newly arrived packets */
2088        for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2089                err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2090                /* Hit quota or no more to clean */
2091                if (-EAGAIN == err || -ENODATA == err)
2092                        break;
2093        }
2094
2095
2096        /* On EAGAIN, hit quota so have more work to do, restart once
2097         * cleanup is complete.
2098         * Else, are we already rnr? then pay attention!!! this ensures that
2099         * the state machine progression never allows a start with a
2100         * partially cleaned list, avoiding a race between hardware
2101         * and rx_to_clean when in NAPI mode */
2102        if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2103                restart_required = 1;
2104
2105        old_before_last_rx = nic->rx_to_use->prev->prev;
2106        old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2107
2108        /* Alloc new skbs to refill list */
2109        for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2110                if (unlikely(e100_rx_alloc_skb(nic, rx)))
2111                        break; /* Better luck next time (see watchdog) */
2112        }
2113
2114        new_before_last_rx = nic->rx_to_use->prev->prev;
2115        if (new_before_last_rx != old_before_last_rx) {
2116                /* Set the el-bit on the buffer that is before the last buffer.
2117                 * This lets us update the next pointer on the last buffer
2118                 * without worrying about hardware touching it.
2119                 * We set the size to 0 to prevent hardware from touching this
2120                 * buffer.
2121                 * When the hardware hits the before last buffer with el-bit
2122                 * and size of 0, it will RNR interrupt, the RUS will go into
2123                 * the No Resources state.  It will not complete nor write to
2124                 * this buffer. */
2125                new_before_last_rfd =
2126                        (struct rfd *)new_before_last_rx->skb->data;
2127                new_before_last_rfd->size = 0;
2128                new_before_last_rfd->command |= cpu_to_le16(cb_el);
2129                pci_dma_sync_single_for_device(nic->pdev,
2130                        new_before_last_rx->dma_addr, sizeof(struct rfd),
2131                        PCI_DMA_BIDIRECTIONAL);
2132
2133                /* Now that we have a new stopping point, we can clear the old
2134                 * stopping point.  We must sync twice to get the proper
2135                 * ordering on the hardware side of things. */
2136                old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2137                pci_dma_sync_single_for_device(nic->pdev,
2138                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2139                        PCI_DMA_BIDIRECTIONAL);
2140                old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2141                                                        + ETH_FCS_LEN);
2142                pci_dma_sync_single_for_device(nic->pdev,
2143                        old_before_last_rx->dma_addr, sizeof(struct rfd),
2144                        PCI_DMA_BIDIRECTIONAL);
2145        }
2146
2147        if (restart_required) {
2148                // ack the rnr?
2149                iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2150                e100_start_receiver(nic, nic->rx_to_clean);
2151                if (work_done)
2152                        (*work_done)++;
2153        }
2154}
2155
2156static void e100_rx_clean_list(struct nic *nic)
2157{
2158        struct rx *rx;
2159        unsigned int i, count = nic->params.rfds.count;
2160
2161        nic->ru_running = RU_UNINITIALIZED;
2162
2163        if (nic->rxs) {
2164                for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165                        if (rx->skb) {
2166                                pci_unmap_single(nic->pdev, rx->dma_addr,
2167                                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2168                                dev_kfree_skb(rx->skb);
2169                        }
2170                }
2171                kfree(nic->rxs);
2172                nic->rxs = NULL;
2173        }
2174
2175        nic->rx_to_use = nic->rx_to_clean = NULL;
2176}
2177
2178static int e100_rx_alloc_list(struct nic *nic)
2179{
2180        struct rx *rx;
2181        unsigned int i, count = nic->params.rfds.count;
2182        struct rfd *before_last;
2183
2184        nic->rx_to_use = nic->rx_to_clean = NULL;
2185        nic->ru_running = RU_UNINITIALIZED;
2186
2187        if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2188                return -ENOMEM;
2189
2190        for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2191                rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2192                rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2193                if (e100_rx_alloc_skb(nic, rx)) {
2194                        e100_rx_clean_list(nic);
2195                        return -ENOMEM;
2196                }
2197        }
2198        /* Set the el-bit on the buffer that is before the last buffer.
2199         * This lets us update the next pointer on the last buffer without
2200         * worrying about hardware touching it.
2201         * We set the size to 0 to prevent hardware from touching this buffer.
2202         * When the hardware hits the before last buffer with el-bit and size
2203         * of 0, it will RNR interrupt, the RU will go into the No Resources
2204         * state.  It will not complete nor write to this buffer. */
2205        rx = nic->rxs->prev->prev;
2206        before_last = (struct rfd *)rx->skb->data;
2207        before_last->command |= cpu_to_le16(cb_el);
2208        before_last->size = 0;
2209        pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2210                sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2211
2212        nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2213        nic->ru_running = RU_SUSPENDED;
2214
2215        return 0;
2216}
2217
2218static irqreturn_t e100_intr(int irq, void *dev_id)
2219{
2220        struct net_device *netdev = dev_id;
2221        struct nic *nic = netdev_priv(netdev);
2222        u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2223
2224        netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2225                     "stat_ack = 0x%02X\n", stat_ack);
2226
2227        if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2228           stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2229                return IRQ_NONE;
2230
2231        /* Ack interrupt(s) */
2232        iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2233
2234        /* We hit Receive No Resource (RNR); restart RU after cleaning */
2235        if (stat_ack & stat_ack_rnr)
2236                nic->ru_running = RU_SUSPENDED;
2237
2238        if (likely(napi_schedule_prep(&nic->napi))) {
2239                e100_disable_irq(nic);
2240                __napi_schedule(&nic->napi);
2241        }
2242
2243        return IRQ_HANDLED;
2244}
2245
2246static int e100_poll(struct napi_struct *napi, int budget)
2247{
2248        struct nic *nic = container_of(napi, struct nic, napi);
2249        unsigned int work_done = 0;
2250
2251        e100_rx_clean(nic, &work_done, budget);
2252        e100_tx_clean(nic);
2253
2254        /* If budget not fully consumed, exit the polling mode */
2255        if (work_done < budget) {
2256                napi_complete(napi);
2257                e100_enable_irq(nic);
2258        }
2259
2260        return work_done;
2261}
2262
2263#ifdef CONFIG_NET_POLL_CONTROLLER
2264static void e100_netpoll(struct net_device *netdev)
2265{
2266        struct nic *nic = netdev_priv(netdev);
2267
2268        e100_disable_irq(nic);
2269        e100_intr(nic->pdev->irq, netdev);
2270        e100_tx_clean(nic);
2271        e100_enable_irq(nic);
2272}
2273#endif
2274
2275static int e100_set_mac_address(struct net_device *netdev, void *p)
2276{
2277        struct nic *nic = netdev_priv(netdev);
2278        struct sockaddr *addr = p;
2279
2280        if (!is_valid_ether_addr(addr->sa_data))
2281                return -EADDRNOTAVAIL;
2282
2283        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2284        e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2285
2286        return 0;
2287}
2288
2289static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2290{
2291        if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2292                return -EINVAL;
2293        netdev->mtu = new_mtu;
2294        return 0;
2295}
2296
2297static int e100_asf(struct nic *nic)
2298{
2299        /* ASF can be enabled from eeprom */
2300        return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2301           (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2302           !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2303           ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2304}
2305
2306static int e100_up(struct nic *nic)
2307{
2308        int err;
2309
2310        if ((err = e100_rx_alloc_list(nic)))
2311                return err;
2312        if ((err = e100_alloc_cbs(nic)))
2313                goto err_rx_clean_list;
2314        if ((err = e100_hw_init(nic)))
2315                goto err_clean_cbs;
2316        e100_set_multicast_list(nic->netdev);
2317        e100_start_receiver(nic, NULL);
2318        mod_timer(&nic->watchdog, jiffies);
2319        if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2320                nic->netdev->name, nic->netdev)))
2321                goto err_no_irq;
2322        netif_wake_queue(nic->netdev);
2323        napi_enable(&nic->napi);
2324        /* enable ints _after_ enabling poll, preventing a race between
2325         * disable ints+schedule */
2326        e100_enable_irq(nic);
2327        return 0;
2328
2329err_no_irq:
2330        del_timer_sync(&nic->watchdog);
2331err_clean_cbs:
2332        e100_clean_cbs(nic);
2333err_rx_clean_list:
2334        e100_rx_clean_list(nic);
2335        return err;
2336}
2337
2338static void e100_down(struct nic *nic)
2339{
2340        /* wait here for poll to complete */
2341        napi_disable(&nic->napi);
2342        netif_stop_queue(nic->netdev);
2343        e100_hw_reset(nic);
2344        free_irq(nic->pdev->irq, nic->netdev);
2345        del_timer_sync(&nic->watchdog);
2346        netif_carrier_off(nic->netdev);
2347        e100_clean_cbs(nic);
2348        e100_rx_clean_list(nic);
2349}
2350
2351static void e100_tx_timeout(struct net_device *netdev)
2352{
2353        struct nic *nic = netdev_priv(netdev);
2354
2355        /* Reset outside of interrupt context, to avoid request_irq
2356         * in interrupt context */
2357        schedule_work(&nic->tx_timeout_task);
2358}
2359
2360static void e100_tx_timeout_task(struct work_struct *work)
2361{
2362        struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2363        struct net_device *netdev = nic->netdev;
2364
2365        netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2366                     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2367
2368        rtnl_lock();
2369        if (netif_running(netdev)) {
2370                e100_down(netdev_priv(netdev));
2371                e100_up(netdev_priv(netdev));
2372        }
2373        rtnl_unlock();
2374}
2375
2376static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2377{
2378        int err;
2379        struct sk_buff *skb;
2380
2381        /* Use driver resources to perform internal MAC or PHY
2382         * loopback test.  A single packet is prepared and transmitted
2383         * in loopback mode, and the test passes if the received
2384         * packet compares byte-for-byte to the transmitted packet. */
2385
2386        if ((err = e100_rx_alloc_list(nic)))
2387                return err;
2388        if ((err = e100_alloc_cbs(nic)))
2389                goto err_clean_rx;
2390
2391        /* ICH PHY loopback is broken so do MAC loopback instead */
2392        if (nic->flags & ich && loopback_mode == lb_phy)
2393                loopback_mode = lb_mac;
2394
2395        nic->loopback = loopback_mode;
2396        if ((err = e100_hw_init(nic)))
2397                goto err_loopback_none;
2398
2399        if (loopback_mode == lb_phy)
2400                mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2401                        BMCR_LOOPBACK);
2402
2403        e100_start_receiver(nic, NULL);
2404
2405        if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2406                err = -ENOMEM;
2407                goto err_loopback_none;
2408        }
2409        skb_put(skb, ETH_DATA_LEN);
2410        memset(skb->data, 0xFF, ETH_DATA_LEN);
2411        e100_xmit_frame(skb, nic->netdev);
2412
2413        msleep(10);
2414
2415        pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2416                        RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2417
2418        if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2419           skb->data, ETH_DATA_LEN))
2420                err = -EAGAIN;
2421
2422err_loopback_none:
2423        mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2424        nic->loopback = lb_none;
2425        e100_clean_cbs(nic);
2426        e100_hw_reset(nic);
2427err_clean_rx:
2428        e100_rx_clean_list(nic);
2429        return err;
2430}
2431
2432#define MII_LED_CONTROL 0x1B
2433#define E100_82552_LED_OVERRIDE 0x19
2434#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2435#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2436
2437static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2438{
2439        struct nic *nic = netdev_priv(netdev);
2440        return mii_ethtool_gset(&nic->mii, cmd);
2441}
2442
2443static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2444{
2445        struct nic *nic = netdev_priv(netdev);
2446        int err;
2447
2448        mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2449        err = mii_ethtool_sset(&nic->mii, cmd);
2450        e100_exec_cb(nic, NULL, e100_configure);
2451
2452        return err;
2453}
2454
2455static void e100_get_drvinfo(struct net_device *netdev,
2456        struct ethtool_drvinfo *info)
2457{
2458        struct nic *nic = netdev_priv(netdev);
2459        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2460        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2461        strlcpy(info->bus_info, pci_name(nic->pdev),
2462                sizeof(info->bus_info));
2463}
2464
2465#define E100_PHY_REGS 0x1C
2466static int e100_get_regs_len(struct net_device *netdev)
2467{
2468        struct nic *nic = netdev_priv(netdev);
2469        return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2470}
2471
2472static void e100_get_regs(struct net_device *netdev,
2473        struct ethtool_regs *regs, void *p)
2474{
2475        struct nic *nic = netdev_priv(netdev);
2476        u32 *buff = p;
2477        int i;
2478
2479        regs->version = (1 << 24) | nic->pdev->revision;
2480        buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2481                ioread8(&nic->csr->scb.cmd_lo) << 16 |
2482                ioread16(&nic->csr->scb.status);
2483        for (i = E100_PHY_REGS; i >= 0; i--)
2484                buff[1 + E100_PHY_REGS - i] =
2485                        mdio_read(netdev, nic->mii.phy_id, i);
2486        memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2487        e100_exec_cb(nic, NULL, e100_dump);
2488        msleep(10);
2489        memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2490                sizeof(nic->mem->dump_buf));
2491}
2492
2493static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2494{
2495        struct nic *nic = netdev_priv(netdev);
2496        wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2497        wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2498}
2499
2500static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2501{
2502        struct nic *nic = netdev_priv(netdev);
2503
2504        if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2505            !device_can_wakeup(&nic->pdev->dev))
2506                return -EOPNOTSUPP;
2507
2508        if (wol->wolopts)
2509                nic->flags |= wol_magic;
2510        else
2511                nic->flags &= ~wol_magic;
2512
2513        device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2514
2515        e100_exec_cb(nic, NULL, e100_configure);
2516
2517        return 0;
2518}
2519
2520static u32 e100_get_msglevel(struct net_device *netdev)
2521{
2522        struct nic *nic = netdev_priv(netdev);
2523        return nic->msg_enable;
2524}
2525
2526static void e100_set_msglevel(struct net_device *netdev, u32 value)
2527{
2528        struct nic *nic = netdev_priv(netdev);
2529        nic->msg_enable = value;
2530}
2531
2532static int e100_nway_reset(struct net_device *netdev)
2533{
2534        struct nic *nic = netdev_priv(netdev);
2535        return mii_nway_restart(&nic->mii);
2536}
2537
2538static u32 e100_get_link(struct net_device *netdev)
2539{
2540        struct nic *nic = netdev_priv(netdev);
2541        return mii_link_ok(&nic->mii);
2542}
2543
2544static int e100_get_eeprom_len(struct net_device *netdev)
2545{
2546        struct nic *nic = netdev_priv(netdev);
2547        return nic->eeprom_wc << 1;
2548}
2549
2550#define E100_EEPROM_MAGIC       0x1234
2551static int e100_get_eeprom(struct net_device *netdev,
2552        struct ethtool_eeprom *eeprom, u8 *bytes)
2553{
2554        struct nic *nic = netdev_priv(netdev);
2555
2556        eeprom->magic = E100_EEPROM_MAGIC;
2557        memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2558
2559        return 0;
2560}
2561
2562static int e100_set_eeprom(struct net_device *netdev,
2563        struct ethtool_eeprom *eeprom, u8 *bytes)
2564{
2565        struct nic *nic = netdev_priv(netdev);
2566
2567        if (eeprom->magic != E100_EEPROM_MAGIC)
2568                return -EINVAL;
2569
2570        memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2571
2572        return e100_eeprom_save(nic, eeprom->offset >> 1,
2573                (eeprom->len >> 1) + 1);
2574}
2575
2576static void e100_get_ringparam(struct net_device *netdev,
2577        struct ethtool_ringparam *ring)
2578{
2579        struct nic *nic = netdev_priv(netdev);
2580        struct param_range *rfds = &nic->params.rfds;
2581        struct param_range *cbs = &nic->params.cbs;
2582
2583        ring->rx_max_pending = rfds->max;
2584        ring->tx_max_pending = cbs->max;
2585        ring->rx_pending = rfds->count;
2586        ring->tx_pending = cbs->count;
2587}
2588
2589static int e100_set_ringparam(struct net_device *netdev,
2590        struct ethtool_ringparam *ring)
2591{
2592        struct nic *nic = netdev_priv(netdev);
2593        struct param_range *rfds = &nic->params.rfds;
2594        struct param_range *cbs = &nic->params.cbs;
2595
2596        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2597                return -EINVAL;
2598
2599        if (netif_running(netdev))
2600                e100_down(nic);
2601        rfds->count = max(ring->rx_pending, rfds->min);
2602        rfds->count = min(rfds->count, rfds->max);
2603        cbs->count = max(ring->tx_pending, cbs->min);
2604        cbs->count = min(cbs->count, cbs->max);
2605        netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2606                   rfds->count, cbs->count);
2607        if (netif_running(netdev))
2608                e100_up(nic);
2609
2610        return 0;
2611}
2612
2613static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2614        "Link test     (on/offline)",
2615        "Eeprom test   (on/offline)",
2616        "Self test        (offline)",
2617        "Mac loopback     (offline)",
2618        "Phy loopback     (offline)",
2619};
2620#define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2621
2622static void e100_diag_test(struct net_device *netdev,
2623        struct ethtool_test *test, u64 *data)
2624{
2625        struct ethtool_cmd cmd;
2626        struct nic *nic = netdev_priv(netdev);
2627        int i, err;
2628
2629        memset(data, 0, E100_TEST_LEN * sizeof(u64));
2630        data[0] = !mii_link_ok(&nic->mii);
2631        data[1] = e100_eeprom_load(nic);
2632        if (test->flags & ETH_TEST_FL_OFFLINE) {
2633
2634                /* save speed, duplex & autoneg settings */
2635                err = mii_ethtool_gset(&nic->mii, &cmd);
2636
2637                if (netif_running(netdev))
2638                        e100_down(nic);
2639                data[2] = e100_self_test(nic);
2640                data[3] = e100_loopback_test(nic, lb_mac);
2641                data[4] = e100_loopback_test(nic, lb_phy);
2642
2643                /* restore speed, duplex & autoneg settings */
2644                err = mii_ethtool_sset(&nic->mii, &cmd);
2645
2646                if (netif_running(netdev))
2647                        e100_up(nic);
2648        }
2649        for (i = 0; i < E100_TEST_LEN; i++)
2650                test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2651
2652        msleep_interruptible(4 * 1000);
2653}
2654
2655static int e100_set_phys_id(struct net_device *netdev,
2656                            enum ethtool_phys_id_state state)
2657{
2658        struct nic *nic = netdev_priv(netdev);
2659        enum led_state {
2660                led_on     = 0x01,
2661                led_off    = 0x04,
2662                led_on_559 = 0x05,
2663                led_on_557 = 0x07,
2664        };
2665        u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2666                MII_LED_CONTROL;
2667        u16 leds = 0;
2668
2669        switch (state) {
2670        case ETHTOOL_ID_ACTIVE:
2671                return 2;
2672
2673        case ETHTOOL_ID_ON:
2674                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2675                       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2676                break;
2677
2678        case ETHTOOL_ID_OFF:
2679                leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2680                break;
2681
2682        case ETHTOOL_ID_INACTIVE:
2683                break;
2684        }
2685
2686        mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2687        return 0;
2688}
2689
2690static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2691        "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2692        "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2693        "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2694        "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2695        "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2696        "tx_heartbeat_errors", "tx_window_errors",
2697        /* device-specific stats */
2698        "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2699        "tx_flow_control_pause", "rx_flow_control_pause",
2700        "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2701        "rx_short_frame_errors", "rx_over_length_errors",
2702};
2703#define E100_NET_STATS_LEN      21
2704#define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2705
2706static int e100_get_sset_count(struct net_device *netdev, int sset)
2707{
2708        switch (sset) {
2709        case ETH_SS_TEST:
2710                return E100_TEST_LEN;
2711        case ETH_SS_STATS:
2712                return E100_STATS_LEN;
2713        default:
2714                return -EOPNOTSUPP;
2715        }
2716}
2717
2718static void e100_get_ethtool_stats(struct net_device *netdev,
2719        struct ethtool_stats *stats, u64 *data)
2720{
2721        struct nic *nic = netdev_priv(netdev);
2722        int i;
2723
2724        for (i = 0; i < E100_NET_STATS_LEN; i++)
2725                data[i] = ((unsigned long *)&netdev->stats)[i];
2726
2727        data[i++] = nic->tx_deferred;
2728        data[i++] = nic->tx_single_collisions;
2729        data[i++] = nic->tx_multiple_collisions;
2730        data[i++] = nic->tx_fc_pause;
2731        data[i++] = nic->rx_fc_pause;
2732        data[i++] = nic->rx_fc_unsupported;
2733        data[i++] = nic->tx_tco_frames;
2734        data[i++] = nic->rx_tco_frames;
2735        data[i++] = nic->rx_short_frame_errors;
2736        data[i++] = nic->rx_over_length_errors;
2737}
2738
2739static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2740{
2741        switch (stringset) {
2742        case ETH_SS_TEST:
2743                memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2744                break;
2745        case ETH_SS_STATS:
2746                memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2747                break;
2748        }
2749}
2750
2751static const struct ethtool_ops e100_ethtool_ops = {
2752        .get_settings           = e100_get_settings,
2753        .set_settings           = e100_set_settings,
2754        .get_drvinfo            = e100_get_drvinfo,
2755        .get_regs_len           = e100_get_regs_len,
2756        .get_regs               = e100_get_regs,
2757        .get_wol                = e100_get_wol,
2758        .set_wol                = e100_set_wol,
2759        .get_msglevel           = e100_get_msglevel,
2760        .set_msglevel           = e100_set_msglevel,
2761        .nway_reset             = e100_nway_reset,
2762        .get_link               = e100_get_link,
2763        .get_eeprom_len         = e100_get_eeprom_len,
2764        .get_eeprom             = e100_get_eeprom,
2765        .set_eeprom             = e100_set_eeprom,
2766        .get_ringparam          = e100_get_ringparam,
2767        .set_ringparam          = e100_set_ringparam,
2768        .self_test              = e100_diag_test,
2769        .get_strings            = e100_get_strings,
2770        .set_phys_id            = e100_set_phys_id,
2771        .get_ethtool_stats      = e100_get_ethtool_stats,
2772        .get_sset_count         = e100_get_sset_count,
2773        .get_ts_info            = ethtool_op_get_ts_info,
2774};
2775
2776static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2777{
2778        struct nic *nic = netdev_priv(netdev);
2779
2780        return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2781}
2782
2783static int e100_alloc(struct nic *nic)
2784{
2785        nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2786                &nic->dma_addr);
2787        return nic->mem ? 0 : -ENOMEM;
2788}
2789
2790static void e100_free(struct nic *nic)
2791{
2792        if (nic->mem) {
2793                pci_free_consistent(nic->pdev, sizeof(struct mem),
2794                        nic->mem, nic->dma_addr);
2795                nic->mem = NULL;
2796        }
2797}
2798
2799static int e100_open(struct net_device *netdev)
2800{
2801        struct nic *nic = netdev_priv(netdev);
2802        int err = 0;
2803
2804        netif_carrier_off(netdev);
2805        if ((err = e100_up(nic)))
2806                netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2807        return err;
2808}
2809
2810static int e100_close(struct net_device *netdev)
2811{
2812        e100_down(netdev_priv(netdev));
2813        return 0;
2814}
2815
2816static int e100_set_features(struct net_device *netdev,
2817                             netdev_features_t features)
2818{
2819        struct nic *nic = netdev_priv(netdev);
2820        netdev_features_t changed = features ^ netdev->features;
2821
2822        if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2823                return 0;
2824
2825        netdev->features = features;
2826        e100_exec_cb(nic, NULL, e100_configure);
2827        return 0;
2828}
2829
2830static const struct net_device_ops e100_netdev_ops = {
2831        .ndo_open               = e100_open,
2832        .ndo_stop               = e100_close,
2833        .ndo_start_xmit         = e100_xmit_frame,
2834        .ndo_validate_addr      = eth_validate_addr,
2835        .ndo_set_rx_mode        = e100_set_multicast_list,
2836        .ndo_set_mac_address    = e100_set_mac_address,
2837        .ndo_change_mtu         = e100_change_mtu,
2838        .ndo_do_ioctl           = e100_do_ioctl,
2839        .ndo_tx_timeout         = e100_tx_timeout,
2840#ifdef CONFIG_NET_POLL_CONTROLLER
2841        .ndo_poll_controller    = e100_netpoll,
2842#endif
2843        .ndo_set_features       = e100_set_features,
2844};
2845
2846static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2847{
2848        struct net_device *netdev;
2849        struct nic *nic;
2850        int err;
2851
2852        if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2853                return -ENOMEM;
2854
2855        netdev->hw_features |= NETIF_F_RXFCS;
2856        netdev->priv_flags |= IFF_SUPP_NOFCS;
2857        netdev->hw_features |= NETIF_F_RXALL;
2858
2859        netdev->netdev_ops = &e100_netdev_ops;
2860        SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2861        netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2862        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2863
2864        nic = netdev_priv(netdev);
2865        netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2866        nic->netdev = netdev;
2867        nic->pdev = pdev;
2868        nic->msg_enable = (1 << debug) - 1;
2869        nic->mdio_ctrl = mdio_ctrl_hw;
2870        pci_set_drvdata(pdev, netdev);
2871
2872        if ((err = pci_enable_device(pdev))) {
2873                netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2874                goto err_out_free_dev;
2875        }
2876
2877        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2878                netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2879                err = -ENODEV;
2880                goto err_out_disable_pdev;
2881        }
2882
2883        if ((err = pci_request_regions(pdev, DRV_NAME))) {
2884                netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2885                goto err_out_disable_pdev;
2886        }
2887
2888        if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2889                netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2890                goto err_out_free_res;
2891        }
2892
2893        SET_NETDEV_DEV(netdev, &pdev->dev);
2894
2895        if (use_io)
2896                netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2897
2898        nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2899        if (!nic->csr) {
2900                netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2901                err = -ENOMEM;
2902                goto err_out_free_res;
2903        }
2904
2905        if (ent->driver_data)
2906                nic->flags |= ich;
2907        else
2908                nic->flags &= ~ich;
2909
2910        e100_get_defaults(nic);
2911
2912        /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2913        if (nic->mac < mac_82558_D101_A4)
2914                netdev->features |= NETIF_F_VLAN_CHALLENGED;
2915
2916        /* locks must be initialized before calling hw_reset */
2917        spin_lock_init(&nic->cb_lock);
2918        spin_lock_init(&nic->cmd_lock);
2919        spin_lock_init(&nic->mdio_lock);
2920
2921        /* Reset the device before pci_set_master() in case device is in some
2922         * funky state and has an interrupt pending - hint: we don't have the
2923         * interrupt handler registered yet. */
2924        e100_hw_reset(nic);
2925
2926        pci_set_master(pdev);
2927
2928        init_timer(&nic->watchdog);
2929        nic->watchdog.function = e100_watchdog;
2930        nic->watchdog.data = (unsigned long)nic;
2931
2932        INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2933
2934        if ((err = e100_alloc(nic))) {
2935                netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2936                goto err_out_iounmap;
2937        }
2938
2939        if ((err = e100_eeprom_load(nic)))
2940                goto err_out_free;
2941
2942        e100_phy_init(nic);
2943
2944        memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2945        if (!is_valid_ether_addr(netdev->dev_addr)) {
2946                if (!eeprom_bad_csum_allow) {
2947                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2948                        err = -EAGAIN;
2949                        goto err_out_free;
2950                } else {
2951                        netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2952                }
2953        }
2954
2955        /* Wol magic packet can be enabled from eeprom */
2956        if ((nic->mac >= mac_82558_D101_A4) &&
2957           (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2958                nic->flags |= wol_magic;
2959                device_set_wakeup_enable(&pdev->dev, true);
2960        }
2961
2962        /* ack any pending wake events, disable PME */
2963        pci_pme_active(pdev, false);
2964
2965        strcpy(netdev->name, "eth%d");
2966        if ((err = register_netdev(netdev))) {
2967                netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2968                goto err_out_free;
2969        }
2970        nic->cbs_pool = pci_pool_create(netdev->name,
2971                           nic->pdev,
2972                           nic->params.cbs.max * sizeof(struct cb),
2973                           sizeof(u32),
2974                           0);
2975        netif_info(nic, probe, nic->netdev,
2976                   "addr 0x%llx, irq %d, MAC addr %pM\n",
2977                   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2978                   pdev->irq, netdev->dev_addr);
2979
2980        return 0;
2981
2982err_out_free:
2983        e100_free(nic);
2984err_out_iounmap:
2985        pci_iounmap(pdev, nic->csr);
2986err_out_free_res:
2987        pci_release_regions(pdev);
2988err_out_disable_pdev:
2989        pci_disable_device(pdev);
2990err_out_free_dev:
2991        pci_set_drvdata(pdev, NULL);
2992        free_netdev(netdev);
2993        return err;
2994}
2995
2996static void e100_remove(struct pci_dev *pdev)
2997{
2998        struct net_device *netdev = pci_get_drvdata(pdev);
2999
3000        if (netdev) {
3001                struct nic *nic = netdev_priv(netdev);
3002                unregister_netdev(netdev);
3003                e100_free(nic);
3004                pci_iounmap(pdev, nic->csr);
3005                pci_pool_destroy(nic->cbs_pool);
3006                free_netdev(netdev);
3007                pci_release_regions(pdev);
3008                pci_disable_device(pdev);
3009                pci_set_drvdata(pdev, NULL);
3010        }
3011}
3012
3013#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3014#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3015#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3016static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3017{
3018        struct net_device *netdev = pci_get_drvdata(pdev);
3019        struct nic *nic = netdev_priv(netdev);
3020
3021        if (netif_running(netdev))
3022                e100_down(nic);
3023        netif_device_detach(netdev);
3024
3025        pci_save_state(pdev);
3026
3027        if ((nic->flags & wol_magic) | e100_asf(nic)) {
3028                /* enable reverse auto-negotiation */
3029                if (nic->phy == phy_82552_v) {
3030                        u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3031                                                   E100_82552_SMARTSPEED);
3032
3033                        mdio_write(netdev, nic->mii.phy_id,
3034                                   E100_82552_SMARTSPEED, smartspeed |
3035                                   E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3036                }
3037                *enable_wake = true;
3038        } else {
3039                *enable_wake = false;
3040        }
3041
3042        pci_disable_device(pdev);
3043}
3044
3045static int __e100_power_off(struct pci_dev *pdev, bool wake)
3046{
3047        if (wake)
3048                return pci_prepare_to_sleep(pdev);
3049
3050        pci_wake_from_d3(pdev, false);
3051        pci_set_power_state(pdev, PCI_D3hot);
3052
3053        return 0;
3054}
3055
3056#ifdef CONFIG_PM
3057static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3058{
3059        bool wake;
3060        __e100_shutdown(pdev, &wake);
3061        return __e100_power_off(pdev, wake);
3062}
3063
3064static int e100_resume(struct pci_dev *pdev)
3065{
3066        struct net_device *netdev = pci_get_drvdata(pdev);
3067        struct nic *nic = netdev_priv(netdev);
3068
3069        pci_set_power_state(pdev, PCI_D0);
3070        pci_restore_state(pdev);
3071        /* ack any pending wake events, disable PME */
3072        pci_enable_wake(pdev, PCI_D0, 0);
3073
3074        /* disable reverse auto-negotiation */
3075        if (nic->phy == phy_82552_v) {
3076                u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3077                                           E100_82552_SMARTSPEED);
3078
3079                mdio_write(netdev, nic->mii.phy_id,
3080                           E100_82552_SMARTSPEED,
3081                           smartspeed & ~(E100_82552_REV_ANEG));
3082        }
3083
3084        netif_device_attach(netdev);
3085        if (netif_running(netdev))
3086                e100_up(nic);
3087
3088        return 0;
3089}
3090#endif /* CONFIG_PM */
3091
3092static void e100_shutdown(struct pci_dev *pdev)
3093{
3094        bool wake;
3095        __e100_shutdown(pdev, &wake);
3096        if (system_state == SYSTEM_POWER_OFF)
3097                __e100_power_off(pdev, wake);
3098}
3099
3100/* ------------------ PCI Error Recovery infrastructure  -------------- */
3101/**
3102 * e100_io_error_detected - called when PCI error is detected.
3103 * @pdev: Pointer to PCI device
3104 * @state: The current pci connection state
3105 */
3106static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3107{
3108        struct net_device *netdev = pci_get_drvdata(pdev);
3109        struct nic *nic = netdev_priv(netdev);
3110
3111        netif_device_detach(netdev);
3112
3113        if (state == pci_channel_io_perm_failure)
3114                return PCI_ERS_RESULT_DISCONNECT;
3115
3116        if (netif_running(netdev))
3117                e100_down(nic);
3118        pci_disable_device(pdev);
3119
3120        /* Request a slot reset. */
3121        return PCI_ERS_RESULT_NEED_RESET;
3122}
3123
3124/**
3125 * e100_io_slot_reset - called after the pci bus has been reset.
3126 * @pdev: Pointer to PCI device
3127 *
3128 * Restart the card from scratch.
3129 */
3130static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3131{
3132        struct net_device *netdev = pci_get_drvdata(pdev);
3133        struct nic *nic = netdev_priv(netdev);
3134
3135        if (pci_enable_device(pdev)) {
3136                pr_err("Cannot re-enable PCI device after reset\n");
3137                return PCI_ERS_RESULT_DISCONNECT;
3138        }
3139        pci_set_master(pdev);
3140
3141        /* Only one device per card can do a reset */
3142        if (0 != PCI_FUNC(pdev->devfn))
3143                return PCI_ERS_RESULT_RECOVERED;
3144        e100_hw_reset(nic);
3145        e100_phy_init(nic);
3146
3147        return PCI_ERS_RESULT_RECOVERED;
3148}
3149
3150/**
3151 * e100_io_resume - resume normal operations
3152 * @pdev: Pointer to PCI device
3153 *
3154 * Resume normal operations after an error recovery
3155 * sequence has been completed.
3156 */
3157static void e100_io_resume(struct pci_dev *pdev)
3158{
3159        struct net_device *netdev = pci_get_drvdata(pdev);
3160        struct nic *nic = netdev_priv(netdev);
3161
3162        /* ack any pending wake events, disable PME */
3163        pci_enable_wake(pdev, PCI_D0, 0);
3164
3165        netif_device_attach(netdev);
3166        if (netif_running(netdev)) {
3167                e100_open(netdev);
3168                mod_timer(&nic->watchdog, jiffies);
3169        }
3170}
3171
3172static const struct pci_error_handlers e100_err_handler = {
3173        .error_detected = e100_io_error_detected,
3174        .slot_reset = e100_io_slot_reset,
3175        .resume = e100_io_resume,
3176};
3177
3178static struct pci_driver e100_driver = {
3179        .name =         DRV_NAME,
3180        .id_table =     e100_id_table,
3181        .probe =        e100_probe,
3182        .remove =       e100_remove,
3183#ifdef CONFIG_PM
3184        /* Power Management hooks */
3185        .suspend =      e100_suspend,
3186        .resume =       e100_resume,
3187#endif
3188        .shutdown =     e100_shutdown,
3189        .err_handler = &e100_err_handler,
3190};
3191
3192static int __init e100_init_module(void)
3193{
3194        if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3195                pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3196                pr_info("%s\n", DRV_COPYRIGHT);
3197        }
3198        return pci_register_driver(&e100_driver);
3199}
3200
3201static void __exit e100_cleanup_module(void)
3202{
3203        pci_unregister_driver(&e100_driver);
3204}
3205
3206module_init(e100_init_module);
3207module_exit(e100_cleanup_module);
3208