linux/drivers/net/ethernet/intel/e1000/e1000_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  50        INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51        INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52        INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53        INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54        INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55        INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56        INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57        INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58        INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59        INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60        INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61        INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62        INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63        INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64        INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65        INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66        INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67        INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68        INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69        INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70        INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71        INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72        INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73        INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74        INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75        INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76        INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77        INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78        INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79        INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80        INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81        INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82        INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83        INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84        INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85        INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86        INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87        /* required last entry */
  88        {0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                             struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                             struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                             struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                             struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133                                    struct net_device *netdev);
 134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139                               struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142                               struct e1000_rx_ring *rx_ring,
 143                               int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145                                     struct e1000_rx_ring *rx_ring,
 146                                     int *work_done, int work_to_do);
 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 148                                   struct e1000_rx_ring *rx_ring,
 149                                   int cleaned_count);
 150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 151                                         struct e1000_rx_ring *rx_ring,
 152                                         int cleaned_count);
 153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 155                           int cmd);
 156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 158static void e1000_tx_timeout(struct net_device *dev);
 159static void e1000_reset_task(struct work_struct *work);
 160static void e1000_smartspeed(struct e1000_adapter *adapter);
 161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 162                                       struct sk_buff *skb);
 163
 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
 165static void e1000_vlan_mode(struct net_device *netdev,
 166                            netdev_features_t features);
 167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 168                                     bool filter_on);
 169static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 170                                 __be16 proto, u16 vid);
 171static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 172                                  __be16 proto, u16 vid);
 173static void e1000_restore_vlan(struct e1000_adapter *adapter);
 174
 175#ifdef CONFIG_PM
 176static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 177static int e1000_resume(struct pci_dev *pdev);
 178#endif
 179static void e1000_shutdown(struct pci_dev *pdev);
 180
 181#ifdef CONFIG_NET_POLL_CONTROLLER
 182/* for netdump / net console */
 183static void e1000_netpoll (struct net_device *netdev);
 184#endif
 185
 186#define COPYBREAK_DEFAULT 256
 187static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 188module_param(copybreak, uint, 0644);
 189MODULE_PARM_DESC(copybreak,
 190        "Maximum size of packet that is copied to a new buffer on receive");
 191
 192static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 193                     pci_channel_state_t state);
 194static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 195static void e1000_io_resume(struct pci_dev *pdev);
 196
 197static const struct pci_error_handlers e1000_err_handler = {
 198        .error_detected = e1000_io_error_detected,
 199        .slot_reset = e1000_io_slot_reset,
 200        .resume = e1000_io_resume,
 201};
 202
 203static struct pci_driver e1000_driver = {
 204        .name     = e1000_driver_name,
 205        .id_table = e1000_pci_tbl,
 206        .probe    = e1000_probe,
 207        .remove   = e1000_remove,
 208#ifdef CONFIG_PM
 209        /* Power Management Hooks */
 210        .suspend  = e1000_suspend,
 211        .resume   = e1000_resume,
 212#endif
 213        .shutdown = e1000_shutdown,
 214        .err_handler = &e1000_err_handler
 215};
 216
 217MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 218MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 219MODULE_LICENSE("GPL");
 220MODULE_VERSION(DRV_VERSION);
 221
 222#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 223static int debug = -1;
 224module_param(debug, int, 0);
 225MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 226
 227/**
 228 * e1000_get_hw_dev - return device
 229 * used by hardware layer to print debugging information
 230 *
 231 **/
 232struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 233{
 234        struct e1000_adapter *adapter = hw->back;
 235        return adapter->netdev;
 236}
 237
 238/**
 239 * e1000_init_module - Driver Registration Routine
 240 *
 241 * e1000_init_module is the first routine called when the driver is
 242 * loaded. All it does is register with the PCI subsystem.
 243 **/
 244static int __init e1000_init_module(void)
 245{
 246        int ret;
 247        pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 248
 249        pr_info("%s\n", e1000_copyright);
 250
 251        ret = pci_register_driver(&e1000_driver);
 252        if (copybreak != COPYBREAK_DEFAULT) {
 253                if (copybreak == 0)
 254                        pr_info("copybreak disabled\n");
 255                else
 256                        pr_info("copybreak enabled for "
 257                                   "packets <= %u bytes\n", copybreak);
 258        }
 259        return ret;
 260}
 261
 262module_init(e1000_init_module);
 263
 264/**
 265 * e1000_exit_module - Driver Exit Cleanup Routine
 266 *
 267 * e1000_exit_module is called just before the driver is removed
 268 * from memory.
 269 **/
 270static void __exit e1000_exit_module(void)
 271{
 272        pci_unregister_driver(&e1000_driver);
 273}
 274
 275module_exit(e1000_exit_module);
 276
 277static int e1000_request_irq(struct e1000_adapter *adapter)
 278{
 279        struct net_device *netdev = adapter->netdev;
 280        irq_handler_t handler = e1000_intr;
 281        int irq_flags = IRQF_SHARED;
 282        int err;
 283
 284        err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 285                          netdev);
 286        if (err) {
 287                e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 288        }
 289
 290        return err;
 291}
 292
 293static void e1000_free_irq(struct e1000_adapter *adapter)
 294{
 295        struct net_device *netdev = adapter->netdev;
 296
 297        free_irq(adapter->pdev->irq, netdev);
 298}
 299
 300/**
 301 * e1000_irq_disable - Mask off interrupt generation on the NIC
 302 * @adapter: board private structure
 303 **/
 304static void e1000_irq_disable(struct e1000_adapter *adapter)
 305{
 306        struct e1000_hw *hw = &adapter->hw;
 307
 308        ew32(IMC, ~0);
 309        E1000_WRITE_FLUSH();
 310        synchronize_irq(adapter->pdev->irq);
 311}
 312
 313/**
 314 * e1000_irq_enable - Enable default interrupt generation settings
 315 * @adapter: board private structure
 316 **/
 317static void e1000_irq_enable(struct e1000_adapter *adapter)
 318{
 319        struct e1000_hw *hw = &adapter->hw;
 320
 321        ew32(IMS, IMS_ENABLE_MASK);
 322        E1000_WRITE_FLUSH();
 323}
 324
 325static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 326{
 327        struct e1000_hw *hw = &adapter->hw;
 328        struct net_device *netdev = adapter->netdev;
 329        u16 vid = hw->mng_cookie.vlan_id;
 330        u16 old_vid = adapter->mng_vlan_id;
 331
 332        if (!e1000_vlan_used(adapter))
 333                return;
 334
 335        if (!test_bit(vid, adapter->active_vlans)) {
 336                if (hw->mng_cookie.status &
 337                    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 338                        e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 339                        adapter->mng_vlan_id = vid;
 340                } else {
 341                        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 342                }
 343                if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 344                    (vid != old_vid) &&
 345                    !test_bit(old_vid, adapter->active_vlans))
 346                        e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 347                                               old_vid);
 348        } else {
 349                adapter->mng_vlan_id = vid;
 350        }
 351}
 352
 353static void e1000_init_manageability(struct e1000_adapter *adapter)
 354{
 355        struct e1000_hw *hw = &adapter->hw;
 356
 357        if (adapter->en_mng_pt) {
 358                u32 manc = er32(MANC);
 359
 360                /* disable hardware interception of ARP */
 361                manc &= ~(E1000_MANC_ARP_EN);
 362
 363                ew32(MANC, manc);
 364        }
 365}
 366
 367static void e1000_release_manageability(struct e1000_adapter *adapter)
 368{
 369        struct e1000_hw *hw = &adapter->hw;
 370
 371        if (adapter->en_mng_pt) {
 372                u32 manc = er32(MANC);
 373
 374                /* re-enable hardware interception of ARP */
 375                manc |= E1000_MANC_ARP_EN;
 376
 377                ew32(MANC, manc);
 378        }
 379}
 380
 381/**
 382 * e1000_configure - configure the hardware for RX and TX
 383 * @adapter = private board structure
 384 **/
 385static void e1000_configure(struct e1000_adapter *adapter)
 386{
 387        struct net_device *netdev = adapter->netdev;
 388        int i;
 389
 390        e1000_set_rx_mode(netdev);
 391
 392        e1000_restore_vlan(adapter);
 393        e1000_init_manageability(adapter);
 394
 395        e1000_configure_tx(adapter);
 396        e1000_setup_rctl(adapter);
 397        e1000_configure_rx(adapter);
 398        /* call E1000_DESC_UNUSED which always leaves
 399         * at least 1 descriptor unused to make sure
 400         * next_to_use != next_to_clean
 401         */
 402        for (i = 0; i < adapter->num_rx_queues; i++) {
 403                struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 404                adapter->alloc_rx_buf(adapter, ring,
 405                                      E1000_DESC_UNUSED(ring));
 406        }
 407}
 408
 409int e1000_up(struct e1000_adapter *adapter)
 410{
 411        struct e1000_hw *hw = &adapter->hw;
 412
 413        /* hardware has been reset, we need to reload some things */
 414        e1000_configure(adapter);
 415
 416        clear_bit(__E1000_DOWN, &adapter->flags);
 417
 418        napi_enable(&adapter->napi);
 419
 420        e1000_irq_enable(adapter);
 421
 422        netif_wake_queue(adapter->netdev);
 423
 424        /* fire a link change interrupt to start the watchdog */
 425        ew32(ICS, E1000_ICS_LSC);
 426        return 0;
 427}
 428
 429/**
 430 * e1000_power_up_phy - restore link in case the phy was powered down
 431 * @adapter: address of board private structure
 432 *
 433 * The phy may be powered down to save power and turn off link when the
 434 * driver is unloaded and wake on lan is not enabled (among others)
 435 * *** this routine MUST be followed by a call to e1000_reset ***
 436 **/
 437void e1000_power_up_phy(struct e1000_adapter *adapter)
 438{
 439        struct e1000_hw *hw = &adapter->hw;
 440        u16 mii_reg = 0;
 441
 442        /* Just clear the power down bit to wake the phy back up */
 443        if (hw->media_type == e1000_media_type_copper) {
 444                /* according to the manual, the phy will retain its
 445                 * settings across a power-down/up cycle
 446                 */
 447                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 448                mii_reg &= ~MII_CR_POWER_DOWN;
 449                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 450        }
 451}
 452
 453static void e1000_power_down_phy(struct e1000_adapter *adapter)
 454{
 455        struct e1000_hw *hw = &adapter->hw;
 456
 457        /* Power down the PHY so no link is implied when interface is down *
 458         * The PHY cannot be powered down if any of the following is true *
 459         * (a) WoL is enabled
 460         * (b) AMT is active
 461         * (c) SoL/IDER session is active
 462         */
 463        if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 464           hw->media_type == e1000_media_type_copper) {
 465                u16 mii_reg = 0;
 466
 467                switch (hw->mac_type) {
 468                case e1000_82540:
 469                case e1000_82545:
 470                case e1000_82545_rev_3:
 471                case e1000_82546:
 472                case e1000_ce4100:
 473                case e1000_82546_rev_3:
 474                case e1000_82541:
 475                case e1000_82541_rev_2:
 476                case e1000_82547:
 477                case e1000_82547_rev_2:
 478                        if (er32(MANC) & E1000_MANC_SMBUS_EN)
 479                                goto out;
 480                        break;
 481                default:
 482                        goto out;
 483                }
 484                e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 485                mii_reg |= MII_CR_POWER_DOWN;
 486                e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 487                msleep(1);
 488        }
 489out:
 490        return;
 491}
 492
 493static void e1000_down_and_stop(struct e1000_adapter *adapter)
 494{
 495        set_bit(__E1000_DOWN, &adapter->flags);
 496
 497        /* Only kill reset task if adapter is not resetting */
 498        if (!test_bit(__E1000_RESETTING, &adapter->flags))
 499                cancel_work_sync(&adapter->reset_task);
 500
 501        cancel_delayed_work_sync(&adapter->watchdog_task);
 502        cancel_delayed_work_sync(&adapter->phy_info_task);
 503        cancel_delayed_work_sync(&adapter->fifo_stall_task);
 504}
 505
 506void e1000_down(struct e1000_adapter *adapter)
 507{
 508        struct e1000_hw *hw = &adapter->hw;
 509        struct net_device *netdev = adapter->netdev;
 510        u32 rctl, tctl;
 511
 512
 513        /* disable receives in the hardware */
 514        rctl = er32(RCTL);
 515        ew32(RCTL, rctl & ~E1000_RCTL_EN);
 516        /* flush and sleep below */
 517
 518        netif_tx_disable(netdev);
 519
 520        /* disable transmits in the hardware */
 521        tctl = er32(TCTL);
 522        tctl &= ~E1000_TCTL_EN;
 523        ew32(TCTL, tctl);
 524        /* flush both disables and wait for them to finish */
 525        E1000_WRITE_FLUSH();
 526        msleep(10);
 527
 528        napi_disable(&adapter->napi);
 529
 530        e1000_irq_disable(adapter);
 531
 532        /* Setting DOWN must be after irq_disable to prevent
 533         * a screaming interrupt.  Setting DOWN also prevents
 534         * tasks from rescheduling.
 535         */
 536        e1000_down_and_stop(adapter);
 537
 538        adapter->link_speed = 0;
 539        adapter->link_duplex = 0;
 540        netif_carrier_off(netdev);
 541
 542        e1000_reset(adapter);
 543        e1000_clean_all_tx_rings(adapter);
 544        e1000_clean_all_rx_rings(adapter);
 545}
 546
 547static void e1000_reinit_safe(struct e1000_adapter *adapter)
 548{
 549        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 550                msleep(1);
 551        mutex_lock(&adapter->mutex);
 552        e1000_down(adapter);
 553        e1000_up(adapter);
 554        mutex_unlock(&adapter->mutex);
 555        clear_bit(__E1000_RESETTING, &adapter->flags);
 556}
 557
 558void e1000_reinit_locked(struct e1000_adapter *adapter)
 559{
 560        /* if rtnl_lock is not held the call path is bogus */
 561        ASSERT_RTNL();
 562        WARN_ON(in_interrupt());
 563        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 564                msleep(1);
 565        e1000_down(adapter);
 566        e1000_up(adapter);
 567        clear_bit(__E1000_RESETTING, &adapter->flags);
 568}
 569
 570void e1000_reset(struct e1000_adapter *adapter)
 571{
 572        struct e1000_hw *hw = &adapter->hw;
 573        u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 574        bool legacy_pba_adjust = false;
 575        u16 hwm;
 576
 577        /* Repartition Pba for greater than 9k mtu
 578         * To take effect CTRL.RST is required.
 579         */
 580
 581        switch (hw->mac_type) {
 582        case e1000_82542_rev2_0:
 583        case e1000_82542_rev2_1:
 584        case e1000_82543:
 585        case e1000_82544:
 586        case e1000_82540:
 587        case e1000_82541:
 588        case e1000_82541_rev_2:
 589                legacy_pba_adjust = true;
 590                pba = E1000_PBA_48K;
 591                break;
 592        case e1000_82545:
 593        case e1000_82545_rev_3:
 594        case e1000_82546:
 595        case e1000_ce4100:
 596        case e1000_82546_rev_3:
 597                pba = E1000_PBA_48K;
 598                break;
 599        case e1000_82547:
 600        case e1000_82547_rev_2:
 601                legacy_pba_adjust = true;
 602                pba = E1000_PBA_30K;
 603                break;
 604        case e1000_undefined:
 605        case e1000_num_macs:
 606                break;
 607        }
 608
 609        if (legacy_pba_adjust) {
 610                if (hw->max_frame_size > E1000_RXBUFFER_8192)
 611                        pba -= 8; /* allocate more FIFO for Tx */
 612
 613                if (hw->mac_type == e1000_82547) {
 614                        adapter->tx_fifo_head = 0;
 615                        adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 616                        adapter->tx_fifo_size =
 617                                (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 618                        atomic_set(&adapter->tx_fifo_stall, 0);
 619                }
 620        } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 621                /* adjust PBA for jumbo frames */
 622                ew32(PBA, pba);
 623
 624                /* To maintain wire speed transmits, the Tx FIFO should be
 625                 * large enough to accommodate two full transmit packets,
 626                 * rounded up to the next 1KB and expressed in KB.  Likewise,
 627                 * the Rx FIFO should be large enough to accommodate at least
 628                 * one full receive packet and is similarly rounded up and
 629                 * expressed in KB.
 630                 */
 631                pba = er32(PBA);
 632                /* upper 16 bits has Tx packet buffer allocation size in KB */
 633                tx_space = pba >> 16;
 634                /* lower 16 bits has Rx packet buffer allocation size in KB */
 635                pba &= 0xffff;
 636                /* the Tx fifo also stores 16 bytes of information about the Tx
 637                 * but don't include ethernet FCS because hardware appends it
 638                 */
 639                min_tx_space = (hw->max_frame_size +
 640                                sizeof(struct e1000_tx_desc) -
 641                                ETH_FCS_LEN) * 2;
 642                min_tx_space = ALIGN(min_tx_space, 1024);
 643                min_tx_space >>= 10;
 644                /* software strips receive CRC, so leave room for it */
 645                min_rx_space = hw->max_frame_size;
 646                min_rx_space = ALIGN(min_rx_space, 1024);
 647                min_rx_space >>= 10;
 648
 649                /* If current Tx allocation is less than the min Tx FIFO size,
 650                 * and the min Tx FIFO size is less than the current Rx FIFO
 651                 * allocation, take space away from current Rx allocation
 652                 */
 653                if (tx_space < min_tx_space &&
 654                    ((min_tx_space - tx_space) < pba)) {
 655                        pba = pba - (min_tx_space - tx_space);
 656
 657                        /* PCI/PCIx hardware has PBA alignment constraints */
 658                        switch (hw->mac_type) {
 659                        case e1000_82545 ... e1000_82546_rev_3:
 660                                pba &= ~(E1000_PBA_8K - 1);
 661                                break;
 662                        default:
 663                                break;
 664                        }
 665
 666                        /* if short on Rx space, Rx wins and must trump Tx
 667                         * adjustment or use Early Receive if available
 668                         */
 669                        if (pba < min_rx_space)
 670                                pba = min_rx_space;
 671                }
 672        }
 673
 674        ew32(PBA, pba);
 675
 676        /* flow control settings:
 677         * The high water mark must be low enough to fit one full frame
 678         * (or the size used for early receive) above it in the Rx FIFO.
 679         * Set it to the lower of:
 680         * - 90% of the Rx FIFO size, and
 681         * - the full Rx FIFO size minus the early receive size (for parts
 682         *   with ERT support assuming ERT set to E1000_ERT_2048), or
 683         * - the full Rx FIFO size minus one full frame
 684         */
 685        hwm = min(((pba << 10) * 9 / 10),
 686                  ((pba << 10) - hw->max_frame_size));
 687
 688        hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
 689        hw->fc_low_water = hw->fc_high_water - 8;
 690        hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 691        hw->fc_send_xon = 1;
 692        hw->fc = hw->original_fc;
 693
 694        /* Allow time for pending master requests to run */
 695        e1000_reset_hw(hw);
 696        if (hw->mac_type >= e1000_82544)
 697                ew32(WUC, 0);
 698
 699        if (e1000_init_hw(hw))
 700                e_dev_err("Hardware Error\n");
 701        e1000_update_mng_vlan(adapter);
 702
 703        /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 704        if (hw->mac_type >= e1000_82544 &&
 705            hw->autoneg == 1 &&
 706            hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 707                u32 ctrl = er32(CTRL);
 708                /* clear phy power management bit if we are in gig only mode,
 709                 * which if enabled will attempt negotiation to 100Mb, which
 710                 * can cause a loss of link at power off or driver unload
 711                 */
 712                ctrl &= ~E1000_CTRL_SWDPIN3;
 713                ew32(CTRL, ctrl);
 714        }
 715
 716        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 717        ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 718
 719        e1000_reset_adaptive(hw);
 720        e1000_phy_get_info(hw, &adapter->phy_info);
 721
 722        e1000_release_manageability(adapter);
 723}
 724
 725/* Dump the eeprom for users having checksum issues */
 726static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 727{
 728        struct net_device *netdev = adapter->netdev;
 729        struct ethtool_eeprom eeprom;
 730        const struct ethtool_ops *ops = netdev->ethtool_ops;
 731        u8 *data;
 732        int i;
 733        u16 csum_old, csum_new = 0;
 734
 735        eeprom.len = ops->get_eeprom_len(netdev);
 736        eeprom.offset = 0;
 737
 738        data = kmalloc(eeprom.len, GFP_KERNEL);
 739        if (!data)
 740                return;
 741
 742        ops->get_eeprom(netdev, &eeprom, data);
 743
 744        csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 745                   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 746        for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 747                csum_new += data[i] + (data[i + 1] << 8);
 748        csum_new = EEPROM_SUM - csum_new;
 749
 750        pr_err("/*********************/\n");
 751        pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 752        pr_err("Calculated              : 0x%04x\n", csum_new);
 753
 754        pr_err("Offset    Values\n");
 755        pr_err("========  ======\n");
 756        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 757
 758        pr_err("Include this output when contacting your support provider.\n");
 759        pr_err("This is not a software error! Something bad happened to\n");
 760        pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 761        pr_err("result in further problems, possibly loss of data,\n");
 762        pr_err("corruption or system hangs!\n");
 763        pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 764        pr_err("which is invalid and requires you to set the proper MAC\n");
 765        pr_err("address manually before continuing to enable this network\n");
 766        pr_err("device. Please inspect the EEPROM dump and report the\n");
 767        pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 768        pr_err("/*********************/\n");
 769
 770        kfree(data);
 771}
 772
 773/**
 774 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 775 * @pdev: PCI device information struct
 776 *
 777 * Return true if an adapter needs ioport resources
 778 **/
 779static int e1000_is_need_ioport(struct pci_dev *pdev)
 780{
 781        switch (pdev->device) {
 782        case E1000_DEV_ID_82540EM:
 783        case E1000_DEV_ID_82540EM_LOM:
 784        case E1000_DEV_ID_82540EP:
 785        case E1000_DEV_ID_82540EP_LOM:
 786        case E1000_DEV_ID_82540EP_LP:
 787        case E1000_DEV_ID_82541EI:
 788        case E1000_DEV_ID_82541EI_MOBILE:
 789        case E1000_DEV_ID_82541ER:
 790        case E1000_DEV_ID_82541ER_LOM:
 791        case E1000_DEV_ID_82541GI:
 792        case E1000_DEV_ID_82541GI_LF:
 793        case E1000_DEV_ID_82541GI_MOBILE:
 794        case E1000_DEV_ID_82544EI_COPPER:
 795        case E1000_DEV_ID_82544EI_FIBER:
 796        case E1000_DEV_ID_82544GC_COPPER:
 797        case E1000_DEV_ID_82544GC_LOM:
 798        case E1000_DEV_ID_82545EM_COPPER:
 799        case E1000_DEV_ID_82545EM_FIBER:
 800        case E1000_DEV_ID_82546EB_COPPER:
 801        case E1000_DEV_ID_82546EB_FIBER:
 802        case E1000_DEV_ID_82546EB_QUAD_COPPER:
 803                return true;
 804        default:
 805                return false;
 806        }
 807}
 808
 809static netdev_features_t e1000_fix_features(struct net_device *netdev,
 810        netdev_features_t features)
 811{
 812        /* Since there is no support for separate Rx/Tx vlan accel
 813         * enable/disable make sure Tx flag is always in same state as Rx.
 814         */
 815        if (features & NETIF_F_HW_VLAN_CTAG_RX)
 816                features |= NETIF_F_HW_VLAN_CTAG_TX;
 817        else
 818                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 819
 820        return features;
 821}
 822
 823static int e1000_set_features(struct net_device *netdev,
 824        netdev_features_t features)
 825{
 826        struct e1000_adapter *adapter = netdev_priv(netdev);
 827        netdev_features_t changed = features ^ netdev->features;
 828
 829        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 830                e1000_vlan_mode(netdev, features);
 831
 832        if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 833                return 0;
 834
 835        netdev->features = features;
 836        adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 837
 838        if (netif_running(netdev))
 839                e1000_reinit_locked(adapter);
 840        else
 841                e1000_reset(adapter);
 842
 843        return 0;
 844}
 845
 846static const struct net_device_ops e1000_netdev_ops = {
 847        .ndo_open               = e1000_open,
 848        .ndo_stop               = e1000_close,
 849        .ndo_start_xmit         = e1000_xmit_frame,
 850        .ndo_get_stats          = e1000_get_stats,
 851        .ndo_set_rx_mode        = e1000_set_rx_mode,
 852        .ndo_set_mac_address    = e1000_set_mac,
 853        .ndo_tx_timeout         = e1000_tx_timeout,
 854        .ndo_change_mtu         = e1000_change_mtu,
 855        .ndo_do_ioctl           = e1000_ioctl,
 856        .ndo_validate_addr      = eth_validate_addr,
 857        .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
 858        .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
 859#ifdef CONFIG_NET_POLL_CONTROLLER
 860        .ndo_poll_controller    = e1000_netpoll,
 861#endif
 862        .ndo_fix_features       = e1000_fix_features,
 863        .ndo_set_features       = e1000_set_features,
 864};
 865
 866/**
 867 * e1000_init_hw_struct - initialize members of hw struct
 868 * @adapter: board private struct
 869 * @hw: structure used by e1000_hw.c
 870 *
 871 * Factors out initialization of the e1000_hw struct to its own function
 872 * that can be called very early at init (just after struct allocation).
 873 * Fields are initialized based on PCI device information and
 874 * OS network device settings (MTU size).
 875 * Returns negative error codes if MAC type setup fails.
 876 */
 877static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 878                                struct e1000_hw *hw)
 879{
 880        struct pci_dev *pdev = adapter->pdev;
 881
 882        /* PCI config space info */
 883        hw->vendor_id = pdev->vendor;
 884        hw->device_id = pdev->device;
 885        hw->subsystem_vendor_id = pdev->subsystem_vendor;
 886        hw->subsystem_id = pdev->subsystem_device;
 887        hw->revision_id = pdev->revision;
 888
 889        pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 890
 891        hw->max_frame_size = adapter->netdev->mtu +
 892                             ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 893        hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 894
 895        /* identify the MAC */
 896        if (e1000_set_mac_type(hw)) {
 897                e_err(probe, "Unknown MAC Type\n");
 898                return -EIO;
 899        }
 900
 901        switch (hw->mac_type) {
 902        default:
 903                break;
 904        case e1000_82541:
 905        case e1000_82547:
 906        case e1000_82541_rev_2:
 907        case e1000_82547_rev_2:
 908                hw->phy_init_script = 1;
 909                break;
 910        }
 911
 912        e1000_set_media_type(hw);
 913        e1000_get_bus_info(hw);
 914
 915        hw->wait_autoneg_complete = false;
 916        hw->tbi_compatibility_en = true;
 917        hw->adaptive_ifs = true;
 918
 919        /* Copper options */
 920
 921        if (hw->media_type == e1000_media_type_copper) {
 922                hw->mdix = AUTO_ALL_MODES;
 923                hw->disable_polarity_correction = false;
 924                hw->master_slave = E1000_MASTER_SLAVE;
 925        }
 926
 927        return 0;
 928}
 929
 930/**
 931 * e1000_probe - Device Initialization Routine
 932 * @pdev: PCI device information struct
 933 * @ent: entry in e1000_pci_tbl
 934 *
 935 * Returns 0 on success, negative on failure
 936 *
 937 * e1000_probe initializes an adapter identified by a pci_dev structure.
 938 * The OS initialization, configuring of the adapter private structure,
 939 * and a hardware reset occur.
 940 **/
 941static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 942{
 943        struct net_device *netdev;
 944        struct e1000_adapter *adapter;
 945        struct e1000_hw *hw;
 946
 947        static int cards_found = 0;
 948        static int global_quad_port_a = 0; /* global ksp3 port a indication */
 949        int i, err, pci_using_dac;
 950        u16 eeprom_data = 0;
 951        u16 tmp = 0;
 952        u16 eeprom_apme_mask = E1000_EEPROM_APME;
 953        int bars, need_ioport;
 954
 955        /* do not allocate ioport bars when not needed */
 956        need_ioport = e1000_is_need_ioport(pdev);
 957        if (need_ioport) {
 958                bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 959                err = pci_enable_device(pdev);
 960        } else {
 961                bars = pci_select_bars(pdev, IORESOURCE_MEM);
 962                err = pci_enable_device_mem(pdev);
 963        }
 964        if (err)
 965                return err;
 966
 967        err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 968        if (err)
 969                goto err_pci_reg;
 970
 971        pci_set_master(pdev);
 972        err = pci_save_state(pdev);
 973        if (err)
 974                goto err_alloc_etherdev;
 975
 976        err = -ENOMEM;
 977        netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 978        if (!netdev)
 979                goto err_alloc_etherdev;
 980
 981        SET_NETDEV_DEV(netdev, &pdev->dev);
 982
 983        pci_set_drvdata(pdev, netdev);
 984        adapter = netdev_priv(netdev);
 985        adapter->netdev = netdev;
 986        adapter->pdev = pdev;
 987        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 988        adapter->bars = bars;
 989        adapter->need_ioport = need_ioport;
 990
 991        hw = &adapter->hw;
 992        hw->back = adapter;
 993
 994        err = -EIO;
 995        hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 996        if (!hw->hw_addr)
 997                goto err_ioremap;
 998
 999        if (adapter->need_ioport) {
1000                for (i = BAR_1; i <= BAR_5; i++) {
1001                        if (pci_resource_len(pdev, i) == 0)
1002                                continue;
1003                        if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1004                                hw->io_base = pci_resource_start(pdev, i);
1005                                break;
1006                        }
1007                }
1008        }
1009
1010        /* make ready for any if (hw->...) below */
1011        err = e1000_init_hw_struct(adapter, hw);
1012        if (err)
1013                goto err_sw_init;
1014
1015        /* there is a workaround being applied below that limits
1016         * 64-bit DMA addresses to 64-bit hardware.  There are some
1017         * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1018         */
1019        pci_using_dac = 0;
1020        if ((hw->bus_type == e1000_bus_type_pcix) &&
1021            !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1022                /* according to DMA-API-HOWTO, coherent calls will always
1023                 * succeed if the set call did
1024                 */
1025                dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1026                pci_using_dac = 1;
1027        } else {
1028                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1029                if (err) {
1030                        pr_err("No usable DMA config, aborting\n");
1031                        goto err_dma;
1032                }
1033                dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1034        }
1035
1036        netdev->netdev_ops = &e1000_netdev_ops;
1037        e1000_set_ethtool_ops(netdev);
1038        netdev->watchdog_timeo = 5 * HZ;
1039        netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1040
1041        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1042
1043        adapter->bd_number = cards_found;
1044
1045        /* setup the private structure */
1046
1047        err = e1000_sw_init(adapter);
1048        if (err)
1049                goto err_sw_init;
1050
1051        err = -EIO;
1052        if (hw->mac_type == e1000_ce4100) {
1053                hw->ce4100_gbe_mdio_base_virt =
1054                                        ioremap(pci_resource_start(pdev, BAR_1),
1055                                                pci_resource_len(pdev, BAR_1));
1056
1057                if (!hw->ce4100_gbe_mdio_base_virt)
1058                        goto err_mdio_ioremap;
1059        }
1060
1061        if (hw->mac_type >= e1000_82543) {
1062                netdev->hw_features = NETIF_F_SG |
1063                                   NETIF_F_HW_CSUM |
1064                                   NETIF_F_HW_VLAN_CTAG_RX;
1065                netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1066                                   NETIF_F_HW_VLAN_CTAG_FILTER;
1067        }
1068
1069        if ((hw->mac_type >= e1000_82544) &&
1070           (hw->mac_type != e1000_82547))
1071                netdev->hw_features |= NETIF_F_TSO;
1072
1073        netdev->priv_flags |= IFF_SUPP_NOFCS;
1074
1075        netdev->features |= netdev->hw_features;
1076        netdev->hw_features |= (NETIF_F_RXCSUM |
1077                                NETIF_F_RXALL |
1078                                NETIF_F_RXFCS);
1079
1080        if (pci_using_dac) {
1081                netdev->features |= NETIF_F_HIGHDMA;
1082                netdev->vlan_features |= NETIF_F_HIGHDMA;
1083        }
1084
1085        netdev->vlan_features |= (NETIF_F_TSO |
1086                                  NETIF_F_HW_CSUM |
1087                                  NETIF_F_SG);
1088
1089        netdev->priv_flags |= IFF_UNICAST_FLT;
1090
1091        adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1092
1093        /* initialize eeprom parameters */
1094        if (e1000_init_eeprom_params(hw)) {
1095                e_err(probe, "EEPROM initialization failed\n");
1096                goto err_eeprom;
1097        }
1098
1099        /* before reading the EEPROM, reset the controller to
1100         * put the device in a known good starting state
1101         */
1102
1103        e1000_reset_hw(hw);
1104
1105        /* make sure the EEPROM is good */
1106        if (e1000_validate_eeprom_checksum(hw) < 0) {
1107                e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1108                e1000_dump_eeprom(adapter);
1109                /* set MAC address to all zeroes to invalidate and temporary
1110                 * disable this device for the user. This blocks regular
1111                 * traffic while still permitting ethtool ioctls from reaching
1112                 * the hardware as well as allowing the user to run the
1113                 * interface after manually setting a hw addr using
1114                 * `ip set address`
1115                 */
1116                memset(hw->mac_addr, 0, netdev->addr_len);
1117        } else {
1118                /* copy the MAC address out of the EEPROM */
1119                if (e1000_read_mac_addr(hw))
1120                        e_err(probe, "EEPROM Read Error\n");
1121        }
1122        /* don't block initalization here due to bad MAC address */
1123        memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1124
1125        if (!is_valid_ether_addr(netdev->dev_addr))
1126                e_err(probe, "Invalid MAC Address\n");
1127
1128
1129        INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1130        INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1131                          e1000_82547_tx_fifo_stall_task);
1132        INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1133        INIT_WORK(&adapter->reset_task, e1000_reset_task);
1134
1135        e1000_check_options(adapter);
1136
1137        /* Initial Wake on LAN setting
1138         * If APM wake is enabled in the EEPROM,
1139         * enable the ACPI Magic Packet filter
1140         */
1141
1142        switch (hw->mac_type) {
1143        case e1000_82542_rev2_0:
1144        case e1000_82542_rev2_1:
1145        case e1000_82543:
1146                break;
1147        case e1000_82544:
1148                e1000_read_eeprom(hw,
1149                        EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1150                eeprom_apme_mask = E1000_EEPROM_82544_APM;
1151                break;
1152        case e1000_82546:
1153        case e1000_82546_rev_3:
1154                if (er32(STATUS) & E1000_STATUS_FUNC_1){
1155                        e1000_read_eeprom(hw,
1156                                EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1157                        break;
1158                }
1159                /* Fall Through */
1160        default:
1161                e1000_read_eeprom(hw,
1162                        EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1163                break;
1164        }
1165        if (eeprom_data & eeprom_apme_mask)
1166                adapter->eeprom_wol |= E1000_WUFC_MAG;
1167
1168        /* now that we have the eeprom settings, apply the special cases
1169         * where the eeprom may be wrong or the board simply won't support
1170         * wake on lan on a particular port
1171         */
1172        switch (pdev->device) {
1173        case E1000_DEV_ID_82546GB_PCIE:
1174                adapter->eeprom_wol = 0;
1175                break;
1176        case E1000_DEV_ID_82546EB_FIBER:
1177        case E1000_DEV_ID_82546GB_FIBER:
1178                /* Wake events only supported on port A for dual fiber
1179                 * regardless of eeprom setting
1180                 */
1181                if (er32(STATUS) & E1000_STATUS_FUNC_1)
1182                        adapter->eeprom_wol = 0;
1183                break;
1184        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1185                /* if quad port adapter, disable WoL on all but port A */
1186                if (global_quad_port_a != 0)
1187                        adapter->eeprom_wol = 0;
1188                else
1189                        adapter->quad_port_a = true;
1190                /* Reset for multiple quad port adapters */
1191                if (++global_quad_port_a == 4)
1192                        global_quad_port_a = 0;
1193                break;
1194        }
1195
1196        /* initialize the wol settings based on the eeprom settings */
1197        adapter->wol = adapter->eeprom_wol;
1198        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1199
1200        /* Auto detect PHY address */
1201        if (hw->mac_type == e1000_ce4100) {
1202                for (i = 0; i < 32; i++) {
1203                        hw->phy_addr = i;
1204                        e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1205                        if (tmp == 0 || tmp == 0xFF) {
1206                                if (i == 31)
1207                                        goto err_eeprom;
1208                                continue;
1209                        } else
1210                                break;
1211                }
1212        }
1213
1214        /* reset the hardware with the new settings */
1215        e1000_reset(adapter);
1216
1217        strcpy(netdev->name, "eth%d");
1218        err = register_netdev(netdev);
1219        if (err)
1220                goto err_register;
1221
1222        e1000_vlan_filter_on_off(adapter, false);
1223
1224        /* print bus type/speed/width info */
1225        e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226               ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1227               ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1228                (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1229                (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1230                (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1231               ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1232               netdev->dev_addr);
1233
1234        /* carrier off reporting is important to ethtool even BEFORE open */
1235        netif_carrier_off(netdev);
1236
1237        e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1238
1239        cards_found++;
1240        return 0;
1241
1242err_register:
1243err_eeprom:
1244        e1000_phy_hw_reset(hw);
1245
1246        if (hw->flash_address)
1247                iounmap(hw->flash_address);
1248        kfree(adapter->tx_ring);
1249        kfree(adapter->rx_ring);
1250err_dma:
1251err_sw_init:
1252err_mdio_ioremap:
1253        iounmap(hw->ce4100_gbe_mdio_base_virt);
1254        iounmap(hw->hw_addr);
1255err_ioremap:
1256        free_netdev(netdev);
1257err_alloc_etherdev:
1258        pci_release_selected_regions(pdev, bars);
1259err_pci_reg:
1260        pci_disable_device(pdev);
1261        return err;
1262}
1263
1264/**
1265 * e1000_remove - Device Removal Routine
1266 * @pdev: PCI device information struct
1267 *
1268 * e1000_remove is called by the PCI subsystem to alert the driver
1269 * that it should release a PCI device.  The could be caused by a
1270 * Hot-Plug event, or because the driver is going to be removed from
1271 * memory.
1272 **/
1273static void e1000_remove(struct pci_dev *pdev)
1274{
1275        struct net_device *netdev = pci_get_drvdata(pdev);
1276        struct e1000_adapter *adapter = netdev_priv(netdev);
1277        struct e1000_hw *hw = &adapter->hw;
1278
1279        e1000_down_and_stop(adapter);
1280        e1000_release_manageability(adapter);
1281
1282        unregister_netdev(netdev);
1283
1284        e1000_phy_hw_reset(hw);
1285
1286        kfree(adapter->tx_ring);
1287        kfree(adapter->rx_ring);
1288
1289        if (hw->mac_type == e1000_ce4100)
1290                iounmap(hw->ce4100_gbe_mdio_base_virt);
1291        iounmap(hw->hw_addr);
1292        if (hw->flash_address)
1293                iounmap(hw->flash_address);
1294        pci_release_selected_regions(pdev, adapter->bars);
1295
1296        free_netdev(netdev);
1297
1298        pci_disable_device(pdev);
1299}
1300
1301/**
1302 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1303 * @adapter: board private structure to initialize
1304 *
1305 * e1000_sw_init initializes the Adapter private data structure.
1306 * e1000_init_hw_struct MUST be called before this function
1307 **/
1308static int e1000_sw_init(struct e1000_adapter *adapter)
1309{
1310        adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1311
1312        adapter->num_tx_queues = 1;
1313        adapter->num_rx_queues = 1;
1314
1315        if (e1000_alloc_queues(adapter)) {
1316                e_err(probe, "Unable to allocate memory for queues\n");
1317                return -ENOMEM;
1318        }
1319
1320        /* Explicitly disable IRQ since the NIC can be in any state. */
1321        e1000_irq_disable(adapter);
1322
1323        spin_lock_init(&adapter->stats_lock);
1324        mutex_init(&adapter->mutex);
1325
1326        set_bit(__E1000_DOWN, &adapter->flags);
1327
1328        return 0;
1329}
1330
1331/**
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1334 *
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1337 **/
1338static int e1000_alloc_queues(struct e1000_adapter *adapter)
1339{
1340        adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1341                                   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1342        if (!adapter->tx_ring)
1343                return -ENOMEM;
1344
1345        adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1346                                   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1347        if (!adapter->rx_ring) {
1348                kfree(adapter->tx_ring);
1349                return -ENOMEM;
1350        }
1351
1352        return E1000_SUCCESS;
1353}
1354
1355/**
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1358 *
1359 * Returns 0 on success, negative value on failure
1360 *
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP).  At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1366 **/
1367static int e1000_open(struct net_device *netdev)
1368{
1369        struct e1000_adapter *adapter = netdev_priv(netdev);
1370        struct e1000_hw *hw = &adapter->hw;
1371        int err;
1372
1373        /* disallow open during test */
1374        if (test_bit(__E1000_TESTING, &adapter->flags))
1375                return -EBUSY;
1376
1377        netif_carrier_off(netdev);
1378
1379        /* allocate transmit descriptors */
1380        err = e1000_setup_all_tx_resources(adapter);
1381        if (err)
1382                goto err_setup_tx;
1383
1384        /* allocate receive descriptors */
1385        err = e1000_setup_all_rx_resources(adapter);
1386        if (err)
1387                goto err_setup_rx;
1388
1389        e1000_power_up_phy(adapter);
1390
1391        adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1392        if ((hw->mng_cookie.status &
1393                          E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1394                e1000_update_mng_vlan(adapter);
1395        }
1396
1397        /* before we allocate an interrupt, we must be ready to handle it.
1398         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399         * as soon as we call pci_request_irq, so we have to setup our
1400         * clean_rx handler before we do so.
1401         */
1402        e1000_configure(adapter);
1403
1404        err = e1000_request_irq(adapter);
1405        if (err)
1406                goto err_req_irq;
1407
1408        /* From here on the code is the same as e1000_up() */
1409        clear_bit(__E1000_DOWN, &adapter->flags);
1410
1411        napi_enable(&adapter->napi);
1412
1413        e1000_irq_enable(adapter);
1414
1415        netif_start_queue(netdev);
1416
1417        /* fire a link status change interrupt to start the watchdog */
1418        ew32(ICS, E1000_ICS_LSC);
1419
1420        return E1000_SUCCESS;
1421
1422err_req_irq:
1423        e1000_power_down_phy(adapter);
1424        e1000_free_all_rx_resources(adapter);
1425err_setup_rx:
1426        e1000_free_all_tx_resources(adapter);
1427err_setup_tx:
1428        e1000_reset(adapter);
1429
1430        return err;
1431}
1432
1433/**
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1436 *
1437 * Returns 0, this is not allowed to fail
1438 *
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS.  The hardware is still under the drivers control, but
1441 * needs to be disabled.  A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1443 **/
1444static int e1000_close(struct net_device *netdev)
1445{
1446        struct e1000_adapter *adapter = netdev_priv(netdev);
1447        struct e1000_hw *hw = &adapter->hw;
1448
1449        WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450        e1000_down(adapter);
1451        e1000_power_down_phy(adapter);
1452        e1000_free_irq(adapter);
1453
1454        e1000_free_all_tx_resources(adapter);
1455        e1000_free_all_rx_resources(adapter);
1456
1457        /* kill manageability vlan ID if supported, but not if a vlan with
1458         * the same ID is registered on the host OS (let 8021q kill it)
1459         */
1460        if ((hw->mng_cookie.status &
1461             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462            !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463                e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464                                       adapter->mng_vlan_id);
1465        }
1466
1467        return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477                                  unsigned long len)
1478{
1479        struct e1000_hw *hw = &adapter->hw;
1480        unsigned long begin = (unsigned long)start;
1481        unsigned long end = begin + len;
1482
1483        /* First rev 82545 and 82546 need to not allow any memory
1484         * write location to cross 64k boundary due to errata 23
1485         */
1486        if (hw->mac_type == e1000_82545 ||
1487            hw->mac_type == e1000_ce4100 ||
1488            hw->mac_type == e1000_82546) {
1489                return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490        }
1491
1492        return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr:    tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503                                    struct e1000_tx_ring *txdr)
1504{
1505        struct pci_dev *pdev = adapter->pdev;
1506        int size;
1507
1508        size = sizeof(struct e1000_buffer) * txdr->count;
1509        txdr->buffer_info = vzalloc(size);
1510        if (!txdr->buffer_info)
1511                return -ENOMEM;
1512
1513        /* round up to nearest 4K */
1514
1515        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516        txdr->size = ALIGN(txdr->size, 4096);
1517
1518        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519                                        GFP_KERNEL);
1520        if (!txdr->desc) {
1521setup_tx_desc_die:
1522                vfree(txdr->buffer_info);
1523                return -ENOMEM;
1524        }
1525
1526        /* Fix for errata 23, can't cross 64kB boundary */
1527        if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528                void *olddesc = txdr->desc;
1529                dma_addr_t olddma = txdr->dma;
1530                e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531                      txdr->size, txdr->desc);
1532                /* Try again, without freeing the previous */
1533                txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534                                                &txdr->dma, GFP_KERNEL);
1535                /* Failed allocation, critical failure */
1536                if (!txdr->desc) {
1537                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538                                          olddma);
1539                        goto setup_tx_desc_die;
1540                }
1541
1542                if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543                        /* give up */
1544                        dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545                                          txdr->dma);
1546                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                          olddma);
1548                        e_err(probe, "Unable to allocate aligned memory "
1549                              "for the transmit descriptor ring\n");
1550                        vfree(txdr->buffer_info);
1551                        return -ENOMEM;
1552                } else {
1553                        /* Free old allocation, new allocation was successful */
1554                        dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555                                          olddma);
1556                }
1557        }
1558        memset(txdr->desc, 0, txdr->size);
1559
1560        txdr->next_to_use = 0;
1561        txdr->next_to_clean = 0;
1562
1563        return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 *                                (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575        int i, err = 0;
1576
1577        for (i = 0; i < adapter->num_tx_queues; i++) {
1578                err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579                if (err) {
1580                        e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581                        for (i-- ; i >= 0; i--)
1582                                e1000_free_tx_resources(adapter,
1583                                                        &adapter->tx_ring[i]);
1584                        break;
1585                }
1586        }
1587
1588        return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599        u64 tdba;
1600        struct e1000_hw *hw = &adapter->hw;
1601        u32 tdlen, tctl, tipg;
1602        u32 ipgr1, ipgr2;
1603
1604        /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606        switch (adapter->num_tx_queues) {
1607        case 1:
1608        default:
1609                tdba = adapter->tx_ring[0].dma;
1610                tdlen = adapter->tx_ring[0].count *
1611                        sizeof(struct e1000_tx_desc);
1612                ew32(TDLEN, tdlen);
1613                ew32(TDBAH, (tdba >> 32));
1614                ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615                ew32(TDT, 0);
1616                ew32(TDH, 0);
1617                adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618                                           E1000_TDH : E1000_82542_TDH);
1619                adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620                                           E1000_TDT : E1000_82542_TDT);
1621                break;
1622        }
1623
1624        /* Set the default values for the Tx Inter Packet Gap timer */
1625        if ((hw->media_type == e1000_media_type_fiber ||
1626             hw->media_type == e1000_media_type_internal_serdes))
1627                tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628        else
1629                tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631        switch (hw->mac_type) {
1632        case e1000_82542_rev2_0:
1633        case e1000_82542_rev2_1:
1634                tipg = DEFAULT_82542_TIPG_IPGT;
1635                ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636                ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637                break;
1638        default:
1639                ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640                ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641                break;
1642        }
1643        tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644        tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645        ew32(TIPG, tipg);
1646
1647        /* Set the Tx Interrupt Delay register */
1648
1649        ew32(TIDV, adapter->tx_int_delay);
1650        if (hw->mac_type >= e1000_82540)
1651                ew32(TADV, adapter->tx_abs_int_delay);
1652
1653        /* Program the Transmit Control Register */
1654
1655        tctl = er32(TCTL);
1656        tctl &= ~E1000_TCTL_CT;
1657        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660        e1000_config_collision_dist(hw);
1661
1662        /* Setup Transmit Descriptor Settings for eop descriptor */
1663        adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665        /* only set IDE if we are delaying interrupts using the timers */
1666        if (adapter->tx_int_delay)
1667                adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669        if (hw->mac_type < e1000_82543)
1670                adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671        else
1672                adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674        /* Cache if we're 82544 running in PCI-X because we'll
1675         * need this to apply a workaround later in the send path.
1676         */
1677        if (hw->mac_type == e1000_82544 &&
1678            hw->bus_type == e1000_bus_type_pcix)
1679                adapter->pcix_82544 = true;
1680
1681        ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693                                    struct e1000_rx_ring *rxdr)
1694{
1695        struct pci_dev *pdev = adapter->pdev;
1696        int size, desc_len;
1697
1698        size = sizeof(struct e1000_buffer) * rxdr->count;
1699        rxdr->buffer_info = vzalloc(size);
1700        if (!rxdr->buffer_info)
1701                return -ENOMEM;
1702
1703        desc_len = sizeof(struct e1000_rx_desc);
1704
1705        /* Round up to nearest 4K */
1706
1707        rxdr->size = rxdr->count * desc_len;
1708        rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711                                        GFP_KERNEL);
1712        if (!rxdr->desc) {
1713setup_rx_desc_die:
1714                vfree(rxdr->buffer_info);
1715                return -ENOMEM;
1716        }
1717
1718        /* Fix for errata 23, can't cross 64kB boundary */
1719        if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720                void *olddesc = rxdr->desc;
1721                dma_addr_t olddma = rxdr->dma;
1722                e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723                      rxdr->size, rxdr->desc);
1724                /* Try again, without freeing the previous */
1725                rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726                                                &rxdr->dma, GFP_KERNEL);
1727                /* Failed allocation, critical failure */
1728                if (!rxdr->desc) {
1729                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730                                          olddma);
1731                        goto setup_rx_desc_die;
1732                }
1733
1734                if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735                        /* give up */
1736                        dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737                                          rxdr->dma);
1738                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739                                          olddma);
1740                        e_err(probe, "Unable to allocate aligned memory for "
1741                              "the Rx descriptor ring\n");
1742                        goto setup_rx_desc_die;
1743                } else {
1744                        /* Free old allocation, new allocation was successful */
1745                        dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746                                          olddma);
1747                }
1748        }
1749        memset(rxdr->desc, 0, rxdr->size);
1750
1751        rxdr->next_to_clean = 0;
1752        rxdr->next_to_use = 0;
1753        rxdr->rx_skb_top = NULL;
1754
1755        return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 *                                (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767        int i, err = 0;
1768
1769        for (i = 0; i < adapter->num_rx_queues; i++) {
1770                err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771                if (err) {
1772                        e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773                        for (i-- ; i >= 0; i--)
1774                                e1000_free_rx_resources(adapter,
1775                                                        &adapter->rx_ring[i]);
1776                        break;
1777                }
1778        }
1779
1780        return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789        struct e1000_hw *hw = &adapter->hw;
1790        u32 rctl;
1791
1792        rctl = er32(RCTL);
1793
1794        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796        rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797                E1000_RCTL_RDMTS_HALF |
1798                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800        if (hw->tbi_compatibility_on == 1)
1801                rctl |= E1000_RCTL_SBP;
1802        else
1803                rctl &= ~E1000_RCTL_SBP;
1804
1805        if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806                rctl &= ~E1000_RCTL_LPE;
1807        else
1808                rctl |= E1000_RCTL_LPE;
1809
1810        /* Setup buffer sizes */
1811        rctl &= ~E1000_RCTL_SZ_4096;
1812        rctl |= E1000_RCTL_BSEX;
1813        switch (adapter->rx_buffer_len) {
1814                case E1000_RXBUFFER_2048:
1815                default:
1816                        rctl |= E1000_RCTL_SZ_2048;
1817                        rctl &= ~E1000_RCTL_BSEX;
1818                        break;
1819                case E1000_RXBUFFER_4096:
1820                        rctl |= E1000_RCTL_SZ_4096;
1821                        break;
1822                case E1000_RXBUFFER_8192:
1823                        rctl |= E1000_RCTL_SZ_8192;
1824                        break;
1825                case E1000_RXBUFFER_16384:
1826                        rctl |= E1000_RCTL_SZ_16384;
1827                        break;
1828        }
1829
1830        /* This is useful for sniffing bad packets. */
1831        if (adapter->netdev->features & NETIF_F_RXALL) {
1832                /* UPE and MPE will be handled by normal PROMISC logic
1833                 * in e1000e_set_rx_mode
1834                 */
1835                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839                rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840                          E1000_RCTL_DPF | /* Allow filtered pause */
1841                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843                 * and that breaks VLANs.
1844                 */
1845        }
1846
1847        ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858        u64 rdba;
1859        struct e1000_hw *hw = &adapter->hw;
1860        u32 rdlen, rctl, rxcsum;
1861
1862        if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863                rdlen = adapter->rx_ring[0].count *
1864                        sizeof(struct e1000_rx_desc);
1865                adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866                adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867        } else {
1868                rdlen = adapter->rx_ring[0].count *
1869                        sizeof(struct e1000_rx_desc);
1870                adapter->clean_rx = e1000_clean_rx_irq;
1871                adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872        }
1873
1874        /* disable receives while setting up the descriptors */
1875        rctl = er32(RCTL);
1876        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878        /* set the Receive Delay Timer Register */
1879        ew32(RDTR, adapter->rx_int_delay);
1880
1881        if (hw->mac_type >= e1000_82540) {
1882                ew32(RADV, adapter->rx_abs_int_delay);
1883                if (adapter->itr_setting != 0)
1884                        ew32(ITR, 1000000000 / (adapter->itr * 256));
1885        }
1886
1887        /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888         * the Base and Length of the Rx Descriptor Ring
1889         */
1890        switch (adapter->num_rx_queues) {
1891        case 1:
1892        default:
1893                rdba = adapter->rx_ring[0].dma;
1894                ew32(RDLEN, rdlen);
1895                ew32(RDBAH, (rdba >> 32));
1896                ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897                ew32(RDT, 0);
1898                ew32(RDH, 0);
1899                adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900                                           E1000_RDH : E1000_82542_RDH);
1901                adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902                                           E1000_RDT : E1000_82542_RDT);
1903                break;
1904        }
1905
1906        /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907        if (hw->mac_type >= e1000_82543) {
1908                rxcsum = er32(RXCSUM);
1909                if (adapter->rx_csum)
1910                        rxcsum |= E1000_RXCSUM_TUOFL;
1911                else
1912                        /* don't need to clear IPPCSE as it defaults to 0 */
1913                        rxcsum &= ~E1000_RXCSUM_TUOFL;
1914                ew32(RXCSUM, rxcsum);
1915        }
1916
1917        /* Enable Receives */
1918        ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929                                    struct e1000_tx_ring *tx_ring)
1930{
1931        struct pci_dev *pdev = adapter->pdev;
1932
1933        e1000_clean_tx_ring(adapter, tx_ring);
1934
1935        vfree(tx_ring->buffer_info);
1936        tx_ring->buffer_info = NULL;
1937
1938        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939                          tx_ring->dma);
1940
1941        tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952        int i;
1953
1954        for (i = 0; i < adapter->num_tx_queues; i++)
1955                e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1959                                             struct e1000_buffer *buffer_info)
1960{
1961        if (buffer_info->dma) {
1962                if (buffer_info->mapped_as_page)
1963                        dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964                                       buffer_info->length, DMA_TO_DEVICE);
1965                else
1966                        dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967                                         buffer_info->length,
1968                                         DMA_TO_DEVICE);
1969                buffer_info->dma = 0;
1970        }
1971        if (buffer_info->skb) {
1972                dev_kfree_skb_any(buffer_info->skb);
1973                buffer_info->skb = NULL;
1974        }
1975        buffer_info->time_stamp = 0;
1976        /* buffer_info must be completely set up in the transmit path */
1977}
1978
1979/**
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1983 **/
1984static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985                                struct e1000_tx_ring *tx_ring)
1986{
1987        struct e1000_hw *hw = &adapter->hw;
1988        struct e1000_buffer *buffer_info;
1989        unsigned long size;
1990        unsigned int i;
1991
1992        /* Free all the Tx ring sk_buffs */
1993
1994        for (i = 0; i < tx_ring->count; i++) {
1995                buffer_info = &tx_ring->buffer_info[i];
1996                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1997        }
1998
1999        netdev_reset_queue(adapter->netdev);
2000        size = sizeof(struct e1000_buffer) * tx_ring->count;
2001        memset(tx_ring->buffer_info, 0, size);
2002
2003        /* Zero out the descriptor ring */
2004
2005        memset(tx_ring->desc, 0, tx_ring->size);
2006
2007        tx_ring->next_to_use = 0;
2008        tx_ring->next_to_clean = 0;
2009        tx_ring->last_tx_tso = false;
2010
2011        writel(0, hw->hw_addr + tx_ring->tdh);
2012        writel(0, hw->hw_addr + tx_ring->tdt);
2013}
2014
2015/**
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2018 **/
2019static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020{
2021        int i;
2022
2023        for (i = 0; i < adapter->num_tx_queues; i++)
2024                e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025}
2026
2027/**
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2031 *
2032 * Free all receive software resources
2033 **/
2034static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035                                    struct e1000_rx_ring *rx_ring)
2036{
2037        struct pci_dev *pdev = adapter->pdev;
2038
2039        e1000_clean_rx_ring(adapter, rx_ring);
2040
2041        vfree(rx_ring->buffer_info);
2042        rx_ring->buffer_info = NULL;
2043
2044        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045                          rx_ring->dma);
2046
2047        rx_ring->desc = NULL;
2048}
2049
2050/**
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2053 *
2054 * Free all receive software resources
2055 **/
2056void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057{
2058        int i;
2059
2060        for (i = 0; i < adapter->num_rx_queues; i++)
2061                e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062}
2063
2064/**
2065 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2066 * @adapter: board private structure
2067 * @rx_ring: ring to free buffers from
2068 **/
2069static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2070                                struct e1000_rx_ring *rx_ring)
2071{
2072        struct e1000_hw *hw = &adapter->hw;
2073        struct e1000_buffer *buffer_info;
2074        struct pci_dev *pdev = adapter->pdev;
2075        unsigned long size;
2076        unsigned int i;
2077
2078        /* Free all the Rx ring sk_buffs */
2079        for (i = 0; i < rx_ring->count; i++) {
2080                buffer_info = &rx_ring->buffer_info[i];
2081                if (buffer_info->dma &&
2082                    adapter->clean_rx == e1000_clean_rx_irq) {
2083                        dma_unmap_single(&pdev->dev, buffer_info->dma,
2084                                         buffer_info->length,
2085                                         DMA_FROM_DEVICE);
2086                } else if (buffer_info->dma &&
2087                           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2088                        dma_unmap_page(&pdev->dev, buffer_info->dma,
2089                                       buffer_info->length,
2090                                       DMA_FROM_DEVICE);
2091                }
2092
2093                buffer_info->dma = 0;
2094                if (buffer_info->page) {
2095                        put_page(buffer_info->page);
2096                        buffer_info->page = NULL;
2097                }
2098                if (buffer_info->skb) {
2099                        dev_kfree_skb(buffer_info->skb);
2100                        buffer_info->skb = NULL;
2101                }
2102        }
2103
2104        /* there also may be some cached data from a chained receive */
2105        if (rx_ring->rx_skb_top) {
2106                dev_kfree_skb(rx_ring->rx_skb_top);
2107                rx_ring->rx_skb_top = NULL;
2108        }
2109
2110        size = sizeof(struct e1000_buffer) * rx_ring->count;
2111        memset(rx_ring->buffer_info, 0, size);
2112
2113        /* Zero out the descriptor ring */
2114        memset(rx_ring->desc, 0, rx_ring->size);
2115
2116        rx_ring->next_to_clean = 0;
2117        rx_ring->next_to_use = 0;
2118
2119        writel(0, hw->hw_addr + rx_ring->rdh);
2120        writel(0, hw->hw_addr + rx_ring->rdt);
2121}
2122
2123/**
2124 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2125 * @adapter: board private structure
2126 **/
2127static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2128{
2129        int i;
2130
2131        for (i = 0; i < adapter->num_rx_queues; i++)
2132                e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2133}
2134
2135/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2136 * and memory write and invalidate disabled for certain operations
2137 */
2138static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2139{
2140        struct e1000_hw *hw = &adapter->hw;
2141        struct net_device *netdev = adapter->netdev;
2142        u32 rctl;
2143
2144        e1000_pci_clear_mwi(hw);
2145
2146        rctl = er32(RCTL);
2147        rctl |= E1000_RCTL_RST;
2148        ew32(RCTL, rctl);
2149        E1000_WRITE_FLUSH();
2150        mdelay(5);
2151
2152        if (netif_running(netdev))
2153                e1000_clean_all_rx_rings(adapter);
2154}
2155
2156static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2157{
2158        struct e1000_hw *hw = &adapter->hw;
2159        struct net_device *netdev = adapter->netdev;
2160        u32 rctl;
2161
2162        rctl = er32(RCTL);
2163        rctl &= ~E1000_RCTL_RST;
2164        ew32(RCTL, rctl);
2165        E1000_WRITE_FLUSH();
2166        mdelay(5);
2167
2168        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2169                e1000_pci_set_mwi(hw);
2170
2171        if (netif_running(netdev)) {
2172                /* No need to loop, because 82542 supports only 1 queue */
2173                struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2174                e1000_configure_rx(adapter);
2175                adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2176        }
2177}
2178
2179/**
2180 * e1000_set_mac - Change the Ethernet Address of the NIC
2181 * @netdev: network interface device structure
2182 * @p: pointer to an address structure
2183 *
2184 * Returns 0 on success, negative on failure
2185 **/
2186static int e1000_set_mac(struct net_device *netdev, void *p)
2187{
2188        struct e1000_adapter *adapter = netdev_priv(netdev);
2189        struct e1000_hw *hw = &adapter->hw;
2190        struct sockaddr *addr = p;
2191
2192        if (!is_valid_ether_addr(addr->sa_data))
2193                return -EADDRNOTAVAIL;
2194
2195        /* 82542 2.0 needs to be in reset to write receive address registers */
2196
2197        if (hw->mac_type == e1000_82542_rev2_0)
2198                e1000_enter_82542_rst(adapter);
2199
2200        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2201        memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2202
2203        e1000_rar_set(hw, hw->mac_addr, 0);
2204
2205        if (hw->mac_type == e1000_82542_rev2_0)
2206                e1000_leave_82542_rst(adapter);
2207
2208        return 0;
2209}
2210
2211/**
2212 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2213 * @netdev: network interface device structure
2214 *
2215 * The set_rx_mode entry point is called whenever the unicast or multicast
2216 * address lists or the network interface flags are updated. This routine is
2217 * responsible for configuring the hardware for proper unicast, multicast,
2218 * promiscuous mode, and all-multi behavior.
2219 **/
2220static void e1000_set_rx_mode(struct net_device *netdev)
2221{
2222        struct e1000_adapter *adapter = netdev_priv(netdev);
2223        struct e1000_hw *hw = &adapter->hw;
2224        struct netdev_hw_addr *ha;
2225        bool use_uc = false;
2226        u32 rctl;
2227        u32 hash_value;
2228        int i, rar_entries = E1000_RAR_ENTRIES;
2229        int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2230        u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2231
2232        if (!mcarray)
2233                return;
2234
2235        /* Check for Promiscuous and All Multicast modes */
2236
2237        rctl = er32(RCTL);
2238
2239        if (netdev->flags & IFF_PROMISC) {
2240                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2241                rctl &= ~E1000_RCTL_VFE;
2242        } else {
2243                if (netdev->flags & IFF_ALLMULTI)
2244                        rctl |= E1000_RCTL_MPE;
2245                else
2246                        rctl &= ~E1000_RCTL_MPE;
2247                /* Enable VLAN filter if there is a VLAN */
2248                if (e1000_vlan_used(adapter))
2249                        rctl |= E1000_RCTL_VFE;
2250        }
2251
2252        if (netdev_uc_count(netdev) > rar_entries - 1) {
2253                rctl |= E1000_RCTL_UPE;
2254        } else if (!(netdev->flags & IFF_PROMISC)) {
2255                rctl &= ~E1000_RCTL_UPE;
2256                use_uc = true;
2257        }
2258
2259        ew32(RCTL, rctl);
2260
2261        /* 82542 2.0 needs to be in reset to write receive address registers */
2262
2263        if (hw->mac_type == e1000_82542_rev2_0)
2264                e1000_enter_82542_rst(adapter);
2265
2266        /* load the first 14 addresses into the exact filters 1-14. Unicast
2267         * addresses take precedence to avoid disabling unicast filtering
2268         * when possible.
2269         *
2270         * RAR 0 is used for the station MAC address
2271         * if there are not 14 addresses, go ahead and clear the filters
2272         */
2273        i = 1;
2274        if (use_uc)
2275                netdev_for_each_uc_addr(ha, netdev) {
2276                        if (i == rar_entries)
2277                                break;
2278                        e1000_rar_set(hw, ha->addr, i++);
2279                }
2280
2281        netdev_for_each_mc_addr(ha, netdev) {
2282                if (i == rar_entries) {
2283                        /* load any remaining addresses into the hash table */
2284                        u32 hash_reg, hash_bit, mta;
2285                        hash_value = e1000_hash_mc_addr(hw, ha->addr);
2286                        hash_reg = (hash_value >> 5) & 0x7F;
2287                        hash_bit = hash_value & 0x1F;
2288                        mta = (1 << hash_bit);
2289                        mcarray[hash_reg] |= mta;
2290                } else {
2291                        e1000_rar_set(hw, ha->addr, i++);
2292                }
2293        }
2294
2295        for (; i < rar_entries; i++) {
2296                E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2297                E1000_WRITE_FLUSH();
2298                E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2299                E1000_WRITE_FLUSH();
2300        }
2301
2302        /* write the hash table completely, write from bottom to avoid
2303         * both stupid write combining chipsets, and flushing each write
2304         */
2305        for (i = mta_reg_count - 1; i >= 0 ; i--) {
2306                /* If we are on an 82544 has an errata where writing odd
2307                 * offsets overwrites the previous even offset, but writing
2308                 * backwards over the range solves the issue by always
2309                 * writing the odd offset first
2310                 */
2311                E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2312        }
2313        E1000_WRITE_FLUSH();
2314
2315        if (hw->mac_type == e1000_82542_rev2_0)
2316                e1000_leave_82542_rst(adapter);
2317
2318        kfree(mcarray);
2319}
2320
2321/**
2322 * e1000_update_phy_info_task - get phy info
2323 * @work: work struct contained inside adapter struct
2324 *
2325 * Need to wait a few seconds after link up to get diagnostic information from
2326 * the phy
2327 */
2328static void e1000_update_phy_info_task(struct work_struct *work)
2329{
2330        struct e1000_adapter *adapter = container_of(work,
2331                                                     struct e1000_adapter,
2332                                                     phy_info_task.work);
2333        if (test_bit(__E1000_DOWN, &adapter->flags))
2334                return;
2335        mutex_lock(&adapter->mutex);
2336        e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2337        mutex_unlock(&adapter->mutex);
2338}
2339
2340/**
2341 * e1000_82547_tx_fifo_stall_task - task to complete work
2342 * @work: work struct contained inside adapter struct
2343 **/
2344static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2345{
2346        struct e1000_adapter *adapter = container_of(work,
2347                                                     struct e1000_adapter,
2348                                                     fifo_stall_task.work);
2349        struct e1000_hw *hw = &adapter->hw;
2350        struct net_device *netdev = adapter->netdev;
2351        u32 tctl;
2352
2353        if (test_bit(__E1000_DOWN, &adapter->flags))
2354                return;
2355        mutex_lock(&adapter->mutex);
2356        if (atomic_read(&adapter->tx_fifo_stall)) {
2357                if ((er32(TDT) == er32(TDH)) &&
2358                   (er32(TDFT) == er32(TDFH)) &&
2359                   (er32(TDFTS) == er32(TDFHS))) {
2360                        tctl = er32(TCTL);
2361                        ew32(TCTL, tctl & ~E1000_TCTL_EN);
2362                        ew32(TDFT, adapter->tx_head_addr);
2363                        ew32(TDFH, adapter->tx_head_addr);
2364                        ew32(TDFTS, adapter->tx_head_addr);
2365                        ew32(TDFHS, adapter->tx_head_addr);
2366                        ew32(TCTL, tctl);
2367                        E1000_WRITE_FLUSH();
2368
2369                        adapter->tx_fifo_head = 0;
2370                        atomic_set(&adapter->tx_fifo_stall, 0);
2371                        netif_wake_queue(netdev);
2372                } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2373                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
2374                }
2375        }
2376        mutex_unlock(&adapter->mutex);
2377}
2378
2379bool e1000_has_link(struct e1000_adapter *adapter)
2380{
2381        struct e1000_hw *hw = &adapter->hw;
2382        bool link_active = false;
2383
2384        /* get_link_status is set on LSC (link status) interrupt or rx
2385         * sequence error interrupt (except on intel ce4100).
2386         * get_link_status will stay false until the
2387         * e1000_check_for_link establishes link for copper adapters
2388         * ONLY
2389         */
2390        switch (hw->media_type) {
2391        case e1000_media_type_copper:
2392                if (hw->mac_type == e1000_ce4100)
2393                        hw->get_link_status = 1;
2394                if (hw->get_link_status) {
2395                        e1000_check_for_link(hw);
2396                        link_active = !hw->get_link_status;
2397                } else {
2398                        link_active = true;
2399                }
2400                break;
2401        case e1000_media_type_fiber:
2402                e1000_check_for_link(hw);
2403                link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2404                break;
2405        case e1000_media_type_internal_serdes:
2406                e1000_check_for_link(hw);
2407                link_active = hw->serdes_has_link;
2408                break;
2409        default:
2410                break;
2411        }
2412
2413        return link_active;
2414}
2415
2416/**
2417 * e1000_watchdog - work function
2418 * @work: work struct contained inside adapter struct
2419 **/
2420static void e1000_watchdog(struct work_struct *work)
2421{
2422        struct e1000_adapter *adapter = container_of(work,
2423                                                     struct e1000_adapter,
2424                                                     watchdog_task.work);
2425        struct e1000_hw *hw = &adapter->hw;
2426        struct net_device *netdev = adapter->netdev;
2427        struct e1000_tx_ring *txdr = adapter->tx_ring;
2428        u32 link, tctl;
2429
2430        if (test_bit(__E1000_DOWN, &adapter->flags))
2431                return;
2432
2433        mutex_lock(&adapter->mutex);
2434        link = e1000_has_link(adapter);
2435        if ((netif_carrier_ok(netdev)) && link)
2436                goto link_up;
2437
2438        if (link) {
2439                if (!netif_carrier_ok(netdev)) {
2440                        u32 ctrl;
2441                        bool txb2b = true;
2442                        /* update snapshot of PHY registers on LSC */
2443                        e1000_get_speed_and_duplex(hw,
2444                                                   &adapter->link_speed,
2445                                                   &adapter->link_duplex);
2446
2447                        ctrl = er32(CTRL);
2448                        pr_info("%s NIC Link is Up %d Mbps %s, "
2449                                "Flow Control: %s\n",
2450                                netdev->name,
2451                                adapter->link_speed,
2452                                adapter->link_duplex == FULL_DUPLEX ?
2453                                "Full Duplex" : "Half Duplex",
2454                                ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455                                E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456                                E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457                                E1000_CTRL_TFCE) ? "TX" : "None")));
2458
2459                        /* adjust timeout factor according to speed/duplex */
2460                        adapter->tx_timeout_factor = 1;
2461                        switch (adapter->link_speed) {
2462                        case SPEED_10:
2463                                txb2b = false;
2464                                adapter->tx_timeout_factor = 16;
2465                                break;
2466                        case SPEED_100:
2467                                txb2b = false;
2468                                /* maybe add some timeout factor ? */
2469                                break;
2470                        }
2471
2472                        /* enable transmits in the hardware */
2473                        tctl = er32(TCTL);
2474                        tctl |= E1000_TCTL_EN;
2475                        ew32(TCTL, tctl);
2476
2477                        netif_carrier_on(netdev);
2478                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2479                                schedule_delayed_work(&adapter->phy_info_task,
2480                                                      2 * HZ);
2481                        adapter->smartspeed = 0;
2482                }
2483        } else {
2484                if (netif_carrier_ok(netdev)) {
2485                        adapter->link_speed = 0;
2486                        adapter->link_duplex = 0;
2487                        pr_info("%s NIC Link is Down\n",
2488                                netdev->name);
2489                        netif_carrier_off(netdev);
2490
2491                        if (!test_bit(__E1000_DOWN, &adapter->flags))
2492                                schedule_delayed_work(&adapter->phy_info_task,
2493                                                      2 * HZ);
2494                }
2495
2496                e1000_smartspeed(adapter);
2497        }
2498
2499link_up:
2500        e1000_update_stats(adapter);
2501
2502        hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2503        adapter->tpt_old = adapter->stats.tpt;
2504        hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2505        adapter->colc_old = adapter->stats.colc;
2506
2507        adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2508        adapter->gorcl_old = adapter->stats.gorcl;
2509        adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2510        adapter->gotcl_old = adapter->stats.gotcl;
2511
2512        e1000_update_adaptive(hw);
2513
2514        if (!netif_carrier_ok(netdev)) {
2515                if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2516                        /* We've lost link, so the controller stops DMA,
2517                         * but we've got queued Tx work that's never going
2518                         * to get done, so reset controller to flush Tx.
2519                         * (Do the reset outside of interrupt context).
2520                         */
2521                        adapter->tx_timeout_count++;
2522                        schedule_work(&adapter->reset_task);
2523                        /* exit immediately since reset is imminent */
2524                        goto unlock;
2525                }
2526        }
2527
2528        /* Simple mode for Interrupt Throttle Rate (ITR) */
2529        if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2530                /* Symmetric Tx/Rx gets a reduced ITR=2000;
2531                 * Total asymmetrical Tx or Rx gets ITR=8000;
2532                 * everyone else is between 2000-8000.
2533                 */
2534                u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2535                u32 dif = (adapter->gotcl > adapter->gorcl ?
2536                            adapter->gotcl - adapter->gorcl :
2537                            adapter->gorcl - adapter->gotcl) / 10000;
2538                u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2539
2540                ew32(ITR, 1000000000 / (itr * 256));
2541        }
2542
2543        /* Cause software interrupt to ensure rx ring is cleaned */
2544        ew32(ICS, E1000_ICS_RXDMT0);
2545
2546        /* Force detection of hung controller every watchdog period */
2547        adapter->detect_tx_hung = true;
2548
2549        /* Reschedule the task */
2550        if (!test_bit(__E1000_DOWN, &adapter->flags))
2551                schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2552
2553unlock:
2554        mutex_unlock(&adapter->mutex);
2555}
2556
2557enum latency_range {
2558        lowest_latency = 0,
2559        low_latency = 1,
2560        bulk_latency = 2,
2561        latency_invalid = 255
2562};
2563
2564/**
2565 * e1000_update_itr - update the dynamic ITR value based on statistics
2566 * @adapter: pointer to adapter
2567 * @itr_setting: current adapter->itr
2568 * @packets: the number of packets during this measurement interval
2569 * @bytes: the number of bytes during this measurement interval
2570 *
2571 *      Stores a new ITR value based on packets and byte
2572 *      counts during the last interrupt.  The advantage of per interrupt
2573 *      computation is faster updates and more accurate ITR for the current
2574 *      traffic pattern.  Constants in this function were computed
2575 *      based on theoretical maximum wire speed and thresholds were set based
2576 *      on testing data as well as attempting to minimize response time
2577 *      while increasing bulk throughput.
2578 *      this functionality is controlled by the InterruptThrottleRate module
2579 *      parameter (see e1000_param.c)
2580 **/
2581static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2582                                     u16 itr_setting, int packets, int bytes)
2583{
2584        unsigned int retval = itr_setting;
2585        struct e1000_hw *hw = &adapter->hw;
2586
2587        if (unlikely(hw->mac_type < e1000_82540))
2588                goto update_itr_done;
2589
2590        if (packets == 0)
2591                goto update_itr_done;
2592
2593        switch (itr_setting) {
2594        case lowest_latency:
2595                /* jumbo frames get bulk treatment*/
2596                if (bytes/packets > 8000)
2597                        retval = bulk_latency;
2598                else if ((packets < 5) && (bytes > 512))
2599                        retval = low_latency;
2600                break;
2601        case low_latency:  /* 50 usec aka 20000 ints/s */
2602                if (bytes > 10000) {
2603                        /* jumbo frames need bulk latency setting */
2604                        if (bytes/packets > 8000)
2605                                retval = bulk_latency;
2606                        else if ((packets < 10) || ((bytes/packets) > 1200))
2607                                retval = bulk_latency;
2608                        else if ((packets > 35))
2609                                retval = lowest_latency;
2610                } else if (bytes/packets > 2000)
2611                        retval = bulk_latency;
2612                else if (packets <= 2 && bytes < 512)
2613                        retval = lowest_latency;
2614                break;
2615        case bulk_latency: /* 250 usec aka 4000 ints/s */
2616                if (bytes > 25000) {
2617                        if (packets > 35)
2618                                retval = low_latency;
2619                } else if (bytes < 6000) {
2620                        retval = low_latency;
2621                }
2622                break;
2623        }
2624
2625update_itr_done:
2626        return retval;
2627}
2628
2629static void e1000_set_itr(struct e1000_adapter *adapter)
2630{
2631        struct e1000_hw *hw = &adapter->hw;
2632        u16 current_itr;
2633        u32 new_itr = adapter->itr;
2634
2635        if (unlikely(hw->mac_type < e1000_82540))
2636                return;
2637
2638        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2639        if (unlikely(adapter->link_speed != SPEED_1000)) {
2640                current_itr = 0;
2641                new_itr = 4000;
2642                goto set_itr_now;
2643        }
2644
2645        adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2646                                           adapter->total_tx_packets,
2647                                           adapter->total_tx_bytes);
2648        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2649        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2650                adapter->tx_itr = low_latency;
2651
2652        adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2653                                           adapter->total_rx_packets,
2654                                           adapter->total_rx_bytes);
2655        /* conservative mode (itr 3) eliminates the lowest_latency setting */
2656        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2657                adapter->rx_itr = low_latency;
2658
2659        current_itr = max(adapter->rx_itr, adapter->tx_itr);
2660
2661        switch (current_itr) {
2662        /* counts and packets in update_itr are dependent on these numbers */
2663        case lowest_latency:
2664                new_itr = 70000;
2665                break;
2666        case low_latency:
2667                new_itr = 20000; /* aka hwitr = ~200 */
2668                break;
2669        case bulk_latency:
2670                new_itr = 4000;
2671                break;
2672        default:
2673                break;
2674        }
2675
2676set_itr_now:
2677        if (new_itr != adapter->itr) {
2678                /* this attempts to bias the interrupt rate towards Bulk
2679                 * by adding intermediate steps when interrupt rate is
2680                 * increasing
2681                 */
2682                new_itr = new_itr > adapter->itr ?
2683                          min(adapter->itr + (new_itr >> 2), new_itr) :
2684                          new_itr;
2685                adapter->itr = new_itr;
2686                ew32(ITR, 1000000000 / (new_itr * 256));
2687        }
2688}
2689
2690#define E1000_TX_FLAGS_CSUM             0x00000001
2691#define E1000_TX_FLAGS_VLAN             0x00000002
2692#define E1000_TX_FLAGS_TSO              0x00000004
2693#define E1000_TX_FLAGS_IPV4             0x00000008
2694#define E1000_TX_FLAGS_NO_FCS           0x00000010
2695#define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2696#define E1000_TX_FLAGS_VLAN_SHIFT       16
2697
2698static int e1000_tso(struct e1000_adapter *adapter,
2699                     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2700{
2701        struct e1000_context_desc *context_desc;
2702        struct e1000_buffer *buffer_info;
2703        unsigned int i;
2704        u32 cmd_length = 0;
2705        u16 ipcse = 0, tucse, mss;
2706        u8 ipcss, ipcso, tucss, tucso, hdr_len;
2707        int err;
2708
2709        if (skb_is_gso(skb)) {
2710                if (skb_header_cloned(skb)) {
2711                        err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2712                        if (err)
2713                                return err;
2714                }
2715
2716                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2717                mss = skb_shinfo(skb)->gso_size;
2718                if (skb->protocol == htons(ETH_P_IP)) {
2719                        struct iphdr *iph = ip_hdr(skb);
2720                        iph->tot_len = 0;
2721                        iph->check = 0;
2722                        tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2723                                                                 iph->daddr, 0,
2724                                                                 IPPROTO_TCP,
2725                                                                 0);
2726                        cmd_length = E1000_TXD_CMD_IP;
2727                        ipcse = skb_transport_offset(skb) - 1;
2728                } else if (skb->protocol == htons(ETH_P_IPV6)) {
2729                        ipv6_hdr(skb)->payload_len = 0;
2730                        tcp_hdr(skb)->check =
2731                                ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2732                                                 &ipv6_hdr(skb)->daddr,
2733                                                 0, IPPROTO_TCP, 0);
2734                        ipcse = 0;
2735                }
2736                ipcss = skb_network_offset(skb);
2737                ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2738                tucss = skb_transport_offset(skb);
2739                tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2740                tucse = 0;
2741
2742                cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2743                               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2744
2745                i = tx_ring->next_to_use;
2746                context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2747                buffer_info = &tx_ring->buffer_info[i];
2748
2749                context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2750                context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2751                context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2752                context_desc->upper_setup.tcp_fields.tucss = tucss;
2753                context_desc->upper_setup.tcp_fields.tucso = tucso;
2754                context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2755                context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2756                context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2757                context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2758
2759                buffer_info->time_stamp = jiffies;
2760                buffer_info->next_to_watch = i;
2761
2762                if (++i == tx_ring->count) i = 0;
2763                tx_ring->next_to_use = i;
2764
2765                return true;
2766        }
2767        return false;
2768}
2769
2770static bool e1000_tx_csum(struct e1000_adapter *adapter,
2771                          struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2772{
2773        struct e1000_context_desc *context_desc;
2774        struct e1000_buffer *buffer_info;
2775        unsigned int i;
2776        u8 css;
2777        u32 cmd_len = E1000_TXD_CMD_DEXT;
2778
2779        if (skb->ip_summed != CHECKSUM_PARTIAL)
2780                return false;
2781
2782        switch (skb->protocol) {
2783        case cpu_to_be16(ETH_P_IP):
2784                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2785                        cmd_len |= E1000_TXD_CMD_TCP;
2786                break;
2787        case cpu_to_be16(ETH_P_IPV6):
2788                /* XXX not handling all IPV6 headers */
2789                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2790                        cmd_len |= E1000_TXD_CMD_TCP;
2791                break;
2792        default:
2793                if (unlikely(net_ratelimit()))
2794                        e_warn(drv, "checksum_partial proto=%x!\n",
2795                               skb->protocol);
2796                break;
2797        }
2798
2799        css = skb_checksum_start_offset(skb);
2800
2801        i = tx_ring->next_to_use;
2802        buffer_info = &tx_ring->buffer_info[i];
2803        context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2804
2805        context_desc->lower_setup.ip_config = 0;
2806        context_desc->upper_setup.tcp_fields.tucss = css;
2807        context_desc->upper_setup.tcp_fields.tucso =
2808                css + skb->csum_offset;
2809        context_desc->upper_setup.tcp_fields.tucse = 0;
2810        context_desc->tcp_seg_setup.data = 0;
2811        context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2812
2813        buffer_info->time_stamp = jiffies;
2814        buffer_info->next_to_watch = i;
2815
2816        if (unlikely(++i == tx_ring->count)) i = 0;
2817        tx_ring->next_to_use = i;
2818
2819        return true;
2820}
2821
2822#define E1000_MAX_TXD_PWR       12
2823#define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2824
2825static int e1000_tx_map(struct e1000_adapter *adapter,
2826                        struct e1000_tx_ring *tx_ring,
2827                        struct sk_buff *skb, unsigned int first,
2828                        unsigned int max_per_txd, unsigned int nr_frags,
2829                        unsigned int mss)
2830{
2831        struct e1000_hw *hw = &adapter->hw;
2832        struct pci_dev *pdev = adapter->pdev;
2833        struct e1000_buffer *buffer_info;
2834        unsigned int len = skb_headlen(skb);
2835        unsigned int offset = 0, size, count = 0, i;
2836        unsigned int f, bytecount, segs;
2837
2838        i = tx_ring->next_to_use;
2839
2840        while (len) {
2841                buffer_info = &tx_ring->buffer_info[i];
2842                size = min(len, max_per_txd);
2843                /* Workaround for Controller erratum --
2844                 * descriptor for non-tso packet in a linear SKB that follows a
2845                 * tso gets written back prematurely before the data is fully
2846                 * DMA'd to the controller
2847                 */
2848                if (!skb->data_len && tx_ring->last_tx_tso &&
2849                    !skb_is_gso(skb)) {
2850                        tx_ring->last_tx_tso = false;
2851                        size -= 4;
2852                }
2853
2854                /* Workaround for premature desc write-backs
2855                 * in TSO mode.  Append 4-byte sentinel desc
2856                 */
2857                if (unlikely(mss && !nr_frags && size == len && size > 8))
2858                        size -= 4;
2859                /* work-around for errata 10 and it applies
2860                 * to all controllers in PCI-X mode
2861                 * The fix is to make sure that the first descriptor of a
2862                 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2863                 */
2864                if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2865                                (size > 2015) && count == 0))
2866                        size = 2015;
2867
2868                /* Workaround for potential 82544 hang in PCI-X.  Avoid
2869                 * terminating buffers within evenly-aligned dwords.
2870                 */
2871                if (unlikely(adapter->pcix_82544 &&
2872                   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2873                   size > 4))
2874                        size -= 4;
2875
2876                buffer_info->length = size;
2877                /* set time_stamp *before* dma to help avoid a possible race */
2878                buffer_info->time_stamp = jiffies;
2879                buffer_info->mapped_as_page = false;
2880                buffer_info->dma = dma_map_single(&pdev->dev,
2881                                                  skb->data + offset,
2882                                                  size, DMA_TO_DEVICE);
2883                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2884                        goto dma_error;
2885                buffer_info->next_to_watch = i;
2886
2887                len -= size;
2888                offset += size;
2889                count++;
2890                if (len) {
2891                        i++;
2892                        if (unlikely(i == tx_ring->count))
2893                                i = 0;
2894                }
2895        }
2896
2897        for (f = 0; f < nr_frags; f++) {
2898                const struct skb_frag_struct *frag;
2899
2900                frag = &skb_shinfo(skb)->frags[f];
2901                len = skb_frag_size(frag);
2902                offset = 0;
2903
2904                while (len) {
2905                        unsigned long bufend;
2906                        i++;
2907                        if (unlikely(i == tx_ring->count))
2908                                i = 0;
2909
2910                        buffer_info = &tx_ring->buffer_info[i];
2911                        size = min(len, max_per_txd);
2912                        /* Workaround for premature desc write-backs
2913                         * in TSO mode.  Append 4-byte sentinel desc
2914                         */
2915                        if (unlikely(mss && f == (nr_frags-1) &&
2916                            size == len && size > 8))
2917                                size -= 4;
2918                        /* Workaround for potential 82544 hang in PCI-X.
2919                         * Avoid terminating buffers within evenly-aligned
2920                         * dwords.
2921                         */
2922                        bufend = (unsigned long)
2923                                page_to_phys(skb_frag_page(frag));
2924                        bufend += offset + size - 1;
2925                        if (unlikely(adapter->pcix_82544 &&
2926                                     !(bufend & 4) &&
2927                                     size > 4))
2928                                size -= 4;
2929
2930                        buffer_info->length = size;
2931                        buffer_info->time_stamp = jiffies;
2932                        buffer_info->mapped_as_page = true;
2933                        buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2934                                                offset, size, DMA_TO_DEVICE);
2935                        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2936                                goto dma_error;
2937                        buffer_info->next_to_watch = i;
2938
2939                        len -= size;
2940                        offset += size;
2941                        count++;
2942                }
2943        }
2944
2945        segs = skb_shinfo(skb)->gso_segs ?: 1;
2946        /* multiply data chunks by size of headers */
2947        bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2948
2949        tx_ring->buffer_info[i].skb = skb;
2950        tx_ring->buffer_info[i].segs = segs;
2951        tx_ring->buffer_info[i].bytecount = bytecount;
2952        tx_ring->buffer_info[first].next_to_watch = i;
2953
2954        return count;
2955
2956dma_error:
2957        dev_err(&pdev->dev, "TX DMA map failed\n");
2958        buffer_info->dma = 0;
2959        if (count)
2960                count--;
2961
2962        while (count--) {
2963                if (i==0)
2964                        i += tx_ring->count;
2965                i--;
2966                buffer_info = &tx_ring->buffer_info[i];
2967                e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2968        }
2969
2970        return 0;
2971}
2972
2973static void e1000_tx_queue(struct e1000_adapter *adapter,
2974                           struct e1000_tx_ring *tx_ring, int tx_flags,
2975                           int count)
2976{
2977        struct e1000_hw *hw = &adapter->hw;
2978        struct e1000_tx_desc *tx_desc = NULL;
2979        struct e1000_buffer *buffer_info;
2980        u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2981        unsigned int i;
2982
2983        if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2984                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2985                             E1000_TXD_CMD_TSE;
2986                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2987
2988                if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2989                        txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2990        }
2991
2992        if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2993                txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2994                txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2995        }
2996
2997        if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2998                txd_lower |= E1000_TXD_CMD_VLE;
2999                txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3000        }
3001
3002        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3003                txd_lower &= ~(E1000_TXD_CMD_IFCS);
3004
3005        i = tx_ring->next_to_use;
3006
3007        while (count--) {
3008                buffer_info = &tx_ring->buffer_info[i];
3009                tx_desc = E1000_TX_DESC(*tx_ring, i);
3010                tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3011                tx_desc->lower.data =
3012                        cpu_to_le32(txd_lower | buffer_info->length);
3013                tx_desc->upper.data = cpu_to_le32(txd_upper);
3014                if (unlikely(++i == tx_ring->count)) i = 0;
3015        }
3016
3017        tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3018
3019        /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3020        if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3021                tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3022
3023        /* Force memory writes to complete before letting h/w
3024         * know there are new descriptors to fetch.  (Only
3025         * applicable for weak-ordered memory model archs,
3026         * such as IA-64).
3027         */
3028        wmb();
3029
3030        tx_ring->next_to_use = i;
3031        writel(i, hw->hw_addr + tx_ring->tdt);
3032        /* we need this if more than one processor can write to our tail
3033         * at a time, it synchronizes IO on IA64/Altix systems
3034         */
3035        mmiowb();
3036}
3037
3038/* 82547 workaround to avoid controller hang in half-duplex environment.
3039 * The workaround is to avoid queuing a large packet that would span
3040 * the internal Tx FIFO ring boundary by notifying the stack to resend
3041 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3042 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3043 * to the beginning of the Tx FIFO.
3044 */
3045
3046#define E1000_FIFO_HDR                  0x10
3047#define E1000_82547_PAD_LEN             0x3E0
3048
3049static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3050                                       struct sk_buff *skb)
3051{
3052        u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3053        u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3054
3055        skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3056
3057        if (adapter->link_duplex != HALF_DUPLEX)
3058                goto no_fifo_stall_required;
3059
3060        if (atomic_read(&adapter->tx_fifo_stall))
3061                return 1;
3062
3063        if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3064                atomic_set(&adapter->tx_fifo_stall, 1);
3065                return 1;
3066        }
3067
3068no_fifo_stall_required:
3069        adapter->tx_fifo_head += skb_fifo_len;
3070        if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3071                adapter->tx_fifo_head -= adapter->tx_fifo_size;
3072        return 0;
3073}
3074
3075static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3076{
3077        struct e1000_adapter *adapter = netdev_priv(netdev);
3078        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3079
3080        netif_stop_queue(netdev);
3081        /* Herbert's original patch had:
3082         *  smp_mb__after_netif_stop_queue();
3083         * but since that doesn't exist yet, just open code it.
3084         */
3085        smp_mb();
3086
3087        /* We need to check again in a case another CPU has just
3088         * made room available.
3089         */
3090        if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3091                return -EBUSY;
3092
3093        /* A reprieve! */
3094        netif_start_queue(netdev);
3095        ++adapter->restart_queue;
3096        return 0;
3097}
3098
3099static int e1000_maybe_stop_tx(struct net_device *netdev,
3100                               struct e1000_tx_ring *tx_ring, int size)
3101{
3102        if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3103                return 0;
3104        return __e1000_maybe_stop_tx(netdev, size);
3105}
3106
3107#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3108static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3109                                    struct net_device *netdev)
3110{
3111        struct e1000_adapter *adapter = netdev_priv(netdev);
3112        struct e1000_hw *hw = &adapter->hw;
3113        struct e1000_tx_ring *tx_ring;
3114        unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3115        unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3116        unsigned int tx_flags = 0;
3117        unsigned int len = skb_headlen(skb);
3118        unsigned int nr_frags;
3119        unsigned int mss;
3120        int count = 0;
3121        int tso;
3122        unsigned int f;
3123
3124        /* This goes back to the question of how to logically map a Tx queue
3125         * to a flow.  Right now, performance is impacted slightly negatively
3126         * if using multiple Tx queues.  If the stack breaks away from a
3127         * single qdisc implementation, we can look at this again.
3128         */
3129        tx_ring = adapter->tx_ring;
3130
3131        if (unlikely(skb->len <= 0)) {
3132                dev_kfree_skb_any(skb);
3133                return NETDEV_TX_OK;
3134        }
3135
3136        /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3137         * packets may get corrupted during padding by HW.
3138         * To WA this issue, pad all small packets manually.
3139         */
3140        if (skb->len < ETH_ZLEN) {
3141                if (skb_pad(skb, ETH_ZLEN - skb->len))
3142                        return NETDEV_TX_OK;
3143                skb->len = ETH_ZLEN;
3144                skb_set_tail_pointer(skb, ETH_ZLEN);
3145        }
3146
3147        mss = skb_shinfo(skb)->gso_size;
3148        /* The controller does a simple calculation to
3149         * make sure there is enough room in the FIFO before
3150         * initiating the DMA for each buffer.  The calc is:
3151         * 4 = ceil(buffer len/mss).  To make sure we don't
3152         * overrun the FIFO, adjust the max buffer len if mss
3153         * drops.
3154         */
3155        if (mss) {
3156                u8 hdr_len;
3157                max_per_txd = min(mss << 2, max_per_txd);
3158                max_txd_pwr = fls(max_per_txd) - 1;
3159
3160                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3161                if (skb->data_len && hdr_len == len) {
3162                        switch (hw->mac_type) {
3163                                unsigned int pull_size;
3164                        case e1000_82544:
3165                                /* Make sure we have room to chop off 4 bytes,
3166                                 * and that the end alignment will work out to
3167                                 * this hardware's requirements
3168                                 * NOTE: this is a TSO only workaround
3169                                 * if end byte alignment not correct move us
3170                                 * into the next dword
3171                                 */
3172                                if ((unsigned long)(skb_tail_pointer(skb) - 1)
3173                                    & 4)
3174                                        break;
3175                                /* fall through */
3176                                pull_size = min((unsigned int)4, skb->data_len);
3177                                if (!__pskb_pull_tail(skb, pull_size)) {
3178                                        e_err(drv, "__pskb_pull_tail "
3179                                              "failed.\n");
3180                                        dev_kfree_skb_any(skb);
3181                                        return NETDEV_TX_OK;
3182                                }
3183                                len = skb_headlen(skb);
3184                                break;
3185                        default:
3186                                /* do nothing */
3187                                break;
3188                        }
3189                }
3190        }
3191
3192        /* reserve a descriptor for the offload context */
3193        if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3194                count++;
3195        count++;
3196
3197        /* Controller Erratum workaround */
3198        if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3199                count++;
3200
3201        count += TXD_USE_COUNT(len, max_txd_pwr);
3202
3203        if (adapter->pcix_82544)
3204                count++;
3205
3206        /* work-around for errata 10 and it applies to all controllers
3207         * in PCI-X mode, so add one more descriptor to the count
3208         */
3209        if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3210                        (len > 2015)))
3211                count++;
3212
3213        nr_frags = skb_shinfo(skb)->nr_frags;
3214        for (f = 0; f < nr_frags; f++)
3215                count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3216                                       max_txd_pwr);
3217        if (adapter->pcix_82544)
3218                count += nr_frags;
3219
3220        /* need: count + 2 desc gap to keep tail from touching
3221         * head, otherwise try next time
3222         */
3223        if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3224                return NETDEV_TX_BUSY;
3225
3226        if (unlikely((hw->mac_type == e1000_82547) &&
3227                     (e1000_82547_fifo_workaround(adapter, skb)))) {
3228                netif_stop_queue(netdev);
3229                if (!test_bit(__E1000_DOWN, &adapter->flags))
3230                        schedule_delayed_work(&adapter->fifo_stall_task, 1);
3231                return NETDEV_TX_BUSY;
3232        }
3233
3234        if (vlan_tx_tag_present(skb)) {
3235                tx_flags |= E1000_TX_FLAGS_VLAN;
3236                tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3237        }
3238
3239        first = tx_ring->next_to_use;
3240
3241        tso = e1000_tso(adapter, tx_ring, skb);
3242        if (tso < 0) {
3243                dev_kfree_skb_any(skb);
3244                return NETDEV_TX_OK;
3245        }
3246
3247        if (likely(tso)) {
3248                if (likely(hw->mac_type != e1000_82544))
3249                        tx_ring->last_tx_tso = true;
3250                tx_flags |= E1000_TX_FLAGS_TSO;
3251        } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3252                tx_flags |= E1000_TX_FLAGS_CSUM;
3253
3254        if (likely(skb->protocol == htons(ETH_P_IP)))
3255                tx_flags |= E1000_TX_FLAGS_IPV4;
3256
3257        if (unlikely(skb->no_fcs))
3258                tx_flags |= E1000_TX_FLAGS_NO_FCS;
3259
3260        count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3261                             nr_frags, mss);
3262
3263        if (count) {
3264                netdev_sent_queue(netdev, skb->len);
3265                skb_tx_timestamp(skb);
3266
3267                e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3268                /* Make sure there is space in the ring for the next send. */
3269                e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3270
3271        } else {
3272                dev_kfree_skb_any(skb);
3273                tx_ring->buffer_info[first].time_stamp = 0;
3274                tx_ring->next_to_use = first;
3275        }
3276
3277        return NETDEV_TX_OK;
3278}
3279
3280#define NUM_REGS 38 /* 1 based count */
3281static void e1000_regdump(struct e1000_adapter *adapter)
3282{
3283        struct e1000_hw *hw = &adapter->hw;
3284        u32 regs[NUM_REGS];
3285        u32 *regs_buff = regs;
3286        int i = 0;
3287
3288        static const char * const reg_name[] = {
3289                "CTRL",  "STATUS",
3290                "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3291                "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3292                "TIDV", "TXDCTL", "TADV", "TARC0",
3293                "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3294                "TXDCTL1", "TARC1",
3295                "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3296                "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3297                "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3298        };
3299
3300        regs_buff[0]  = er32(CTRL);
3301        regs_buff[1]  = er32(STATUS);
3302
3303        regs_buff[2]  = er32(RCTL);
3304        regs_buff[3]  = er32(RDLEN);
3305        regs_buff[4]  = er32(RDH);
3306        regs_buff[5]  = er32(RDT);
3307        regs_buff[6]  = er32(RDTR);
3308
3309        regs_buff[7]  = er32(TCTL);
3310        regs_buff[8]  = er32(TDBAL);
3311        regs_buff[9]  = er32(TDBAH);
3312        regs_buff[10] = er32(TDLEN);
3313        regs_buff[11] = er32(TDH);
3314        regs_buff[12] = er32(TDT);
3315        regs_buff[13] = er32(TIDV);
3316        regs_buff[14] = er32(TXDCTL);
3317        regs_buff[15] = er32(TADV);
3318        regs_buff[16] = er32(TARC0);
3319
3320        regs_buff[17] = er32(TDBAL1);
3321        regs_buff[18] = er32(TDBAH1);
3322        regs_buff[19] = er32(TDLEN1);
3323        regs_buff[20] = er32(TDH1);
3324        regs_buff[21] = er32(TDT1);
3325        regs_buff[22] = er32(TXDCTL1);
3326        regs_buff[23] = er32(TARC1);
3327        regs_buff[24] = er32(CTRL_EXT);
3328        regs_buff[25] = er32(ERT);
3329        regs_buff[26] = er32(RDBAL0);
3330        regs_buff[27] = er32(RDBAH0);
3331        regs_buff[28] = er32(TDFH);
3332        regs_buff[29] = er32(TDFT);
3333        regs_buff[30] = er32(TDFHS);
3334        regs_buff[31] = er32(TDFTS);
3335        regs_buff[32] = er32(TDFPC);
3336        regs_buff[33] = er32(RDFH);
3337        regs_buff[34] = er32(RDFT);
3338        regs_buff[35] = er32(RDFHS);
3339        regs_buff[36] = er32(RDFTS);
3340        regs_buff[37] = er32(RDFPC);
3341
3342        pr_info("Register dump\n");
3343        for (i = 0; i < NUM_REGS; i++)
3344                pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3345}
3346
3347/*
3348 * e1000_dump: Print registers, tx ring and rx ring
3349 */
3350static void e1000_dump(struct e1000_adapter *adapter)
3351{
3352        /* this code doesn't handle multiple rings */
3353        struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3354        struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3355        int i;
3356
3357        if (!netif_msg_hw(adapter))
3358                return;
3359
3360        /* Print Registers */
3361        e1000_regdump(adapter);
3362
3363        /* transmit dump */
3364        pr_info("TX Desc ring0 dump\n");
3365
3366        /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3367         *
3368         * Legacy Transmit Descriptor
3369         *   +--------------------------------------------------------------+
3370         * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3371         *   +--------------------------------------------------------------+
3372         * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3373         *   +--------------------------------------------------------------+
3374         *   63       48 47        36 35    32 31     24 23    16 15        0
3375         *
3376         * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3377         *   63      48 47    40 39       32 31             16 15    8 7      0
3378         *   +----------------------------------------------------------------+
3379         * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3380         *   +----------------------------------------------------------------+
3381         * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3382         *   +----------------------------------------------------------------+
3383         *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3384         *
3385         * Extended Data Descriptor (DTYP=0x1)
3386         *   +----------------------------------------------------------------+
3387         * 0 |                     Buffer Address [63:0]                      |
3388         *   +----------------------------------------------------------------+
3389         * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3390         *   +----------------------------------------------------------------+
3391         *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3392         */
3393        pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3394        pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3395
3396        if (!netif_msg_tx_done(adapter))
3397                goto rx_ring_summary;
3398
3399        for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3400                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3401                struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3402                struct my_u { __le64 a; __le64 b; };
3403                struct my_u *u = (struct my_u *)tx_desc;
3404                const char *type;
3405
3406                if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3407                        type = "NTC/U";
3408                else if (i == tx_ring->next_to_use)
3409                        type = "NTU";
3410                else if (i == tx_ring->next_to_clean)
3411                        type = "NTC";
3412                else
3413                        type = "";
3414
3415                pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3416                        ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3417                        le64_to_cpu(u->a), le64_to_cpu(u->b),
3418                        (u64)buffer_info->dma, buffer_info->length,
3419                        buffer_info->next_to_watch,
3420                        (u64)buffer_info->time_stamp, buffer_info->skb, type);
3421        }
3422
3423rx_ring_summary:
3424        /* receive dump */
3425        pr_info("\nRX Desc ring dump\n");
3426
3427        /* Legacy Receive Descriptor Format
3428         *
3429         * +-----------------------------------------------------+
3430         * |                Buffer Address [63:0]                |
3431         * +-----------------------------------------------------+
3432         * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3433         * +-----------------------------------------------------+
3434         * 63       48 47    40 39      32 31         16 15      0
3435         */
3436        pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3437
3438        if (!netif_msg_rx_status(adapter))
3439                goto exit;
3440
3441        for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3442                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3443                struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3444                struct my_u { __le64 a; __le64 b; };
3445                struct my_u *u = (struct my_u *)rx_desc;
3446                const char *type;
3447
3448                if (i == rx_ring->next_to_use)
3449                        type = "NTU";
3450                else if (i == rx_ring->next_to_clean)
3451                        type = "NTC";
3452                else
3453                        type = "";
3454
3455                pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3456                        i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3457                        (u64)buffer_info->dma, buffer_info->skb, type);
3458        } /* for */
3459
3460        /* dump the descriptor caches */
3461        /* rx */
3462        pr_info("Rx descriptor cache in 64bit format\n");
3463        for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3464                pr_info("R%04X: %08X|%08X %08X|%08X\n",
3465                        i,
3466                        readl(adapter->hw.hw_addr + i+4),
3467                        readl(adapter->hw.hw_addr + i),
3468                        readl(adapter->hw.hw_addr + i+12),
3469                        readl(adapter->hw.hw_addr + i+8));
3470        }
3471        /* tx */
3472        pr_info("Tx descriptor cache in 64bit format\n");
3473        for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3474                pr_info("T%04X: %08X|%08X %08X|%08X\n",
3475                        i,
3476                        readl(adapter->hw.hw_addr + i+4),
3477                        readl(adapter->hw.hw_addr + i),
3478                        readl(adapter->hw.hw_addr + i+12),
3479                        readl(adapter->hw.hw_addr + i+8));
3480        }
3481exit:
3482        return;
3483}
3484
3485/**
3486 * e1000_tx_timeout - Respond to a Tx Hang
3487 * @netdev: network interface device structure
3488 **/
3489static void e1000_tx_timeout(struct net_device *netdev)
3490{
3491        struct e1000_adapter *adapter = netdev_priv(netdev);
3492
3493        /* Do the reset outside of interrupt context */
3494        adapter->tx_timeout_count++;
3495        schedule_work(&adapter->reset_task);
3496}
3497
3498static void e1000_reset_task(struct work_struct *work)
3499{
3500        struct e1000_adapter *adapter =
3501                container_of(work, struct e1000_adapter, reset_task);
3502
3503        if (test_bit(__E1000_DOWN, &adapter->flags))
3504                return;
3505        e_err(drv, "Reset adapter\n");
3506        e1000_reinit_safe(adapter);
3507}
3508
3509/**
3510 * e1000_get_stats - Get System Network Statistics
3511 * @netdev: network interface device structure
3512 *
3513 * Returns the address of the device statistics structure.
3514 * The statistics are actually updated from the watchdog.
3515 **/
3516static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3517{
3518        /* only return the current stats */
3519        return &netdev->stats;
3520}
3521
3522/**
3523 * e1000_change_mtu - Change the Maximum Transfer Unit
3524 * @netdev: network interface device structure
3525 * @new_mtu: new value for maximum frame size
3526 *
3527 * Returns 0 on success, negative on failure
3528 **/
3529static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3530{
3531        struct e1000_adapter *adapter = netdev_priv(netdev);
3532        struct e1000_hw *hw = &adapter->hw;
3533        int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3534
3535        if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3536            (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3537                e_err(probe, "Invalid MTU setting\n");
3538                return -EINVAL;
3539        }
3540
3541        /* Adapter-specific max frame size limits. */
3542        switch (hw->mac_type) {
3543        case e1000_undefined ... e1000_82542_rev2_1:
3544                if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3545                        e_err(probe, "Jumbo Frames not supported.\n");
3546                        return -EINVAL;
3547                }
3548                break;
3549        default:
3550                /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3551                break;
3552        }
3553
3554        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3555                msleep(1);
3556        /* e1000_down has a dependency on max_frame_size */
3557        hw->max_frame_size = max_frame;
3558        if (netif_running(netdev))
3559                e1000_down(adapter);
3560
3561        /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3562         * means we reserve 2 more, this pushes us to allocate from the next
3563         * larger slab size.
3564         * i.e. RXBUFFER_2048 --> size-4096 slab
3565         * however with the new *_jumbo_rx* routines, jumbo receives will use
3566         * fragmented skbs
3567         */
3568
3569        if (max_frame <= E1000_RXBUFFER_2048)
3570                adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3571        else
3572#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3573                adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3574#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3575                adapter->rx_buffer_len = PAGE_SIZE;
3576#endif
3577
3578        /* adjust allocation if LPE protects us, and we aren't using SBP */
3579        if (!hw->tbi_compatibility_on &&
3580            ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3581             (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3582                adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3583
3584        pr_info("%s changing MTU from %d to %d\n",
3585                netdev->name, netdev->mtu, new_mtu);
3586        netdev->mtu = new_mtu;
3587
3588        if (netif_running(netdev))
3589                e1000_up(adapter);
3590        else
3591                e1000_reset(adapter);
3592
3593        clear_bit(__E1000_RESETTING, &adapter->flags);
3594
3595        return 0;
3596}
3597
3598/**
3599 * e1000_update_stats - Update the board statistics counters
3600 * @adapter: board private structure
3601 **/
3602void e1000_update_stats(struct e1000_adapter *adapter)
3603{
3604        struct net_device *netdev = adapter->netdev;
3605        struct e1000_hw *hw = &adapter->hw;
3606        struct pci_dev *pdev = adapter->pdev;
3607        unsigned long flags;
3608        u16 phy_tmp;
3609
3610#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3611
3612        /* Prevent stats update while adapter is being reset, or if the pci
3613         * connection is down.
3614         */
3615        if (adapter->link_speed == 0)
3616                return;
3617        if (pci_channel_offline(pdev))
3618                return;
3619
3620        spin_lock_irqsave(&adapter->stats_lock, flags);
3621
3622        /* these counters are modified from e1000_tbi_adjust_stats,
3623         * called from the interrupt context, so they must only
3624         * be written while holding adapter->stats_lock
3625         */
3626
3627        adapter->stats.crcerrs += er32(CRCERRS);
3628        adapter->stats.gprc += er32(GPRC);
3629        adapter->stats.gorcl += er32(GORCL);
3630        adapter->stats.gorch += er32(GORCH);
3631        adapter->stats.bprc += er32(BPRC);
3632        adapter->stats.mprc += er32(MPRC);
3633        adapter->stats.roc += er32(ROC);
3634
3635        adapter->stats.prc64 += er32(PRC64);
3636        adapter->stats.prc127 += er32(PRC127);
3637        adapter->stats.prc255 += er32(PRC255);
3638        adapter->stats.prc511 += er32(PRC511);
3639        adapter->stats.prc1023 += er32(PRC1023);
3640        adapter->stats.prc1522 += er32(PRC1522);
3641
3642        adapter->stats.symerrs += er32(SYMERRS);
3643        adapter->stats.mpc += er32(MPC);
3644        adapter->stats.scc += er32(SCC);
3645        adapter->stats.ecol += er32(ECOL);
3646        adapter->stats.mcc += er32(MCC);
3647        adapter->stats.latecol += er32(LATECOL);
3648        adapter->stats.dc += er32(DC);
3649        adapter->stats.sec += er32(SEC);
3650        adapter->stats.rlec += er32(RLEC);
3651        adapter->stats.xonrxc += er32(XONRXC);
3652        adapter->stats.xontxc += er32(XONTXC);
3653        adapter->stats.xoffrxc += er32(XOFFRXC);
3654        adapter->stats.xofftxc += er32(XOFFTXC);
3655        adapter->stats.fcruc += er32(FCRUC);
3656        adapter->stats.gptc += er32(GPTC);
3657        adapter->stats.gotcl += er32(GOTCL);
3658        adapter->stats.gotch += er32(GOTCH);
3659        adapter->stats.rnbc += er32(RNBC);
3660        adapter->stats.ruc += er32(RUC);
3661        adapter->stats.rfc += er32(RFC);
3662        adapter->stats.rjc += er32(RJC);
3663        adapter->stats.torl += er32(TORL);
3664        adapter->stats.torh += er32(TORH);
3665        adapter->stats.totl += er32(TOTL);
3666        adapter->stats.toth += er32(TOTH);
3667        adapter->stats.tpr += er32(TPR);
3668
3669        adapter->stats.ptc64 += er32(PTC64);
3670        adapter->stats.ptc127 += er32(PTC127);
3671        adapter->stats.ptc255 += er32(PTC255);
3672        adapter->stats.ptc511 += er32(PTC511);
3673        adapter->stats.ptc1023 += er32(PTC1023);
3674        adapter->stats.ptc1522 += er32(PTC1522);
3675
3676        adapter->stats.mptc += er32(MPTC);
3677        adapter->stats.bptc += er32(BPTC);
3678
3679        /* used for adaptive IFS */
3680
3681        hw->tx_packet_delta = er32(TPT);
3682        adapter->stats.tpt += hw->tx_packet_delta;
3683        hw->collision_delta = er32(COLC);
3684        adapter->stats.colc += hw->collision_delta;
3685
3686        if (hw->mac_type >= e1000_82543) {
3687                adapter->stats.algnerrc += er32(ALGNERRC);
3688                adapter->stats.rxerrc += er32(RXERRC);
3689                adapter->stats.tncrs += er32(TNCRS);
3690                adapter->stats.cexterr += er32(CEXTERR);
3691                adapter->stats.tsctc += er32(TSCTC);
3692                adapter->stats.tsctfc += er32(TSCTFC);
3693        }
3694
3695        /* Fill out the OS statistics structure */
3696        netdev->stats.multicast = adapter->stats.mprc;
3697        netdev->stats.collisions = adapter->stats.colc;
3698
3699        /* Rx Errors */
3700
3701        /* RLEC on some newer hardware can be incorrect so build
3702         * our own version based on RUC and ROC
3703         */
3704        netdev->stats.rx_errors = adapter->stats.rxerrc +
3705                adapter->stats.crcerrs + adapter->stats.algnerrc +
3706                adapter->stats.ruc + adapter->stats.roc +
3707                adapter->stats.cexterr;
3708        adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3709        netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3710        netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3711        netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3712        netdev->stats.rx_missed_errors = adapter->stats.mpc;
3713
3714        /* Tx Errors */
3715        adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3716        netdev->stats.tx_errors = adapter->stats.txerrc;
3717        netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3718        netdev->stats.tx_window_errors = adapter->stats.latecol;
3719        netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3720        if (hw->bad_tx_carr_stats_fd &&
3721            adapter->link_duplex == FULL_DUPLEX) {
3722                netdev->stats.tx_carrier_errors = 0;
3723                adapter->stats.tncrs = 0;
3724        }
3725
3726        /* Tx Dropped needs to be maintained elsewhere */
3727
3728        /* Phy Stats */
3729        if (hw->media_type == e1000_media_type_copper) {
3730                if ((adapter->link_speed == SPEED_1000) &&
3731                   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3732                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3733                        adapter->phy_stats.idle_errors += phy_tmp;
3734                }
3735
3736                if ((hw->mac_type <= e1000_82546) &&
3737                   (hw->phy_type == e1000_phy_m88) &&
3738                   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3739                        adapter->phy_stats.receive_errors += phy_tmp;
3740        }
3741
3742        /* Management Stats */
3743        if (hw->has_smbus) {
3744                adapter->stats.mgptc += er32(MGTPTC);
3745                adapter->stats.mgprc += er32(MGTPRC);
3746                adapter->stats.mgpdc += er32(MGTPDC);
3747        }
3748
3749        spin_unlock_irqrestore(&adapter->stats_lock, flags);
3750}
3751
3752/**
3753 * e1000_intr - Interrupt Handler
3754 * @irq: interrupt number
3755 * @data: pointer to a network interface device structure
3756 **/
3757static irqreturn_t e1000_intr(int irq, void *data)
3758{
3759        struct net_device *netdev = data;
3760        struct e1000_adapter *adapter = netdev_priv(netdev);
3761        struct e1000_hw *hw = &adapter->hw;
3762        u32 icr = er32(ICR);
3763
3764        if (unlikely((!icr)))
3765                return IRQ_NONE;  /* Not our interrupt */
3766
3767        /* we might have caused the interrupt, but the above
3768         * read cleared it, and just in case the driver is
3769         * down there is nothing to do so return handled
3770         */
3771        if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3772                return IRQ_HANDLED;
3773
3774        if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3775                hw->get_link_status = 1;
3776                /* guard against interrupt when we're going down */
3777                if (!test_bit(__E1000_DOWN, &adapter->flags))
3778                        schedule_delayed_work(&adapter->watchdog_task, 1);
3779        }
3780
3781        /* disable interrupts, without the synchronize_irq bit */
3782        ew32(IMC, ~0);
3783        E1000_WRITE_FLUSH();
3784
3785        if (likely(napi_schedule_prep(&adapter->napi))) {
3786                adapter->total_tx_bytes = 0;
3787                adapter->total_tx_packets = 0;
3788                adapter->total_rx_bytes = 0;
3789                adapter->total_rx_packets = 0;
3790                __napi_schedule(&adapter->napi);
3791        } else {
3792                /* this really should not happen! if it does it is basically a
3793                 * bug, but not a hard error, so enable ints and continue
3794                 */
3795                if (!test_bit(__E1000_DOWN, &adapter->flags))
3796                        e1000_irq_enable(adapter);
3797        }
3798
3799        return IRQ_HANDLED;
3800}
3801
3802/**
3803 * e1000_clean - NAPI Rx polling callback
3804 * @adapter: board private structure
3805 **/
3806static int e1000_clean(struct napi_struct *napi, int budget)
3807{
3808        struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3809                                                     napi);
3810        int tx_clean_complete = 0, work_done = 0;
3811
3812        tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3813
3814        adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3815
3816        if (!tx_clean_complete)
3817                work_done = budget;
3818
3819        /* If budget not fully consumed, exit the polling mode */
3820        if (work_done < budget) {
3821                if (likely(adapter->itr_setting & 3))
3822                        e1000_set_itr(adapter);
3823                napi_complete(napi);
3824                if (!test_bit(__E1000_DOWN, &adapter->flags))
3825                        e1000_irq_enable(adapter);
3826        }
3827
3828        return work_done;
3829}
3830
3831/**
3832 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3833 * @adapter: board private structure
3834 **/
3835static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3836                               struct e1000_tx_ring *tx_ring)
3837{
3838        struct e1000_hw *hw = &adapter->hw;
3839        struct net_device *netdev = adapter->netdev;
3840        struct e1000_tx_desc *tx_desc, *eop_desc;
3841        struct e1000_buffer *buffer_info;
3842        unsigned int i, eop;
3843        unsigned int count = 0;
3844        unsigned int total_tx_bytes=0, total_tx_packets=0;
3845        unsigned int bytes_compl = 0, pkts_compl = 0;
3846
3847        i = tx_ring->next_to_clean;
3848        eop = tx_ring->buffer_info[i].next_to_watch;
3849        eop_desc = E1000_TX_DESC(*tx_ring, eop);
3850
3851        while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3852               (count < tx_ring->count)) {
3853                bool cleaned = false;
3854                rmb();  /* read buffer_info after eop_desc */
3855                for ( ; !cleaned; count++) {
3856                        tx_desc = E1000_TX_DESC(*tx_ring, i);
3857                        buffer_info = &tx_ring->buffer_info[i];
3858                        cleaned = (i == eop);
3859
3860                        if (cleaned) {
3861                                total_tx_packets += buffer_info->segs;
3862                                total_tx_bytes += buffer_info->bytecount;
3863                                if (buffer_info->skb) {
3864                                        bytes_compl += buffer_info->skb->len;
3865                                        pkts_compl++;
3866                                }
3867
3868                        }
3869                        e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3870                        tx_desc->upper.data = 0;
3871
3872                        if (unlikely(++i == tx_ring->count)) i = 0;
3873                }
3874
3875                eop = tx_ring->buffer_info[i].next_to_watch;
3876                eop_desc = E1000_TX_DESC(*tx_ring, eop);
3877        }
3878
3879        tx_ring->next_to_clean = i;
3880
3881        netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882
3883#define TX_WAKE_THRESHOLD 32
3884        if (unlikely(count && netif_carrier_ok(netdev) &&
3885                     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886                /* Make sure that anybody stopping the queue after this
3887                 * sees the new next_to_clean.
3888                 */
3889                smp_mb();
3890
3891                if (netif_queue_stopped(netdev) &&
3892                    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893                        netif_wake_queue(netdev);
3894                        ++adapter->restart_queue;
3895                }
3896        }
3897
3898        if (adapter->detect_tx_hung) {
3899                /* Detect a transmit hang in hardware, this serializes the
3900                 * check with the clearing of time_stamp and movement of i
3901                 */
3902                adapter->detect_tx_hung = false;
3903                if (tx_ring->buffer_info[eop].time_stamp &&
3904                    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905                               (adapter->tx_timeout_factor * HZ)) &&
3906                    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907
3908                        /* detected Tx unit hang */
3909                        e_err(drv, "Detected Tx Unit Hang\n"
3910                              "  Tx Queue             <%lu>\n"
3911                              "  TDH                  <%x>\n"
3912                              "  TDT                  <%x>\n"
3913                              "  next_to_use          <%x>\n"
3914                              "  next_to_clean        <%x>\n"
3915                              "buffer_info[next_to_clean]\n"
3916                              "  time_stamp           <%lx>\n"
3917                              "  next_to_watch        <%x>\n"
3918                              "  jiffies              <%lx>\n"
3919                              "  next_to_watch.status <%x>\n",
3920                                (unsigned long)((tx_ring - adapter->tx_ring) /
3921                                        sizeof(struct e1000_tx_ring)),
3922                                readl(hw->hw_addr + tx_ring->tdh),
3923                                readl(hw->hw_addr + tx_ring->tdt),
3924                                tx_ring->next_to_use,
3925                                tx_ring->next_to_clean,
3926                                tx_ring->buffer_info[eop].time_stamp,
3927                                eop,
3928                                jiffies,
3929                                eop_desc->upper.fields.status);
3930                        e1000_dump(adapter);
3931                        netif_stop_queue(netdev);
3932                }
3933        }
3934        adapter->total_tx_bytes += total_tx_bytes;
3935        adapter->total_tx_packets += total_tx_packets;
3936        netdev->stats.tx_bytes += total_tx_bytes;
3937        netdev->stats.tx_packets += total_tx_packets;
3938        return count < tx_ring->count;
3939}
3940
3941/**
3942 * e1000_rx_checksum - Receive Checksum Offload for 82543
3943 * @adapter:     board private structure
3944 * @status_err:  receive descriptor status and error fields
3945 * @csum:        receive descriptor csum field
3946 * @sk_buff:     socket buffer with received data
3947 **/
3948static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3949                              u32 csum, struct sk_buff *skb)
3950{
3951        struct e1000_hw *hw = &adapter->hw;
3952        u16 status = (u16)status_err;
3953        u8 errors = (u8)(status_err >> 24);
3954
3955        skb_checksum_none_assert(skb);
3956
3957        /* 82543 or newer only */
3958        if (unlikely(hw->mac_type < e1000_82543)) return;
3959        /* Ignore Checksum bit is set */
3960        if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3961        /* TCP/UDP checksum error bit is set */
3962        if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3963                /* let the stack verify checksum errors */
3964                adapter->hw_csum_err++;
3965                return;
3966        }
3967        /* TCP/UDP Checksum has not been calculated */
3968        if (!(status & E1000_RXD_STAT_TCPCS))
3969                return;
3970
3971        /* It must be a TCP or UDP packet with a valid checksum */
3972        if (likely(status & E1000_RXD_STAT_TCPCS)) {
3973                /* TCP checksum is good */
3974                skb->ip_summed = CHECKSUM_UNNECESSARY;
3975        }
3976        adapter->hw_csum_good++;
3977}
3978
3979/**
3980 * e1000_consume_page - helper function
3981 **/
3982static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3983                               u16 length)
3984{
3985        bi->page = NULL;
3986        skb->len += length;
3987        skb->data_len += length;
3988        skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999                              __le16 vlan, struct sk_buff *skb)
4000{
4001        skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003        if (status & E1000_RXD_STAT_VP) {
4004                u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007        }
4008        napi_gro_receive(&adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4013 * @adapter: board private structure
4014 * @rx_ring: ring to clean
4015 * @work_done: amount of napi work completed this call
4016 * @work_to_do: max amount of work allowed for this call to do
4017 *
4018 * the return value indicates whether actual cleaning was done, there
4019 * is no guarantee that everything was cleaned
4020 */
4021static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4022                                     struct e1000_rx_ring *rx_ring,
4023                                     int *work_done, int work_to_do)
4024{
4025        struct e1000_hw *hw = &adapter->hw;
4026        struct net_device *netdev = adapter->netdev;
4027        struct pci_dev *pdev = adapter->pdev;
4028        struct e1000_rx_desc *rx_desc, *next_rxd;
4029        struct e1000_buffer *buffer_info, *next_buffer;
4030        unsigned long irq_flags;
4031        u32 length;
4032        unsigned int i;
4033        int cleaned_count = 0;
4034        bool cleaned = false;
4035        unsigned int total_rx_bytes=0, total_rx_packets=0;
4036
4037        i = rx_ring->next_to_clean;
4038        rx_desc = E1000_RX_DESC(*rx_ring, i);
4039        buffer_info = &rx_ring->buffer_info[i];
4040
4041        while (rx_desc->status & E1000_RXD_STAT_DD) {
4042                struct sk_buff *skb;
4043                u8 status;
4044
4045                if (*work_done >= work_to_do)
4046                        break;
4047                (*work_done)++;
4048                rmb(); /* read descriptor and rx_buffer_info after status DD */
4049
4050                status = rx_desc->status;
4051                skb = buffer_info->skb;
4052                buffer_info->skb = NULL;
4053
4054                if (++i == rx_ring->count) i = 0;
4055                next_rxd = E1000_RX_DESC(*rx_ring, i);
4056                prefetch(next_rxd);
4057
4058                next_buffer = &rx_ring->buffer_info[i];
4059
4060                cleaned = true;
4061                cleaned_count++;
4062                dma_unmap_page(&pdev->dev, buffer_info->dma,
4063                               buffer_info->length, DMA_FROM_DEVICE);
4064                buffer_info->dma = 0;
4065
4066                length = le16_to_cpu(rx_desc->length);
4067
4068                /* errors is only valid for DD + EOP descriptors */
4069                if (unlikely((status & E1000_RXD_STAT_EOP) &&
4070                    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4071                        u8 *mapped;
4072                        u8 last_byte;
4073
4074                        mapped = page_address(buffer_info->page);
4075                        last_byte = *(mapped + length - 1);
4076                        if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4077                                       last_byte)) {
4078                                spin_lock_irqsave(&adapter->stats_lock,
4079                                                  irq_flags);
4080                                e1000_tbi_adjust_stats(hw, &adapter->stats,
4081                                                       length, mapped);
4082                                spin_unlock_irqrestore(&adapter->stats_lock,
4083                                                       irq_flags);
4084                                length--;
4085                        } else {
4086                                if (netdev->features & NETIF_F_RXALL)
4087                                        goto process_skb;
4088                                /* recycle both page and skb */
4089                                buffer_info->skb = skb;
4090                                /* an error means any chain goes out the window
4091                                 * too
4092                                 */
4093                                if (rx_ring->rx_skb_top)
4094                                        dev_kfree_skb(rx_ring->rx_skb_top);
4095                                rx_ring->rx_skb_top = NULL;
4096                                goto next_desc;
4097                        }
4098                }
4099
4100#define rxtop rx_ring->rx_skb_top
4101process_skb:
4102                if (!(status & E1000_RXD_STAT_EOP)) {
4103                        /* this descriptor is only the beginning (or middle) */
4104                        if (!rxtop) {
4105                                /* this is the beginning of a chain */
4106                                rxtop = skb;
4107                                skb_fill_page_desc(rxtop, 0, buffer_info->page,
4108                                                   0, length);
4109                        } else {
4110                                /* this is the middle of a chain */
4111                                skb_fill_page_desc(rxtop,
4112                                    skb_shinfo(rxtop)->nr_frags,
4113                                    buffer_info->page, 0, length);
4114                                /* re-use the skb, only consumed the page */
4115                                buffer_info->skb = skb;
4116                        }
4117                        e1000_consume_page(buffer_info, rxtop, length);
4118                        goto next_desc;
4119                } else {
4120                        if (rxtop) {
4121                                /* end of the chain */
4122                                skb_fill_page_desc(rxtop,
4123                                    skb_shinfo(rxtop)->nr_frags,
4124                                    buffer_info->page, 0, length);
4125                                /* re-use the current skb, we only consumed the
4126                                 * page
4127                                 */
4128                                buffer_info->skb = skb;
4129                                skb = rxtop;
4130                                rxtop = NULL;
4131                                e1000_consume_page(buffer_info, skb, length);
4132                        } else {
4133                                /* no chain, got EOP, this buf is the packet
4134                                 * copybreak to save the put_page/alloc_page
4135                                 */
4136                                if (length <= copybreak &&
4137                                    skb_tailroom(skb) >= length) {
4138                                        u8 *vaddr;
4139                                        vaddr = kmap_atomic(buffer_info->page);
4140                                        memcpy(skb_tail_pointer(skb), vaddr,
4141                                               length);
4142                                        kunmap_atomic(vaddr);
4143                                        /* re-use the page, so don't erase
4144                                         * buffer_info->page
4145                                         */
4146                                        skb_put(skb, length);
4147                                } else {
4148                                        skb_fill_page_desc(skb, 0,
4149                                                           buffer_info->page, 0,
4150                                                           length);
4151                                        e1000_consume_page(buffer_info, skb,
4152                                                           length);
4153                                }
4154                        }
4155                }
4156
4157                /* Receive Checksum Offload XXX recompute due to CRC strip? */
4158                e1000_rx_checksum(adapter,
4159                                  (u32)(status) |
4160                                  ((u32)(rx_desc->errors) << 24),
4161                                  le16_to_cpu(rx_desc->csum), skb);
4162
4163                total_rx_bytes += (skb->len - 4); /* don't count FCS */
4164                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4165                        pskb_trim(skb, skb->len - 4);
4166                total_rx_packets++;
4167
4168                /* eth type trans needs skb->data to point to something */
4169                if (!pskb_may_pull(skb, ETH_HLEN)) {
4170                        e_err(drv, "pskb_may_pull failed.\n");
4171                        dev_kfree_skb(skb);
4172                        goto next_desc;
4173                }
4174
4175                e1000_receive_skb(adapter, status, rx_desc->special, skb);
4176
4177next_desc:
4178                rx_desc->status = 0;
4179
4180                /* return some buffers to hardware, one at a time is too slow */
4181                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4182                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4183                        cleaned_count = 0;
4184                }
4185
4186                /* use prefetched values */
4187                rx_desc = next_rxd;
4188                buffer_info = next_buffer;
4189        }
4190        rx_ring->next_to_clean = i;
4191
4192        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4193        if (cleaned_count)
4194                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4195
4196        adapter->total_rx_packets += total_rx_packets;
4197        adapter->total_rx_bytes += total_rx_bytes;
4198        netdev->stats.rx_bytes += total_rx_bytes;
4199        netdev->stats.rx_packets += total_rx_packets;
4200        return cleaned;
4201}
4202
4203/* this should improve performance for small packets with large amounts
4204 * of reassembly being done in the stack
4205 */
4206static void e1000_check_copybreak(struct net_device *netdev,
4207                                 struct e1000_buffer *buffer_info,
4208                                 u32 length, struct sk_buff **skb)
4209{
4210        struct sk_buff *new_skb;
4211
4212        if (length > copybreak)
4213                return;
4214
4215        new_skb = netdev_alloc_skb_ip_align(netdev, length);
4216        if (!new_skb)
4217                return;
4218
4219        skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4220                                       (*skb)->data - NET_IP_ALIGN,
4221                                       length + NET_IP_ALIGN);
4222        /* save the skb in buffer_info as good */
4223        buffer_info->skb = *skb;
4224        *skb = new_skb;
4225}
4226
4227/**
4228 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4229 * @adapter: board private structure
4230 * @rx_ring: ring to clean
4231 * @work_done: amount of napi work completed this call
4232 * @work_to_do: max amount of work allowed for this call to do
4233 */
4234static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4235                               struct e1000_rx_ring *rx_ring,
4236                               int *work_done, int work_to_do)
4237{
4238        struct e1000_hw *hw = &adapter->hw;
4239        struct net_device *netdev = adapter->netdev;
4240        struct pci_dev *pdev = adapter->pdev;
4241        struct e1000_rx_desc *rx_desc, *next_rxd;
4242        struct e1000_buffer *buffer_info, *next_buffer;
4243        unsigned long flags;
4244        u32 length;
4245        unsigned int i;
4246        int cleaned_count = 0;
4247        bool cleaned = false;
4248        unsigned int total_rx_bytes=0, total_rx_packets=0;
4249
4250        i = rx_ring->next_to_clean;
4251        rx_desc = E1000_RX_DESC(*rx_ring, i);
4252        buffer_info = &rx_ring->buffer_info[i];
4253
4254        while (rx_desc->status & E1000_RXD_STAT_DD) {
4255                struct sk_buff *skb;
4256                u8 status;
4257
4258                if (*work_done >= work_to_do)
4259                        break;
4260                (*work_done)++;
4261                rmb(); /* read descriptor and rx_buffer_info after status DD */
4262
4263                status = rx_desc->status;
4264                skb = buffer_info->skb;
4265                buffer_info->skb = NULL;
4266
4267                prefetch(skb->data - NET_IP_ALIGN);
4268
4269                if (++i == rx_ring->count) i = 0;
4270                next_rxd = E1000_RX_DESC(*rx_ring, i);
4271                prefetch(next_rxd);
4272
4273                next_buffer = &rx_ring->buffer_info[i];
4274
4275                cleaned = true;
4276                cleaned_count++;
4277                dma_unmap_single(&pdev->dev, buffer_info->dma,
4278                                 buffer_info->length, DMA_FROM_DEVICE);
4279                buffer_info->dma = 0;
4280
4281                length = le16_to_cpu(rx_desc->length);
4282                /* !EOP means multiple descriptors were used to store a single
4283                 * packet, if thats the case we need to toss it.  In fact, we
4284                 * to toss every packet with the EOP bit clear and the next
4285                 * frame that _does_ have the EOP bit set, as it is by
4286                 * definition only a frame fragment
4287                 */
4288                if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4289                        adapter->discarding = true;
4290
4291                if (adapter->discarding) {
4292                        /* All receives must fit into a single buffer */
4293                        e_dbg("Receive packet consumed multiple buffers\n");
4294                        /* recycle */
4295                        buffer_info->skb = skb;
4296                        if (status & E1000_RXD_STAT_EOP)
4297                                adapter->discarding = false;
4298                        goto next_desc;
4299                }
4300
4301                if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4302                        u8 last_byte = *(skb->data + length - 1);
4303                        if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4304                                       last_byte)) {
4305                                spin_lock_irqsave(&adapter->stats_lock, flags);
4306                                e1000_tbi_adjust_stats(hw, &adapter->stats,
4307                                                       length, skb->data);
4308                                spin_unlock_irqrestore(&adapter->stats_lock,
4309                                                       flags);
4310                                length--;
4311                        } else {
4312                                if (netdev->features & NETIF_F_RXALL)
4313                                        goto process_skb;
4314                                /* recycle */
4315                                buffer_info->skb = skb;
4316                                goto next_desc;
4317                        }
4318                }
4319
4320process_skb:
4321                total_rx_bytes += (length - 4); /* don't count FCS */
4322                total_rx_packets++;
4323
4324                if (likely(!(netdev->features & NETIF_F_RXFCS)))
4325                        /* adjust length to remove Ethernet CRC, this must be
4326                         * done after the TBI_ACCEPT workaround above
4327                         */
4328                        length -= 4;
4329
4330                e1000_check_copybreak(netdev, buffer_info, length, &skb);
4331
4332                skb_put(skb, length);
4333
4334                /* Receive Checksum Offload */
4335                e1000_rx_checksum(adapter,
4336                                  (u32)(status) |
4337                                  ((u32)(rx_desc->errors) << 24),
4338                                  le16_to_cpu(rx_desc->csum), skb);
4339
4340                e1000_receive_skb(adapter, status, rx_desc->special, skb);
4341
4342next_desc:
4343                rx_desc->status = 0;
4344
4345                /* return some buffers to hardware, one at a time is too slow */
4346                if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4347                        adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4348                        cleaned_count = 0;
4349                }
4350
4351                /* use prefetched values */
4352                rx_desc = next_rxd;
4353                buffer_info = next_buffer;
4354        }
4355        rx_ring->next_to_clean = i;
4356
4357        cleaned_count = E1000_DESC_UNUSED(rx_ring);
4358        if (cleaned_count)
4359                adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4360
4361        adapter->total_rx_packets += total_rx_packets;
4362        adapter->total_rx_bytes += total_rx_bytes;
4363        netdev->stats.rx_bytes += total_rx_bytes;
4364        netdev->stats.rx_packets += total_rx_packets;
4365        return cleaned;
4366}
4367
4368/**
4369 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4370 * @adapter: address of board private structure
4371 * @rx_ring: pointer to receive ring structure
4372 * @cleaned_count: number of buffers to allocate this pass
4373 **/
4374static void
4375e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4376                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4377{
4378        struct net_device *netdev = adapter->netdev;
4379        struct pci_dev *pdev = adapter->pdev;
4380        struct e1000_rx_desc *rx_desc;
4381        struct e1000_buffer *buffer_info;
4382        struct sk_buff *skb;
4383        unsigned int i;
4384        unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4385
4386        i = rx_ring->next_to_use;
4387        buffer_info = &rx_ring->buffer_info[i];
4388
4389        while (cleaned_count--) {
4390                skb = buffer_info->skb;
4391                if (skb) {
4392                        skb_trim(skb, 0);
4393                        goto check_page;
4394                }
4395
4396                skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4397                if (unlikely(!skb)) {
4398                        /* Better luck next round */
4399                        adapter->alloc_rx_buff_failed++;
4400                        break;
4401                }
4402
4403                buffer_info->skb = skb;
4404                buffer_info->length = adapter->rx_buffer_len;
4405check_page:
4406                /* allocate a new page if necessary */
4407                if (!buffer_info->page) {
4408                        buffer_info->page = alloc_page(GFP_ATOMIC);
4409                        if (unlikely(!buffer_info->page)) {
4410                                adapter->alloc_rx_buff_failed++;
4411                                break;
4412                        }
4413                }
4414
4415                if (!buffer_info->dma) {
4416                        buffer_info->dma = dma_map_page(&pdev->dev,
4417                                                        buffer_info->page, 0,
4418                                                        buffer_info->length,
4419                                                        DMA_FROM_DEVICE);
4420                        if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4421                                put_page(buffer_info->page);
4422                                dev_kfree_skb(skb);
4423                                buffer_info->page = NULL;
4424                                buffer_info->skb = NULL;
4425                                buffer_info->dma = 0;
4426                                adapter->alloc_rx_buff_failed++;
4427                                break; /* while !buffer_info->skb */
4428                        }
4429                }
4430
4431                rx_desc = E1000_RX_DESC(*rx_ring, i);
4432                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4433
4434                if (unlikely(++i == rx_ring->count))
4435                        i = 0;
4436                buffer_info = &rx_ring->buffer_info[i];
4437        }
4438
4439        if (likely(rx_ring->next_to_use != i)) {
4440                rx_ring->next_to_use = i;
4441                if (unlikely(i-- == 0))
4442                        i = (rx_ring->count - 1);
4443
4444                /* Force memory writes to complete before letting h/w
4445                 * know there are new descriptors to fetch.  (Only
4446                 * applicable for weak-ordered memory model archs,
4447                 * such as IA-64).
4448                 */
4449                wmb();
4450                writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4451        }
4452}
4453
4454/**
4455 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4456 * @adapter: address of board private structure
4457 **/
4458static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4459                                   struct e1000_rx_ring *rx_ring,
4460                                   int cleaned_count)
4461{
4462        struct e1000_hw *hw = &adapter->hw;
4463        struct net_device *netdev = adapter->netdev;
4464        struct pci_dev *pdev = adapter->pdev;
4465        struct e1000_rx_desc *rx_desc;
4466        struct e1000_buffer *buffer_info;
4467        struct sk_buff *skb;
4468        unsigned int i;
4469        unsigned int bufsz = adapter->rx_buffer_len;
4470
4471        i = rx_ring->next_to_use;
4472        buffer_info = &rx_ring->buffer_info[i];
4473
4474        while (cleaned_count--) {
4475                skb = buffer_info->skb;
4476                if (skb) {
4477                        skb_trim(skb, 0);
4478                        goto map_skb;
4479                }
4480
4481                skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4482                if (unlikely(!skb)) {
4483                        /* Better luck next round */
4484                        adapter->alloc_rx_buff_failed++;
4485                        break;
4486                }
4487
4488                /* Fix for errata 23, can't cross 64kB boundary */
4489                if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4490                        struct sk_buff *oldskb = skb;
4491                        e_err(rx_err, "skb align check failed: %u bytes at "
4492                              "%p\n", bufsz, skb->data);
4493                        /* Try again, without freeing the previous */
4494                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4495                        /* Failed allocation, critical failure */
4496                        if (!skb) {
4497                                dev_kfree_skb(oldskb);
4498                                adapter->alloc_rx_buff_failed++;
4499                                break;
4500                        }
4501
4502                        if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4503                                /* give up */
4504                                dev_kfree_skb(skb);
4505                                dev_kfree_skb(oldskb);
4506                                adapter->alloc_rx_buff_failed++;
4507                                break; /* while !buffer_info->skb */
4508                        }
4509
4510                        /* Use new allocation */
4511                        dev_kfree_skb(oldskb);
4512                }
4513                buffer_info->skb = skb;
4514                buffer_info->length = adapter->rx_buffer_len;
4515map_skb:
4516                buffer_info->dma = dma_map_single(&pdev->dev,
4517                                                  skb->data,
4518                                                  buffer_info->length,
4519                                                  DMA_FROM_DEVICE);
4520                if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4521                        dev_kfree_skb(skb);
4522                        buffer_info->skb = NULL;
4523                        buffer_info->dma = 0;
4524                        adapter->alloc_rx_buff_failed++;
4525                        break; /* while !buffer_info->skb */
4526                }
4527
4528                /* XXX if it was allocated cleanly it will never map to a
4529                 * boundary crossing
4530                 */
4531
4532                /* Fix for errata 23, can't cross 64kB boundary */
4533                if (!e1000_check_64k_bound(adapter,
4534                                        (void *)(unsigned long)buffer_info->dma,
4535                                        adapter->rx_buffer_len)) {
4536                        e_err(rx_err, "dma align check failed: %u bytes at "
4537                              "%p\n", adapter->rx_buffer_len,
4538                              (void *)(unsigned long)buffer_info->dma);
4539                        dev_kfree_skb(skb);
4540                        buffer_info->skb = NULL;
4541
4542                        dma_unmap_single(&pdev->dev, buffer_info->dma,
4543                                         adapter->rx_buffer_len,
4544                                         DMA_FROM_DEVICE);
4545                        buffer_info->dma = 0;
4546
4547                        adapter->alloc_rx_buff_failed++;
4548                        break; /* while !buffer_info->skb */
4549                }
4550                rx_desc = E1000_RX_DESC(*rx_ring, i);
4551                rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553                if (unlikely(++i == rx_ring->count))
4554                        i = 0;
4555                buffer_info = &rx_ring->buffer_info[i];
4556        }
4557
4558        if (likely(rx_ring->next_to_use != i)) {
4559                rx_ring->next_to_use = i;
4560                if (unlikely(i-- == 0))
4561                        i = (rx_ring->count - 1);
4562
4563                /* Force memory writes to complete before letting h/w
4564                 * know there are new descriptors to fetch.  (Only
4565                 * applicable for weak-ordered memory model archs,
4566                 * such as IA-64).
4567                 */
4568                wmb();
4569                writel(i, hw->hw_addr + rx_ring->rdt);
4570        }
4571}
4572
4573/**
4574 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4575 * @adapter:
4576 **/
4577static void e1000_smartspeed(struct e1000_adapter *adapter)
4578{
4579        struct e1000_hw *hw = &adapter->hw;
4580        u16 phy_status;
4581        u16 phy_ctrl;
4582
4583        if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584           !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585                return;
4586
4587        if (adapter->smartspeed == 0) {
4588                /* If Master/Slave config fault is asserted twice,
4589                 * we assume back-to-back
4590                 */
4591                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4592                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4593                e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4594                if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4595                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4596                if (phy_ctrl & CR_1000T_MS_ENABLE) {
4597                        phy_ctrl &= ~CR_1000T_MS_ENABLE;
4598                        e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4599                                            phy_ctrl);
4600                        adapter->smartspeed++;
4601                        if (!e1000_phy_setup_autoneg(hw) &&
4602                           !e1000_read_phy_reg(hw, PHY_CTRL,
4603                                               &phy_ctrl)) {
4604                                phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4605                                             MII_CR_RESTART_AUTO_NEG);
4606                                e1000_write_phy_reg(hw, PHY_CTRL,
4607                                                    phy_ctrl);
4608                        }
4609                }
4610                return;
4611        } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4612                /* If still no link, perhaps using 2/3 pair cable */
4613                e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4614                phy_ctrl |= CR_1000T_MS_ENABLE;
4615                e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4616                if (!e1000_phy_setup_autoneg(hw) &&
4617                   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4618                        phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4619                                     MII_CR_RESTART_AUTO_NEG);
4620                        e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4621                }
4622        }
4623        /* Restart process after E1000_SMARTSPEED_MAX iterations */
4624        if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4625                adapter->smartspeed = 0;
4626}
4627
4628/**
4629 * e1000_ioctl -
4630 * @netdev:
4631 * @ifreq:
4632 * @cmd:
4633 **/
4634static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635{
4636        switch (cmd) {
4637        case SIOCGMIIPHY:
4638        case SIOCGMIIREG:
4639        case SIOCSMIIREG:
4640                return e1000_mii_ioctl(netdev, ifr, cmd);
4641        default:
4642                return -EOPNOTSUPP;
4643        }
4644}
4645
4646/**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4653                           int cmd)
4654{
4655        struct e1000_adapter *adapter = netdev_priv(netdev);
4656        struct e1000_hw *hw = &adapter->hw;
4657        struct mii_ioctl_data *data = if_mii(ifr);
4658        int retval;
4659        u16 mii_reg;
4660        unsigned long flags;
4661
4662        if (hw->media_type != e1000_media_type_copper)
4663                return -EOPNOTSUPP;
4664
4665        switch (cmd) {
4666        case SIOCGMIIPHY:
4667                data->phy_id = hw->phy_addr;
4668                break;
4669        case SIOCGMIIREG:
4670                spin_lock_irqsave(&adapter->stats_lock, flags);
4671                if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4672                                   &data->val_out)) {
4673                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4674                        return -EIO;
4675                }
4676                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4677                break;
4678        case SIOCSMIIREG:
4679                if (data->reg_num & ~(0x1F))
4680                        return -EFAULT;
4681                mii_reg = data->val_in;
4682                spin_lock_irqsave(&adapter->stats_lock, flags);
4683                if (e1000_write_phy_reg(hw, data->reg_num,
4684                                        mii_reg)) {
4685                        spin_unlock_irqrestore(&adapter->stats_lock, flags);
4686                        return -EIO;
4687                }
4688                spin_unlock_irqrestore(&adapter->stats_lock, flags);
4689                if (hw->media_type == e1000_media_type_copper) {
4690                        switch (data->reg_num) {
4691                        case PHY_CTRL:
4692                                if (mii_reg & MII_CR_POWER_DOWN)
4693                                        break;
4694                                if (mii_reg & MII_CR_AUTO_NEG_EN) {
4695                                        hw->autoneg = 1;
4696                                        hw->autoneg_advertised = 0x2F;
4697                                } else {
4698                                        u32 speed;
4699                                        if (mii_reg & 0x40)
4700                                                speed = SPEED_1000;
4701                                        else if (mii_reg & 0x2000)
4702                                                speed = SPEED_100;
4703                                        else
4704                                                speed = SPEED_10;
4705                                        retval = e1000_set_spd_dplx(
4706                                                adapter, speed,
4707                                                ((mii_reg & 0x100)
4708                                                 ? DUPLEX_FULL :
4709                                                 DUPLEX_HALF));
4710                                        if (retval)
4711                                                return retval;
4712                                }
4713                                if (netif_running(adapter->netdev))
4714                                        e1000_reinit_locked(adapter);
4715                                else
4716                                        e1000_reset(adapter);
4717                                break;
4718                        case M88E1000_PHY_SPEC_CTRL:
4719                        case M88E1000_EXT_PHY_SPEC_CTRL:
4720                                if (e1000_phy_reset(hw))
4721                                        return -EIO;
4722                                break;
4723                        }
4724                } else {
4725                        switch (data->reg_num) {
4726                        case PHY_CTRL:
4727                                if (mii_reg & MII_CR_POWER_DOWN)
4728                                        break;
4729                                if (netif_running(adapter->netdev))
4730                                        e1000_reinit_locked(adapter);
4731                                else
4732                                        e1000_reset(adapter);
4733                                break;
4734                        }
4735                }
4736                break;
4737        default:
4738                return -EOPNOTSUPP;
4739        }
4740        return E1000_SUCCESS;
4741}
4742
4743void e1000_pci_set_mwi(struct e1000_hw *hw)
4744{
4745        struct e1000_adapter *adapter = hw->back;
4746        int ret_val = pci_set_mwi(adapter->pdev);
4747
4748        if (ret_val)
4749                e_err(probe, "Error in setting MWI\n");
4750}
4751
4752void e1000_pci_clear_mwi(struct e1000_hw *hw)
4753{
4754        struct e1000_adapter *adapter = hw->back;
4755
4756        pci_clear_mwi(adapter->pdev);
4757}
4758
4759int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4760{
4761        struct e1000_adapter *adapter = hw->back;
4762        return pcix_get_mmrbc(adapter->pdev);
4763}
4764
4765void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4766{
4767        struct e1000_adapter *adapter = hw->back;
4768        pcix_set_mmrbc(adapter->pdev, mmrbc);
4769}
4770
4771void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4772{
4773        outl(value, port);
4774}
4775
4776static bool e1000_vlan_used(struct e1000_adapter *adapter)
4777{
4778        u16 vid;
4779
4780        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4781                return true;
4782        return false;
4783}
4784
4785static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4786                              netdev_features_t features)
4787{
4788        struct e1000_hw *hw = &adapter->hw;
4789        u32 ctrl;
4790
4791        ctrl = er32(CTRL);
4792        if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4793                /* enable VLAN tag insert/strip */
4794                ctrl |= E1000_CTRL_VME;
4795        } else {
4796                /* disable VLAN tag insert/strip */
4797                ctrl &= ~E1000_CTRL_VME;
4798        }
4799        ew32(CTRL, ctrl);
4800}
4801static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4802                                     bool filter_on)
4803{
4804        struct e1000_hw *hw = &adapter->hw;
4805        u32 rctl;
4806
4807        if (!test_bit(__E1000_DOWN, &adapter->flags))
4808                e1000_irq_disable(adapter);
4809
4810        __e1000_vlan_mode(adapter, adapter->netdev->features);
4811        if (filter_on) {
4812                /* enable VLAN receive filtering */
4813                rctl = er32(RCTL);
4814                rctl &= ~E1000_RCTL_CFIEN;
4815                if (!(adapter->netdev->flags & IFF_PROMISC))
4816                        rctl |= E1000_RCTL_VFE;
4817                ew32(RCTL, rctl);
4818                e1000_update_mng_vlan(adapter);
4819        } else {
4820                /* disable VLAN receive filtering */
4821                rctl = er32(RCTL);
4822                rctl &= ~E1000_RCTL_VFE;
4823                ew32(RCTL, rctl);
4824        }
4825
4826        if (!test_bit(__E1000_DOWN, &adapter->flags))
4827                e1000_irq_enable(adapter);
4828}
4829
4830static void e1000_vlan_mode(struct net_device *netdev,
4831                            netdev_features_t features)
4832{
4833        struct e1000_adapter *adapter = netdev_priv(netdev);
4834
4835        if (!test_bit(__E1000_DOWN, &adapter->flags))
4836                e1000_irq_disable(adapter);
4837
4838        __e1000_vlan_mode(adapter, features);
4839
4840        if (!test_bit(__E1000_DOWN, &adapter->flags))
4841                e1000_irq_enable(adapter);
4842}
4843
4844static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4845                                 __be16 proto, u16 vid)
4846{
4847        struct e1000_adapter *adapter = netdev_priv(netdev);
4848        struct e1000_hw *hw = &adapter->hw;
4849        u32 vfta, index;
4850
4851        if ((hw->mng_cookie.status &
4852             E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853            (vid == adapter->mng_vlan_id))
4854                return 0;
4855
4856        if (!e1000_vlan_used(adapter))
4857                e1000_vlan_filter_on_off(adapter, true);
4858
4859        /* add VID to filter table */
4860        index = (vid >> 5) & 0x7F;
4861        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862        vfta |= (1 << (vid & 0x1F));
4863        e1000_write_vfta(hw, index, vfta);
4864
4865        set_bit(vid, adapter->active_vlans);
4866
4867        return 0;
4868}
4869
4870static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4871                                  __be16 proto, u16 vid)
4872{
4873        struct e1000_adapter *adapter = netdev_priv(netdev);
4874        struct e1000_hw *hw = &adapter->hw;
4875        u32 vfta, index;
4876
4877        if (!test_bit(__E1000_DOWN, &adapter->flags))
4878                e1000_irq_disable(adapter);
4879        if (!test_bit(__E1000_DOWN, &adapter->flags))
4880                e1000_irq_enable(adapter);
4881
4882        /* remove VID from filter table */
4883        index = (vid >> 5) & 0x7F;
4884        vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4885        vfta &= ~(1 << (vid & 0x1F));
4886        e1000_write_vfta(hw, index, vfta);
4887
4888        clear_bit(vid, adapter->active_vlans);
4889
4890        if (!e1000_vlan_used(adapter))
4891                e1000_vlan_filter_on_off(adapter, false);
4892
4893        return 0;
4894}
4895
4896static void e1000_restore_vlan(struct e1000_adapter *adapter)
4897{
4898        u16 vid;
4899
4900        if (!e1000_vlan_used(adapter))
4901                return;
4902
4903        e1000_vlan_filter_on_off(adapter, true);
4904        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4905                e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4906}
4907
4908int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4909{
4910        struct e1000_hw *hw = &adapter->hw;
4911
4912        hw->autoneg = 0;
4913
4914        /* Make sure dplx is at most 1 bit and lsb of speed is not set
4915         * for the switch() below to work
4916         */
4917        if ((spd & 1) || (dplx & ~1))
4918                goto err_inval;
4919
4920        /* Fiber NICs only allow 1000 gbps Full duplex */
4921        if ((hw->media_type == e1000_media_type_fiber) &&
4922            spd != SPEED_1000 &&
4923            dplx != DUPLEX_FULL)
4924                goto err_inval;
4925
4926        switch (spd + dplx) {
4927        case SPEED_10 + DUPLEX_HALF:
4928                hw->forced_speed_duplex = e1000_10_half;
4929                break;
4930        case SPEED_10 + DUPLEX_FULL:
4931                hw->forced_speed_duplex = e1000_10_full;
4932                break;
4933        case SPEED_100 + DUPLEX_HALF:
4934                hw->forced_speed_duplex = e1000_100_half;
4935                break;
4936        case SPEED_100 + DUPLEX_FULL:
4937                hw->forced_speed_duplex = e1000_100_full;
4938                break;
4939        case SPEED_1000 + DUPLEX_FULL:
4940                hw->autoneg = 1;
4941                hw->autoneg_advertised = ADVERTISE_1000_FULL;
4942                break;
4943        case SPEED_1000 + DUPLEX_HALF: /* not supported */
4944        default:
4945                goto err_inval;
4946        }
4947
4948        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4949        hw->mdix = AUTO_ALL_MODES;
4950
4951        return 0;
4952
4953err_inval:
4954        e_err(probe, "Unsupported Speed/Duplex configuration\n");
4955        return -EINVAL;
4956}
4957
4958static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4959{
4960        struct net_device *netdev = pci_get_drvdata(pdev);
4961        struct e1000_adapter *adapter = netdev_priv(netdev);
4962        struct e1000_hw *hw = &adapter->hw;
4963        u32 ctrl, ctrl_ext, rctl, status;
4964        u32 wufc = adapter->wol;
4965#ifdef CONFIG_PM
4966        int retval = 0;
4967#endif
4968
4969        netif_device_detach(netdev);
4970
4971        if (netif_running(netdev)) {
4972                WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4973                e1000_down(adapter);
4974        }
4975
4976#ifdef CONFIG_PM
4977        retval = pci_save_state(pdev);
4978        if (retval)
4979                return retval;
4980#endif
4981
4982        status = er32(STATUS);
4983        if (status & E1000_STATUS_LU)
4984                wufc &= ~E1000_WUFC_LNKC;
4985
4986        if (wufc) {
4987                e1000_setup_rctl(adapter);
4988                e1000_set_rx_mode(netdev);
4989
4990                rctl = er32(RCTL);
4991
4992                /* turn on all-multi mode if wake on multicast is enabled */
4993                if (wufc & E1000_WUFC_MC)
4994                        rctl |= E1000_RCTL_MPE;
4995
4996                /* enable receives in the hardware */
4997                ew32(RCTL, rctl | E1000_RCTL_EN);
4998
4999                if (hw->mac_type >= e1000_82540) {
5000                        ctrl = er32(CTRL);
5001                        /* advertise wake from D3Cold */
5002                        #define E1000_CTRL_ADVD3WUC 0x00100000
5003                        /* phy power management enable */
5004                        #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5005                        ctrl |= E1000_CTRL_ADVD3WUC |
5006                                E1000_CTRL_EN_PHY_PWR_MGMT;
5007                        ew32(CTRL, ctrl);
5008                }
5009
5010                if (hw->media_type == e1000_media_type_fiber ||
5011                    hw->media_type == e1000_media_type_internal_serdes) {
5012                        /* keep the laser running in D3 */
5013                        ctrl_ext = er32(CTRL_EXT);
5014                        ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5015                        ew32(CTRL_EXT, ctrl_ext);
5016                }
5017
5018                ew32(WUC, E1000_WUC_PME_EN);
5019                ew32(WUFC, wufc);
5020        } else {
5021                ew32(WUC, 0);
5022                ew32(WUFC, 0);
5023        }
5024
5025        e1000_release_manageability(adapter);
5026
5027        *enable_wake = !!wufc;
5028
5029        /* make sure adapter isn't asleep if manageability is enabled */
5030        if (adapter->en_mng_pt)
5031                *enable_wake = true;
5032
5033        if (netif_running(netdev))
5034                e1000_free_irq(adapter);
5035
5036        pci_disable_device(pdev);
5037
5038        return 0;
5039}
5040
5041#ifdef CONFIG_PM
5042static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5043{
5044        int retval;
5045        bool wake;
5046
5047        retval = __e1000_shutdown(pdev, &wake);
5048        if (retval)
5049                return retval;
5050
5051        if (wake) {
5052                pci_prepare_to_sleep(pdev);
5053        } else {
5054                pci_wake_from_d3(pdev, false);
5055                pci_set_power_state(pdev, PCI_D3hot);
5056        }
5057
5058        return 0;
5059}
5060
5061static int e1000_resume(struct pci_dev *pdev)
5062{
5063        struct net_device *netdev = pci_get_drvdata(pdev);
5064        struct e1000_adapter *adapter = netdev_priv(netdev);
5065        struct e1000_hw *hw = &adapter->hw;
5066        u32 err;
5067
5068        pci_set_power_state(pdev, PCI_D0);
5069        pci_restore_state(pdev);
5070        pci_save_state(pdev);
5071
5072        if (adapter->need_ioport)
5073                err = pci_enable_device(pdev);
5074        else
5075                err = pci_enable_device_mem(pdev);
5076        if (err) {
5077                pr_err("Cannot enable PCI device from suspend\n");
5078                return err;
5079        }
5080        pci_set_master(pdev);
5081
5082        pci_enable_wake(pdev, PCI_D3hot, 0);
5083        pci_enable_wake(pdev, PCI_D3cold, 0);
5084
5085        if (netif_running(netdev)) {
5086                err = e1000_request_irq(adapter);
5087                if (err)
5088                        return err;
5089        }
5090
5091        e1000_power_up_phy(adapter);
5092        e1000_reset(adapter);
5093        ew32(WUS, ~0);
5094
5095        e1000_init_manageability(adapter);
5096
5097        if (netif_running(netdev))
5098                e1000_up(adapter);
5099
5100        netif_device_attach(netdev);
5101
5102        return 0;
5103}
5104#endif
5105
5106static void e1000_shutdown(struct pci_dev *pdev)
5107{
5108        bool wake;
5109
5110        __e1000_shutdown(pdev, &wake);
5111
5112        if (system_state == SYSTEM_POWER_OFF) {
5113                pci_wake_from_d3(pdev, wake);
5114                pci_set_power_state(pdev, PCI_D3hot);
5115        }
5116}
5117
5118#ifdef CONFIG_NET_POLL_CONTROLLER
5119/* Polling 'interrupt' - used by things like netconsole to send skbs
5120 * without having to re-enable interrupts. It's not called while
5121 * the interrupt routine is executing.
5122 */
5123static void e1000_netpoll(struct net_device *netdev)
5124{
5125        struct e1000_adapter *adapter = netdev_priv(netdev);
5126
5127        disable_irq(adapter->pdev->irq);
5128        e1000_intr(adapter->pdev->irq, netdev);
5129        enable_irq(adapter->pdev->irq);
5130}
5131#endif
5132
5133/**
5134 * e1000_io_error_detected - called when PCI error is detected
5135 * @pdev: Pointer to PCI device
5136 * @state: The current pci connection state
5137 *
5138 * This function is called after a PCI bus error affecting
5139 * this device has been detected.
5140 */
5141static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5142                                                pci_channel_state_t state)
5143{
5144        struct net_device *netdev = pci_get_drvdata(pdev);
5145        struct e1000_adapter *adapter = netdev_priv(netdev);
5146
5147        netif_device_detach(netdev);
5148
5149        if (state == pci_channel_io_perm_failure)
5150                return PCI_ERS_RESULT_DISCONNECT;
5151
5152        if (netif_running(netdev))
5153                e1000_down(adapter);
5154        pci_disable_device(pdev);
5155
5156        /* Request a slot slot reset. */
5157        return PCI_ERS_RESULT_NEED_RESET;
5158}
5159
5160/**
5161 * e1000_io_slot_reset - called after the pci bus has been reset.
5162 * @pdev: Pointer to PCI device
5163 *
5164 * Restart the card from scratch, as if from a cold-boot. Implementation
5165 * resembles the first-half of the e1000_resume routine.
5166 */
5167static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5168{
5169        struct net_device *netdev = pci_get_drvdata(pdev);
5170        struct e1000_adapter *adapter = netdev_priv(netdev);
5171        struct e1000_hw *hw = &adapter->hw;
5172        int err;
5173
5174        if (adapter->need_ioport)
5175                err = pci_enable_device(pdev);
5176        else
5177                err = pci_enable_device_mem(pdev);
5178        if (err) {
5179                pr_err("Cannot re-enable PCI device after reset.\n");
5180                return PCI_ERS_RESULT_DISCONNECT;
5181        }
5182        pci_set_master(pdev);
5183
5184        pci_enable_wake(pdev, PCI_D3hot, 0);
5185        pci_enable_wake(pdev, PCI_D3cold, 0);
5186
5187        e1000_reset(adapter);
5188        ew32(WUS, ~0);
5189
5190        return PCI_ERS_RESULT_RECOVERED;
5191}
5192
5193/**
5194 * e1000_io_resume - called when traffic can start flowing again.
5195 * @pdev: Pointer to PCI device
5196 *
5197 * This callback is called when the error recovery driver tells us that
5198 * its OK to resume normal operation. Implementation resembles the
5199 * second-half of the e1000_resume routine.
5200 */
5201static void e1000_io_resume(struct pci_dev *pdev)
5202{
5203        struct net_device *netdev = pci_get_drvdata(pdev);
5204        struct e1000_adapter *adapter = netdev_priv(netdev);
5205
5206        e1000_init_manageability(adapter);
5207
5208        if (netif_running(netdev)) {
5209                if (e1000_up(adapter)) {
5210                        pr_info("can't bring device back up after reset\n");
5211                        return;
5212                }
5213        }
5214
5215        netif_device_attach(netdev);
5216}
5217
5218/* e1000_main.c */
5219