linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/module.h>
  31#include <linux/types.h>
  32#include <linux/init.h>
  33#include <linux/bitops.h>
  34#include <linux/vmalloc.h>
  35#include <linux/pagemap.h>
  36#include <linux/netdevice.h>
  37#include <linux/ipv6.h>
  38#include <linux/slab.h>
  39#include <net/checksum.h>
  40#include <net/ip6_checksum.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/mii.h>
  43#include <linux/ethtool.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/pci.h>
  47#include <linux/pci-aspm.h>
  48#include <linux/delay.h>
  49#include <linux/interrupt.h>
  50#include <linux/ip.h>
  51#include <linux/tcp.h>
  52#include <linux/sctp.h>
  53#include <linux/if_ether.h>
  54#include <linux/aer.h>
  55#include <linux/prefetch.h>
  56#include <linux/pm_runtime.h>
  57#ifdef CONFIG_IGB_DCA
  58#include <linux/dca.h>
  59#endif
  60#include <linux/i2c.h>
  61#include "igb.h"
  62
  63#define MAJ 5
  64#define MIN 0
  65#define BUILD 3
  66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  67__stringify(BUILD) "-k"
  68char igb_driver_name[] = "igb";
  69char igb_driver_version[] = DRV_VERSION;
  70static const char igb_driver_string[] =
  71                                "Intel(R) Gigabit Ethernet Network Driver";
  72static const char igb_copyright[] =
  73                                "Copyright (c) 2007-2013 Intel Corporation.";
  74
  75static const struct e1000_info *igb_info_tbl[] = {
  76        [board_82575] = &e1000_82575_info,
  77};
  78
  79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  97        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  98        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  99        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
 100        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
 101        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
 102        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
 103        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
 104        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
 105        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
 106        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
 107        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
 108        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 109        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 110        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 111        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 112        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 113        /* required last entry */
 114        {0, }
 115};
 116
 117MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 118
 119void igb_reset(struct igb_adapter *);
 120static int igb_setup_all_tx_resources(struct igb_adapter *);
 121static int igb_setup_all_rx_resources(struct igb_adapter *);
 122static void igb_free_all_tx_resources(struct igb_adapter *);
 123static void igb_free_all_rx_resources(struct igb_adapter *);
 124static void igb_setup_mrqc(struct igb_adapter *);
 125static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 126static void igb_remove(struct pci_dev *pdev);
 127static int igb_sw_init(struct igb_adapter *);
 128static int igb_open(struct net_device *);
 129static int igb_close(struct net_device *);
 130static void igb_configure(struct igb_adapter *);
 131static void igb_configure_tx(struct igb_adapter *);
 132static void igb_configure_rx(struct igb_adapter *);
 133static void igb_clean_all_tx_rings(struct igb_adapter *);
 134static void igb_clean_all_rx_rings(struct igb_adapter *);
 135static void igb_clean_tx_ring(struct igb_ring *);
 136static void igb_clean_rx_ring(struct igb_ring *);
 137static void igb_set_rx_mode(struct net_device *);
 138static void igb_update_phy_info(unsigned long);
 139static void igb_watchdog(unsigned long);
 140static void igb_watchdog_task(struct work_struct *);
 141static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
 143                                                 struct rtnl_link_stats64 *stats);
 144static int igb_change_mtu(struct net_device *, int);
 145static int igb_set_mac(struct net_device *, void *);
 146static void igb_set_uta(struct igb_adapter *adapter);
 147static irqreturn_t igb_intr(int irq, void *);
 148static irqreturn_t igb_intr_msi(int irq, void *);
 149static irqreturn_t igb_msix_other(int irq, void *);
 150static irqreturn_t igb_msix_ring(int irq, void *);
 151#ifdef CONFIG_IGB_DCA
 152static void igb_update_dca(struct igb_q_vector *);
 153static void igb_setup_dca(struct igb_adapter *);
 154#endif /* CONFIG_IGB_DCA */
 155static int igb_poll(struct napi_struct *, int);
 156static bool igb_clean_tx_irq(struct igb_q_vector *);
 157static bool igb_clean_rx_irq(struct igb_q_vector *, int);
 158static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 159static void igb_tx_timeout(struct net_device *);
 160static void igb_reset_task(struct work_struct *);
 161static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
 162static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 163static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 164static void igb_restore_vlan(struct igb_adapter *);
 165static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
 166static void igb_ping_all_vfs(struct igb_adapter *);
 167static void igb_msg_task(struct igb_adapter *);
 168static void igb_vmm_control(struct igb_adapter *);
 169static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 170static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 171static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 172static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 173                               int vf, u16 vlan, u8 qos);
 174static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
 175static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 176                                   bool setting);
 177static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 178                                 struct ifla_vf_info *ivi);
 179static void igb_check_vf_rate_limit(struct igb_adapter *);
 180
 181#ifdef CONFIG_PCI_IOV
 182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 183#endif
 184
 185#ifdef CONFIG_PM
 186#ifdef CONFIG_PM_SLEEP
 187static int igb_suspend(struct device *);
 188#endif
 189static int igb_resume(struct device *);
 190#ifdef CONFIG_PM_RUNTIME
 191static int igb_runtime_suspend(struct device *dev);
 192static int igb_runtime_resume(struct device *dev);
 193static int igb_runtime_idle(struct device *dev);
 194#endif
 195static const struct dev_pm_ops igb_pm_ops = {
 196        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 197        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 198                        igb_runtime_idle)
 199};
 200#endif
 201static void igb_shutdown(struct pci_dev *);
 202static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 203#ifdef CONFIG_IGB_DCA
 204static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 205static struct notifier_block dca_notifier = {
 206        .notifier_call  = igb_notify_dca,
 207        .next           = NULL,
 208        .priority       = 0
 209};
 210#endif
 211#ifdef CONFIG_NET_POLL_CONTROLLER
 212/* for netdump / net console */
 213static void igb_netpoll(struct net_device *);
 214#endif
 215#ifdef CONFIG_PCI_IOV
 216static unsigned int max_vfs = 0;
 217module_param(max_vfs, uint, 0);
 218MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
 219                 "per physical function");
 220#endif /* CONFIG_PCI_IOV */
 221
 222static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 223                     pci_channel_state_t);
 224static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 225static void igb_io_resume(struct pci_dev *);
 226
 227static const struct pci_error_handlers igb_err_handler = {
 228        .error_detected = igb_io_error_detected,
 229        .slot_reset = igb_io_slot_reset,
 230        .resume = igb_io_resume,
 231};
 232
 233static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 234
 235static struct pci_driver igb_driver = {
 236        .name     = igb_driver_name,
 237        .id_table = igb_pci_tbl,
 238        .probe    = igb_probe,
 239        .remove   = igb_remove,
 240#ifdef CONFIG_PM
 241        .driver.pm = &igb_pm_ops,
 242#endif
 243        .shutdown = igb_shutdown,
 244        .sriov_configure = igb_pci_sriov_configure,
 245        .err_handler = &igb_err_handler
 246};
 247
 248MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 249MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 250MODULE_LICENSE("GPL");
 251MODULE_VERSION(DRV_VERSION);
 252
 253#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 254static int debug = -1;
 255module_param(debug, int, 0);
 256MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 257
 258struct igb_reg_info {
 259        u32 ofs;
 260        char *name;
 261};
 262
 263static const struct igb_reg_info igb_reg_info_tbl[] = {
 264
 265        /* General Registers */
 266        {E1000_CTRL, "CTRL"},
 267        {E1000_STATUS, "STATUS"},
 268        {E1000_CTRL_EXT, "CTRL_EXT"},
 269
 270        /* Interrupt Registers */
 271        {E1000_ICR, "ICR"},
 272
 273        /* RX Registers */
 274        {E1000_RCTL, "RCTL"},
 275        {E1000_RDLEN(0), "RDLEN"},
 276        {E1000_RDH(0), "RDH"},
 277        {E1000_RDT(0), "RDT"},
 278        {E1000_RXDCTL(0), "RXDCTL"},
 279        {E1000_RDBAL(0), "RDBAL"},
 280        {E1000_RDBAH(0), "RDBAH"},
 281
 282        /* TX Registers */
 283        {E1000_TCTL, "TCTL"},
 284        {E1000_TDBAL(0), "TDBAL"},
 285        {E1000_TDBAH(0), "TDBAH"},
 286        {E1000_TDLEN(0), "TDLEN"},
 287        {E1000_TDH(0), "TDH"},
 288        {E1000_TDT(0), "TDT"},
 289        {E1000_TXDCTL(0), "TXDCTL"},
 290        {E1000_TDFH, "TDFH"},
 291        {E1000_TDFT, "TDFT"},
 292        {E1000_TDFHS, "TDFHS"},
 293        {E1000_TDFPC, "TDFPC"},
 294
 295        /* List Terminator */
 296        {}
 297};
 298
 299/* igb_regdump - register printout routine */
 300static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 301{
 302        int n = 0;
 303        char rname[16];
 304        u32 regs[8];
 305
 306        switch (reginfo->ofs) {
 307        case E1000_RDLEN(0):
 308                for (n = 0; n < 4; n++)
 309                        regs[n] = rd32(E1000_RDLEN(n));
 310                break;
 311        case E1000_RDH(0):
 312                for (n = 0; n < 4; n++)
 313                        regs[n] = rd32(E1000_RDH(n));
 314                break;
 315        case E1000_RDT(0):
 316                for (n = 0; n < 4; n++)
 317                        regs[n] = rd32(E1000_RDT(n));
 318                break;
 319        case E1000_RXDCTL(0):
 320                for (n = 0; n < 4; n++)
 321                        regs[n] = rd32(E1000_RXDCTL(n));
 322                break;
 323        case E1000_RDBAL(0):
 324                for (n = 0; n < 4; n++)
 325                        regs[n] = rd32(E1000_RDBAL(n));
 326                break;
 327        case E1000_RDBAH(0):
 328                for (n = 0; n < 4; n++)
 329                        regs[n] = rd32(E1000_RDBAH(n));
 330                break;
 331        case E1000_TDBAL(0):
 332                for (n = 0; n < 4; n++)
 333                        regs[n] = rd32(E1000_RDBAL(n));
 334                break;
 335        case E1000_TDBAH(0):
 336                for (n = 0; n < 4; n++)
 337                        regs[n] = rd32(E1000_TDBAH(n));
 338                break;
 339        case E1000_TDLEN(0):
 340                for (n = 0; n < 4; n++)
 341                        regs[n] = rd32(E1000_TDLEN(n));
 342                break;
 343        case E1000_TDH(0):
 344                for (n = 0; n < 4; n++)
 345                        regs[n] = rd32(E1000_TDH(n));
 346                break;
 347        case E1000_TDT(0):
 348                for (n = 0; n < 4; n++)
 349                        regs[n] = rd32(E1000_TDT(n));
 350                break;
 351        case E1000_TXDCTL(0):
 352                for (n = 0; n < 4; n++)
 353                        regs[n] = rd32(E1000_TXDCTL(n));
 354                break;
 355        default:
 356                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 357                return;
 358        }
 359
 360        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 361        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 362                regs[2], regs[3]);
 363}
 364
 365/* igb_dump - Print registers, Tx-rings and Rx-rings */
 366static void igb_dump(struct igb_adapter *adapter)
 367{
 368        struct net_device *netdev = adapter->netdev;
 369        struct e1000_hw *hw = &adapter->hw;
 370        struct igb_reg_info *reginfo;
 371        struct igb_ring *tx_ring;
 372        union e1000_adv_tx_desc *tx_desc;
 373        struct my_u0 { u64 a; u64 b; } *u0;
 374        struct igb_ring *rx_ring;
 375        union e1000_adv_rx_desc *rx_desc;
 376        u32 staterr;
 377        u16 i, n;
 378
 379        if (!netif_msg_hw(adapter))
 380                return;
 381
 382        /* Print netdevice Info */
 383        if (netdev) {
 384                dev_info(&adapter->pdev->dev, "Net device Info\n");
 385                pr_info("Device Name     state            trans_start      "
 386                        "last_rx\n");
 387                pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 388                        netdev->state, netdev->trans_start, netdev->last_rx);
 389        }
 390
 391        /* Print Registers */
 392        dev_info(&adapter->pdev->dev, "Register Dump\n");
 393        pr_info(" Register Name   Value\n");
 394        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 395             reginfo->name; reginfo++) {
 396                igb_regdump(hw, reginfo);
 397        }
 398
 399        /* Print TX Ring Summary */
 400        if (!netdev || !netif_running(netdev))
 401                goto exit;
 402
 403        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 404        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 405        for (n = 0; n < adapter->num_tx_queues; n++) {
 406                struct igb_tx_buffer *buffer_info;
 407                tx_ring = adapter->tx_ring[n];
 408                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 409                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 410                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 411                        (u64)dma_unmap_addr(buffer_info, dma),
 412                        dma_unmap_len(buffer_info, len),
 413                        buffer_info->next_to_watch,
 414                        (u64)buffer_info->time_stamp);
 415        }
 416
 417        /* Print TX Rings */
 418        if (!netif_msg_tx_done(adapter))
 419                goto rx_ring_summary;
 420
 421        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 422
 423        /* Transmit Descriptor Formats
 424         *
 425         * Advanced Transmit Descriptor
 426         *   +--------------------------------------------------------------+
 427         * 0 |         Buffer Address [63:0]                                |
 428         *   +--------------------------------------------------------------+
 429         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 430         *   +--------------------------------------------------------------+
 431         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 432         */
 433
 434        for (n = 0; n < adapter->num_tx_queues; n++) {
 435                tx_ring = adapter->tx_ring[n];
 436                pr_info("------------------------------------\n");
 437                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 438                pr_info("------------------------------------\n");
 439                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
 440                        "[bi->dma       ] leng  ntw timestamp        "
 441                        "bi->skb\n");
 442
 443                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 444                        const char *next_desc;
 445                        struct igb_tx_buffer *buffer_info;
 446                        tx_desc = IGB_TX_DESC(tx_ring, i);
 447                        buffer_info = &tx_ring->tx_buffer_info[i];
 448                        u0 = (struct my_u0 *)tx_desc;
 449                        if (i == tx_ring->next_to_use &&
 450                            i == tx_ring->next_to_clean)
 451                                next_desc = " NTC/U";
 452                        else if (i == tx_ring->next_to_use)
 453                                next_desc = " NTU";
 454                        else if (i == tx_ring->next_to_clean)
 455                                next_desc = " NTC";
 456                        else
 457                                next_desc = "";
 458
 459                        pr_info("T [0x%03X]    %016llX %016llX %016llX"
 460                                " %04X  %p %016llX %p%s\n", i,
 461                                le64_to_cpu(u0->a),
 462                                le64_to_cpu(u0->b),
 463                                (u64)dma_unmap_addr(buffer_info, dma),
 464                                dma_unmap_len(buffer_info, len),
 465                                buffer_info->next_to_watch,
 466                                (u64)buffer_info->time_stamp,
 467                                buffer_info->skb, next_desc);
 468
 469                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 470                                print_hex_dump(KERN_INFO, "",
 471                                        DUMP_PREFIX_ADDRESS,
 472                                        16, 1, buffer_info->skb->data,
 473                                        dma_unmap_len(buffer_info, len),
 474                                        true);
 475                }
 476        }
 477
 478        /* Print RX Rings Summary */
 479rx_ring_summary:
 480        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 481        pr_info("Queue [NTU] [NTC]\n");
 482        for (n = 0; n < adapter->num_rx_queues; n++) {
 483                rx_ring = adapter->rx_ring[n];
 484                pr_info(" %5d %5X %5X\n",
 485                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 486        }
 487
 488        /* Print RX Rings */
 489        if (!netif_msg_rx_status(adapter))
 490                goto exit;
 491
 492        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 493
 494        /* Advanced Receive Descriptor (Read) Format
 495         *    63                                           1        0
 496         *    +-----------------------------------------------------+
 497         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 498         *    +----------------------------------------------+------+
 499         *  8 |       Header Buffer Address [63:1]           |  DD  |
 500         *    +-----------------------------------------------------+
 501         *
 502         *
 503         * Advanced Receive Descriptor (Write-Back) Format
 504         *
 505         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 506         *   +------------------------------------------------------+
 507         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 508         *   | Checksum   Ident  |   |           |    | Type | Type |
 509         *   +------------------------------------------------------+
 510         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 511         *   +------------------------------------------------------+
 512         *   63       48 47    32 31            20 19               0
 513         */
 514
 515        for (n = 0; n < adapter->num_rx_queues; n++) {
 516                rx_ring = adapter->rx_ring[n];
 517                pr_info("------------------------------------\n");
 518                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 519                pr_info("------------------------------------\n");
 520                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
 521                        "[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 522                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
 523                        "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
 524
 525                for (i = 0; i < rx_ring->count; i++) {
 526                        const char *next_desc;
 527                        struct igb_rx_buffer *buffer_info;
 528                        buffer_info = &rx_ring->rx_buffer_info[i];
 529                        rx_desc = IGB_RX_DESC(rx_ring, i);
 530                        u0 = (struct my_u0 *)rx_desc;
 531                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 532
 533                        if (i == rx_ring->next_to_use)
 534                                next_desc = " NTU";
 535                        else if (i == rx_ring->next_to_clean)
 536                                next_desc = " NTC";
 537                        else
 538                                next_desc = "";
 539
 540                        if (staterr & E1000_RXD_STAT_DD) {
 541                                /* Descriptor Done */
 542                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 543                                        "RWB", i,
 544                                        le64_to_cpu(u0->a),
 545                                        le64_to_cpu(u0->b),
 546                                        next_desc);
 547                        } else {
 548                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 549                                        "R  ", i,
 550                                        le64_to_cpu(u0->a),
 551                                        le64_to_cpu(u0->b),
 552                                        (u64)buffer_info->dma,
 553                                        next_desc);
 554
 555                                if (netif_msg_pktdata(adapter) &&
 556                                    buffer_info->dma && buffer_info->page) {
 557                                        print_hex_dump(KERN_INFO, "",
 558                                          DUMP_PREFIX_ADDRESS,
 559                                          16, 1,
 560                                          page_address(buffer_info->page) +
 561                                                      buffer_info->page_offset,
 562                                          IGB_RX_BUFSZ, true);
 563                                }
 564                        }
 565                }
 566        }
 567
 568exit:
 569        return;
 570}
 571
 572/**
 573 *  igb_get_i2c_data - Reads the I2C SDA data bit
 574 *  @hw: pointer to hardware structure
 575 *  @i2cctl: Current value of I2CCTL register
 576 *
 577 *  Returns the I2C data bit value
 578 **/
 579static int igb_get_i2c_data(void *data)
 580{
 581        struct igb_adapter *adapter = (struct igb_adapter *)data;
 582        struct e1000_hw *hw = &adapter->hw;
 583        s32 i2cctl = rd32(E1000_I2CPARAMS);
 584
 585        return ((i2cctl & E1000_I2C_DATA_IN) != 0);
 586}
 587
 588/**
 589 *  igb_set_i2c_data - Sets the I2C data bit
 590 *  @data: pointer to hardware structure
 591 *  @state: I2C data value (0 or 1) to set
 592 *
 593 *  Sets the I2C data bit
 594 **/
 595static void igb_set_i2c_data(void *data, int state)
 596{
 597        struct igb_adapter *adapter = (struct igb_adapter *)data;
 598        struct e1000_hw *hw = &adapter->hw;
 599        s32 i2cctl = rd32(E1000_I2CPARAMS);
 600
 601        if (state)
 602                i2cctl |= E1000_I2C_DATA_OUT;
 603        else
 604                i2cctl &= ~E1000_I2C_DATA_OUT;
 605
 606        i2cctl &= ~E1000_I2C_DATA_OE_N;
 607        i2cctl |= E1000_I2C_CLK_OE_N;
 608        wr32(E1000_I2CPARAMS, i2cctl);
 609        wrfl();
 610
 611}
 612
 613/**
 614 *  igb_set_i2c_clk - Sets the I2C SCL clock
 615 *  @data: pointer to hardware structure
 616 *  @state: state to set clock
 617 *
 618 *  Sets the I2C clock line to state
 619 **/
 620static void igb_set_i2c_clk(void *data, int state)
 621{
 622        struct igb_adapter *adapter = (struct igb_adapter *)data;
 623        struct e1000_hw *hw = &adapter->hw;
 624        s32 i2cctl = rd32(E1000_I2CPARAMS);
 625
 626        if (state) {
 627                i2cctl |= E1000_I2C_CLK_OUT;
 628                i2cctl &= ~E1000_I2C_CLK_OE_N;
 629        } else {
 630                i2cctl &= ~E1000_I2C_CLK_OUT;
 631                i2cctl &= ~E1000_I2C_CLK_OE_N;
 632        }
 633        wr32(E1000_I2CPARAMS, i2cctl);
 634        wrfl();
 635}
 636
 637/**
 638 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 639 *  @data: pointer to hardware structure
 640 *
 641 *  Gets the I2C clock state
 642 **/
 643static int igb_get_i2c_clk(void *data)
 644{
 645        struct igb_adapter *adapter = (struct igb_adapter *)data;
 646        struct e1000_hw *hw = &adapter->hw;
 647        s32 i2cctl = rd32(E1000_I2CPARAMS);
 648
 649        return ((i2cctl & E1000_I2C_CLK_IN) != 0);
 650}
 651
 652static const struct i2c_algo_bit_data igb_i2c_algo = {
 653        .setsda         = igb_set_i2c_data,
 654        .setscl         = igb_set_i2c_clk,
 655        .getsda         = igb_get_i2c_data,
 656        .getscl         = igb_get_i2c_clk,
 657        .udelay         = 5,
 658        .timeout        = 20,
 659};
 660
 661/**
 662 *  igb_get_hw_dev - return device
 663 *  @hw: pointer to hardware structure
 664 *
 665 *  used by hardware layer to print debugging information
 666 **/
 667struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 668{
 669        struct igb_adapter *adapter = hw->back;
 670        return adapter->netdev;
 671}
 672
 673/**
 674 *  igb_init_module - Driver Registration Routine
 675 *
 676 *  igb_init_module is the first routine called when the driver is
 677 *  loaded. All it does is register with the PCI subsystem.
 678 **/
 679static int __init igb_init_module(void)
 680{
 681        int ret;
 682        pr_info("%s - version %s\n",
 683               igb_driver_string, igb_driver_version);
 684
 685        pr_info("%s\n", igb_copyright);
 686
 687#ifdef CONFIG_IGB_DCA
 688        dca_register_notify(&dca_notifier);
 689#endif
 690        ret = pci_register_driver(&igb_driver);
 691        return ret;
 692}
 693
 694module_init(igb_init_module);
 695
 696/**
 697 *  igb_exit_module - Driver Exit Cleanup Routine
 698 *
 699 *  igb_exit_module is called just before the driver is removed
 700 *  from memory.
 701 **/
 702static void __exit igb_exit_module(void)
 703{
 704#ifdef CONFIG_IGB_DCA
 705        dca_unregister_notify(&dca_notifier);
 706#endif
 707        pci_unregister_driver(&igb_driver);
 708}
 709
 710module_exit(igb_exit_module);
 711
 712#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 713/**
 714 *  igb_cache_ring_register - Descriptor ring to register mapping
 715 *  @adapter: board private structure to initialize
 716 *
 717 *  Once we know the feature-set enabled for the device, we'll cache
 718 *  the register offset the descriptor ring is assigned to.
 719 **/
 720static void igb_cache_ring_register(struct igb_adapter *adapter)
 721{
 722        int i = 0, j = 0;
 723        u32 rbase_offset = adapter->vfs_allocated_count;
 724
 725        switch (adapter->hw.mac.type) {
 726        case e1000_82576:
 727                /* The queues are allocated for virtualization such that VF 0
 728                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 729                 * In order to avoid collision we start at the first free queue
 730                 * and continue consuming queues in the same sequence
 731                 */
 732                if (adapter->vfs_allocated_count) {
 733                        for (; i < adapter->rss_queues; i++)
 734                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 735                                                               Q_IDX_82576(i);
 736                }
 737        case e1000_82575:
 738        case e1000_82580:
 739        case e1000_i350:
 740        case e1000_i354:
 741        case e1000_i210:
 742        case e1000_i211:
 743        default:
 744                for (; i < adapter->num_rx_queues; i++)
 745                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 746                for (; j < adapter->num_tx_queues; j++)
 747                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 748                break;
 749        }
 750}
 751
 752/**
 753 *  igb_write_ivar - configure ivar for given MSI-X vector
 754 *  @hw: pointer to the HW structure
 755 *  @msix_vector: vector number we are allocating to a given ring
 756 *  @index: row index of IVAR register to write within IVAR table
 757 *  @offset: column offset of in IVAR, should be multiple of 8
 758 *
 759 *  This function is intended to handle the writing of the IVAR register
 760 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 761 *  each containing an cause allocation for an Rx and Tx ring, and a
 762 *  variable number of rows depending on the number of queues supported.
 763 **/
 764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 765                           int index, int offset)
 766{
 767        u32 ivar = array_rd32(E1000_IVAR0, index);
 768
 769        /* clear any bits that are currently set */
 770        ivar &= ~((u32)0xFF << offset);
 771
 772        /* write vector and valid bit */
 773        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 774
 775        array_wr32(E1000_IVAR0, index, ivar);
 776}
 777
 778#define IGB_N0_QUEUE -1
 779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 780{
 781        struct igb_adapter *adapter = q_vector->adapter;
 782        struct e1000_hw *hw = &adapter->hw;
 783        int rx_queue = IGB_N0_QUEUE;
 784        int tx_queue = IGB_N0_QUEUE;
 785        u32 msixbm = 0;
 786
 787        if (q_vector->rx.ring)
 788                rx_queue = q_vector->rx.ring->reg_idx;
 789        if (q_vector->tx.ring)
 790                tx_queue = q_vector->tx.ring->reg_idx;
 791
 792        switch (hw->mac.type) {
 793        case e1000_82575:
 794                /* The 82575 assigns vectors using a bitmask, which matches the
 795                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 796                 * or more queues to a vector, we write the appropriate bits
 797                 * into the MSIXBM register for that vector.
 798                 */
 799                if (rx_queue > IGB_N0_QUEUE)
 800                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 801                if (tx_queue > IGB_N0_QUEUE)
 802                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 803                if (!adapter->msix_entries && msix_vector == 0)
 804                        msixbm |= E1000_EIMS_OTHER;
 805                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 806                q_vector->eims_value = msixbm;
 807                break;
 808        case e1000_82576:
 809                /* 82576 uses a table that essentially consists of 2 columns
 810                 * with 8 rows.  The ordering is column-major so we use the
 811                 * lower 3 bits as the row index, and the 4th bit as the
 812                 * column offset.
 813                 */
 814                if (rx_queue > IGB_N0_QUEUE)
 815                        igb_write_ivar(hw, msix_vector,
 816                                       rx_queue & 0x7,
 817                                       (rx_queue & 0x8) << 1);
 818                if (tx_queue > IGB_N0_QUEUE)
 819                        igb_write_ivar(hw, msix_vector,
 820                                       tx_queue & 0x7,
 821                                       ((tx_queue & 0x8) << 1) + 8);
 822                q_vector->eims_value = 1 << msix_vector;
 823                break;
 824        case e1000_82580:
 825        case e1000_i350:
 826        case e1000_i354:
 827        case e1000_i210:
 828        case e1000_i211:
 829                /* On 82580 and newer adapters the scheme is similar to 82576
 830                 * however instead of ordering column-major we have things
 831                 * ordered row-major.  So we traverse the table by using
 832                 * bit 0 as the column offset, and the remaining bits as the
 833                 * row index.
 834                 */
 835                if (rx_queue > IGB_N0_QUEUE)
 836                        igb_write_ivar(hw, msix_vector,
 837                                       rx_queue >> 1,
 838                                       (rx_queue & 0x1) << 4);
 839                if (tx_queue > IGB_N0_QUEUE)
 840                        igb_write_ivar(hw, msix_vector,
 841                                       tx_queue >> 1,
 842                                       ((tx_queue & 0x1) << 4) + 8);
 843                q_vector->eims_value = 1 << msix_vector;
 844                break;
 845        default:
 846                BUG();
 847                break;
 848        }
 849
 850        /* add q_vector eims value to global eims_enable_mask */
 851        adapter->eims_enable_mask |= q_vector->eims_value;
 852
 853        /* configure q_vector to set itr on first interrupt */
 854        q_vector->set_itr = 1;
 855}
 856
 857/**
 858 *  igb_configure_msix - Configure MSI-X hardware
 859 *  @adapter: board private structure to initialize
 860 *
 861 *  igb_configure_msix sets up the hardware to properly
 862 *  generate MSI-X interrupts.
 863 **/
 864static void igb_configure_msix(struct igb_adapter *adapter)
 865{
 866        u32 tmp;
 867        int i, vector = 0;
 868        struct e1000_hw *hw = &adapter->hw;
 869
 870        adapter->eims_enable_mask = 0;
 871
 872        /* set vector for other causes, i.e. link changes */
 873        switch (hw->mac.type) {
 874        case e1000_82575:
 875                tmp = rd32(E1000_CTRL_EXT);
 876                /* enable MSI-X PBA support*/
 877                tmp |= E1000_CTRL_EXT_PBA_CLR;
 878
 879                /* Auto-Mask interrupts upon ICR read. */
 880                tmp |= E1000_CTRL_EXT_EIAME;
 881                tmp |= E1000_CTRL_EXT_IRCA;
 882
 883                wr32(E1000_CTRL_EXT, tmp);
 884
 885                /* enable msix_other interrupt */
 886                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 887                adapter->eims_other = E1000_EIMS_OTHER;
 888
 889                break;
 890
 891        case e1000_82576:
 892        case e1000_82580:
 893        case e1000_i350:
 894        case e1000_i354:
 895        case e1000_i210:
 896        case e1000_i211:
 897                /* Turn on MSI-X capability first, or our settings
 898                 * won't stick.  And it will take days to debug.
 899                 */
 900                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 901                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 902                     E1000_GPIE_NSICR);
 903
 904                /* enable msix_other interrupt */
 905                adapter->eims_other = 1 << vector;
 906                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 907
 908                wr32(E1000_IVAR_MISC, tmp);
 909                break;
 910        default:
 911                /* do nothing, since nothing else supports MSI-X */
 912                break;
 913        } /* switch (hw->mac.type) */
 914
 915        adapter->eims_enable_mask |= adapter->eims_other;
 916
 917        for (i = 0; i < adapter->num_q_vectors; i++)
 918                igb_assign_vector(adapter->q_vector[i], vector++);
 919
 920        wrfl();
 921}
 922
 923/**
 924 *  igb_request_msix - Initialize MSI-X interrupts
 925 *  @adapter: board private structure to initialize
 926 *
 927 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 928 *  kernel.
 929 **/
 930static int igb_request_msix(struct igb_adapter *adapter)
 931{
 932        struct net_device *netdev = adapter->netdev;
 933        struct e1000_hw *hw = &adapter->hw;
 934        int i, err = 0, vector = 0, free_vector = 0;
 935
 936        err = request_irq(adapter->msix_entries[vector].vector,
 937                          igb_msix_other, 0, netdev->name, adapter);
 938        if (err)
 939                goto err_out;
 940
 941        for (i = 0; i < adapter->num_q_vectors; i++) {
 942                struct igb_q_vector *q_vector = adapter->q_vector[i];
 943
 944                vector++;
 945
 946                q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
 947
 948                if (q_vector->rx.ring && q_vector->tx.ring)
 949                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 950                                q_vector->rx.ring->queue_index);
 951                else if (q_vector->tx.ring)
 952                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 953                                q_vector->tx.ring->queue_index);
 954                else if (q_vector->rx.ring)
 955                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 956                                q_vector->rx.ring->queue_index);
 957                else
 958                        sprintf(q_vector->name, "%s-unused", netdev->name);
 959
 960                err = request_irq(adapter->msix_entries[vector].vector,
 961                                  igb_msix_ring, 0, q_vector->name,
 962                                  q_vector);
 963                if (err)
 964                        goto err_free;
 965        }
 966
 967        igb_configure_msix(adapter);
 968        return 0;
 969
 970err_free:
 971        /* free already assigned IRQs */
 972        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 973
 974        vector--;
 975        for (i = 0; i < vector; i++) {
 976                free_irq(adapter->msix_entries[free_vector++].vector,
 977                         adapter->q_vector[i]);
 978        }
 979err_out:
 980        return err;
 981}
 982
 983static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 984{
 985        if (adapter->msix_entries) {
 986                pci_disable_msix(adapter->pdev);
 987                kfree(adapter->msix_entries);
 988                adapter->msix_entries = NULL;
 989        } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
 990                pci_disable_msi(adapter->pdev);
 991        }
 992}
 993
 994/**
 995 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 996 *  @adapter: board private structure to initialize
 997 *  @v_idx: Index of vector to be freed
 998 *
 999 *  This function frees the memory allocated to the q_vector.  In addition if
1000 *  NAPI is enabled it will delete any references to the NAPI struct prior
1001 *  to freeing the q_vector.
1002 **/
1003static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1004{
1005        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1006
1007        if (q_vector->tx.ring)
1008                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1009
1010        if (q_vector->rx.ring)
1011                adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1012
1013        adapter->q_vector[v_idx] = NULL;
1014        netif_napi_del(&q_vector->napi);
1015
1016        /* ixgbe_get_stats64() might access the rings on this vector,
1017         * we must wait a grace period before freeing it.
1018         */
1019        kfree_rcu(q_vector, rcu);
1020}
1021
1022/**
1023 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1024 *  @adapter: board private structure to initialize
1025 *
1026 *  This function frees the memory allocated to the q_vectors.  In addition if
1027 *  NAPI is enabled it will delete any references to the NAPI struct prior
1028 *  to freeing the q_vector.
1029 **/
1030static void igb_free_q_vectors(struct igb_adapter *adapter)
1031{
1032        int v_idx = adapter->num_q_vectors;
1033
1034        adapter->num_tx_queues = 0;
1035        adapter->num_rx_queues = 0;
1036        adapter->num_q_vectors = 0;
1037
1038        while (v_idx--)
1039                igb_free_q_vector(adapter, v_idx);
1040}
1041
1042/**
1043 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1044 *  @adapter: board private structure to initialize
1045 *
1046 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1047 *  MSI-X interrupts allocated.
1048 */
1049static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1050{
1051        igb_free_q_vectors(adapter);
1052        igb_reset_interrupt_capability(adapter);
1053}
1054
1055/**
1056 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1057 *  @adapter: board private structure to initialize
1058 *  @msix: boolean value of MSIX capability
1059 *
1060 *  Attempt to configure interrupts using the best available
1061 *  capabilities of the hardware and kernel.
1062 **/
1063static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1064{
1065        int err;
1066        int numvecs, i;
1067
1068        if (!msix)
1069                goto msi_only;
1070
1071        /* Number of supported queues. */
1072        adapter->num_rx_queues = adapter->rss_queues;
1073        if (adapter->vfs_allocated_count)
1074                adapter->num_tx_queues = 1;
1075        else
1076                adapter->num_tx_queues = adapter->rss_queues;
1077
1078        /* start with one vector for every Rx queue */
1079        numvecs = adapter->num_rx_queues;
1080
1081        /* if Tx handler is separate add 1 for every Tx queue */
1082        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1083                numvecs += adapter->num_tx_queues;
1084
1085        /* store the number of vectors reserved for queues */
1086        adapter->num_q_vectors = numvecs;
1087
1088        /* add 1 vector for link status interrupts */
1089        numvecs++;
1090        adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1091                                        GFP_KERNEL);
1092
1093        if (!adapter->msix_entries)
1094                goto msi_only;
1095
1096        for (i = 0; i < numvecs; i++)
1097                adapter->msix_entries[i].entry = i;
1098
1099        err = pci_enable_msix(adapter->pdev,
1100                              adapter->msix_entries,
1101                              numvecs);
1102        if (err == 0)
1103                return;
1104
1105        igb_reset_interrupt_capability(adapter);
1106
1107        /* If we can't do MSI-X, try MSI */
1108msi_only:
1109#ifdef CONFIG_PCI_IOV
1110        /* disable SR-IOV for non MSI-X configurations */
1111        if (adapter->vf_data) {
1112                struct e1000_hw *hw = &adapter->hw;
1113                /* disable iov and allow time for transactions to clear */
1114                pci_disable_sriov(adapter->pdev);
1115                msleep(500);
1116
1117                kfree(adapter->vf_data);
1118                adapter->vf_data = NULL;
1119                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1120                wrfl();
1121                msleep(100);
1122                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1123        }
1124#endif
1125        adapter->vfs_allocated_count = 0;
1126        adapter->rss_queues = 1;
1127        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1128        adapter->num_rx_queues = 1;
1129        adapter->num_tx_queues = 1;
1130        adapter->num_q_vectors = 1;
1131        if (!pci_enable_msi(adapter->pdev))
1132                adapter->flags |= IGB_FLAG_HAS_MSI;
1133}
1134
1135static void igb_add_ring(struct igb_ring *ring,
1136                         struct igb_ring_container *head)
1137{
1138        head->ring = ring;
1139        head->count++;
1140}
1141
1142/**
1143 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1144 *  @adapter: board private structure to initialize
1145 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1146 *  @v_idx: index of vector in adapter struct
1147 *  @txr_count: total number of Tx rings to allocate
1148 *  @txr_idx: index of first Tx ring to allocate
1149 *  @rxr_count: total number of Rx rings to allocate
1150 *  @rxr_idx: index of first Rx ring to allocate
1151 *
1152 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1153 **/
1154static int igb_alloc_q_vector(struct igb_adapter *adapter,
1155                              int v_count, int v_idx,
1156                              int txr_count, int txr_idx,
1157                              int rxr_count, int rxr_idx)
1158{
1159        struct igb_q_vector *q_vector;
1160        struct igb_ring *ring;
1161        int ring_count, size;
1162
1163        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1164        if (txr_count > 1 || rxr_count > 1)
1165                return -ENOMEM;
1166
1167        ring_count = txr_count + rxr_count;
1168        size = sizeof(struct igb_q_vector) +
1169               (sizeof(struct igb_ring) * ring_count);
1170
1171        /* allocate q_vector and rings */
1172        q_vector = kzalloc(size, GFP_KERNEL);
1173        if (!q_vector)
1174                return -ENOMEM;
1175
1176        /* initialize NAPI */
1177        netif_napi_add(adapter->netdev, &q_vector->napi,
1178                       igb_poll, 64);
1179
1180        /* tie q_vector and adapter together */
1181        adapter->q_vector[v_idx] = q_vector;
1182        q_vector->adapter = adapter;
1183
1184        /* initialize work limits */
1185        q_vector->tx.work_limit = adapter->tx_work_limit;
1186
1187        /* initialize ITR configuration */
1188        q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1189        q_vector->itr_val = IGB_START_ITR;
1190
1191        /* initialize pointer to rings */
1192        ring = q_vector->ring;
1193
1194        /* intialize ITR */
1195        if (rxr_count) {
1196                /* rx or rx/tx vector */
1197                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1198                        q_vector->itr_val = adapter->rx_itr_setting;
1199        } else {
1200                /* tx only vector */
1201                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1202                        q_vector->itr_val = adapter->tx_itr_setting;
1203        }
1204
1205        if (txr_count) {
1206                /* assign generic ring traits */
1207                ring->dev = &adapter->pdev->dev;
1208                ring->netdev = adapter->netdev;
1209
1210                /* configure backlink on ring */
1211                ring->q_vector = q_vector;
1212
1213                /* update q_vector Tx values */
1214                igb_add_ring(ring, &q_vector->tx);
1215
1216                /* For 82575, context index must be unique per ring. */
1217                if (adapter->hw.mac.type == e1000_82575)
1218                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1219
1220                /* apply Tx specific ring traits */
1221                ring->count = adapter->tx_ring_count;
1222                ring->queue_index = txr_idx;
1223
1224                /* assign ring to adapter */
1225                adapter->tx_ring[txr_idx] = ring;
1226
1227                /* push pointer to next ring */
1228                ring++;
1229        }
1230
1231        if (rxr_count) {
1232                /* assign generic ring traits */
1233                ring->dev = &adapter->pdev->dev;
1234                ring->netdev = adapter->netdev;
1235
1236                /* configure backlink on ring */
1237                ring->q_vector = q_vector;
1238
1239                /* update q_vector Rx values */
1240                igb_add_ring(ring, &q_vector->rx);
1241
1242                /* set flag indicating ring supports SCTP checksum offload */
1243                if (adapter->hw.mac.type >= e1000_82576)
1244                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1245
1246                /*
1247                 * On i350, i354, i210, and i211, loopback VLAN packets
1248                 * have the tag byte-swapped.
1249                 */
1250                if (adapter->hw.mac.type >= e1000_i350)
1251                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1252
1253                /* apply Rx specific ring traits */
1254                ring->count = adapter->rx_ring_count;
1255                ring->queue_index = rxr_idx;
1256
1257                /* assign ring to adapter */
1258                adapter->rx_ring[rxr_idx] = ring;
1259        }
1260
1261        return 0;
1262}
1263
1264
1265/**
1266 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1267 *  @adapter: board private structure to initialize
1268 *
1269 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1270 *  return -ENOMEM.
1271 **/
1272static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1273{
1274        int q_vectors = adapter->num_q_vectors;
1275        int rxr_remaining = adapter->num_rx_queues;
1276        int txr_remaining = adapter->num_tx_queues;
1277        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1278        int err;
1279
1280        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1281                for (; rxr_remaining; v_idx++) {
1282                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1283                                                 0, 0, 1, rxr_idx);
1284
1285                        if (err)
1286                                goto err_out;
1287
1288                        /* update counts and index */
1289                        rxr_remaining--;
1290                        rxr_idx++;
1291                }
1292        }
1293
1294        for (; v_idx < q_vectors; v_idx++) {
1295                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1296                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1297                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1298                                         tqpv, txr_idx, rqpv, rxr_idx);
1299
1300                if (err)
1301                        goto err_out;
1302
1303                /* update counts and index */
1304                rxr_remaining -= rqpv;
1305                txr_remaining -= tqpv;
1306                rxr_idx++;
1307                txr_idx++;
1308        }
1309
1310        return 0;
1311
1312err_out:
1313        adapter->num_tx_queues = 0;
1314        adapter->num_rx_queues = 0;
1315        adapter->num_q_vectors = 0;
1316
1317        while (v_idx--)
1318                igb_free_q_vector(adapter, v_idx);
1319
1320        return -ENOMEM;
1321}
1322
1323/**
1324 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1325 *  @adapter: board private structure to initialize
1326 *  @msix: boolean value of MSIX capability
1327 *
1328 *  This function initializes the interrupts and allocates all of the queues.
1329 **/
1330static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1331{
1332        struct pci_dev *pdev = adapter->pdev;
1333        int err;
1334
1335        igb_set_interrupt_capability(adapter, msix);
1336
1337        err = igb_alloc_q_vectors(adapter);
1338        if (err) {
1339                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1340                goto err_alloc_q_vectors;
1341        }
1342
1343        igb_cache_ring_register(adapter);
1344
1345        return 0;
1346
1347err_alloc_q_vectors:
1348        igb_reset_interrupt_capability(adapter);
1349        return err;
1350}
1351
1352/**
1353 *  igb_request_irq - initialize interrupts
1354 *  @adapter: board private structure to initialize
1355 *
1356 *  Attempts to configure interrupts using the best available
1357 *  capabilities of the hardware and kernel.
1358 **/
1359static int igb_request_irq(struct igb_adapter *adapter)
1360{
1361        struct net_device *netdev = adapter->netdev;
1362        struct pci_dev *pdev = adapter->pdev;
1363        int err = 0;
1364
1365        if (adapter->msix_entries) {
1366                err = igb_request_msix(adapter);
1367                if (!err)
1368                        goto request_done;
1369                /* fall back to MSI */
1370                igb_free_all_tx_resources(adapter);
1371                igb_free_all_rx_resources(adapter);
1372
1373                igb_clear_interrupt_scheme(adapter);
1374                err = igb_init_interrupt_scheme(adapter, false);
1375                if (err)
1376                        goto request_done;
1377
1378                igb_setup_all_tx_resources(adapter);
1379                igb_setup_all_rx_resources(adapter);
1380                igb_configure(adapter);
1381        }
1382
1383        igb_assign_vector(adapter->q_vector[0], 0);
1384
1385        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1386                err = request_irq(pdev->irq, igb_intr_msi, 0,
1387                                  netdev->name, adapter);
1388                if (!err)
1389                        goto request_done;
1390
1391                /* fall back to legacy interrupts */
1392                igb_reset_interrupt_capability(adapter);
1393                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1394        }
1395
1396        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1397                          netdev->name, adapter);
1398
1399        if (err)
1400                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1401                        err);
1402
1403request_done:
1404        return err;
1405}
1406
1407static void igb_free_irq(struct igb_adapter *adapter)
1408{
1409        if (adapter->msix_entries) {
1410                int vector = 0, i;
1411
1412                free_irq(adapter->msix_entries[vector++].vector, adapter);
1413
1414                for (i = 0; i < adapter->num_q_vectors; i++)
1415                        free_irq(adapter->msix_entries[vector++].vector,
1416                                 adapter->q_vector[i]);
1417        } else {
1418                free_irq(adapter->pdev->irq, adapter);
1419        }
1420}
1421
1422/**
1423 *  igb_irq_disable - Mask off interrupt generation on the NIC
1424 *  @adapter: board private structure
1425 **/
1426static void igb_irq_disable(struct igb_adapter *adapter)
1427{
1428        struct e1000_hw *hw = &adapter->hw;
1429
1430        /* we need to be careful when disabling interrupts.  The VFs are also
1431         * mapped into these registers and so clearing the bits can cause
1432         * issues on the VF drivers so we only need to clear what we set
1433         */
1434        if (adapter->msix_entries) {
1435                u32 regval = rd32(E1000_EIAM);
1436                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1437                wr32(E1000_EIMC, adapter->eims_enable_mask);
1438                regval = rd32(E1000_EIAC);
1439                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1440        }
1441
1442        wr32(E1000_IAM, 0);
1443        wr32(E1000_IMC, ~0);
1444        wrfl();
1445        if (adapter->msix_entries) {
1446                int i;
1447                for (i = 0; i < adapter->num_q_vectors; i++)
1448                        synchronize_irq(adapter->msix_entries[i].vector);
1449        } else {
1450                synchronize_irq(adapter->pdev->irq);
1451        }
1452}
1453
1454/**
1455 *  igb_irq_enable - Enable default interrupt generation settings
1456 *  @adapter: board private structure
1457 **/
1458static void igb_irq_enable(struct igb_adapter *adapter)
1459{
1460        struct e1000_hw *hw = &adapter->hw;
1461
1462        if (adapter->msix_entries) {
1463                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1464                u32 regval = rd32(E1000_EIAC);
1465                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1466                regval = rd32(E1000_EIAM);
1467                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1468                wr32(E1000_EIMS, adapter->eims_enable_mask);
1469                if (adapter->vfs_allocated_count) {
1470                        wr32(E1000_MBVFIMR, 0xFF);
1471                        ims |= E1000_IMS_VMMB;
1472                }
1473                wr32(E1000_IMS, ims);
1474        } else {
1475                wr32(E1000_IMS, IMS_ENABLE_MASK |
1476                                E1000_IMS_DRSTA);
1477                wr32(E1000_IAM, IMS_ENABLE_MASK |
1478                                E1000_IMS_DRSTA);
1479        }
1480}
1481
1482static void igb_update_mng_vlan(struct igb_adapter *adapter)
1483{
1484        struct e1000_hw *hw = &adapter->hw;
1485        u16 vid = adapter->hw.mng_cookie.vlan_id;
1486        u16 old_vid = adapter->mng_vlan_id;
1487
1488        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489                /* add VID to filter table */
1490                igb_vfta_set(hw, vid, true);
1491                adapter->mng_vlan_id = vid;
1492        } else {
1493                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1494        }
1495
1496        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1497            (vid != old_vid) &&
1498            !test_bit(old_vid, adapter->active_vlans)) {
1499                /* remove VID from filter table */
1500                igb_vfta_set(hw, old_vid, false);
1501        }
1502}
1503
1504/**
1505 *  igb_release_hw_control - release control of the h/w to f/w
1506 *  @adapter: address of board private structure
1507 *
1508 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1509 *  For ASF and Pass Through versions of f/w this means that the
1510 *  driver is no longer loaded.
1511 **/
1512static void igb_release_hw_control(struct igb_adapter *adapter)
1513{
1514        struct e1000_hw *hw = &adapter->hw;
1515        u32 ctrl_ext;
1516
1517        /* Let firmware take over control of h/w */
1518        ctrl_ext = rd32(E1000_CTRL_EXT);
1519        wr32(E1000_CTRL_EXT,
1520                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1521}
1522
1523/**
1524 *  igb_get_hw_control - get control of the h/w from f/w
1525 *  @adapter: address of board private structure
1526 *
1527 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1528 *  For ASF and Pass Through versions of f/w this means that
1529 *  the driver is loaded.
1530 **/
1531static void igb_get_hw_control(struct igb_adapter *adapter)
1532{
1533        struct e1000_hw *hw = &adapter->hw;
1534        u32 ctrl_ext;
1535
1536        /* Let firmware know the driver has taken over */
1537        ctrl_ext = rd32(E1000_CTRL_EXT);
1538        wr32(E1000_CTRL_EXT,
1539                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1540}
1541
1542/**
1543 *  igb_configure - configure the hardware for RX and TX
1544 *  @adapter: private board structure
1545 **/
1546static void igb_configure(struct igb_adapter *adapter)
1547{
1548        struct net_device *netdev = adapter->netdev;
1549        int i;
1550
1551        igb_get_hw_control(adapter);
1552        igb_set_rx_mode(netdev);
1553
1554        igb_restore_vlan(adapter);
1555
1556        igb_setup_tctl(adapter);
1557        igb_setup_mrqc(adapter);
1558        igb_setup_rctl(adapter);
1559
1560        igb_configure_tx(adapter);
1561        igb_configure_rx(adapter);
1562
1563        igb_rx_fifo_flush_82575(&adapter->hw);
1564
1565        /* call igb_desc_unused which always leaves
1566         * at least 1 descriptor unused to make sure
1567         * next_to_use != next_to_clean
1568         */
1569        for (i = 0; i < adapter->num_rx_queues; i++) {
1570                struct igb_ring *ring = adapter->rx_ring[i];
1571                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1572        }
1573}
1574
1575/**
1576 *  igb_power_up_link - Power up the phy/serdes link
1577 *  @adapter: address of board private structure
1578 **/
1579void igb_power_up_link(struct igb_adapter *adapter)
1580{
1581        igb_reset_phy(&adapter->hw);
1582
1583        if (adapter->hw.phy.media_type == e1000_media_type_copper)
1584                igb_power_up_phy_copper(&adapter->hw);
1585        else
1586                igb_power_up_serdes_link_82575(&adapter->hw);
1587}
1588
1589/**
1590 *  igb_power_down_link - Power down the phy/serdes link
1591 *  @adapter: address of board private structure
1592 */
1593static void igb_power_down_link(struct igb_adapter *adapter)
1594{
1595        if (adapter->hw.phy.media_type == e1000_media_type_copper)
1596                igb_power_down_phy_copper_82575(&adapter->hw);
1597        else
1598                igb_shutdown_serdes_link_82575(&adapter->hw);
1599}
1600
1601/**
1602 *  igb_up - Open the interface and prepare it to handle traffic
1603 *  @adapter: board private structure
1604 **/
1605int igb_up(struct igb_adapter *adapter)
1606{
1607        struct e1000_hw *hw = &adapter->hw;
1608        int i;
1609
1610        /* hardware has been reset, we need to reload some things */
1611        igb_configure(adapter);
1612
1613        clear_bit(__IGB_DOWN, &adapter->state);
1614
1615        for (i = 0; i < adapter->num_q_vectors; i++)
1616                napi_enable(&(adapter->q_vector[i]->napi));
1617
1618        if (adapter->msix_entries)
1619                igb_configure_msix(adapter);
1620        else
1621                igb_assign_vector(adapter->q_vector[0], 0);
1622
1623        /* Clear any pending interrupts. */
1624        rd32(E1000_ICR);
1625        igb_irq_enable(adapter);
1626
1627        /* notify VFs that reset has been completed */
1628        if (adapter->vfs_allocated_count) {
1629                u32 reg_data = rd32(E1000_CTRL_EXT);
1630                reg_data |= E1000_CTRL_EXT_PFRSTD;
1631                wr32(E1000_CTRL_EXT, reg_data);
1632        }
1633
1634        netif_tx_start_all_queues(adapter->netdev);
1635
1636        /* start the watchdog. */
1637        hw->mac.get_link_status = 1;
1638        schedule_work(&adapter->watchdog_task);
1639
1640        return 0;
1641}
1642
1643void igb_down(struct igb_adapter *adapter)
1644{
1645        struct net_device *netdev = adapter->netdev;
1646        struct e1000_hw *hw = &adapter->hw;
1647        u32 tctl, rctl;
1648        int i;
1649
1650        /* signal that we're down so the interrupt handler does not
1651         * reschedule our watchdog timer
1652         */
1653        set_bit(__IGB_DOWN, &adapter->state);
1654
1655        /* disable receives in the hardware */
1656        rctl = rd32(E1000_RCTL);
1657        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1658        /* flush and sleep below */
1659
1660        netif_tx_stop_all_queues(netdev);
1661
1662        /* disable transmits in the hardware */
1663        tctl = rd32(E1000_TCTL);
1664        tctl &= ~E1000_TCTL_EN;
1665        wr32(E1000_TCTL, tctl);
1666        /* flush both disables and wait for them to finish */
1667        wrfl();
1668        msleep(10);
1669
1670        igb_irq_disable(adapter);
1671
1672        for (i = 0; i < adapter->num_q_vectors; i++) {
1673                napi_synchronize(&(adapter->q_vector[i]->napi));
1674                napi_disable(&(adapter->q_vector[i]->napi));
1675        }
1676
1677
1678        del_timer_sync(&adapter->watchdog_timer);
1679        del_timer_sync(&adapter->phy_info_timer);
1680
1681        netif_carrier_off(netdev);
1682
1683        /* record the stats before reset*/
1684        spin_lock(&adapter->stats64_lock);
1685        igb_update_stats(adapter, &adapter->stats64);
1686        spin_unlock(&adapter->stats64_lock);
1687
1688        adapter->link_speed = 0;
1689        adapter->link_duplex = 0;
1690
1691        if (!pci_channel_offline(adapter->pdev))
1692                igb_reset(adapter);
1693        igb_clean_all_tx_rings(adapter);
1694        igb_clean_all_rx_rings(adapter);
1695#ifdef CONFIG_IGB_DCA
1696
1697        /* since we reset the hardware DCA settings were cleared */
1698        igb_setup_dca(adapter);
1699#endif
1700}
1701
1702void igb_reinit_locked(struct igb_adapter *adapter)
1703{
1704        WARN_ON(in_interrupt());
1705        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1706                msleep(1);
1707        igb_down(adapter);
1708        igb_up(adapter);
1709        clear_bit(__IGB_RESETTING, &adapter->state);
1710}
1711
1712void igb_reset(struct igb_adapter *adapter)
1713{
1714        struct pci_dev *pdev = adapter->pdev;
1715        struct e1000_hw *hw = &adapter->hw;
1716        struct e1000_mac_info *mac = &hw->mac;
1717        struct e1000_fc_info *fc = &hw->fc;
1718        u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1719
1720        /* Repartition Pba for greater than 9k mtu
1721         * To take effect CTRL.RST is required.
1722         */
1723        switch (mac->type) {
1724        case e1000_i350:
1725        case e1000_i354:
1726        case e1000_82580:
1727                pba = rd32(E1000_RXPBS);
1728                pba = igb_rxpbs_adjust_82580(pba);
1729                break;
1730        case e1000_82576:
1731                pba = rd32(E1000_RXPBS);
1732                pba &= E1000_RXPBS_SIZE_MASK_82576;
1733                break;
1734        case e1000_82575:
1735        case e1000_i210:
1736        case e1000_i211:
1737        default:
1738                pba = E1000_PBA_34K;
1739                break;
1740        }
1741
1742        if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1743            (mac->type < e1000_82576)) {
1744                /* adjust PBA for jumbo frames */
1745                wr32(E1000_PBA, pba);
1746
1747                /* To maintain wire speed transmits, the Tx FIFO should be
1748                 * large enough to accommodate two full transmit packets,
1749                 * rounded up to the next 1KB and expressed in KB.  Likewise,
1750                 * the Rx FIFO should be large enough to accommodate at least
1751                 * one full receive packet and is similarly rounded up and
1752                 * expressed in KB.
1753                 */
1754                pba = rd32(E1000_PBA);
1755                /* upper 16 bits has Tx packet buffer allocation size in KB */
1756                tx_space = pba >> 16;
1757                /* lower 16 bits has Rx packet buffer allocation size in KB */
1758                pba &= 0xffff;
1759                /* the Tx fifo also stores 16 bytes of information about the Tx
1760                 * but don't include ethernet FCS because hardware appends it
1761                 */
1762                min_tx_space = (adapter->max_frame_size +
1763                                sizeof(union e1000_adv_tx_desc) -
1764                                ETH_FCS_LEN) * 2;
1765                min_tx_space = ALIGN(min_tx_space, 1024);
1766                min_tx_space >>= 10;
1767                /* software strips receive CRC, so leave room for it */
1768                min_rx_space = adapter->max_frame_size;
1769                min_rx_space = ALIGN(min_rx_space, 1024);
1770                min_rx_space >>= 10;
1771
1772                /* If current Tx allocation is less than the min Tx FIFO size,
1773                 * and the min Tx FIFO size is less than the current Rx FIFO
1774                 * allocation, take space away from current Rx allocation
1775                 */
1776                if (tx_space < min_tx_space &&
1777                    ((min_tx_space - tx_space) < pba)) {
1778                        pba = pba - (min_tx_space - tx_space);
1779
1780                        /* if short on Rx space, Rx wins and must trump Tx
1781                         * adjustment
1782                         */
1783                        if (pba < min_rx_space)
1784                                pba = min_rx_space;
1785                }
1786                wr32(E1000_PBA, pba);
1787        }
1788
1789        /* flow control settings */
1790        /* The high water mark must be low enough to fit one full frame
1791         * (or the size used for early receive) above it in the Rx FIFO.
1792         * Set it to the lower of:
1793         * - 90% of the Rx FIFO size, or
1794         * - the full Rx FIFO size minus one full frame
1795         */
1796        hwm = min(((pba << 10) * 9 / 10),
1797                        ((pba << 10) - 2 * adapter->max_frame_size));
1798
1799        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1800        fc->low_water = fc->high_water - 16;
1801        fc->pause_time = 0xFFFF;
1802        fc->send_xon = 1;
1803        fc->current_mode = fc->requested_mode;
1804
1805        /* disable receive for all VFs and wait one second */
1806        if (adapter->vfs_allocated_count) {
1807                int i;
1808                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1809                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1810
1811                /* ping all the active vfs to let them know we are going down */
1812                igb_ping_all_vfs(adapter);
1813
1814                /* disable transmits and receives */
1815                wr32(E1000_VFRE, 0);
1816                wr32(E1000_VFTE, 0);
1817        }
1818
1819        /* Allow time for pending master requests to run */
1820        hw->mac.ops.reset_hw(hw);
1821        wr32(E1000_WUC, 0);
1822
1823        if (hw->mac.ops.init_hw(hw))
1824                dev_err(&pdev->dev, "Hardware Error\n");
1825
1826        /* Flow control settings reset on hardware reset, so guarantee flow
1827         * control is off when forcing speed.
1828         */
1829        if (!hw->mac.autoneg)
1830                igb_force_mac_fc(hw);
1831
1832        igb_init_dmac(adapter, pba);
1833#ifdef CONFIG_IGB_HWMON
1834        /* Re-initialize the thermal sensor on i350 devices. */
1835        if (!test_bit(__IGB_DOWN, &adapter->state)) {
1836                if (mac->type == e1000_i350 && hw->bus.func == 0) {
1837                        /* If present, re-initialize the external thermal sensor
1838                         * interface.
1839                         */
1840                        if (adapter->ets)
1841                                mac->ops.init_thermal_sensor_thresh(hw);
1842                }
1843        }
1844#endif
1845        if (!netif_running(adapter->netdev))
1846                igb_power_down_link(adapter);
1847
1848        igb_update_mng_vlan(adapter);
1849
1850        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1851        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1852
1853        /* Re-enable PTP, where applicable. */
1854        igb_ptp_reset(adapter);
1855
1856        igb_get_phy_info(hw);
1857}
1858
1859static netdev_features_t igb_fix_features(struct net_device *netdev,
1860        netdev_features_t features)
1861{
1862        /* Since there is no support for separate Rx/Tx vlan accel
1863         * enable/disable make sure Tx flag is always in same state as Rx.
1864         */
1865        if (features & NETIF_F_HW_VLAN_CTAG_RX)
1866                features |= NETIF_F_HW_VLAN_CTAG_TX;
1867        else
1868                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1869
1870        return features;
1871}
1872
1873static int igb_set_features(struct net_device *netdev,
1874        netdev_features_t features)
1875{
1876        netdev_features_t changed = netdev->features ^ features;
1877        struct igb_adapter *adapter = netdev_priv(netdev);
1878
1879        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1880                igb_vlan_mode(netdev, features);
1881
1882        if (!(changed & NETIF_F_RXALL))
1883                return 0;
1884
1885        netdev->features = features;
1886
1887        if (netif_running(netdev))
1888                igb_reinit_locked(adapter);
1889        else
1890                igb_reset(adapter);
1891
1892        return 0;
1893}
1894
1895static const struct net_device_ops igb_netdev_ops = {
1896        .ndo_open               = igb_open,
1897        .ndo_stop               = igb_close,
1898        .ndo_start_xmit         = igb_xmit_frame,
1899        .ndo_get_stats64        = igb_get_stats64,
1900        .ndo_set_rx_mode        = igb_set_rx_mode,
1901        .ndo_set_mac_address    = igb_set_mac,
1902        .ndo_change_mtu         = igb_change_mtu,
1903        .ndo_do_ioctl           = igb_ioctl,
1904        .ndo_tx_timeout         = igb_tx_timeout,
1905        .ndo_validate_addr      = eth_validate_addr,
1906        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1907        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1908        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
1909        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
1910        .ndo_set_vf_tx_rate     = igb_ndo_set_vf_bw,
1911        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
1912        .ndo_get_vf_config      = igb_ndo_get_vf_config,
1913#ifdef CONFIG_NET_POLL_CONTROLLER
1914        .ndo_poll_controller    = igb_netpoll,
1915#endif
1916        .ndo_fix_features       = igb_fix_features,
1917        .ndo_set_features       = igb_set_features,
1918};
1919
1920/**
1921 * igb_set_fw_version - Configure version string for ethtool
1922 * @adapter: adapter struct
1923 **/
1924void igb_set_fw_version(struct igb_adapter *adapter)
1925{
1926        struct e1000_hw *hw = &adapter->hw;
1927        struct e1000_fw_version fw;
1928
1929        igb_get_fw_version(hw, &fw);
1930
1931        switch (hw->mac.type) {
1932        case e1000_i211:
1933                snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1934                         "%2d.%2d-%d",
1935                         fw.invm_major, fw.invm_minor, fw.invm_img_type);
1936                break;
1937
1938        default:
1939                /* if option is rom valid, display its version too */
1940                if (fw.or_valid) {
1941                        snprintf(adapter->fw_version,
1942                                 sizeof(adapter->fw_version),
1943                                 "%d.%d, 0x%08x, %d.%d.%d",
1944                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
1945                                 fw.or_major, fw.or_build, fw.or_patch);
1946                /* no option rom */
1947                } else {
1948                        snprintf(adapter->fw_version,
1949                                 sizeof(adapter->fw_version),
1950                                 "%d.%d, 0x%08x",
1951                                 fw.eep_major, fw.eep_minor, fw.etrack_id);
1952                }
1953                break;
1954        }
1955        return;
1956}
1957
1958/**
1959 *  igb_init_i2c - Init I2C interface
1960 *  @adapter: pointer to adapter structure
1961 **/
1962static s32 igb_init_i2c(struct igb_adapter *adapter)
1963{
1964        s32 status = E1000_SUCCESS;
1965
1966        /* I2C interface supported on i350 devices */
1967        if (adapter->hw.mac.type != e1000_i350)
1968                return E1000_SUCCESS;
1969
1970        /* Initialize the i2c bus which is controlled by the registers.
1971         * This bus will use the i2c_algo_bit structue that implements
1972         * the protocol through toggling of the 4 bits in the register.
1973         */
1974        adapter->i2c_adap.owner = THIS_MODULE;
1975        adapter->i2c_algo = igb_i2c_algo;
1976        adapter->i2c_algo.data = adapter;
1977        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1978        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1979        strlcpy(adapter->i2c_adap.name, "igb BB",
1980                sizeof(adapter->i2c_adap.name));
1981        status = i2c_bit_add_bus(&adapter->i2c_adap);
1982        return status;
1983}
1984
1985/**
1986 *  igb_probe - Device Initialization Routine
1987 *  @pdev: PCI device information struct
1988 *  @ent: entry in igb_pci_tbl
1989 *
1990 *  Returns 0 on success, negative on failure
1991 *
1992 *  igb_probe initializes an adapter identified by a pci_dev structure.
1993 *  The OS initialization, configuring of the adapter private structure,
1994 *  and a hardware reset occur.
1995 **/
1996static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1997{
1998        struct net_device *netdev;
1999        struct igb_adapter *adapter;
2000        struct e1000_hw *hw;
2001        u16 eeprom_data = 0;
2002        s32 ret_val;
2003        static int global_quad_port_a; /* global quad port a indication */
2004        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2005        unsigned long mmio_start, mmio_len;
2006        int err, pci_using_dac;
2007        u8 part_str[E1000_PBANUM_LENGTH];
2008
2009        /* Catch broken hardware that put the wrong VF device ID in
2010         * the PCIe SR-IOV capability.
2011         */
2012        if (pdev->is_virtfn) {
2013                WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2014                        pci_name(pdev), pdev->vendor, pdev->device);
2015                return -EINVAL;
2016        }
2017
2018        err = pci_enable_device_mem(pdev);
2019        if (err)
2020                return err;
2021
2022        pci_using_dac = 0;
2023        err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2024        if (!err) {
2025                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2026                if (!err)
2027                        pci_using_dac = 1;
2028        } else {
2029                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2030                if (err) {
2031                        err = dma_set_coherent_mask(&pdev->dev,
2032                                                    DMA_BIT_MASK(32));
2033                        if (err) {
2034                                dev_err(&pdev->dev,
2035                                        "No usable DMA configuration, aborting\n");
2036                                goto err_dma;
2037                        }
2038                }
2039        }
2040
2041        err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2042                                           IORESOURCE_MEM),
2043                                           igb_driver_name);
2044        if (err)
2045                goto err_pci_reg;
2046
2047        pci_enable_pcie_error_reporting(pdev);
2048
2049        pci_set_master(pdev);
2050        pci_save_state(pdev);
2051
2052        err = -ENOMEM;
2053        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2054                                   IGB_MAX_TX_QUEUES);
2055        if (!netdev)
2056                goto err_alloc_etherdev;
2057
2058        SET_NETDEV_DEV(netdev, &pdev->dev);
2059
2060        pci_set_drvdata(pdev, netdev);
2061        adapter = netdev_priv(netdev);
2062        adapter->netdev = netdev;
2063        adapter->pdev = pdev;
2064        hw = &adapter->hw;
2065        hw->back = adapter;
2066        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2067
2068        mmio_start = pci_resource_start(pdev, 0);
2069        mmio_len = pci_resource_len(pdev, 0);
2070
2071        err = -EIO;
2072        hw->hw_addr = ioremap(mmio_start, mmio_len);
2073        if (!hw->hw_addr)
2074                goto err_ioremap;
2075
2076        netdev->netdev_ops = &igb_netdev_ops;
2077        igb_set_ethtool_ops(netdev);
2078        netdev->watchdog_timeo = 5 * HZ;
2079
2080        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2081
2082        netdev->mem_start = mmio_start;
2083        netdev->mem_end = mmio_start + mmio_len;
2084
2085        /* PCI config space info */
2086        hw->vendor_id = pdev->vendor;
2087        hw->device_id = pdev->device;
2088        hw->revision_id = pdev->revision;
2089        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2090        hw->subsystem_device_id = pdev->subsystem_device;
2091
2092        /* Copy the default MAC, PHY and NVM function pointers */
2093        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2094        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2095        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2096        /* Initialize skew-specific constants */
2097        err = ei->get_invariants(hw);
2098        if (err)
2099                goto err_sw_init;
2100
2101        /* setup the private structure */
2102        err = igb_sw_init(adapter);
2103        if (err)
2104                goto err_sw_init;
2105
2106        igb_get_bus_info_pcie(hw);
2107
2108        hw->phy.autoneg_wait_to_complete = false;
2109
2110        /* Copper options */
2111        if (hw->phy.media_type == e1000_media_type_copper) {
2112                hw->phy.mdix = AUTO_ALL_MODES;
2113                hw->phy.disable_polarity_correction = false;
2114                hw->phy.ms_type = e1000_ms_hw_default;
2115        }
2116
2117        if (igb_check_reset_block(hw))
2118                dev_info(&pdev->dev,
2119                        "PHY reset is blocked due to SOL/IDER session.\n");
2120
2121        /* features is initialized to 0 in allocation, it might have bits
2122         * set by igb_sw_init so we should use an or instead of an
2123         * assignment.
2124         */
2125        netdev->features |= NETIF_F_SG |
2126                            NETIF_F_IP_CSUM |
2127                            NETIF_F_IPV6_CSUM |
2128                            NETIF_F_TSO |
2129                            NETIF_F_TSO6 |
2130                            NETIF_F_RXHASH |
2131                            NETIF_F_RXCSUM |
2132                            NETIF_F_HW_VLAN_CTAG_RX |
2133                            NETIF_F_HW_VLAN_CTAG_TX;
2134
2135        /* copy netdev features into list of user selectable features */
2136        netdev->hw_features |= netdev->features;
2137        netdev->hw_features |= NETIF_F_RXALL;
2138
2139        /* set this bit last since it cannot be part of hw_features */
2140        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2141
2142        netdev->vlan_features |= NETIF_F_TSO |
2143                                 NETIF_F_TSO6 |
2144                                 NETIF_F_IP_CSUM |
2145                                 NETIF_F_IPV6_CSUM |
2146                                 NETIF_F_SG;
2147
2148        netdev->priv_flags |= IFF_SUPP_NOFCS;
2149
2150        if (pci_using_dac) {
2151                netdev->features |= NETIF_F_HIGHDMA;
2152                netdev->vlan_features |= NETIF_F_HIGHDMA;
2153        }
2154
2155        if (hw->mac.type >= e1000_82576) {
2156                netdev->hw_features |= NETIF_F_SCTP_CSUM;
2157                netdev->features |= NETIF_F_SCTP_CSUM;
2158        }
2159
2160        netdev->priv_flags |= IFF_UNICAST_FLT;
2161
2162        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2163
2164        /* before reading the NVM, reset the controller to put the device in a
2165         * known good starting state
2166         */
2167        hw->mac.ops.reset_hw(hw);
2168
2169        /* make sure the NVM is good , i211 parts have special NVM that
2170         * doesn't contain a checksum
2171         */
2172        if (hw->mac.type != e1000_i211) {
2173                if (hw->nvm.ops.validate(hw) < 0) {
2174                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2175                        err = -EIO;
2176                        goto err_eeprom;
2177                }
2178        }
2179
2180        /* copy the MAC address out of the NVM */
2181        if (hw->mac.ops.read_mac_addr(hw))
2182                dev_err(&pdev->dev, "NVM Read Error\n");
2183
2184        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2185
2186        if (!is_valid_ether_addr(netdev->dev_addr)) {
2187                dev_err(&pdev->dev, "Invalid MAC Address\n");
2188                err = -EIO;
2189                goto err_eeprom;
2190        }
2191
2192        /* get firmware version for ethtool -i */
2193        igb_set_fw_version(adapter);
2194
2195        setup_timer(&adapter->watchdog_timer, igb_watchdog,
2196                    (unsigned long) adapter);
2197        setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2198                    (unsigned long) adapter);
2199
2200        INIT_WORK(&adapter->reset_task, igb_reset_task);
2201        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2202
2203        /* Initialize link properties that are user-changeable */
2204        adapter->fc_autoneg = true;
2205        hw->mac.autoneg = true;
2206        hw->phy.autoneg_advertised = 0x2f;
2207
2208        hw->fc.requested_mode = e1000_fc_default;
2209        hw->fc.current_mode = e1000_fc_default;
2210
2211        igb_validate_mdi_setting(hw);
2212
2213        /* By default, support wake on port A */
2214        if (hw->bus.func == 0)
2215                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2216
2217        /* Check the NVM for wake support on non-port A ports */
2218        if (hw->mac.type >= e1000_82580)
2219                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2220                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2221                                 &eeprom_data);
2222        else if (hw->bus.func == 1)
2223                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2224
2225        if (eeprom_data & IGB_EEPROM_APME)
2226                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2227
2228        /* now that we have the eeprom settings, apply the special cases where
2229         * the eeprom may be wrong or the board simply won't support wake on
2230         * lan on a particular port
2231         */
2232        switch (pdev->device) {
2233        case E1000_DEV_ID_82575GB_QUAD_COPPER:
2234                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2235                break;
2236        case E1000_DEV_ID_82575EB_FIBER_SERDES:
2237        case E1000_DEV_ID_82576_FIBER:
2238        case E1000_DEV_ID_82576_SERDES:
2239                /* Wake events only supported on port A for dual fiber
2240                 * regardless of eeprom setting
2241                 */
2242                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2243                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2244                break;
2245        case E1000_DEV_ID_82576_QUAD_COPPER:
2246        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2247                /* if quad port adapter, disable WoL on all but port A */
2248                if (global_quad_port_a != 0)
2249                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2250                else
2251                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2252                /* Reset for multiple quad port adapters */
2253                if (++global_quad_port_a == 4)
2254                        global_quad_port_a = 0;
2255                break;
2256        default:
2257                /* If the device can't wake, don't set software support */
2258                if (!device_can_wakeup(&adapter->pdev->dev))
2259                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2260        }
2261
2262        /* initialize the wol settings based on the eeprom settings */
2263        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2264                adapter->wol |= E1000_WUFC_MAG;
2265
2266        /* Some vendors want WoL disabled by default, but still supported */
2267        if ((hw->mac.type == e1000_i350) &&
2268            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2269                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2270                adapter->wol = 0;
2271        }
2272
2273        device_set_wakeup_enable(&adapter->pdev->dev,
2274                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2275
2276        /* reset the hardware with the new settings */
2277        igb_reset(adapter);
2278
2279        /* Init the I2C interface */
2280        err = igb_init_i2c(adapter);
2281        if (err) {
2282                dev_err(&pdev->dev, "failed to init i2c interface\n");
2283                goto err_eeprom;
2284        }
2285
2286        /* let the f/w know that the h/w is now under the control of the
2287         * driver. */
2288        igb_get_hw_control(adapter);
2289
2290        strcpy(netdev->name, "eth%d");
2291        err = register_netdev(netdev);
2292        if (err)
2293                goto err_register;
2294
2295        /* carrier off reporting is important to ethtool even BEFORE open */
2296        netif_carrier_off(netdev);
2297
2298#ifdef CONFIG_IGB_DCA
2299        if (dca_add_requester(&pdev->dev) == 0) {
2300                adapter->flags |= IGB_FLAG_DCA_ENABLED;
2301                dev_info(&pdev->dev, "DCA enabled\n");
2302                igb_setup_dca(adapter);
2303        }
2304
2305#endif
2306#ifdef CONFIG_IGB_HWMON
2307        /* Initialize the thermal sensor on i350 devices. */
2308        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2309                u16 ets_word;
2310
2311                /* Read the NVM to determine if this i350 device supports an
2312                 * external thermal sensor.
2313                 */
2314                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2315                if (ets_word != 0x0000 && ets_word != 0xFFFF)
2316                        adapter->ets = true;
2317                else
2318                        adapter->ets = false;
2319                if (igb_sysfs_init(adapter))
2320                        dev_err(&pdev->dev,
2321                                "failed to allocate sysfs resources\n");
2322        } else {
2323                adapter->ets = false;
2324        }
2325#endif
2326        /* do hw tstamp init after resetting */
2327        igb_ptp_init(adapter);
2328
2329        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2330        /* print bus type/speed/width info, not applicable to i354 */
2331        if (hw->mac.type != e1000_i354) {
2332                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2333                         netdev->name,
2334                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2335                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2336                           "unknown"),
2337                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2338                          "Width x4" :
2339                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
2340                          "Width x2" :
2341                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
2342                          "Width x1" : "unknown"), netdev->dev_addr);
2343        }
2344
2345        ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2346        if (ret_val)
2347                strcpy(part_str, "Unknown");
2348        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2349        dev_info(&pdev->dev,
2350                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2351                adapter->msix_entries ? "MSI-X" :
2352                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2353                adapter->num_rx_queues, adapter->num_tx_queues);
2354        switch (hw->mac.type) {
2355        case e1000_i350:
2356        case e1000_i210:
2357        case e1000_i211:
2358                igb_set_eee_i350(hw);
2359                break;
2360        case e1000_i354:
2361                if (hw->phy.media_type == e1000_media_type_copper) {
2362                        if ((rd32(E1000_CTRL_EXT) &
2363                            E1000_CTRL_EXT_LINK_MODE_SGMII))
2364                                igb_set_eee_i354(hw);
2365                }
2366                break;
2367        default:
2368                break;
2369        }
2370
2371        pm_runtime_put_noidle(&pdev->dev);
2372        return 0;
2373
2374err_register:
2375        igb_release_hw_control(adapter);
2376        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2377err_eeprom:
2378        if (!igb_check_reset_block(hw))
2379                igb_reset_phy(hw);
2380
2381        if (hw->flash_address)
2382                iounmap(hw->flash_address);
2383err_sw_init:
2384        igb_clear_interrupt_scheme(adapter);
2385        iounmap(hw->hw_addr);
2386err_ioremap:
2387        free_netdev(netdev);
2388err_alloc_etherdev:
2389        pci_release_selected_regions(pdev,
2390                                     pci_select_bars(pdev, IORESOURCE_MEM));
2391err_pci_reg:
2392err_dma:
2393        pci_disable_device(pdev);
2394        return err;
2395}
2396
2397#ifdef CONFIG_PCI_IOV
2398static int  igb_disable_sriov(struct pci_dev *pdev)
2399{
2400        struct net_device *netdev = pci_get_drvdata(pdev);
2401        struct igb_adapter *adapter = netdev_priv(netdev);
2402        struct e1000_hw *hw = &adapter->hw;
2403
2404        /* reclaim resources allocated to VFs */
2405        if (adapter->vf_data) {
2406                /* disable iov and allow time for transactions to clear */
2407                if (pci_vfs_assigned(pdev)) {
2408                        dev_warn(&pdev->dev,
2409                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2410                        return -EPERM;
2411                } else {
2412                        pci_disable_sriov(pdev);
2413                        msleep(500);
2414                }
2415
2416                kfree(adapter->vf_data);
2417                adapter->vf_data = NULL;
2418                adapter->vfs_allocated_count = 0;
2419                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2420                wrfl();
2421                msleep(100);
2422                dev_info(&pdev->dev, "IOV Disabled\n");
2423
2424                /* Re-enable DMA Coalescing flag since IOV is turned off */
2425                adapter->flags |= IGB_FLAG_DMAC;
2426        }
2427
2428        return 0;
2429}
2430
2431static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2432{
2433        struct net_device *netdev = pci_get_drvdata(pdev);
2434        struct igb_adapter *adapter = netdev_priv(netdev);
2435        int old_vfs = pci_num_vf(pdev);
2436        int err = 0;
2437        int i;
2438
2439        if (!num_vfs)
2440                goto out;
2441        else if (old_vfs && old_vfs == num_vfs)
2442                goto out;
2443        else if (old_vfs && old_vfs != num_vfs)
2444                err = igb_disable_sriov(pdev);
2445
2446        if (err)
2447                goto out;
2448
2449        if (num_vfs > 7) {
2450                err = -EPERM;
2451                goto out;
2452        }
2453
2454        adapter->vfs_allocated_count = num_vfs;
2455
2456        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2457                                sizeof(struct vf_data_storage), GFP_KERNEL);
2458
2459        /* if allocation failed then we do not support SR-IOV */
2460        if (!adapter->vf_data) {
2461                adapter->vfs_allocated_count = 0;
2462                dev_err(&pdev->dev,
2463                        "Unable to allocate memory for VF Data Storage\n");
2464                err = -ENOMEM;
2465                goto out;
2466        }
2467
2468        err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2469        if (err)
2470                goto err_out;
2471
2472        dev_info(&pdev->dev, "%d VFs allocated\n",
2473                 adapter->vfs_allocated_count);
2474        for (i = 0; i < adapter->vfs_allocated_count; i++)
2475                igb_vf_configure(adapter, i);
2476
2477        /* DMA Coalescing is not supported in IOV mode. */
2478        adapter->flags &= ~IGB_FLAG_DMAC;
2479        goto out;
2480
2481err_out:
2482        kfree(adapter->vf_data);
2483        adapter->vf_data = NULL;
2484        adapter->vfs_allocated_count = 0;
2485out:
2486        return err;
2487}
2488
2489#endif
2490/**
2491 *  igb_remove_i2c - Cleanup  I2C interface
2492 *  @adapter: pointer to adapter structure
2493 **/
2494static void igb_remove_i2c(struct igb_adapter *adapter)
2495{
2496        /* free the adapter bus structure */
2497        i2c_del_adapter(&adapter->i2c_adap);
2498}
2499
2500/**
2501 *  igb_remove - Device Removal Routine
2502 *  @pdev: PCI device information struct
2503 *
2504 *  igb_remove is called by the PCI subsystem to alert the driver
2505 *  that it should release a PCI device.  The could be caused by a
2506 *  Hot-Plug event, or because the driver is going to be removed from
2507 *  memory.
2508 **/
2509static void igb_remove(struct pci_dev *pdev)
2510{
2511        struct net_device *netdev = pci_get_drvdata(pdev);
2512        struct igb_adapter *adapter = netdev_priv(netdev);
2513        struct e1000_hw *hw = &adapter->hw;
2514
2515        pm_runtime_get_noresume(&pdev->dev);
2516#ifdef CONFIG_IGB_HWMON
2517        igb_sysfs_exit(adapter);
2518#endif
2519        igb_remove_i2c(adapter);
2520        igb_ptp_stop(adapter);
2521        /* The watchdog timer may be rescheduled, so explicitly
2522         * disable watchdog from being rescheduled.
2523         */
2524        set_bit(__IGB_DOWN, &adapter->state);
2525        del_timer_sync(&adapter->watchdog_timer);
2526        del_timer_sync(&adapter->phy_info_timer);
2527
2528        cancel_work_sync(&adapter->reset_task);
2529        cancel_work_sync(&adapter->watchdog_task);
2530
2531#ifdef CONFIG_IGB_DCA
2532        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2533                dev_info(&pdev->dev, "DCA disabled\n");
2534                dca_remove_requester(&pdev->dev);
2535                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2536                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2537        }
2538#endif
2539
2540        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2541         * would have already happened in close and is redundant.
2542         */
2543        igb_release_hw_control(adapter);
2544
2545        unregister_netdev(netdev);
2546
2547        igb_clear_interrupt_scheme(adapter);
2548
2549#ifdef CONFIG_PCI_IOV
2550        igb_disable_sriov(pdev);
2551#endif
2552
2553        iounmap(hw->hw_addr);
2554        if (hw->flash_address)
2555                iounmap(hw->flash_address);
2556        pci_release_selected_regions(pdev,
2557                                     pci_select_bars(pdev, IORESOURCE_MEM));
2558
2559        kfree(adapter->shadow_vfta);
2560        free_netdev(netdev);
2561
2562        pci_disable_pcie_error_reporting(pdev);
2563
2564        pci_disable_device(pdev);
2565}
2566
2567/**
2568 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2569 *  @adapter: board private structure to initialize
2570 *
2571 *  This function initializes the vf specific data storage and then attempts to
2572 *  allocate the VFs.  The reason for ordering it this way is because it is much
2573 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2574 *  the memory for the VFs.
2575 **/
2576static void igb_probe_vfs(struct igb_adapter *adapter)
2577{
2578#ifdef CONFIG_PCI_IOV
2579        struct pci_dev *pdev = adapter->pdev;
2580        struct e1000_hw *hw = &adapter->hw;
2581
2582        /* Virtualization features not supported on i210 family. */
2583        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2584                return;
2585
2586        pci_sriov_set_totalvfs(pdev, 7);
2587        igb_enable_sriov(pdev, max_vfs);
2588
2589#endif /* CONFIG_PCI_IOV */
2590}
2591
2592static void igb_init_queue_configuration(struct igb_adapter *adapter)
2593{
2594        struct e1000_hw *hw = &adapter->hw;
2595        u32 max_rss_queues;
2596
2597        /* Determine the maximum number of RSS queues supported. */
2598        switch (hw->mac.type) {
2599        case e1000_i211:
2600                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2601                break;
2602        case e1000_82575:
2603        case e1000_i210:
2604                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2605                break;
2606        case e1000_i350:
2607                /* I350 cannot do RSS and SR-IOV at the same time */
2608                if (!!adapter->vfs_allocated_count) {
2609                        max_rss_queues = 1;
2610                        break;
2611                }
2612                /* fall through */
2613        case e1000_82576:
2614                if (!!adapter->vfs_allocated_count) {
2615                        max_rss_queues = 2;
2616                        break;
2617                }
2618                /* fall through */
2619        case e1000_82580:
2620        case e1000_i354:
2621        default:
2622                max_rss_queues = IGB_MAX_RX_QUEUES;
2623                break;
2624        }
2625
2626        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2627
2628        /* Determine if we need to pair queues. */
2629        switch (hw->mac.type) {
2630        case e1000_82575:
2631        case e1000_i211:
2632                /* Device supports enough interrupts without queue pairing. */
2633                break;
2634        case e1000_82576:
2635                /* If VFs are going to be allocated with RSS queues then we
2636                 * should pair the queues in order to conserve interrupts due
2637                 * to limited supply.
2638                 */
2639                if ((adapter->rss_queues > 1) &&
2640                    (adapter->vfs_allocated_count > 6))
2641                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2642                /* fall through */
2643        case e1000_82580:
2644        case e1000_i350:
2645        case e1000_i354:
2646        case e1000_i210:
2647        default:
2648                /* If rss_queues > half of max_rss_queues, pair the queues in
2649                 * order to conserve interrupts due to limited supply.
2650                 */
2651                if (adapter->rss_queues > (max_rss_queues / 2))
2652                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2653                break;
2654        }
2655}
2656
2657/**
2658 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2659 *  @adapter: board private structure to initialize
2660 *
2661 *  igb_sw_init initializes the Adapter private data structure.
2662 *  Fields are initialized based on PCI device information and
2663 *  OS network device settings (MTU size).
2664 **/
2665static int igb_sw_init(struct igb_adapter *adapter)
2666{
2667        struct e1000_hw *hw = &adapter->hw;
2668        struct net_device *netdev = adapter->netdev;
2669        struct pci_dev *pdev = adapter->pdev;
2670
2671        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2672
2673        /* set default ring sizes */
2674        adapter->tx_ring_count = IGB_DEFAULT_TXD;
2675        adapter->rx_ring_count = IGB_DEFAULT_RXD;
2676
2677        /* set default ITR values */
2678        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2679        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2680
2681        /* set default work limits */
2682        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2683
2684        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2685                                  VLAN_HLEN;
2686        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2687
2688        spin_lock_init(&adapter->stats64_lock);
2689#ifdef CONFIG_PCI_IOV
2690        switch (hw->mac.type) {
2691        case e1000_82576:
2692        case e1000_i350:
2693                if (max_vfs > 7) {
2694                        dev_warn(&pdev->dev,
2695                                 "Maximum of 7 VFs per PF, using max\n");
2696                        max_vfs = adapter->vfs_allocated_count = 7;
2697                } else
2698                        adapter->vfs_allocated_count = max_vfs;
2699                if (adapter->vfs_allocated_count)
2700                        dev_warn(&pdev->dev,
2701                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2702                break;
2703        default:
2704                break;
2705        }
2706#endif /* CONFIG_PCI_IOV */
2707
2708        igb_init_queue_configuration(adapter);
2709
2710        /* Setup and initialize a copy of the hw vlan table array */
2711        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2712                                       GFP_ATOMIC);
2713
2714        /* This call may decrease the number of queues */
2715        if (igb_init_interrupt_scheme(adapter, true)) {
2716                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2717                return -ENOMEM;
2718        }
2719
2720        igb_probe_vfs(adapter);
2721
2722        /* Explicitly disable IRQ since the NIC can be in any state. */
2723        igb_irq_disable(adapter);
2724
2725        if (hw->mac.type >= e1000_i350)
2726                adapter->flags &= ~IGB_FLAG_DMAC;
2727
2728        set_bit(__IGB_DOWN, &adapter->state);
2729        return 0;
2730}
2731
2732/**
2733 *  igb_open - Called when a network interface is made active
2734 *  @netdev: network interface device structure
2735 *
2736 *  Returns 0 on success, negative value on failure
2737 *
2738 *  The open entry point is called when a network interface is made
2739 *  active by the system (IFF_UP).  At this point all resources needed
2740 *  for transmit and receive operations are allocated, the interrupt
2741 *  handler is registered with the OS, the watchdog timer is started,
2742 *  and the stack is notified that the interface is ready.
2743 **/
2744static int __igb_open(struct net_device *netdev, bool resuming)
2745{
2746        struct igb_adapter *adapter = netdev_priv(netdev);
2747        struct e1000_hw *hw = &adapter->hw;
2748        struct pci_dev *pdev = adapter->pdev;
2749        int err;
2750        int i;
2751
2752        /* disallow open during test */
2753        if (test_bit(__IGB_TESTING, &adapter->state)) {
2754                WARN_ON(resuming);
2755                return -EBUSY;
2756        }
2757
2758        if (!resuming)
2759                pm_runtime_get_sync(&pdev->dev);
2760
2761        netif_carrier_off(netdev);
2762
2763        /* allocate transmit descriptors */
2764        err = igb_setup_all_tx_resources(adapter);
2765        if (err)
2766                goto err_setup_tx;
2767
2768        /* allocate receive descriptors */
2769        err = igb_setup_all_rx_resources(adapter);
2770        if (err)
2771                goto err_setup_rx;
2772
2773        igb_power_up_link(adapter);
2774
2775        /* before we allocate an interrupt, we must be ready to handle it.
2776         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2777         * as soon as we call pci_request_irq, so we have to setup our
2778         * clean_rx handler before we do so.
2779         */
2780        igb_configure(adapter);
2781
2782        err = igb_request_irq(adapter);
2783        if (err)
2784                goto err_req_irq;
2785
2786        /* Notify the stack of the actual queue counts. */
2787        err = netif_set_real_num_tx_queues(adapter->netdev,
2788                                           adapter->num_tx_queues);
2789        if (err)
2790                goto err_set_queues;
2791
2792        err = netif_set_real_num_rx_queues(adapter->netdev,
2793                                           adapter->num_rx_queues);
2794        if (err)
2795                goto err_set_queues;
2796
2797        /* From here on the code is the same as igb_up() */
2798        clear_bit(__IGB_DOWN, &adapter->state);
2799
2800        for (i = 0; i < adapter->num_q_vectors; i++)
2801                napi_enable(&(adapter->q_vector[i]->napi));
2802
2803        /* Clear any pending interrupts. */
2804        rd32(E1000_ICR);
2805
2806        igb_irq_enable(adapter);
2807
2808        /* notify VFs that reset has been completed */
2809        if (adapter->vfs_allocated_count) {
2810                u32 reg_data = rd32(E1000_CTRL_EXT);
2811                reg_data |= E1000_CTRL_EXT_PFRSTD;
2812                wr32(E1000_CTRL_EXT, reg_data);
2813        }
2814
2815        netif_tx_start_all_queues(netdev);
2816
2817        if (!resuming)
2818                pm_runtime_put(&pdev->dev);
2819
2820        /* start the watchdog. */
2821        hw->mac.get_link_status = 1;
2822        schedule_work(&adapter->watchdog_task);
2823
2824        return 0;
2825
2826err_set_queues:
2827        igb_free_irq(adapter);
2828err_req_irq:
2829        igb_release_hw_control(adapter);
2830        igb_power_down_link(adapter);
2831        igb_free_all_rx_resources(adapter);
2832err_setup_rx:
2833        igb_free_all_tx_resources(adapter);
2834err_setup_tx:
2835        igb_reset(adapter);
2836        if (!resuming)
2837                pm_runtime_put(&pdev->dev);
2838
2839        return err;
2840}
2841
2842static int igb_open(struct net_device *netdev)
2843{
2844        return __igb_open(netdev, false);
2845}
2846
2847/**
2848 *  igb_close - Disables a network interface
2849 *  @netdev: network interface device structure
2850 *
2851 *  Returns 0, this is not allowed to fail
2852 *
2853 *  The close entry point is called when an interface is de-activated
2854 *  by the OS.  The hardware is still under the driver's control, but
2855 *  needs to be disabled.  A global MAC reset is issued to stop the
2856 *  hardware, and all transmit and receive resources are freed.
2857 **/
2858static int __igb_close(struct net_device *netdev, bool suspending)
2859{
2860        struct igb_adapter *adapter = netdev_priv(netdev);
2861        struct pci_dev *pdev = adapter->pdev;
2862
2863        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2864
2865        if (!suspending)
2866                pm_runtime_get_sync(&pdev->dev);
2867
2868        igb_down(adapter);
2869        igb_free_irq(adapter);
2870
2871        igb_free_all_tx_resources(adapter);
2872        igb_free_all_rx_resources(adapter);
2873
2874        if (!suspending)
2875                pm_runtime_put_sync(&pdev->dev);
2876        return 0;
2877}
2878
2879static int igb_close(struct net_device *netdev)
2880{
2881        return __igb_close(netdev, false);
2882}
2883
2884/**
2885 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
2886 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
2887 *
2888 *  Return 0 on success, negative on failure
2889 **/
2890int igb_setup_tx_resources(struct igb_ring *tx_ring)
2891{
2892        struct device *dev = tx_ring->dev;
2893        int size;
2894
2895        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2896
2897        tx_ring->tx_buffer_info = vzalloc(size);
2898        if (!tx_ring->tx_buffer_info)
2899                goto err;
2900
2901        /* round up to nearest 4K */
2902        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2903        tx_ring->size = ALIGN(tx_ring->size, 4096);
2904
2905        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2906                                           &tx_ring->dma, GFP_KERNEL);
2907        if (!tx_ring->desc)
2908                goto err;
2909
2910        tx_ring->next_to_use = 0;
2911        tx_ring->next_to_clean = 0;
2912
2913        return 0;
2914
2915err:
2916        vfree(tx_ring->tx_buffer_info);
2917        tx_ring->tx_buffer_info = NULL;
2918        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2919        return -ENOMEM;
2920}
2921
2922/**
2923 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
2924 *                               (Descriptors) for all queues
2925 *  @adapter: board private structure
2926 *
2927 *  Return 0 on success, negative on failure
2928 **/
2929static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2930{
2931        struct pci_dev *pdev = adapter->pdev;
2932        int i, err = 0;
2933
2934        for (i = 0; i < adapter->num_tx_queues; i++) {
2935                err = igb_setup_tx_resources(adapter->tx_ring[i]);
2936                if (err) {
2937                        dev_err(&pdev->dev,
2938                                "Allocation for Tx Queue %u failed\n", i);
2939                        for (i--; i >= 0; i--)
2940                                igb_free_tx_resources(adapter->tx_ring[i]);
2941                        break;
2942                }
2943        }
2944
2945        return err;
2946}
2947
2948/**
2949 *  igb_setup_tctl - configure the transmit control registers
2950 *  @adapter: Board private structure
2951 **/
2952void igb_setup_tctl(struct igb_adapter *adapter)
2953{
2954        struct e1000_hw *hw = &adapter->hw;
2955        u32 tctl;
2956
2957        /* disable queue 0 which is enabled by default on 82575 and 82576 */
2958        wr32(E1000_TXDCTL(0), 0);
2959
2960        /* Program the Transmit Control Register */
2961        tctl = rd32(E1000_TCTL);
2962        tctl &= ~E1000_TCTL_CT;
2963        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965
2966        igb_config_collision_dist(hw);
2967
2968        /* Enable transmits */
2969        tctl |= E1000_TCTL_EN;
2970
2971        wr32(E1000_TCTL, tctl);
2972}
2973
2974/**
2975 *  igb_configure_tx_ring - Configure transmit ring after Reset
2976 *  @adapter: board private structure
2977 *  @ring: tx ring to configure
2978 *
2979 *  Configure a transmit ring after a reset.
2980 **/
2981void igb_configure_tx_ring(struct igb_adapter *adapter,
2982                           struct igb_ring *ring)
2983{
2984        struct e1000_hw *hw = &adapter->hw;
2985        u32 txdctl = 0;
2986        u64 tdba = ring->dma;
2987        int reg_idx = ring->reg_idx;
2988
2989        /* disable the queue */
2990        wr32(E1000_TXDCTL(reg_idx), 0);
2991        wrfl();
2992        mdelay(10);
2993
2994        wr32(E1000_TDLEN(reg_idx),
2995             ring->count * sizeof(union e1000_adv_tx_desc));
2996        wr32(E1000_TDBAL(reg_idx),
2997             tdba & 0x00000000ffffffffULL);
2998        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2999
3000        ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3001        wr32(E1000_TDH(reg_idx), 0);
3002        writel(0, ring->tail);
3003
3004        txdctl |= IGB_TX_PTHRESH;
3005        txdctl |= IGB_TX_HTHRESH << 8;
3006        txdctl |= IGB_TX_WTHRESH << 16;
3007
3008        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3009        wr32(E1000_TXDCTL(reg_idx), txdctl);
3010}
3011
3012/**
3013 *  igb_configure_tx - Configure transmit Unit after Reset
3014 *  @adapter: board private structure
3015 *
3016 *  Configure the Tx unit of the MAC after a reset.
3017 **/
3018static void igb_configure_tx(struct igb_adapter *adapter)
3019{
3020        int i;
3021
3022        for (i = 0; i < adapter->num_tx_queues; i++)
3023                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3024}
3025
3026/**
3027 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3028 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3029 *
3030 *  Returns 0 on success, negative on failure
3031 **/
3032int igb_setup_rx_resources(struct igb_ring *rx_ring)
3033{
3034        struct device *dev = rx_ring->dev;
3035        int size;
3036
3037        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3038
3039        rx_ring->rx_buffer_info = vzalloc(size);
3040        if (!rx_ring->rx_buffer_info)
3041                goto err;
3042
3043        /* Round up to nearest 4K */
3044        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3045        rx_ring->size = ALIGN(rx_ring->size, 4096);
3046
3047        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3048                                           &rx_ring->dma, GFP_KERNEL);
3049        if (!rx_ring->desc)
3050                goto err;
3051
3052        rx_ring->next_to_alloc = 0;
3053        rx_ring->next_to_clean = 0;
3054        rx_ring->next_to_use = 0;
3055
3056        return 0;
3057
3058err:
3059        vfree(rx_ring->rx_buffer_info);
3060        rx_ring->rx_buffer_info = NULL;
3061        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3062        return -ENOMEM;
3063}
3064
3065/**
3066 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3067 *                               (Descriptors) for all queues
3068 *  @adapter: board private structure
3069 *
3070 *  Return 0 on success, negative on failure
3071 **/
3072static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3073{
3074        struct pci_dev *pdev = adapter->pdev;
3075        int i, err = 0;
3076
3077        for (i = 0; i < adapter->num_rx_queues; i++) {
3078                err = igb_setup_rx_resources(adapter->rx_ring[i]);
3079                if (err) {
3080                        dev_err(&pdev->dev,
3081                                "Allocation for Rx Queue %u failed\n", i);
3082                        for (i--; i >= 0; i--)
3083                                igb_free_rx_resources(adapter->rx_ring[i]);
3084                        break;
3085                }
3086        }
3087
3088        return err;
3089}
3090
3091/**
3092 *  igb_setup_mrqc - configure the multiple receive queue control registers
3093 *  @adapter: Board private structure
3094 **/
3095static void igb_setup_mrqc(struct igb_adapter *adapter)
3096{
3097        struct e1000_hw *hw = &adapter->hw;
3098        u32 mrqc, rxcsum;
3099        u32 j, num_rx_queues, shift = 0;
3100        static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3101                                        0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3102                                        0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3103                                        0xFA01ACBE };
3104
3105        /* Fill out hash function seeds */
3106        for (j = 0; j < 10; j++)
3107                wr32(E1000_RSSRK(j), rsskey[j]);
3108
3109        num_rx_queues = adapter->rss_queues;
3110
3111        switch (hw->mac.type) {
3112        case e1000_82575:
3113                shift = 6;
3114                break;
3115        case e1000_82576:
3116                /* 82576 supports 2 RSS queues for SR-IOV */
3117                if (adapter->vfs_allocated_count) {
3118                        shift = 3;
3119                        num_rx_queues = 2;
3120                }
3121                break;
3122        default:
3123                break;
3124        }
3125
3126        /* Populate the indirection table 4 entries at a time.  To do this
3127         * we are generating the results for n and n+2 and then interleaving
3128         * those with the results with n+1 and n+3.
3129         */
3130        for (j = 0; j < 32; j++) {
3131                /* first pass generates n and n+2 */
3132                u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3133                u32 reta = (base & 0x07800780) >> (7 - shift);
3134
3135                /* second pass generates n+1 and n+3 */
3136                base += 0x00010001 * num_rx_queues;
3137                reta |= (base & 0x07800780) << (1 + shift);
3138
3139                wr32(E1000_RETA(j), reta);
3140        }
3141
3142        /* Disable raw packet checksumming so that RSS hash is placed in
3143         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3144         * offloads as they are enabled by default
3145         */
3146        rxcsum = rd32(E1000_RXCSUM);
3147        rxcsum |= E1000_RXCSUM_PCSD;
3148
3149        if (adapter->hw.mac.type >= e1000_82576)
3150                /* Enable Receive Checksum Offload for SCTP */
3151                rxcsum |= E1000_RXCSUM_CRCOFL;
3152
3153        /* Don't need to set TUOFL or IPOFL, they default to 1 */
3154        wr32(E1000_RXCSUM, rxcsum);
3155
3156        /* Generate RSS hash based on packet types, TCP/UDP
3157         * port numbers and/or IPv4/v6 src and dst addresses
3158         */
3159        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3160               E1000_MRQC_RSS_FIELD_IPV4_TCP |
3161               E1000_MRQC_RSS_FIELD_IPV6 |
3162               E1000_MRQC_RSS_FIELD_IPV6_TCP |
3163               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3164
3165        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3166                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3167        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3168                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3169
3170        /* If VMDq is enabled then we set the appropriate mode for that, else
3171         * we default to RSS so that an RSS hash is calculated per packet even
3172         * if we are only using one queue
3173         */
3174        if (adapter->vfs_allocated_count) {
3175                if (hw->mac.type > e1000_82575) {
3176                        /* Set the default pool for the PF's first queue */
3177                        u32 vtctl = rd32(E1000_VT_CTL);
3178                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3179                                   E1000_VT_CTL_DISABLE_DEF_POOL);
3180                        vtctl |= adapter->vfs_allocated_count <<
3181                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3182                        wr32(E1000_VT_CTL, vtctl);
3183                }
3184                if (adapter->rss_queues > 1)
3185                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3186                else
3187                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
3188        } else {
3189                if (hw->mac.type != e1000_i211)
3190                        mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3191        }
3192        igb_vmm_control(adapter);
3193
3194        wr32(E1000_MRQC, mrqc);
3195}
3196
3197/**
3198 *  igb_setup_rctl - configure the receive control registers
3199 *  @adapter: Board private structure
3200 **/
3201void igb_setup_rctl(struct igb_adapter *adapter)
3202{
3203        struct e1000_hw *hw = &adapter->hw;
3204        u32 rctl;
3205
3206        rctl = rd32(E1000_RCTL);
3207
3208        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3209        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3210
3211        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3212                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213
3214        /* enable stripping of CRC. It's unlikely this will break BMC
3215         * redirection as it did with e1000. Newer features require
3216         * that the HW strips the CRC.
3217         */
3218        rctl |= E1000_RCTL_SECRC;
3219
3220        /* disable store bad packets and clear size bits. */
3221        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3222
3223        /* enable LPE to prevent packets larger than max_frame_size */
3224        rctl |= E1000_RCTL_LPE;
3225
3226        /* disable queue 0 to prevent tail write w/o re-config */
3227        wr32(E1000_RXDCTL(0), 0);
3228
3229        /* Attention!!!  For SR-IOV PF driver operations you must enable
3230         * queue drop for all VF and PF queues to prevent head of line blocking
3231         * if an un-trusted VF does not provide descriptors to hardware.
3232         */
3233        if (adapter->vfs_allocated_count) {
3234                /* set all queue drop enable bits */
3235                wr32(E1000_QDE, ALL_QUEUES);
3236        }
3237
3238        /* This is useful for sniffing bad packets. */
3239        if (adapter->netdev->features & NETIF_F_RXALL) {
3240                /* UPE and MPE will be handled by normal PROMISC logic
3241                 * in e1000e_set_rx_mode
3242                 */
3243                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3244                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
3245                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3246
3247                rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3248                          E1000_RCTL_DPF | /* Allow filtered pause */
3249                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3250                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3251                 * and that breaks VLANs.
3252                 */
3253        }
3254
3255        wr32(E1000_RCTL, rctl);
3256}
3257
3258static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3259                                   int vfn)
3260{
3261        struct e1000_hw *hw = &adapter->hw;
3262        u32 vmolr;
3263
3264        /* if it isn't the PF check to see if VFs are enabled and
3265         * increase the size to support vlan tags
3266         */
3267        if (vfn < adapter->vfs_allocated_count &&
3268            adapter->vf_data[vfn].vlans_enabled)
3269                size += VLAN_TAG_SIZE;
3270
3271        vmolr = rd32(E1000_VMOLR(vfn));
3272        vmolr &= ~E1000_VMOLR_RLPML_MASK;
3273        vmolr |= size | E1000_VMOLR_LPE;
3274        wr32(E1000_VMOLR(vfn), vmolr);
3275
3276        return 0;
3277}
3278
3279/**
3280 *  igb_rlpml_set - set maximum receive packet size
3281 *  @adapter: board private structure
3282 *
3283 *  Configure maximum receivable packet size.
3284 **/
3285static void igb_rlpml_set(struct igb_adapter *adapter)
3286{
3287        u32 max_frame_size = adapter->max_frame_size;
3288        struct e1000_hw *hw = &adapter->hw;
3289        u16 pf_id = adapter->vfs_allocated_count;
3290
3291        if (pf_id) {
3292                igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3293                /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3294                 * to our max jumbo frame size, in case we need to enable
3295                 * jumbo frames on one of the rings later.
3296                 * This will not pass over-length frames into the default
3297                 * queue because it's gated by the VMOLR.RLPML.
3298                 */
3299                max_frame_size = MAX_JUMBO_FRAME_SIZE;
3300        }
3301
3302        wr32(E1000_RLPML, max_frame_size);
3303}
3304
3305static inline void igb_set_vmolr(struct igb_adapter *adapter,
3306                                 int vfn, bool aupe)
3307{
3308        struct e1000_hw *hw = &adapter->hw;
3309        u32 vmolr;
3310
3311        /* This register exists only on 82576 and newer so if we are older then
3312         * we should exit and do nothing
3313         */
3314        if (hw->mac.type < e1000_82576)
3315                return;
3316
3317        vmolr = rd32(E1000_VMOLR(vfn));
3318        vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3319        if (aupe)
3320                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3321        else
3322                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3323
3324        /* clear all bits that might not be set */
3325        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3326
3327        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3328                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3329        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3330         * multicast packets
3331         */
3332        if (vfn <= adapter->vfs_allocated_count)
3333                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3334
3335        wr32(E1000_VMOLR(vfn), vmolr);
3336}
3337
3338/**
3339 *  igb_configure_rx_ring - Configure a receive ring after Reset
3340 *  @adapter: board private structure
3341 *  @ring: receive ring to be configured
3342 *
3343 *  Configure the Rx unit of the MAC after a reset.
3344 **/
3345void igb_configure_rx_ring(struct igb_adapter *adapter,
3346                           struct igb_ring *ring)
3347{
3348        struct e1000_hw *hw = &adapter->hw;
3349        u64 rdba = ring->dma;
3350        int reg_idx = ring->reg_idx;
3351        u32 srrctl = 0, rxdctl = 0;
3352
3353        /* disable the queue */
3354        wr32(E1000_RXDCTL(reg_idx), 0);
3355
3356        /* Set DMA base address registers */
3357        wr32(E1000_RDBAL(reg_idx),
3358             rdba & 0x00000000ffffffffULL);
3359        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3360        wr32(E1000_RDLEN(reg_idx),
3361             ring->count * sizeof(union e1000_adv_rx_desc));
3362
3363        /* initialize head and tail */
3364        ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3365        wr32(E1000_RDH(reg_idx), 0);
3366        writel(0, ring->tail);
3367
3368        /* set descriptor configuration */
3369        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3370        srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3371        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3372        if (hw->mac.type >= e1000_82580)
3373                srrctl |= E1000_SRRCTL_TIMESTAMP;
3374        /* Only set Drop Enable if we are supporting multiple queues */
3375        if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3376                srrctl |= E1000_SRRCTL_DROP_EN;
3377
3378        wr32(E1000_SRRCTL(reg_idx), srrctl);
3379
3380        /* set filtering for VMDQ pools */
3381        igb_set_vmolr(adapter, reg_idx & 0x7, true);
3382
3383        rxdctl |= IGB_RX_PTHRESH;
3384        rxdctl |= IGB_RX_HTHRESH << 8;
3385        rxdctl |= IGB_RX_WTHRESH << 16;
3386
3387        /* enable receive descriptor fetching */
3388        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3389        wr32(E1000_RXDCTL(reg_idx), rxdctl);
3390}
3391
3392/**
3393 *  igb_configure_rx - Configure receive Unit after Reset
3394 *  @adapter: board private structure
3395 *
3396 *  Configure the Rx unit of the MAC after a reset.
3397 **/
3398static void igb_configure_rx(struct igb_adapter *adapter)
3399{
3400        int i;
3401
3402        /* set UTA to appropriate mode */
3403        igb_set_uta(adapter);
3404
3405        /* set the correct pool for the PF default MAC address in entry 0 */
3406        igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3407                         adapter->vfs_allocated_count);
3408
3409        /* Setup the HW Rx Head and Tail Descriptor Pointers and
3410         * the Base and Length of the Rx Descriptor Ring
3411         */
3412        for (i = 0; i < adapter->num_rx_queues; i++)
3413                igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3414}
3415
3416/**
3417 *  igb_free_tx_resources - Free Tx Resources per Queue
3418 *  @tx_ring: Tx descriptor ring for a specific queue
3419 *
3420 *  Free all transmit software resources
3421 **/
3422void igb_free_tx_resources(struct igb_ring *tx_ring)
3423{
3424        igb_clean_tx_ring(tx_ring);
3425
3426        vfree(tx_ring->tx_buffer_info);
3427        tx_ring->tx_buffer_info = NULL;
3428
3429        /* if not set, then don't free */
3430        if (!tx_ring->desc)
3431                return;
3432
3433        dma_free_coherent(tx_ring->dev, tx_ring->size,
3434                          tx_ring->desc, tx_ring->dma);
3435
3436        tx_ring->desc = NULL;
3437}
3438
3439/**
3440 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3441 *  @adapter: board private structure
3442 *
3443 *  Free all transmit software resources
3444 **/
3445static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3446{
3447        int i;
3448
3449        for (i = 0; i < adapter->num_tx_queues; i++)
3450                igb_free_tx_resources(adapter->tx_ring[i]);
3451}
3452
3453void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3454                                    struct igb_tx_buffer *tx_buffer)
3455{
3456        if (tx_buffer->skb) {
3457                dev_kfree_skb_any(tx_buffer->skb);
3458                if (dma_unmap_len(tx_buffer, len))
3459                        dma_unmap_single(ring->dev,
3460                                         dma_unmap_addr(tx_buffer, dma),
3461                                         dma_unmap_len(tx_buffer, len),
3462                                         DMA_TO_DEVICE);
3463        } else if (dma_unmap_len(tx_buffer, len)) {
3464                dma_unmap_page(ring->dev,
3465                               dma_unmap_addr(tx_buffer, dma),
3466                               dma_unmap_len(tx_buffer, len),
3467                               DMA_TO_DEVICE);
3468        }
3469        tx_buffer->next_to_watch = NULL;
3470        tx_buffer->skb = NULL;
3471        dma_unmap_len_set(tx_buffer, len, 0);
3472        /* buffer_info must be completely set up in the transmit path */
3473}
3474
3475/**
3476 *  igb_clean_tx_ring - Free Tx Buffers
3477 *  @tx_ring: ring to be cleaned
3478 **/
3479static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3480{
3481        struct igb_tx_buffer *buffer_info;
3482        unsigned long size;
3483        u16 i;
3484
3485        if (!tx_ring->tx_buffer_info)
3486                return;
3487        /* Free all the Tx ring sk_buffs */
3488
3489        for (i = 0; i < tx_ring->count; i++) {
3490                buffer_info = &tx_ring->tx_buffer_info[i];
3491                igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3492        }
3493
3494        netdev_tx_reset_queue(txring_txq(tx_ring));
3495
3496        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3497        memset(tx_ring->tx_buffer_info, 0, size);
3498
3499        /* Zero out the descriptor ring */
3500        memset(tx_ring->desc, 0, tx_ring->size);
3501
3502        tx_ring->next_to_use = 0;
3503        tx_ring->next_to_clean = 0;
3504}
3505
3506/**
3507 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3508 *  @adapter: board private structure
3509 **/
3510static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3511{
3512        int i;
3513
3514        for (i = 0; i < adapter->num_tx_queues; i++)
3515                igb_clean_tx_ring(adapter->tx_ring[i]);
3516}
3517
3518/**
3519 *  igb_free_rx_resources - Free Rx Resources
3520 *  @rx_ring: ring to clean the resources from
3521 *
3522 *  Free all receive software resources
3523 **/
3524void igb_free_rx_resources(struct igb_ring *rx_ring)
3525{
3526        igb_clean_rx_ring(rx_ring);
3527
3528        vfree(rx_ring->rx_buffer_info);
3529        rx_ring->rx_buffer_info = NULL;
3530
3531        /* if not set, then don't free */
3532        if (!rx_ring->desc)
3533                return;
3534
3535        dma_free_coherent(rx_ring->dev, rx_ring->size,
3536                          rx_ring->desc, rx_ring->dma);
3537
3538        rx_ring->desc = NULL;
3539}
3540
3541/**
3542 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3543 *  @adapter: board private structure
3544 *
3545 *  Free all receive software resources
3546 **/
3547static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3548{
3549        int i;
3550
3551        for (i = 0; i < adapter->num_rx_queues; i++)
3552                igb_free_rx_resources(adapter->rx_ring[i]);
3553}
3554
3555/**
3556 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3557 *  @rx_ring: ring to free buffers from
3558 **/
3559static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3560{
3561        unsigned long size;
3562        u16 i;
3563
3564        if (rx_ring->skb)
3565                dev_kfree_skb(rx_ring->skb);
3566        rx_ring->skb = NULL;
3567
3568        if (!rx_ring->rx_buffer_info)
3569                return;
3570
3571        /* Free all the Rx ring sk_buffs */
3572        for (i = 0; i < rx_ring->count; i++) {
3573                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3574
3575                if (!buffer_info->page)
3576                        continue;
3577
3578                dma_unmap_page(rx_ring->dev,
3579                               buffer_info->dma,
3580                               PAGE_SIZE,
3581                               DMA_FROM_DEVICE);
3582                __free_page(buffer_info->page);
3583
3584                buffer_info->page = NULL;
3585        }
3586
3587        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3588        memset(rx_ring->rx_buffer_info, 0, size);
3589
3590        /* Zero out the descriptor ring */
3591        memset(rx_ring->desc, 0, rx_ring->size);
3592
3593        rx_ring->next_to_alloc = 0;
3594        rx_ring->next_to_clean = 0;
3595        rx_ring->next_to_use = 0;
3596}
3597
3598/**
3599 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3600 *  @adapter: board private structure
3601 **/
3602static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3603{
3604        int i;
3605
3606        for (i = 0; i < adapter->num_rx_queues; i++)
3607                igb_clean_rx_ring(adapter->rx_ring[i]);
3608}
3609
3610/**
3611 *  igb_set_mac - Change the Ethernet Address of the NIC
3612 *  @netdev: network interface device structure
3613 *  @p: pointer to an address structure
3614 *
3615 *  Returns 0 on success, negative on failure
3616 **/
3617static int igb_set_mac(struct net_device *netdev, void *p)
3618{
3619        struct igb_adapter *adapter = netdev_priv(netdev);
3620        struct e1000_hw *hw = &adapter->hw;
3621        struct sockaddr *addr = p;
3622
3623        if (!is_valid_ether_addr(addr->sa_data))
3624                return -EADDRNOTAVAIL;
3625
3626        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3627        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3628
3629        /* set the correct pool for the new PF MAC address in entry 0 */
3630        igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3631                         adapter->vfs_allocated_count);
3632
3633        return 0;
3634}
3635
3636/**
3637 *  igb_write_mc_addr_list - write multicast addresses to MTA
3638 *  @netdev: network interface device structure
3639 *
3640 *  Writes multicast address list to the MTA hash table.
3641 *  Returns: -ENOMEM on failure
3642 *           0 on no addresses written
3643 *           X on writing X addresses to MTA
3644 **/
3645static int igb_write_mc_addr_list(struct net_device *netdev)
3646{
3647        struct igb_adapter *adapter = netdev_priv(netdev);
3648        struct e1000_hw *hw = &adapter->hw;
3649        struct netdev_hw_addr *ha;
3650        u8  *mta_list;
3651        int i;
3652
3653        if (netdev_mc_empty(netdev)) {
3654                /* nothing to program, so clear mc list */
3655                igb_update_mc_addr_list(hw, NULL, 0);
3656                igb_restore_vf_multicasts(adapter);
3657                return 0;
3658        }
3659
3660        mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3661        if (!mta_list)
3662                return -ENOMEM;
3663
3664        /* The shared function expects a packed array of only addresses. */
3665        i = 0;
3666        netdev_for_each_mc_addr(ha, netdev)
3667                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3668
3669        igb_update_mc_addr_list(hw, mta_list, i);
3670        kfree(mta_list);
3671
3672        return netdev_mc_count(netdev);
3673}
3674
3675/**
3676 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3677 *  @netdev: network interface device structure
3678 *
3679 *  Writes unicast address list to the RAR table.
3680 *  Returns: -ENOMEM on failure/insufficient address space
3681 *           0 on no addresses written
3682 *           X on writing X addresses to the RAR table
3683 **/
3684static int igb_write_uc_addr_list(struct net_device *netdev)
3685{
3686        struct igb_adapter *adapter = netdev_priv(netdev);
3687        struct e1000_hw *hw = &adapter->hw;
3688        unsigned int vfn = adapter->vfs_allocated_count;
3689        unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3690        int count = 0;
3691
3692        /* return ENOMEM indicating insufficient memory for addresses */
3693        if (netdev_uc_count(netdev) > rar_entries)
3694                return -ENOMEM;
3695
3696        if (!netdev_uc_empty(netdev) && rar_entries) {
3697                struct netdev_hw_addr *ha;
3698
3699                netdev_for_each_uc_addr(ha, netdev) {
3700                        if (!rar_entries)
3701                                break;
3702                        igb_rar_set_qsel(adapter, ha->addr,
3703                                         rar_entries--,
3704                                         vfn);
3705                        count++;
3706                }
3707        }
3708        /* write the addresses in reverse order to avoid write combining */
3709        for (; rar_entries > 0 ; rar_entries--) {
3710                wr32(E1000_RAH(rar_entries), 0);
3711                wr32(E1000_RAL(rar_entries), 0);
3712        }
3713        wrfl();
3714
3715        return count;
3716}
3717
3718/**
3719 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3720 *  @netdev: network interface device structure
3721 *
3722 *  The set_rx_mode entry point is called whenever the unicast or multicast
3723 *  address lists or the network interface flags are updated.  This routine is
3724 *  responsible for configuring the hardware for proper unicast, multicast,
3725 *  promiscuous mode, and all-multi behavior.
3726 **/
3727static void igb_set_rx_mode(struct net_device *netdev)
3728{
3729        struct igb_adapter *adapter = netdev_priv(netdev);
3730        struct e1000_hw *hw = &adapter->hw;
3731        unsigned int vfn = adapter->vfs_allocated_count;
3732        u32 rctl, vmolr = 0;
3733        int count;
3734
3735        /* Check for Promiscuous and All Multicast modes */
3736        rctl = rd32(E1000_RCTL);
3737
3738        /* clear the effected bits */
3739        rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3740
3741        if (netdev->flags & IFF_PROMISC) {
3742                /* retain VLAN HW filtering if in VT mode */
3743                if (adapter->vfs_allocated_count)
3744                        rctl |= E1000_RCTL_VFE;
3745                rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3746                vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3747        } else {
3748                if (netdev->flags & IFF_ALLMULTI) {
3749                        rctl |= E1000_RCTL_MPE;
3750                        vmolr |= E1000_VMOLR_MPME;
3751                } else {
3752                        /* Write addresses to the MTA, if the attempt fails
3753                         * then we should just turn on promiscuous mode so
3754                         * that we can at least receive multicast traffic
3755                         */
3756                        count = igb_write_mc_addr_list(netdev);
3757                        if (count < 0) {
3758                                rctl |= E1000_RCTL_MPE;
3759                                vmolr |= E1000_VMOLR_MPME;
3760                        } else if (count) {
3761                                vmolr |= E1000_VMOLR_ROMPE;
3762                        }
3763                }
3764                /* Write addresses to available RAR registers, if there is not
3765                 * sufficient space to store all the addresses then enable
3766                 * unicast promiscuous mode
3767                 */
3768                count = igb_write_uc_addr_list(netdev);
3769                if (count < 0) {
3770                        rctl |= E1000_RCTL_UPE;
3771                        vmolr |= E1000_VMOLR_ROPE;
3772                }
3773                rctl |= E1000_RCTL_VFE;
3774        }
3775        wr32(E1000_RCTL, rctl);
3776
3777        /* In order to support SR-IOV and eventually VMDq it is necessary to set
3778         * the VMOLR to enable the appropriate modes.  Without this workaround
3779         * we will have issues with VLAN tag stripping not being done for frames
3780         * that are only arriving because we are the default pool
3781         */
3782        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3783                return;
3784
3785        vmolr |= rd32(E1000_VMOLR(vfn)) &
3786                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3787        wr32(E1000_VMOLR(vfn), vmolr);
3788        igb_restore_vf_multicasts(adapter);
3789}
3790
3791static void igb_check_wvbr(struct igb_adapter *adapter)
3792{
3793        struct e1000_hw *hw = &adapter->hw;
3794        u32 wvbr = 0;
3795
3796        switch (hw->mac.type) {
3797        case e1000_82576:
3798        case e1000_i350:
3799                if (!(wvbr = rd32(E1000_WVBR)))
3800                        return;
3801                break;
3802        default:
3803                break;
3804        }
3805
3806        adapter->wvbr |= wvbr;
3807}
3808
3809#define IGB_STAGGERED_QUEUE_OFFSET 8
3810
3811static void igb_spoof_check(struct igb_adapter *adapter)
3812{
3813        int j;
3814
3815        if (!adapter->wvbr)
3816                return;
3817
3818        for(j = 0; j < adapter->vfs_allocated_count; j++) {
3819                if (adapter->wvbr & (1 << j) ||
3820                    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3821                        dev_warn(&adapter->pdev->dev,
3822                                "Spoof event(s) detected on VF %d\n", j);
3823                        adapter->wvbr &=
3824                                ~((1 << j) |
3825                                  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3826                }
3827        }
3828}
3829
3830/* Need to wait a few seconds after link up to get diagnostic information from
3831 * the phy
3832 */
3833static void igb_update_phy_info(unsigned long data)
3834{
3835        struct igb_adapter *adapter = (struct igb_adapter *) data;
3836        igb_get_phy_info(&adapter->hw);
3837}
3838
3839/**
3840 *  igb_has_link - check shared code for link and determine up/down
3841 *  @adapter: pointer to driver private info
3842 **/
3843bool igb_has_link(struct igb_adapter *adapter)
3844{
3845        struct e1000_hw *hw = &adapter->hw;
3846        bool link_active = false;
3847        s32 ret_val = 0;
3848
3849        /* get_link_status is set on LSC (link status) interrupt or
3850         * rx sequence error interrupt.  get_link_status will stay
3851         * false until the e1000_check_for_link establishes link
3852         * for copper adapters ONLY
3853         */
3854        switch (hw->phy.media_type) {
3855        case e1000_media_type_copper:
3856                if (hw->mac.get_link_status) {
3857                        ret_val = hw->mac.ops.check_for_link(hw);
3858                        link_active = !hw->mac.get_link_status;
3859                } else {
3860                        link_active = true;
3861                }
3862                break;
3863        case e1000_media_type_internal_serdes:
3864                ret_val = hw->mac.ops.check_for_link(hw);
3865                link_active = hw->mac.serdes_has_link;
3866                break;
3867        default:
3868        case e1000_media_type_unknown:
3869                break;
3870        }
3871
3872        return link_active;
3873}
3874
3875static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3876{
3877        bool ret = false;
3878        u32 ctrl_ext, thstat;
3879
3880        /* check for thermal sensor event on i350 copper only */
3881        if (hw->mac.type == e1000_i350) {
3882                thstat = rd32(E1000_THSTAT);
3883                ctrl_ext = rd32(E1000_CTRL_EXT);
3884
3885                if ((hw->phy.media_type == e1000_media_type_copper) &&
3886                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3887                        ret = !!(thstat & event);
3888        }
3889
3890        return ret;
3891}
3892
3893/**
3894 *  igb_watchdog - Timer Call-back
3895 *  @data: pointer to adapter cast into an unsigned long
3896 **/
3897static void igb_watchdog(unsigned long data)
3898{
3899        struct igb_adapter *adapter = (struct igb_adapter *)data;
3900        /* Do the rest outside of interrupt context */
3901        schedule_work(&adapter->watchdog_task);
3902}
3903
3904static void igb_watchdog_task(struct work_struct *work)
3905{
3906        struct igb_adapter *adapter = container_of(work,
3907                                                   struct igb_adapter,
3908                                                   watchdog_task);
3909        struct e1000_hw *hw = &adapter->hw;
3910        struct e1000_phy_info *phy = &hw->phy;
3911        struct net_device *netdev = adapter->netdev;
3912        u32 link;
3913        int i;
3914
3915        link = igb_has_link(adapter);
3916        if (link) {
3917                /* Cancel scheduled suspend requests. */
3918                pm_runtime_resume(netdev->dev.parent);
3919
3920                if (!netif_carrier_ok(netdev)) {
3921                        u32 ctrl;
3922                        hw->mac.ops.get_speed_and_duplex(hw,
3923                                                         &adapter->link_speed,
3924                                                         &adapter->link_duplex);
3925
3926                        ctrl = rd32(E1000_CTRL);
3927                        /* Links status message must follow this format */
3928                        printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3929                               "Duplex, Flow Control: %s\n",
3930                               netdev->name,
3931                               adapter->link_speed,
3932                               adapter->link_duplex == FULL_DUPLEX ?
3933                               "Full" : "Half",
3934                               (ctrl & E1000_CTRL_TFCE) &&
3935                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3936                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
3937                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3938
3939                        /* check if SmartSpeed worked */
3940                        igb_check_downshift(hw);
3941                        if (phy->speed_downgraded)
3942                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3943
3944                        /* check for thermal sensor event */
3945                        if (igb_thermal_sensor_event(hw,
3946                            E1000_THSTAT_LINK_THROTTLE)) {
3947                                netdev_info(netdev, "The network adapter link "
3948                                            "speed was downshifted because it "
3949                                            "overheated\n");
3950                        }
3951
3952                        /* adjust timeout factor according to speed/duplex */
3953                        adapter->tx_timeout_factor = 1;
3954                        switch (adapter->link_speed) {
3955                        case SPEED_10:
3956                                adapter->tx_timeout_factor = 14;
3957                                break;
3958                        case SPEED_100:
3959                                /* maybe add some timeout factor ? */
3960                                break;
3961                        }
3962
3963                        netif_carrier_on(netdev);
3964
3965                        igb_ping_all_vfs(adapter);
3966                        igb_check_vf_rate_limit(adapter);
3967
3968                        /* link state has changed, schedule phy info update */
3969                        if (!test_bit(__IGB_DOWN, &adapter->state))
3970                                mod_timer(&adapter->phy_info_timer,
3971                                          round_jiffies(jiffies + 2 * HZ));
3972                }
3973        } else {
3974                if (netif_carrier_ok(netdev)) {
3975                        adapter->link_speed = 0;
3976                        adapter->link_duplex = 0;
3977
3978                        /* check for thermal sensor event */
3979                        if (igb_thermal_sensor_event(hw,
3980                            E1000_THSTAT_PWR_DOWN)) {
3981                                netdev_err(netdev, "The network adapter was "
3982                                           "stopped because it overheated\n");
3983                        }
3984
3985                        /* Links status message must follow this format */
3986                        printk(KERN_INFO "igb: %s NIC Link is Down\n",
3987                               netdev->name);
3988                        netif_carrier_off(netdev);
3989
3990                        igb_ping_all_vfs(adapter);
3991
3992                        /* link state has changed, schedule phy info update */
3993                        if (!test_bit(__IGB_DOWN, &adapter->state))
3994                                mod_timer(&adapter->phy_info_timer,
3995                                          round_jiffies(jiffies + 2 * HZ));
3996
3997                        pm_schedule_suspend(netdev->dev.parent,
3998                                            MSEC_PER_SEC * 5);
3999                }
4000        }
4001
4002        spin_lock(&adapter->stats64_lock);
4003        igb_update_stats(adapter, &adapter->stats64);
4004        spin_unlock(&adapter->stats64_lock);
4005
4006        for (i = 0; i < adapter->num_tx_queues; i++) {
4007                struct igb_ring *tx_ring = adapter->tx_ring[i];
4008                if (!netif_carrier_ok(netdev)) {
4009                        /* We've lost link, so the controller stops DMA,
4010                         * but we've got queued Tx work that's never going
4011                         * to get done, so reset controller to flush Tx.
4012                         * (Do the reset outside of interrupt context).
4013                         */
4014                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4015                                adapter->tx_timeout_count++;
4016                                schedule_work(&adapter->reset_task);
4017                                /* return immediately since reset is imminent */
4018                                return;
4019                        }
4020                }
4021
4022                /* Force detection of hung controller every watchdog period */
4023                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4024        }
4025
4026        /* Cause software interrupt to ensure Rx ring is cleaned */
4027        if (adapter->msix_entries) {
4028                u32 eics = 0;
4029                for (i = 0; i < adapter->num_q_vectors; i++)
4030                        eics |= adapter->q_vector[i]->eims_value;
4031                wr32(E1000_EICS, eics);
4032        } else {
4033                wr32(E1000_ICS, E1000_ICS_RXDMT0);
4034        }
4035
4036        igb_spoof_check(adapter);
4037        igb_ptp_rx_hang(adapter);
4038
4039        /* Reset the timer */
4040        if (!test_bit(__IGB_DOWN, &adapter->state))
4041                mod_timer(&adapter->watchdog_timer,
4042                          round_jiffies(jiffies + 2 * HZ));
4043}
4044
4045enum latency_range {
4046        lowest_latency = 0,
4047        low_latency = 1,
4048        bulk_latency = 2,
4049        latency_invalid = 255
4050};
4051
4052/**
4053 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4054 *  @q_vector: pointer to q_vector
4055 *
4056 *  Stores a new ITR value based on strictly on packet size.  This
4057 *  algorithm is less sophisticated than that used in igb_update_itr,
4058 *  due to the difficulty of synchronizing statistics across multiple
4059 *  receive rings.  The divisors and thresholds used by this function
4060 *  were determined based on theoretical maximum wire speed and testing
4061 *  data, in order to minimize response time while increasing bulk
4062 *  throughput.
4063 *  This functionality is controlled by the InterruptThrottleRate module
4064 *  parameter (see igb_param.c)
4065 *  NOTE:  This function is called only when operating in a multiqueue
4066 *         receive environment.
4067 **/
4068static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4069{
4070        int new_val = q_vector->itr_val;
4071        int avg_wire_size = 0;
4072        struct igb_adapter *adapter = q_vector->adapter;
4073        unsigned int packets;
4074
4075        /* For non-gigabit speeds, just fix the interrupt rate at 4000
4076         * ints/sec - ITR timer value of 120 ticks.
4077         */
4078        if (adapter->link_speed != SPEED_1000) {
4079                new_val = IGB_4K_ITR;
4080                goto set_itr_val;
4081        }
4082
4083        packets = q_vector->rx.total_packets;
4084        if (packets)
4085                avg_wire_size = q_vector->rx.total_bytes / packets;
4086
4087        packets = q_vector->tx.total_packets;
4088        if (packets)
4089                avg_wire_size = max_t(u32, avg_wire_size,
4090                                      q_vector->tx.total_bytes / packets);
4091
4092        /* if avg_wire_size isn't set no work was done */
4093        if (!avg_wire_size)
4094                goto clear_counts;
4095
4096        /* Add 24 bytes to size to account for CRC, preamble, and gap */
4097        avg_wire_size += 24;
4098
4099        /* Don't starve jumbo frames */
4100        avg_wire_size = min(avg_wire_size, 3000);
4101
4102        /* Give a little boost to mid-size frames */
4103        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4104                new_val = avg_wire_size / 3;
4105        else
4106                new_val = avg_wire_size / 2;
4107
4108        /* conservative mode (itr 3) eliminates the lowest_latency setting */
4109        if (new_val < IGB_20K_ITR &&
4110            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4111             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4112                new_val = IGB_20K_ITR;
4113
4114set_itr_val:
4115        if (new_val != q_vector->itr_val) {
4116                q_vector->itr_val = new_val;
4117                q_vector->set_itr = 1;
4118        }
4119clear_counts:
4120        q_vector->rx.total_bytes = 0;
4121        q_vector->rx.total_packets = 0;
4122        q_vector->tx.total_bytes = 0;
4123        q_vector->tx.total_packets = 0;
4124}
4125
4126/**
4127 *  igb_update_itr - update the dynamic ITR value based on statistics
4128 *  @q_vector: pointer to q_vector
4129 *  @ring_container: ring info to update the itr for
4130 *
4131 *  Stores a new ITR value based on packets and byte
4132 *  counts during the last interrupt.  The advantage of per interrupt
4133 *  computation is faster updates and more accurate ITR for the current
4134 *  traffic pattern.  Constants in this function were computed
4135 *  based on theoretical maximum wire speed and thresholds were set based
4136 *  on testing data as well as attempting to minimize response time
4137 *  while increasing bulk throughput.
4138 *  this functionality is controlled by the InterruptThrottleRate module
4139 *  parameter (see igb_param.c)
4140 *  NOTE:  These calculations are only valid when operating in a single-
4141 *         queue environment.
4142 **/
4143static void igb_update_itr(struct igb_q_vector *q_vector,
4144                           struct igb_ring_container *ring_container)
4145{
4146        unsigned int packets = ring_container->total_packets;
4147        unsigned int bytes = ring_container->total_bytes;
4148        u8 itrval = ring_container->itr;
4149
4150        /* no packets, exit with status unchanged */
4151        if (packets == 0)
4152                return;
4153
4154        switch (itrval) {
4155        case lowest_latency:
4156                /* handle TSO and jumbo frames */
4157                if (bytes/packets > 8000)
4158                        itrval = bulk_latency;
4159                else if ((packets < 5) && (bytes > 512))
4160                        itrval = low_latency;
4161                break;
4162        case low_latency:  /* 50 usec aka 20000 ints/s */
4163                if (bytes > 10000) {
4164                        /* this if handles the TSO accounting */
4165                        if (bytes/packets > 8000) {
4166                                itrval = bulk_latency;
4167                        } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4168                                itrval = bulk_latency;
4169                        } else if ((packets > 35)) {
4170                                itrval = lowest_latency;
4171                        }
4172                } else if (bytes/packets > 2000) {
4173                        itrval = bulk_latency;
4174                } else if (packets <= 2 && bytes < 512) {
4175                        itrval = lowest_latency;
4176                }
4177                break;
4178        case bulk_latency: /* 250 usec aka 4000 ints/s */
4179                if (bytes > 25000) {
4180                        if (packets > 35)
4181                                itrval = low_latency;
4182                } else if (bytes < 1500) {
4183                        itrval = low_latency;
4184                }
4185                break;
4186        }
4187
4188        /* clear work counters since we have the values we need */
4189        ring_container->total_bytes = 0;
4190        ring_container->total_packets = 0;
4191
4192        /* write updated itr to ring container */
4193        ring_container->itr = itrval;
4194}
4195
4196static void igb_set_itr(struct igb_q_vector *q_vector)
4197{
4198        struct igb_adapter *adapter = q_vector->adapter;
4199        u32 new_itr = q_vector->itr_val;
4200        u8 current_itr = 0;
4201
4202        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4203        if (adapter->link_speed != SPEED_1000) {
4204                current_itr = 0;
4205                new_itr = IGB_4K_ITR;
4206                goto set_itr_now;
4207        }
4208
4209        igb_update_itr(q_vector, &q_vector->tx);
4210        igb_update_itr(q_vector, &q_vector->rx);
4211
4212        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4213
4214        /* conservative mode (itr 3) eliminates the lowest_latency setting */
4215        if (current_itr == lowest_latency &&
4216            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4217             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4218                current_itr = low_latency;
4219
4220        switch (current_itr) {
4221        /* counts and packets in update_itr are dependent on these numbers */
4222        case lowest_latency:
4223                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4224                break;
4225        case low_latency:
4226                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4227                break;
4228        case bulk_latency:
4229                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4230                break;
4231        default:
4232                break;
4233        }
4234
4235set_itr_now:
4236        if (new_itr != q_vector->itr_val) {
4237                /* this attempts to bias the interrupt rate towards Bulk
4238                 * by adding intermediate steps when interrupt rate is
4239                 * increasing
4240                 */
4241                new_itr = new_itr > q_vector->itr_val ?
4242                          max((new_itr * q_vector->itr_val) /
4243                          (new_itr + (q_vector->itr_val >> 2)),
4244                          new_itr) : new_itr;
4245                /* Don't write the value here; it resets the adapter's
4246                 * internal timer, and causes us to delay far longer than
4247                 * we should between interrupts.  Instead, we write the ITR
4248                 * value at the beginning of the next interrupt so the timing
4249                 * ends up being correct.
4250                 */
4251                q_vector->itr_val = new_itr;
4252                q_vector->set_itr = 1;
4253        }
4254}
4255
4256static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4257                            u32 type_tucmd, u32 mss_l4len_idx)
4258{
4259        struct e1000_adv_tx_context_desc *context_desc;
4260        u16 i = tx_ring->next_to_use;
4261
4262        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4263
4264        i++;
4265        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4266
4267        /* set bits to identify this as an advanced context descriptor */
4268        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4269
4270        /* For 82575, context index must be unique per ring. */
4271        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4272                mss_l4len_idx |= tx_ring->reg_idx << 4;
4273
4274        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4275        context_desc->seqnum_seed       = 0;
4276        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4277        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4278}
4279
4280static int igb_tso(struct igb_ring *tx_ring,
4281                   struct igb_tx_buffer *first,
4282                   u8 *hdr_len)
4283{
4284        struct sk_buff *skb = first->skb;
4285        u32 vlan_macip_lens, type_tucmd;
4286        u32 mss_l4len_idx, l4len;
4287
4288        if (skb->ip_summed != CHECKSUM_PARTIAL)
4289                return 0;
4290
4291        if (!skb_is_gso(skb))
4292                return 0;
4293
4294        if (skb_header_cloned(skb)) {
4295                int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4296                if (err)
4297                        return err;
4298        }
4299
4300        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4301        type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4302
4303        if (first->protocol == __constant_htons(ETH_P_IP)) {
4304                struct iphdr *iph = ip_hdr(skb);
4305                iph->tot_len = 0;
4306                iph->check = 0;
4307                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4308                                                         iph->daddr, 0,
4309                                                         IPPROTO_TCP,
4310                                                         0);
4311                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4312                first->tx_flags |= IGB_TX_FLAGS_TSO |
4313                                   IGB_TX_FLAGS_CSUM |
4314                                   IGB_TX_FLAGS_IPV4;
4315        } else if (skb_is_gso_v6(skb)) {
4316                ipv6_hdr(skb)->payload_len = 0;
4317                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4318                                                       &ipv6_hdr(skb)->daddr,
4319                                                       0, IPPROTO_TCP, 0);
4320                first->tx_flags |= IGB_TX_FLAGS_TSO |
4321                                   IGB_TX_FLAGS_CSUM;
4322        }
4323
4324        /* compute header lengths */
4325        l4len = tcp_hdrlen(skb);
4326        *hdr_len = skb_transport_offset(skb) + l4len;
4327
4328        /* update gso size and bytecount with header size */
4329        first->gso_segs = skb_shinfo(skb)->gso_segs;
4330        first->bytecount += (first->gso_segs - 1) * *hdr_len;
4331
4332        /* MSS L4LEN IDX */
4333        mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4334        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4335
4336        /* VLAN MACLEN IPLEN */
4337        vlan_macip_lens = skb_network_header_len(skb);
4338        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4339        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4340
4341        igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4342
4343        return 1;
4344}
4345
4346static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4347{
4348        struct sk_buff *skb = first->skb;
4349        u32 vlan_macip_lens = 0;
4350        u32 mss_l4len_idx = 0;
4351        u32 type_tucmd = 0;
4352
4353        if (skb->ip_summed != CHECKSUM_PARTIAL) {
4354                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4355                        return;
4356        } else {
4357                u8 l4_hdr = 0;
4358                switch (first->protocol) {
4359                case __constant_htons(ETH_P_IP):
4360                        vlan_macip_lens |= skb_network_header_len(skb);
4361                        type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4362                        l4_hdr = ip_hdr(skb)->protocol;
4363                        break;
4364                case __constant_htons(ETH_P_IPV6):
4365                        vlan_macip_lens |= skb_network_header_len(skb);
4366                        l4_hdr = ipv6_hdr(skb)->nexthdr;
4367                        break;
4368                default:
4369                        if (unlikely(net_ratelimit())) {
4370                                dev_warn(tx_ring->dev,
4371                                         "partial checksum but proto=%x!\n",
4372                                         first->protocol);
4373                        }
4374                        break;
4375                }
4376
4377                switch (l4_hdr) {
4378                case IPPROTO_TCP:
4379                        type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4380                        mss_l4len_idx = tcp_hdrlen(skb) <<
4381                                        E1000_ADVTXD_L4LEN_SHIFT;
4382                        break;
4383                case IPPROTO_SCTP:
4384                        type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4385                        mss_l4len_idx = sizeof(struct sctphdr) <<
4386                                        E1000_ADVTXD_L4LEN_SHIFT;
4387                        break;
4388                case IPPROTO_UDP:
4389                        mss_l4len_idx = sizeof(struct udphdr) <<
4390                                        E1000_ADVTXD_L4LEN_SHIFT;
4391                        break;
4392                default:
4393                        if (unlikely(net_ratelimit())) {
4394                                dev_warn(tx_ring->dev,
4395                                         "partial checksum but l4 proto=%x!\n",
4396                                         l4_hdr);
4397                        }
4398                        break;
4399                }
4400
4401                /* update TX checksum flag */
4402                first->tx_flags |= IGB_TX_FLAGS_CSUM;
4403        }
4404
4405        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4406        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4407
4408        igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4409}
4410
4411#define IGB_SET_FLAG(_input, _flag, _result) \
4412        ((_flag <= _result) ? \
4413         ((u32)(_input & _flag) * (_result / _flag)) : \
4414         ((u32)(_input & _flag) / (_flag / _result)))
4415
4416static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4417{
4418        /* set type for advanced descriptor with frame checksum insertion */
4419        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4420                       E1000_ADVTXD_DCMD_DEXT |
4421                       E1000_ADVTXD_DCMD_IFCS;
4422
4423        /* set HW vlan bit if vlan is present */
4424        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4425                                 (E1000_ADVTXD_DCMD_VLE));
4426
4427        /* set segmentation bits for TSO */
4428        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4429                                 (E1000_ADVTXD_DCMD_TSE));
4430
4431        /* set timestamp bit if present */
4432        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4433                                 (E1000_ADVTXD_MAC_TSTAMP));
4434
4435        /* insert frame checksum */
4436        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4437
4438        return cmd_type;
4439}
4440
4441static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4442                                 union e1000_adv_tx_desc *tx_desc,
4443                                 u32 tx_flags, unsigned int paylen)
4444{
4445        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4446
4447        /* 82575 requires a unique index per ring */
4448        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4449                olinfo_status |= tx_ring->reg_idx << 4;
4450
4451        /* insert L4 checksum */
4452        olinfo_status |= IGB_SET_FLAG(tx_flags,
4453                                      IGB_TX_FLAGS_CSUM,
4454                                      (E1000_TXD_POPTS_TXSM << 8));
4455
4456        /* insert IPv4 checksum */
4457        olinfo_status |= IGB_SET_FLAG(tx_flags,
4458                                      IGB_TX_FLAGS_IPV4,
4459                                      (E1000_TXD_POPTS_IXSM << 8));
4460
4461        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4462}
4463
4464static void igb_tx_map(struct igb_ring *tx_ring,
4465                       struct igb_tx_buffer *first,
4466                       const u8 hdr_len)
4467{
4468        struct sk_buff *skb = first->skb;
4469        struct igb_tx_buffer *tx_buffer;
4470        union e1000_adv_tx_desc *tx_desc;
4471        struct skb_frag_struct *frag;
4472        dma_addr_t dma;
4473        unsigned int data_len, size;
4474        u32 tx_flags = first->tx_flags;
4475        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4476        u16 i = tx_ring->next_to_use;
4477
4478        tx_desc = IGB_TX_DESC(tx_ring, i);
4479
4480        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4481
4482        size = skb_headlen(skb);
4483        data_len = skb->data_len;
4484
4485        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4486
4487        tx_buffer = first;
4488
4489        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4490                if (dma_mapping_error(tx_ring->dev, dma))
4491                        goto dma_error;
4492
4493                /* record length, and DMA address */
4494                dma_unmap_len_set(tx_buffer, len, size);
4495                dma_unmap_addr_set(tx_buffer, dma, dma);
4496
4497                tx_desc->read.buffer_addr = cpu_to_le64(dma);
4498
4499                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4500                        tx_desc->read.cmd_type_len =
4501                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4502
4503                        i++;
4504                        tx_desc++;
4505                        if (i == tx_ring->count) {
4506                                tx_desc = IGB_TX_DESC(tx_ring, 0);
4507                                i = 0;
4508                        }
4509                        tx_desc->read.olinfo_status = 0;
4510
4511                        dma += IGB_MAX_DATA_PER_TXD;
4512                        size -= IGB_MAX_DATA_PER_TXD;
4513
4514                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
4515                }
4516
4517                if (likely(!data_len))
4518                        break;
4519
4520                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4521
4522                i++;
4523                tx_desc++;
4524                if (i == tx_ring->count) {
4525                        tx_desc = IGB_TX_DESC(tx_ring, 0);
4526                        i = 0;
4527                }
4528                tx_desc->read.olinfo_status = 0;
4529
4530                size = skb_frag_size(frag);
4531                data_len -= size;
4532
4533                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4534                                       size, DMA_TO_DEVICE);
4535
4536                tx_buffer = &tx_ring->tx_buffer_info[i];
4537        }
4538
4539        /* write last descriptor with RS and EOP bits */
4540        cmd_type |= size | IGB_TXD_DCMD;
4541        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4542
4543        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4544
4545        /* set the timestamp */
4546        first->time_stamp = jiffies;
4547
4548        /* Force memory writes to complete before letting h/w know there
4549         * are new descriptors to fetch.  (Only applicable for weak-ordered
4550         * memory model archs, such as IA-64).
4551         *
4552         * We also need this memory barrier to make certain all of the
4553         * status bits have been updated before next_to_watch is written.
4554         */
4555        wmb();
4556
4557        /* set next_to_watch value indicating a packet is present */
4558        first->next_to_watch = tx_desc;
4559
4560        i++;
4561        if (i == tx_ring->count)
4562                i = 0;
4563
4564        tx_ring->next_to_use = i;
4565
4566        writel(i, tx_ring->tail);
4567
4568        /* we need this if more than one processor can write to our tail
4569         * at a time, it synchronizes IO on IA64/Altix systems
4570         */
4571        mmiowb();
4572
4573        return;
4574
4575dma_error:
4576        dev_err(tx_ring->dev, "TX DMA map failed\n");
4577
4578        /* clear dma mappings for failed tx_buffer_info map */
4579        for (;;) {
4580                tx_buffer = &tx_ring->tx_buffer_info[i];
4581                igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4582                if (tx_buffer == first)
4583                        break;
4584                if (i == 0)
4585                        i = tx_ring->count;
4586                i--;
4587        }
4588
4589        tx_ring->next_to_use = i;
4590}
4591
4592static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4593{
4594        struct net_device *netdev = tx_ring->netdev;
4595
4596        netif_stop_subqueue(netdev, tx_ring->queue_index);
4597
4598        /* Herbert's original patch had:
4599         *  smp_mb__after_netif_stop_queue();
4600         * but since that doesn't exist yet, just open code it.
4601         */
4602        smp_mb();
4603
4604        /* We need to check again in a case another CPU has just
4605         * made room available.
4606         */
4607        if (igb_desc_unused(tx_ring) < size)
4608                return -EBUSY;
4609
4610        /* A reprieve! */
4611        netif_wake_subqueue(netdev, tx_ring->queue_index);
4612
4613        u64_stats_update_begin(&tx_ring->tx_syncp2);
4614        tx_ring->tx_stats.restart_queue2++;
4615        u64_stats_update_end(&tx_ring->tx_syncp2);
4616
4617        return 0;
4618}
4619
4620static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4621{
4622        if (igb_desc_unused(tx_ring) >= size)
4623                return 0;
4624        return __igb_maybe_stop_tx(tx_ring, size);
4625}
4626
4627netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4628                                struct igb_ring *tx_ring)
4629{
4630        struct igb_tx_buffer *first;
4631        int tso;
4632        u32 tx_flags = 0;
4633        u16 count = TXD_USE_COUNT(skb_headlen(skb));
4634        __be16 protocol = vlan_get_protocol(skb);
4635        u8 hdr_len = 0;
4636
4637        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4638         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4639         *       + 2 desc gap to keep tail from touching head,
4640         *       + 1 desc for context descriptor,
4641         * otherwise try next time
4642         */
4643        if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4644                unsigned short f;
4645                for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4646                        count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4647        } else {
4648                count += skb_shinfo(skb)->nr_frags;
4649        }
4650
4651        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4652                /* this is a hard error */
4653                return NETDEV_TX_BUSY;
4654        }
4655
4656        /* record the location of the first descriptor for this packet */
4657        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4658        first->skb = skb;
4659        first->bytecount = skb->len;
4660        first->gso_segs = 1;
4661
4662        skb_tx_timestamp(skb);
4663
4664        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4665                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4666
4667                if (!(adapter->ptp_tx_skb)) {
4668                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4669                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
4670
4671                        adapter->ptp_tx_skb = skb_get(skb);
4672                        adapter->ptp_tx_start = jiffies;
4673                        if (adapter->hw.mac.type == e1000_82576)
4674                                schedule_work(&adapter->ptp_tx_work);
4675                }
4676        }
4677
4678        if (vlan_tx_tag_present(skb)) {
4679                tx_flags |= IGB_TX_FLAGS_VLAN;
4680                tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4681        }
4682
4683        /* record initial flags and protocol */
4684        first->tx_flags = tx_flags;
4685        first->protocol = protocol;
4686
4687        tso = igb_tso(tx_ring, first, &hdr_len);
4688        if (tso < 0)
4689                goto out_drop;
4690        else if (!tso)
4691                igb_tx_csum(tx_ring, first);
4692
4693        igb_tx_map(tx_ring, first, hdr_len);
4694
4695        /* Make sure there is space in the ring for the next send. */
4696        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4697
4698        return NETDEV_TX_OK;
4699
4700out_drop:
4701        igb_unmap_and_free_tx_resource(tx_ring, first);
4702
4703        return NETDEV_TX_OK;
4704}
4705
4706static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4707                                                    struct sk_buff *skb)
4708{
4709        unsigned int r_idx = skb->queue_mapping;
4710
4711        if (r_idx >= adapter->num_tx_queues)
4712                r_idx = r_idx % adapter->num_tx_queues;
4713
4714        return adapter->tx_ring[r_idx];
4715}
4716
4717static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4718                                  struct net_device *netdev)
4719{
4720        struct igb_adapter *adapter = netdev_priv(netdev);
4721
4722        if (test_bit(__IGB_DOWN, &adapter->state)) {
4723                dev_kfree_skb_any(skb);
4724                return NETDEV_TX_OK;
4725        }
4726
4727        if (skb->len <= 0) {
4728                dev_kfree_skb_any(skb);
4729                return NETDEV_TX_OK;
4730        }
4731
4732        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4733         * in order to meet this minimum size requirement.
4734         */
4735        if (unlikely(skb->len < 17)) {
4736                if (skb_pad(skb, 17 - skb->len))
4737                        return NETDEV_TX_OK;
4738                skb->len = 17;
4739                skb_set_tail_pointer(skb, 17);
4740        }
4741
4742        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4743}
4744
4745/**
4746 *  igb_tx_timeout - Respond to a Tx Hang
4747 *  @netdev: network interface device structure
4748 **/
4749static void igb_tx_timeout(struct net_device *netdev)
4750{
4751        struct igb_adapter *adapter = netdev_priv(netdev);
4752        struct e1000_hw *hw = &adapter->hw;
4753
4754        /* Do the reset outside of interrupt context */
4755        adapter->tx_timeout_count++;
4756
4757        if (hw->mac.type >= e1000_82580)
4758                hw->dev_spec._82575.global_device_reset = true;
4759
4760        schedule_work(&adapter->reset_task);
4761        wr32(E1000_EICS,
4762             (adapter->eims_enable_mask & ~adapter->eims_other));
4763}
4764
4765static void igb_reset_task(struct work_struct *work)
4766{
4767        struct igb_adapter *adapter;
4768        adapter = container_of(work, struct igb_adapter, reset_task);
4769
4770        igb_dump(adapter);
4771        netdev_err(adapter->netdev, "Reset adapter\n");
4772        igb_reinit_locked(adapter);
4773}
4774
4775/**
4776 *  igb_get_stats64 - Get System Network Statistics
4777 *  @netdev: network interface device structure
4778 *  @stats: rtnl_link_stats64 pointer
4779 **/
4780static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4781                                                struct rtnl_link_stats64 *stats)
4782{
4783        struct igb_adapter *adapter = netdev_priv(netdev);
4784
4785        spin_lock(&adapter->stats64_lock);
4786        igb_update_stats(adapter, &adapter->stats64);
4787        memcpy(stats, &adapter->stats64, sizeof(*stats));
4788        spin_unlock(&adapter->stats64_lock);
4789
4790        return stats;
4791}
4792
4793/**
4794 *  igb_change_mtu - Change the Maximum Transfer Unit
4795 *  @netdev: network interface device structure
4796 *  @new_mtu: new value for maximum frame size
4797 *
4798 *  Returns 0 on success, negative on failure
4799 **/
4800static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4801{
4802        struct igb_adapter *adapter = netdev_priv(netdev);
4803        struct pci_dev *pdev = adapter->pdev;
4804        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4805
4806        if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4807                dev_err(&pdev->dev, "Invalid MTU setting\n");
4808                return -EINVAL;
4809        }
4810
4811#define MAX_STD_JUMBO_FRAME_SIZE 9238
4812        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4813                dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4814                return -EINVAL;
4815        }
4816
4817        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4818                msleep(1);
4819
4820        /* igb_down has a dependency on max_frame_size */
4821        adapter->max_frame_size = max_frame;
4822
4823        if (netif_running(netdev))
4824                igb_down(adapter);
4825
4826        dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4827                 netdev->mtu, new_mtu);
4828        netdev->mtu = new_mtu;
4829
4830        if (netif_running(netdev))
4831                igb_up(adapter);
4832        else
4833                igb_reset(adapter);
4834
4835        clear_bit(__IGB_RESETTING, &adapter->state);
4836
4837        return 0;
4838}
4839
4840/**
4841 *  igb_update_stats - Update the board statistics counters
4842 *  @adapter: board private structure
4843 **/
4844void igb_update_stats(struct igb_adapter *adapter,
4845                      struct rtnl_link_stats64 *net_stats)
4846{
4847        struct e1000_hw *hw = &adapter->hw;
4848        struct pci_dev *pdev = adapter->pdev;
4849        u32 reg, mpc;
4850        u16 phy_tmp;
4851        int i;
4852        u64 bytes, packets;
4853        unsigned int start;
4854        u64 _bytes, _packets;
4855
4856#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4857
4858        /* Prevent stats update while adapter is being reset, or if the pci
4859         * connection is down.
4860         */
4861        if (adapter->link_speed == 0)
4862                return;
4863        if (pci_channel_offline(pdev))
4864                return;
4865
4866        bytes = 0;
4867        packets = 0;
4868        for (i = 0; i < adapter->num_rx_queues; i++) {
4869                u32 rqdpc = rd32(E1000_RQDPC(i));
4870                struct igb_ring *ring = adapter->rx_ring[i];
4871
4872                if (rqdpc) {
4873                        ring->rx_stats.drops += rqdpc;
4874                        net_stats->rx_fifo_errors += rqdpc;
4875                }
4876
4877                do {
4878                        start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4879                        _bytes = ring->rx_stats.bytes;
4880                        _packets = ring->rx_stats.packets;
4881                } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4882                bytes += _bytes;
4883                packets += _packets;
4884        }
4885
4886        net_stats->rx_bytes = bytes;
4887        net_stats->rx_packets = packets;
4888
4889        bytes = 0;
4890        packets = 0;
4891        for (i = 0; i < adapter->num_tx_queues; i++) {
4892                struct igb_ring *ring = adapter->tx_ring[i];
4893                do {
4894                        start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4895                        _bytes = ring->tx_stats.bytes;
4896                        _packets = ring->tx_stats.packets;
4897                } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4898                bytes += _bytes;
4899                packets += _packets;
4900        }
4901        net_stats->tx_bytes = bytes;
4902        net_stats->tx_packets = packets;
4903
4904        /* read stats registers */
4905        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4906        adapter->stats.gprc += rd32(E1000_GPRC);
4907        adapter->stats.gorc += rd32(E1000_GORCL);
4908        rd32(E1000_GORCH); /* clear GORCL */
4909        adapter->stats.bprc += rd32(E1000_BPRC);
4910        adapter->stats.mprc += rd32(E1000_MPRC);
4911        adapter->stats.roc += rd32(E1000_ROC);
4912
4913        adapter->stats.prc64 += rd32(E1000_PRC64);
4914        adapter->stats.prc127 += rd32(E1000_PRC127);
4915        adapter->stats.prc255 += rd32(E1000_PRC255);
4916        adapter->stats.prc511 += rd32(E1000_PRC511);
4917        adapter->stats.prc1023 += rd32(E1000_PRC1023);
4918        adapter->stats.prc1522 += rd32(E1000_PRC1522);
4919        adapter->stats.symerrs += rd32(E1000_SYMERRS);
4920        adapter->stats.sec += rd32(E1000_SEC);
4921
4922        mpc = rd32(E1000_MPC);
4923        adapter->stats.mpc += mpc;
4924        net_stats->rx_fifo_errors += mpc;
4925        adapter->stats.scc += rd32(E1000_SCC);
4926        adapter->stats.ecol += rd32(E1000_ECOL);
4927        adapter->stats.mcc += rd32(E1000_MCC);
4928        adapter->stats.latecol += rd32(E1000_LATECOL);
4929        adapter->stats.dc += rd32(E1000_DC);
4930        adapter->stats.rlec += rd32(E1000_RLEC);
4931        adapter->stats.xonrxc += rd32(E1000_XONRXC);
4932        adapter->stats.xontxc += rd32(E1000_XONTXC);
4933        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4934        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4935        adapter->stats.fcruc += rd32(E1000_FCRUC);
4936        adapter->stats.gptc += rd32(E1000_GPTC);
4937        adapter->stats.gotc += rd32(E1000_GOTCL);
4938        rd32(E1000_GOTCH); /* clear GOTCL */
4939        adapter->stats.rnbc += rd32(E1000_RNBC);
4940        adapter->stats.ruc += rd32(E1000_RUC);
4941        adapter->stats.rfc += rd32(E1000_RFC);
4942        adapter->stats.rjc += rd32(E1000_RJC);
4943        adapter->stats.tor += rd32(E1000_TORH);
4944        adapter->stats.tot += rd32(E1000_TOTH);
4945        adapter->stats.tpr += rd32(E1000_TPR);
4946
4947        adapter->stats.ptc64 += rd32(E1000_PTC64);
4948        adapter->stats.ptc127 += rd32(E1000_PTC127);
4949        adapter->stats.ptc255 += rd32(E1000_PTC255);
4950        adapter->stats.ptc511 += rd32(E1000_PTC511);
4951        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4952        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4953
4954        adapter->stats.mptc += rd32(E1000_MPTC);
4955        adapter->stats.bptc += rd32(E1000_BPTC);
4956
4957        adapter->stats.tpt += rd32(E1000_TPT);
4958        adapter->stats.colc += rd32(E1000_COLC);
4959
4960        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4961        /* read internal phy specific stats */
4962        reg = rd32(E1000_CTRL_EXT);
4963        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4964                adapter->stats.rxerrc += rd32(E1000_RXERRC);
4965
4966                /* this stat has invalid values on i210/i211 */
4967                if ((hw->mac.type != e1000_i210) &&
4968                    (hw->mac.type != e1000_i211))
4969                        adapter->stats.tncrs += rd32(E1000_TNCRS);
4970        }
4971
4972        adapter->stats.tsctc += rd32(E1000_TSCTC);
4973        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4974
4975        adapter->stats.iac += rd32(E1000_IAC);
4976        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4977        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4978        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4979        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4980        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4981        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4982        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4983        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4984
4985        /* Fill out the OS statistics structure */
4986        net_stats->multicast = adapter->stats.mprc;
4987        net_stats->collisions = adapter->stats.colc;
4988
4989        /* Rx Errors */
4990
4991        /* RLEC on some newer hardware can be incorrect so build
4992         * our own version based on RUC and ROC
4993         */
4994        net_stats->rx_errors = adapter->stats.rxerrc +
4995                adapter->stats.crcerrs + adapter->stats.algnerrc +
4996                adapter->stats.ruc + adapter->stats.roc +
4997                adapter->stats.cexterr;
4998        net_stats->rx_length_errors = adapter->stats.ruc +
4999                                      adapter->stats.roc;
5000        net_stats->rx_crc_errors = adapter->stats.crcerrs;
5001        net_stats->rx_frame_errors = adapter->stats.algnerrc;
5002        net_stats->rx_missed_errors = adapter->stats.mpc;
5003
5004        /* Tx Errors */
5005        net_stats->tx_errors = adapter->stats.ecol +
5006                               adapter->stats.latecol;
5007        net_stats->tx_aborted_errors = adapter->stats.ecol;
5008        net_stats->tx_window_errors = adapter->stats.latecol;
5009        net_stats->tx_carrier_errors = adapter->stats.tncrs;
5010
5011        /* Tx Dropped needs to be maintained elsewhere */
5012
5013        /* Phy Stats */
5014        if (hw->phy.media_type == e1000_media_type_copper) {
5015                if ((adapter->link_speed == SPEED_1000) &&
5016                   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5017                        phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5018                        adapter->phy_stats.idle_errors += phy_tmp;
5019                }
5020        }
5021
5022        /* Management Stats */
5023        adapter->stats.mgptc += rd32(E1000_MGTPTC);
5024        adapter->stats.mgprc += rd32(E1000_MGTPRC);
5025        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5026
5027        /* OS2BMC Stats */
5028        reg = rd32(E1000_MANC);
5029        if (reg & E1000_MANC_EN_BMC2OS) {
5030                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5031                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5032                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5033                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5034        }
5035}
5036
5037static irqreturn_t igb_msix_other(int irq, void *data)
5038{
5039        struct igb_adapter *adapter = data;
5040        struct e1000_hw *hw = &adapter->hw;
5041        u32 icr = rd32(E1000_ICR);
5042        /* reading ICR causes bit 31 of EICR to be cleared */
5043
5044        if (icr & E1000_ICR_DRSTA)
5045                schedule_work(&adapter->reset_task);
5046
5047        if (icr & E1000_ICR_DOUTSYNC) {
5048                /* HW is reporting DMA is out of sync */
5049                adapter->stats.doosync++;
5050                /* The DMA Out of Sync is also indication of a spoof event
5051                 * in IOV mode. Check the Wrong VM Behavior register to
5052                 * see if it is really a spoof event.
5053                 */
5054                igb_check_wvbr(adapter);
5055        }
5056
5057        /* Check for a mailbox event */
5058        if (icr & E1000_ICR_VMMB)
5059                igb_msg_task(adapter);
5060
5061        if (icr & E1000_ICR_LSC) {
5062                hw->mac.get_link_status = 1;
5063                /* guard against interrupt when we're going down */
5064                if (!test_bit(__IGB_DOWN, &adapter->state))
5065                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
5066        }
5067
5068        if (icr & E1000_ICR_TS) {
5069                u32 tsicr = rd32(E1000_TSICR);
5070
5071                if (tsicr & E1000_TSICR_TXTS) {
5072                        /* acknowledge the interrupt */
5073                        wr32(E1000_TSICR, E1000_TSICR_TXTS);
5074                        /* retrieve hardware timestamp */
5075                        schedule_work(&adapter->ptp_tx_work);
5076                }
5077        }
5078
5079        wr32(E1000_EIMS, adapter->eims_other);
5080
5081        return IRQ_HANDLED;
5082}
5083
5084static void igb_write_itr(struct igb_q_vector *q_vector)
5085{
5086        struct igb_adapter *adapter = q_vector->adapter;
5087        u32 itr_val = q_vector->itr_val & 0x7FFC;
5088
5089        if (!q_vector->set_itr)
5090                return;
5091
5092        if (!itr_val)
5093                itr_val = 0x4;
5094
5095        if (adapter->hw.mac.type == e1000_82575)
5096                itr_val |= itr_val << 16;
5097        else
5098                itr_val |= E1000_EITR_CNT_IGNR;
5099
5100        writel(itr_val, q_vector->itr_register);
5101        q_vector->set_itr = 0;
5102}
5103
5104static irqreturn_t igb_msix_ring(int irq, void *data)
5105{
5106        struct igb_q_vector *q_vector = data;
5107
5108        /* Write the ITR value calculated from the previous interrupt. */
5109        igb_write_itr(q_vector);
5110
5111        napi_schedule(&q_vector->napi);
5112
5113        return IRQ_HANDLED;
5114}
5115
5116#ifdef CONFIG_IGB_DCA
5117static void igb_update_tx_dca(struct igb_adapter *adapter,
5118                              struct igb_ring *tx_ring,
5119                              int cpu)
5120{
5121        struct e1000_hw *hw = &adapter->hw;
5122        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5123
5124        if (hw->mac.type != e1000_82575)
5125                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5126
5127        /* We can enable relaxed ordering for reads, but not writes when
5128         * DCA is enabled.  This is due to a known issue in some chipsets
5129         * which will cause the DCA tag to be cleared.
5130         */
5131        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5132                  E1000_DCA_TXCTRL_DATA_RRO_EN |
5133                  E1000_DCA_TXCTRL_DESC_DCA_EN;
5134
5135        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5136}
5137
5138static void igb_update_rx_dca(struct igb_adapter *adapter,
5139                              struct igb_ring *rx_ring,
5140                              int cpu)
5141{
5142        struct e1000_hw *hw = &adapter->hw;
5143        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5144
5145        if (hw->mac.type != e1000_82575)
5146                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5147
5148        /* We can enable relaxed ordering for reads, but not writes when
5149         * DCA is enabled.  This is due to a known issue in some chipsets
5150         * which will cause the DCA tag to be cleared.
5151         */
5152        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5153                  E1000_DCA_RXCTRL_DESC_DCA_EN;
5154
5155        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5156}
5157
5158static void igb_update_dca(struct igb_q_vector *q_vector)
5159{
5160        struct igb_adapter *adapter = q_vector->adapter;
5161        int cpu = get_cpu();
5162
5163        if (q_vector->cpu == cpu)
5164                goto out_no_update;
5165
5166        if (q_vector->tx.ring)
5167                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5168
5169        if (q_vector->rx.ring)
5170                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5171
5172        q_vector->cpu = cpu;
5173out_no_update:
5174        put_cpu();
5175}
5176
5177static void igb_setup_dca(struct igb_adapter *adapter)
5178{
5179        struct e1000_hw *hw = &adapter->hw;
5180        int i;
5181
5182        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5183                return;
5184
5185        /* Always use CB2 mode, difference is masked in the CB driver. */
5186        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5187
5188        for (i = 0; i < adapter->num_q_vectors; i++) {
5189                adapter->q_vector[i]->cpu = -1;
5190                igb_update_dca(adapter->q_vector[i]);
5191        }
5192}
5193
5194static int __igb_notify_dca(struct device *dev, void *data)
5195{
5196        struct net_device *netdev = dev_get_drvdata(dev);
5197        struct igb_adapter *adapter = netdev_priv(netdev);
5198        struct pci_dev *pdev = adapter->pdev;
5199        struct e1000_hw *hw = &adapter->hw;
5200        unsigned long event = *(unsigned long *)data;
5201
5202        switch (event) {
5203        case DCA_PROVIDER_ADD:
5204                /* if already enabled, don't do it again */
5205                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5206                        break;
5207                if (dca_add_requester(dev) == 0) {
5208                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
5209                        dev_info(&pdev->dev, "DCA enabled\n");
5210                        igb_setup_dca(adapter);
5211                        break;
5212                }
5213                /* Fall Through since DCA is disabled. */
5214        case DCA_PROVIDER_REMOVE:
5215                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5216                        /* without this a class_device is left
5217                         * hanging around in the sysfs model
5218                         */
5219                        dca_remove_requester(dev);
5220                        dev_info(&pdev->dev, "DCA disabled\n");
5221                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5222                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5223                }
5224                break;
5225        }
5226
5227        return 0;
5228}
5229
5230static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5231                          void *p)
5232{
5233        int ret_val;
5234
5235        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5236                                         __igb_notify_dca);
5237
5238        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5239}
5240#endif /* CONFIG_IGB_DCA */
5241
5242#ifdef CONFIG_PCI_IOV
5243static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5244{
5245        unsigned char mac_addr[ETH_ALEN];
5246
5247        eth_zero_addr(mac_addr);
5248        igb_set_vf_mac(adapter, vf, mac_addr);
5249
5250        /* By default spoof check is enabled for all VFs */
5251        adapter->vf_data[vf].spoofchk_enabled = true;
5252
5253        return 0;
5254}
5255
5256#endif
5257static void igb_ping_all_vfs(struct igb_adapter *adapter)
5258{
5259        struct e1000_hw *hw = &adapter->hw;
5260        u32 ping;
5261        int i;
5262
5263        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5264                ping = E1000_PF_CONTROL_MSG;
5265                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5266                        ping |= E1000_VT_MSGTYPE_CTS;
5267                igb_write_mbx(hw, &ping, 1, i);
5268        }
5269}
5270
5271static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5272{
5273        struct e1000_hw *hw = &adapter->hw;
5274        u32 vmolr = rd32(E1000_VMOLR(vf));
5275        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5276
5277        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5278                            IGB_VF_FLAG_MULTI_PROMISC);
5279        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5280
5281        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5282                vmolr |= E1000_VMOLR_MPME;
5283                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5284                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5285        } else {
5286                /* if we have hashes and we are clearing a multicast promisc
5287                 * flag we need to write the hashes to the MTA as this step
5288                 * was previously skipped
5289                 */
5290                if (vf_data->num_vf_mc_hashes > 30) {
5291                        vmolr |= E1000_VMOLR_MPME;
5292                } else if (vf_data->num_vf_mc_hashes) {
5293                        int j;
5294                        vmolr |= E1000_VMOLR_ROMPE;
5295                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5296                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5297                }
5298        }
5299
5300        wr32(E1000_VMOLR(vf), vmolr);
5301
5302        /* there are flags left unprocessed, likely not supported */
5303        if (*msgbuf & E1000_VT_MSGINFO_MASK)
5304                return -EINVAL;
5305
5306        return 0;
5307}
5308
5309static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5310                                  u32 *msgbuf, u32 vf)
5311{
5312        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5313        u16 *hash_list = (u16 *)&msgbuf[1];
5314        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315        int i;
5316
5317        /* salt away the number of multicast addresses assigned
5318         * to this VF for later use to restore when the PF multi cast
5319         * list changes
5320         */
5321        vf_data->num_vf_mc_hashes = n;
5322
5323        /* only up to 30 hash values supported */
5324        if (n > 30)
5325                n = 30;
5326
5327        /* store the hashes for later use */
5328        for (i = 0; i < n; i++)
5329                vf_data->vf_mc_hashes[i] = hash_list[i];
5330
5331        /* Flush and reset the mta with the new values */
5332        igb_set_rx_mode(adapter->netdev);
5333
5334        return 0;
5335}
5336
5337static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5338{
5339        struct e1000_hw *hw = &adapter->hw;
5340        struct vf_data_storage *vf_data;
5341        int i, j;
5342
5343        for (i = 0; i < adapter->vfs_allocated_count; i++) {
5344                u32 vmolr = rd32(E1000_VMOLR(i));
5345                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5346
5347                vf_data = &adapter->vf_data[i];
5348
5349                if ((vf_data->num_vf_mc_hashes > 30) ||
5350                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5351                        vmolr |= E1000_VMOLR_MPME;
5352                } else if (vf_data->num_vf_mc_hashes) {
5353                        vmolr |= E1000_VMOLR_ROMPE;
5354                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5355                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5356                }
5357                wr32(E1000_VMOLR(i), vmolr);
5358        }
5359}
5360
5361static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5362{
5363        struct e1000_hw *hw = &adapter->hw;
5364        u32 pool_mask, reg, vid;
5365        int i;
5366
5367        pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5368
5369        /* Find the vlan filter for this id */
5370        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5371                reg = rd32(E1000_VLVF(i));
5372
5373                /* remove the vf from the pool */
5374                reg &= ~pool_mask;
5375
5376                /* if pool is empty then remove entry from vfta */
5377                if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5378                    (reg & E1000_VLVF_VLANID_ENABLE)) {
5379                        reg = 0;
5380                        vid = reg & E1000_VLVF_VLANID_MASK;
5381                        igb_vfta_set(hw, vid, false);
5382                }
5383
5384                wr32(E1000_VLVF(i), reg);
5385        }
5386
5387        adapter->vf_data[vf].vlans_enabled = 0;
5388}
5389
5390static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5391{
5392        struct e1000_hw *hw = &adapter->hw;
5393        u32 reg, i;
5394
5395        /* The vlvf table only exists on 82576 hardware and newer */
5396        if (hw->mac.type < e1000_82576)
5397                return -1;
5398
5399        /* we only need to do this if VMDq is enabled */
5400        if (!adapter->vfs_allocated_count)
5401                return -1;
5402
5403        /* Find the vlan filter for this id */
5404        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5405                reg = rd32(E1000_VLVF(i));
5406                if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5407                    vid == (reg & E1000_VLVF_VLANID_MASK))
5408                        break;
5409        }
5410
5411        if (add) {
5412                if (i == E1000_VLVF_ARRAY_SIZE) {
5413                        /* Did not find a matching VLAN ID entry that was
5414                         * enabled.  Search for a free filter entry, i.e.
5415                         * one without the enable bit set
5416                         */
5417                        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5418                                reg = rd32(E1000_VLVF(i));
5419                                if (!(reg & E1000_VLVF_VLANID_ENABLE))
5420                                        break;
5421                        }
5422                }
5423                if (i < E1000_VLVF_ARRAY_SIZE) {
5424                        /* Found an enabled/available entry */
5425                        reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5426
5427                        /* if !enabled we need to set this up in vfta */
5428                        if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5429                                /* add VID to filter table */
5430                                igb_vfta_set(hw, vid, true);
5431                                reg |= E1000_VLVF_VLANID_ENABLE;
5432                        }
5433                        reg &= ~E1000_VLVF_VLANID_MASK;
5434                        reg |= vid;
5435                        wr32(E1000_VLVF(i), reg);
5436
5437                        /* do not modify RLPML for PF devices */
5438                        if (vf >= adapter->vfs_allocated_count)
5439                                return 0;
5440
5441                        if (!adapter->vf_data[vf].vlans_enabled) {
5442                                u32 size;
5443                                reg = rd32(E1000_VMOLR(vf));
5444                                size = reg & E1000_VMOLR_RLPML_MASK;
5445                                size += 4;
5446                                reg &= ~E1000_VMOLR_RLPML_MASK;
5447                                reg |= size;
5448                                wr32(E1000_VMOLR(vf), reg);
5449                        }
5450
5451                        adapter->vf_data[vf].vlans_enabled++;
5452                }
5453        } else {
5454                if (i < E1000_VLVF_ARRAY_SIZE) {
5455                        /* remove vf from the pool */
5456                        reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5457                        /* if pool is empty then remove entry from vfta */
5458                        if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5459                                reg = 0;
5460                                igb_vfta_set(hw, vid, false);
5461                        }
5462                        wr32(E1000_VLVF(i), reg);
5463
5464                        /* do not modify RLPML for PF devices */
5465                        if (vf >= adapter->vfs_allocated_count)
5466                                return 0;
5467
5468                        adapter->vf_data[vf].vlans_enabled--;
5469                        if (!adapter->vf_data[vf].vlans_enabled) {
5470                                u32 size;
5471                                reg = rd32(E1000_VMOLR(vf));
5472                                size = reg & E1000_VMOLR_RLPML_MASK;
5473                                size -= 4;
5474                                reg &= ~E1000_VMOLR_RLPML_MASK;
5475                                reg |= size;
5476                                wr32(E1000_VMOLR(vf), reg);
5477                        }
5478                }
5479        }
5480        return 0;
5481}
5482
5483static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5484{
5485        struct e1000_hw *hw = &adapter->hw;
5486
5487        if (vid)
5488                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5489        else
5490                wr32(E1000_VMVIR(vf), 0);
5491}
5492
5493static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5494                               int vf, u16 vlan, u8 qos)
5495{
5496        int err = 0;
5497        struct igb_adapter *adapter = netdev_priv(netdev);
5498
5499        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5500                return -EINVAL;
5501        if (vlan || qos) {
5502                err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5503                if (err)
5504                        goto out;
5505                igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5506                igb_set_vmolr(adapter, vf, !vlan);
5507                adapter->vf_data[vf].pf_vlan = vlan;
5508                adapter->vf_data[vf].pf_qos = qos;
5509                dev_info(&adapter->pdev->dev,
5510                         "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5511                if (test_bit(__IGB_DOWN, &adapter->state)) {
5512                        dev_warn(&adapter->pdev->dev,
5513                                 "The VF VLAN has been set, but the PF device is not up.\n");
5514                        dev_warn(&adapter->pdev->dev,
5515                                 "Bring the PF device up before attempting to use the VF device.\n");
5516                }
5517        } else {
5518                igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5519                             false, vf);
5520                igb_set_vmvir(adapter, vlan, vf);
5521                igb_set_vmolr(adapter, vf, true);
5522                adapter->vf_data[vf].pf_vlan = 0;
5523                adapter->vf_data[vf].pf_qos = 0;
5524        }
5525out:
5526        return err;
5527}
5528
5529static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5530{
5531        struct e1000_hw *hw = &adapter->hw;
5532        int i;
5533        u32 reg;
5534
5535        /* Find the vlan filter for this id */
5536        for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5537                reg = rd32(E1000_VLVF(i));
5538                if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5539                    vid == (reg & E1000_VLVF_VLANID_MASK))
5540                        break;
5541        }
5542
5543        if (i >= E1000_VLVF_ARRAY_SIZE)
5544                i = -1;
5545
5546        return i;
5547}
5548
5549static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5550{
5551        struct e1000_hw *hw = &adapter->hw;
5552        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5553        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5554        int err = 0;
5555
5556        /* If in promiscuous mode we need to make sure the PF also has
5557         * the VLAN filter set.
5558         */
5559        if (add && (adapter->netdev->flags & IFF_PROMISC))
5560                err = igb_vlvf_set(adapter, vid, add,
5561                                   adapter->vfs_allocated_count);
5562        if (err)
5563                goto out;
5564
5565        err = igb_vlvf_set(adapter, vid, add, vf);
5566
5567        if (err)
5568                goto out;
5569
5570        /* Go through all the checks to see if the VLAN filter should
5571         * be wiped completely.
5572         */
5573        if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5574                u32 vlvf, bits;
5575
5576                int regndx = igb_find_vlvf_entry(adapter, vid);
5577                if (regndx < 0)
5578                        goto out;
5579                /* See if any other pools are set for this VLAN filter
5580                 * entry other than the PF.
5581                 */
5582                vlvf = bits = rd32(E1000_VLVF(regndx));
5583                bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5584                              adapter->vfs_allocated_count);
5585                /* If the filter was removed then ensure PF pool bit
5586                 * is cleared if the PF only added itself to the pool
5587                 * because the PF is in promiscuous mode.
5588                 */
5589                if ((vlvf & VLAN_VID_MASK) == vid &&
5590                    !test_bit(vid, adapter->active_vlans) &&
5591                    !bits)
5592                        igb_vlvf_set(adapter, vid, add,
5593                                     adapter->vfs_allocated_count);
5594        }
5595
5596out:
5597        return err;
5598}
5599
5600static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5601{
5602        /* clear flags - except flag that indicates PF has set the MAC */
5603        adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5604        adapter->vf_data[vf].last_nack = jiffies;
5605
5606        /* reset offloads to defaults */
5607        igb_set_vmolr(adapter, vf, true);
5608
5609        /* reset vlans for device */
5610        igb_clear_vf_vfta(adapter, vf);
5611        if (adapter->vf_data[vf].pf_vlan)
5612                igb_ndo_set_vf_vlan(adapter->netdev, vf,
5613                                    adapter->vf_data[vf].pf_vlan,
5614                                    adapter->vf_data[vf].pf_qos);
5615        else
5616                igb_clear_vf_vfta(adapter, vf);
5617
5618        /* reset multicast table array for vf */
5619        adapter->vf_data[vf].num_vf_mc_hashes = 0;
5620
5621        /* Flush and reset the mta with the new values */
5622        igb_set_rx_mode(adapter->netdev);
5623}
5624
5625static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5626{
5627        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5628
5629        /* clear mac address as we were hotplug removed/added */
5630        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5631                eth_zero_addr(vf_mac);
5632
5633        /* process remaining reset events */
5634        igb_vf_reset(adapter, vf);
5635}
5636
5637static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5638{
5639        struct e1000_hw *hw = &adapter->hw;
5640        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5641        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5642        u32 reg, msgbuf[3];
5643        u8 *addr = (u8 *)(&msgbuf[1]);
5644
5645        /* process all the same items cleared in a function level reset */
5646        igb_vf_reset(adapter, vf);
5647
5648        /* set vf mac address */
5649        igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5650
5651        /* enable transmit and receive for vf */
5652        reg = rd32(E1000_VFTE);
5653        wr32(E1000_VFTE, reg | (1 << vf));
5654        reg = rd32(E1000_VFRE);
5655        wr32(E1000_VFRE, reg | (1 << vf));
5656
5657        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5658
5659        /* reply to reset with ack and vf mac address */
5660        msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5661        memcpy(addr, vf_mac, 6);
5662        igb_write_mbx(hw, msgbuf, 3, vf);
5663}
5664
5665static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5666{
5667        /* The VF MAC Address is stored in a packed array of bytes
5668         * starting at the second 32 bit word of the msg array
5669         */
5670        unsigned char *addr = (char *)&msg[1];
5671        int err = -1;
5672
5673        if (is_valid_ether_addr(addr))
5674                err = igb_set_vf_mac(adapter, vf, addr);
5675
5676        return err;
5677}
5678
5679static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5680{
5681        struct e1000_hw *hw = &adapter->hw;
5682        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5683        u32 msg = E1000_VT_MSGTYPE_NACK;
5684
5685        /* if device isn't clear to send it shouldn't be reading either */
5686        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5687            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5688                igb_write_mbx(hw, &msg, 1, vf);
5689                vf_data->last_nack = jiffies;
5690        }
5691}
5692
5693static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5694{
5695        struct pci_dev *pdev = adapter->pdev;
5696        u32 msgbuf[E1000_VFMAILBOX_SIZE];
5697        struct e1000_hw *hw = &adapter->hw;
5698        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5699        s32 retval;
5700
5701        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5702
5703        if (retval) {
5704                /* if receive failed revoke VF CTS stats and restart init */
5705                dev_err(&pdev->dev, "Error receiving message from VF\n");
5706                vf_data->flags &= ~IGB_VF_FLAG_CTS;
5707                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5708                        return;
5709                goto out;
5710        }
5711
5712        /* this is a message we already processed, do nothing */
5713        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5714                return;
5715
5716        /* until the vf completes a reset it should not be
5717         * allowed to start any configuration.
5718         */
5719        if (msgbuf[0] == E1000_VF_RESET) {
5720                igb_vf_reset_msg(adapter, vf);
5721                return;
5722        }
5723
5724        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5725                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5726                        return;
5727                retval = -1;
5728                goto out;
5729        }
5730
5731        switch ((msgbuf[0] & 0xFFFF)) {
5732        case E1000_VF_SET_MAC_ADDR:
5733                retval = -EINVAL;
5734                if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5735                        retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5736                else
5737                        dev_warn(&pdev->dev,
5738                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5739                                 vf);
5740                break;
5741        case E1000_VF_SET_PROMISC:
5742                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5743                break;
5744        case E1000_VF_SET_MULTICAST:
5745                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5746                break;
5747        case E1000_VF_SET_LPE:
5748                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5749                break;
5750        case E1000_VF_SET_VLAN:
5751                retval = -1;
5752                if (vf_data->pf_vlan)
5753                        dev_warn(&pdev->dev,
5754                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5755                                 vf);
5756                else
5757                        retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5758                break;
5759        default:
5760                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5761                retval = -1;
5762                break;
5763        }
5764
5765        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5766out:
5767        /* notify the VF of the results of what it sent us */
5768        if (retval)
5769                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5770        else
5771                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5772
5773        igb_write_mbx(hw, msgbuf, 1, vf);
5774}
5775
5776static void igb_msg_task(struct igb_adapter *adapter)
5777{
5778        struct e1000_hw *hw = &adapter->hw;
5779        u32 vf;
5780
5781        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5782                /* process any reset requests */
5783                if (!igb_check_for_rst(hw, vf))
5784                        igb_vf_reset_event(adapter, vf);
5785
5786                /* process any messages pending */
5787                if (!igb_check_for_msg(hw, vf))
5788                        igb_rcv_msg_from_vf(adapter, vf);
5789
5790                /* process any acks */
5791                if (!igb_check_for_ack(hw, vf))
5792                        igb_rcv_ack_from_vf(adapter, vf);
5793        }
5794}
5795
5796/**
5797 *  igb_set_uta - Set unicast filter table address
5798 *  @adapter: board private structure
5799 *
5800 *  The unicast table address is a register array of 32-bit registers.
5801 *  The table is meant to be used in a way similar to how the MTA is used
5802 *  however due to certain limitations in the hardware it is necessary to
5803 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5804 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5805 **/
5806static void igb_set_uta(struct igb_adapter *adapter)
5807{
5808        struct e1000_hw *hw = &adapter->hw;
5809        int i;
5810
5811        /* The UTA table only exists on 82576 hardware and newer */
5812        if (hw->mac.type < e1000_82576)
5813                return;
5814
5815        /* we only need to do this if VMDq is enabled */
5816        if (!adapter->vfs_allocated_count)
5817                return;
5818
5819        for (i = 0; i < hw->mac.uta_reg_count; i++)
5820                array_wr32(E1000_UTA, i, ~0);
5821}
5822
5823/**
5824 *  igb_intr_msi - Interrupt Handler
5825 *  @irq: interrupt number
5826 *  @data: pointer to a network interface device structure
5827 **/
5828static irqreturn_t igb_intr_msi(int irq, void *data)
5829{
5830        struct igb_adapter *adapter = data;
5831        struct igb_q_vector *q_vector = adapter->q_vector[0];
5832        struct e1000_hw *hw = &adapter->hw;
5833        /* read ICR disables interrupts using IAM */
5834        u32 icr = rd32(E1000_ICR);
5835
5836        igb_write_itr(q_vector);
5837
5838        if (icr & E1000_ICR_DRSTA)
5839                schedule_work(&adapter->reset_task);
5840
5841        if (icr & E1000_ICR_DOUTSYNC) {
5842                /* HW is reporting DMA is out of sync */
5843                adapter->stats.doosync++;
5844        }
5845
5846        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5847                hw->mac.get_link_status = 1;
5848                if (!test_bit(__IGB_DOWN, &adapter->state))
5849                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
5850        }
5851
5852        if (icr & E1000_ICR_TS) {
5853                u32 tsicr = rd32(E1000_TSICR);
5854
5855                if (tsicr & E1000_TSICR_TXTS) {
5856                        /* acknowledge the interrupt */
5857                        wr32(E1000_TSICR, E1000_TSICR_TXTS);
5858                        /* retrieve hardware timestamp */
5859                        schedule_work(&adapter->ptp_tx_work);
5860                }
5861        }
5862
5863        napi_schedule(&q_vector->napi);
5864
5865        return IRQ_HANDLED;
5866}
5867
5868/**
5869 *  igb_intr - Legacy Interrupt Handler
5870 *  @irq: interrupt number
5871 *  @data: pointer to a network interface device structure
5872 **/
5873static irqreturn_t igb_intr(int irq, void *data)
5874{
5875        struct igb_adapter *adapter = data;
5876        struct igb_q_vector *q_vector = adapter->q_vector[0];
5877        struct e1000_hw *hw = &adapter->hw;
5878        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5879         * need for the IMC write
5880         */
5881        u32 icr = rd32(E1000_ICR);
5882
5883        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5884         * not set, then the adapter didn't send an interrupt
5885         */
5886        if (!(icr & E1000_ICR_INT_ASSERTED))
5887                return IRQ_NONE;
5888
5889        igb_write_itr(q_vector);
5890
5891        if (icr & E1000_ICR_DRSTA)
5892                schedule_work(&adapter->reset_task);
5893
5894        if (icr & E1000_ICR_DOUTSYNC) {
5895                /* HW is reporting DMA is out of sync */
5896                adapter->stats.doosync++;
5897        }
5898
5899        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5900                hw->mac.get_link_status = 1;
5901                /* guard against interrupt when we're going down */
5902                if (!test_bit(__IGB_DOWN, &adapter->state))
5903                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
5904        }
5905
5906        if (icr & E1000_ICR_TS) {
5907                u32 tsicr = rd32(E1000_TSICR);
5908
5909                if (tsicr & E1000_TSICR_TXTS) {
5910                        /* acknowledge the interrupt */
5911                        wr32(E1000_TSICR, E1000_TSICR_TXTS);
5912                        /* retrieve hardware timestamp */
5913                        schedule_work(&adapter->ptp_tx_work);
5914                }
5915        }
5916
5917        napi_schedule(&q_vector->napi);
5918
5919        return IRQ_HANDLED;
5920}
5921
5922static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5923{
5924        struct igb_adapter *adapter = q_vector->adapter;
5925        struct e1000_hw *hw = &adapter->hw;
5926
5927        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5928            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5929                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5930                        igb_set_itr(q_vector);
5931                else
5932                        igb_update_ring_itr(q_vector);
5933        }
5934
5935        if (!test_bit(__IGB_DOWN, &adapter->state)) {
5936                if (adapter->msix_entries)
5937                        wr32(E1000_EIMS, q_vector->eims_value);
5938                else
5939                        igb_irq_enable(adapter);
5940        }
5941}
5942
5943/**
5944 *  igb_poll - NAPI Rx polling callback
5945 *  @napi: napi polling structure
5946 *  @budget: count of how many packets we should handle
5947 **/
5948static int igb_poll(struct napi_struct *napi, int budget)
5949{
5950        struct igb_q_vector *q_vector = container_of(napi,
5951                                                     struct igb_q_vector,
5952                                                     napi);
5953        bool clean_complete = true;
5954
5955#ifdef CONFIG_IGB_DCA
5956        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5957                igb_update_dca(q_vector);
5958#endif
5959        if (q_vector->tx.ring)
5960                clean_complete = igb_clean_tx_irq(q_vector);
5961
5962        if (q_vector->rx.ring)
5963                clean_complete &= igb_clean_rx_irq(q_vector, budget);
5964
5965        /* If all work not completed, return budget and keep polling */
5966        if (!clean_complete)
5967                return budget;
5968
5969        /* If not enough Rx work done, exit the polling mode */
5970        napi_complete(napi);
5971        igb_ring_irq_enable(q_vector);
5972
5973        return 0;
5974}
5975
5976/**
5977 *  igb_clean_tx_irq - Reclaim resources after transmit completes
5978 *  @q_vector: pointer to q_vector containing needed info
5979 *
5980 *  returns true if ring is completely cleaned
5981 **/
5982static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5983{
5984        struct igb_adapter *adapter = q_vector->adapter;
5985        struct igb_ring *tx_ring = q_vector->tx.ring;
5986        struct igb_tx_buffer *tx_buffer;
5987        union e1000_adv_tx_desc *tx_desc;
5988        unsigned int total_bytes = 0, total_packets = 0;
5989        unsigned int budget = q_vector->tx.work_limit;
5990        unsigned int i = tx_ring->next_to_clean;
5991
5992        if (test_bit(__IGB_DOWN, &adapter->state))
5993                return true;
5994
5995        tx_buffer = &tx_ring->tx_buffer_info[i];
5996        tx_desc = IGB_TX_DESC(tx_ring, i);
5997        i -= tx_ring->count;
5998
5999        do {
6000                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6001
6002                /* if next_to_watch is not set then there is no work pending */
6003                if (!eop_desc)
6004                        break;
6005
6006                /* prevent any other reads prior to eop_desc */
6007                read_barrier_depends();
6008
6009                /* if DD is not set pending work has not been completed */
6010                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6011                        break;
6012
6013                /* clear next_to_watch to prevent false hangs */
6014                tx_buffer->next_to_watch = NULL;
6015
6016                /* update the statistics for this packet */
6017                total_bytes += tx_buffer->bytecount;
6018                total_packets += tx_buffer->gso_segs;
6019
6020                /* free the skb */
6021                dev_kfree_skb_any(tx_buffer->skb);
6022
6023                /* unmap skb header data */
6024                dma_unmap_single(tx_ring->dev,
6025                                 dma_unmap_addr(tx_buffer, dma),
6026                                 dma_unmap_len(tx_buffer, len),
6027                                 DMA_TO_DEVICE);
6028
6029                /* clear tx_buffer data */
6030                tx_buffer->skb = NULL;
6031                dma_unmap_len_set(tx_buffer, len, 0);
6032
6033                /* clear last DMA location and unmap remaining buffers */
6034                while (tx_desc != eop_desc) {
6035                        tx_buffer++;
6036                        tx_desc++;
6037                        i++;
6038                        if (unlikely(!i)) {
6039                                i -= tx_ring->count;
6040                                tx_buffer = tx_ring->tx_buffer_info;
6041                                tx_desc = IGB_TX_DESC(tx_ring, 0);
6042                        }
6043
6044                        /* unmap any remaining paged data */
6045                        if (dma_unmap_len(tx_buffer, len)) {
6046                                dma_unmap_page(tx_ring->dev,
6047                                               dma_unmap_addr(tx_buffer, dma),
6048                                               dma_unmap_len(tx_buffer, len),
6049                                               DMA_TO_DEVICE);
6050                                dma_unmap_len_set(tx_buffer, len, 0);
6051                        }
6052                }
6053
6054                /* move us one more past the eop_desc for start of next pkt */
6055                tx_buffer++;
6056                tx_desc++;
6057                i++;
6058                if (unlikely(!i)) {
6059                        i -= tx_ring->count;
6060                        tx_buffer = tx_ring->tx_buffer_info;
6061                        tx_desc = IGB_TX_DESC(tx_ring, 0);
6062                }
6063
6064                /* issue prefetch for next Tx descriptor */
6065                prefetch(tx_desc);
6066
6067                /* update budget accounting */
6068                budget--;
6069        } while (likely(budget));
6070
6071        netdev_tx_completed_queue(txring_txq(tx_ring),
6072                                  total_packets, total_bytes);
6073        i += tx_ring->count;
6074        tx_ring->next_to_clean = i;
6075        u64_stats_update_begin(&tx_ring->tx_syncp);
6076        tx_ring->tx_stats.bytes += total_bytes;
6077        tx_ring->tx_stats.packets += total_packets;
6078        u64_stats_update_end(&tx_ring->tx_syncp);
6079        q_vector->tx.total_bytes += total_bytes;
6080        q_vector->tx.total_packets += total_packets;
6081
6082        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6083                struct e1000_hw *hw = &adapter->hw;
6084
6085                /* Detect a transmit hang in hardware, this serializes the
6086                 * check with the clearing of time_stamp and movement of i
6087                 */
6088                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6089                if (tx_buffer->next_to_watch &&
6090                    time_after(jiffies, tx_buffer->time_stamp +
6091                               (adapter->tx_timeout_factor * HZ)) &&
6092                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6093
6094                        /* detected Tx unit hang */
6095                        dev_err(tx_ring->dev,
6096                                "Detected Tx Unit Hang\n"
6097                                "  Tx Queue             <%d>\n"
6098                                "  TDH                  <%x>\n"
6099                                "  TDT                  <%x>\n"
6100                                "  next_to_use          <%x>\n"
6101                                "  next_to_clean        <%x>\n"
6102                                "buffer_info[next_to_clean]\n"
6103                                "  time_stamp           <%lx>\n"
6104                                "  next_to_watch        <%p>\n"
6105                                "  jiffies              <%lx>\n"
6106                                "  desc.status          <%x>\n",
6107                                tx_ring->queue_index,
6108                                rd32(E1000_TDH(tx_ring->reg_idx)),
6109                                readl(tx_ring->tail),
6110                                tx_ring->next_to_use,
6111                                tx_ring->next_to_clean,
6112                                tx_buffer->time_stamp,
6113                                tx_buffer->next_to_watch,
6114                                jiffies,
6115                                tx_buffer->next_to_watch->wb.status);
6116                        netif_stop_subqueue(tx_ring->netdev,
6117                                            tx_ring->queue_index);
6118
6119                        /* we are about to reset, no point in enabling stuff */
6120                        return true;
6121                }
6122        }
6123
6124#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6125        if (unlikely(total_packets &&
6126            netif_carrier_ok(tx_ring->netdev) &&
6127            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6128                /* Make sure that anybody stopping the queue after this
6129                 * sees the new next_to_clean.
6130                 */
6131                smp_mb();
6132                if (__netif_subqueue_stopped(tx_ring->netdev,
6133                                             tx_ring->queue_index) &&
6134                    !(test_bit(__IGB_DOWN, &adapter->state))) {
6135                        netif_wake_subqueue(tx_ring->netdev,
6136                                            tx_ring->queue_index);
6137
6138                        u64_stats_update_begin(&tx_ring->tx_syncp);
6139                        tx_ring->tx_stats.restart_queue++;
6140                        u64_stats_update_end(&tx_ring->tx_syncp);
6141                }
6142        }
6143
6144        return !!budget;
6145}
6146
6147/**
6148 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6149 *  @rx_ring: rx descriptor ring to store buffers on
6150 *  @old_buff: donor buffer to have page reused
6151 *
6152 *  Synchronizes page for reuse by the adapter
6153 **/
6154static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6155                              struct igb_rx_buffer *old_buff)
6156{
6157        struct igb_rx_buffer *new_buff;
6158        u16 nta = rx_ring->next_to_alloc;
6159
6160        new_buff = &rx_ring->rx_buffer_info[nta];
6161
6162        /* update, and store next to alloc */
6163        nta++;
6164        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6165
6166        /* transfer page from old buffer to new buffer */
6167        memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6168
6169        /* sync the buffer for use by the device */
6170        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6171                                         old_buff->page_offset,
6172                                         IGB_RX_BUFSZ,
6173                                         DMA_FROM_DEVICE);
6174}
6175
6176static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6177                                  struct page *page,
6178                                  unsigned int truesize)
6179{
6180        /* avoid re-using remote pages */
6181        if (unlikely(page_to_nid(page) != numa_node_id()))
6182                return false;
6183
6184#if (PAGE_SIZE < 8192)
6185        /* if we are only owner of page we can reuse it */
6186        if (unlikely(page_count(page) != 1))
6187                return false;
6188
6189        /* flip page offset to other buffer */
6190        rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6191
6192        /* since we are the only owner of the page and we need to
6193         * increment it, just set the value to 2 in order to avoid
6194         * an unnecessary locked operation
6195         */
6196        atomic_set(&page->_count, 2);
6197#else
6198        /* move offset up to the next cache line */
6199        rx_buffer->page_offset += truesize;
6200
6201        if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6202                return false;
6203
6204        /* bump ref count on page before it is given to the stack */
6205        get_page(page);
6206#endif
6207
6208        return true;
6209}
6210
6211/**
6212 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6213 *  @rx_ring: rx descriptor ring to transact packets on
6214 *  @rx_buffer: buffer containing page to add
6215 *  @rx_desc: descriptor containing length of buffer written by hardware
6216 *  @skb: sk_buff to place the data into
6217 *
6218 *  This function will add the data contained in rx_buffer->page to the skb.
6219 *  This is done either through a direct copy if the data in the buffer is
6220 *  less than the skb header size, otherwise it will just attach the page as
6221 *  a frag to the skb.
6222 *
6223 *  The function will then update the page offset if necessary and return
6224 *  true if the buffer can be reused by the adapter.
6225 **/
6226static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6227                            struct igb_rx_buffer *rx_buffer,
6228                            union e1000_adv_rx_desc *rx_desc,
6229                            struct sk_buff *skb)
6230{
6231        struct page *page = rx_buffer->page;
6232        unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6233#if (PAGE_SIZE < 8192)
6234        unsigned int truesize = IGB_RX_BUFSZ;
6235#else
6236        unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6237#endif
6238
6239        if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6240                unsigned char *va = page_address(page) + rx_buffer->page_offset;
6241
6242                if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6243                        igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6244                        va += IGB_TS_HDR_LEN;
6245                        size -= IGB_TS_HDR_LEN;
6246                }
6247
6248                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6249
6250                /* we can reuse buffer as-is, just make sure it is local */
6251                if (likely(page_to_nid(page) == numa_node_id()))
6252                        return true;
6253
6254                /* this page cannot be reused so discard it */
6255                put_page(page);
6256                return false;
6257        }
6258
6259        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6260                        rx_buffer->page_offset, size, truesize);
6261
6262        return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6263}
6264
6265static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6266                                           union e1000_adv_rx_desc *rx_desc,
6267                                           struct sk_buff *skb)
6268{
6269        struct igb_rx_buffer *rx_buffer;
6270        struct page *page;
6271
6272        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6273
6274        page = rx_buffer->page;
6275        prefetchw(page);
6276
6277        if (likely(!skb)) {
6278                void *page_addr = page_address(page) +
6279                                  rx_buffer->page_offset;
6280
6281                /* prefetch first cache line of first page */
6282                prefetch(page_addr);
6283#if L1_CACHE_BYTES < 128
6284                prefetch(page_addr + L1_CACHE_BYTES);
6285#endif
6286
6287                /* allocate a skb to store the frags */
6288                skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6289                                                IGB_RX_HDR_LEN);
6290                if (unlikely(!skb)) {
6291                        rx_ring->rx_stats.alloc_failed++;
6292                        return NULL;
6293                }
6294
6295                /* we will be copying header into skb->data in
6296                 * pskb_may_pull so it is in our interest to prefetch
6297                 * it now to avoid a possible cache miss
6298                 */
6299                prefetchw(skb->data);
6300        }
6301
6302        /* we are reusing so sync this buffer for CPU use */
6303        dma_sync_single_range_for_cpu(rx_ring->dev,
6304                                      rx_buffer->dma,
6305                                      rx_buffer->page_offset,
6306                                      IGB_RX_BUFSZ,
6307                                      DMA_FROM_DEVICE);
6308
6309        /* pull page into skb */
6310        if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6311                /* hand second half of page back to the ring */
6312                igb_reuse_rx_page(rx_ring, rx_buffer);
6313        } else {
6314                /* we are not reusing the buffer so unmap it */
6315                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6316                               PAGE_SIZE, DMA_FROM_DEVICE);
6317        }
6318
6319        /* clear contents of rx_buffer */
6320        rx_buffer->page = NULL;
6321
6322        return skb;
6323}
6324
6325static inline void igb_rx_checksum(struct igb_ring *ring,
6326                                   union e1000_adv_rx_desc *rx_desc,
6327                                   struct sk_buff *skb)
6328{
6329        skb_checksum_none_assert(skb);
6330
6331        /* Ignore Checksum bit is set */
6332        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6333                return;
6334
6335        /* Rx checksum disabled via ethtool */
6336        if (!(ring->netdev->features & NETIF_F_RXCSUM))
6337                return;
6338
6339        /* TCP/UDP checksum error bit is set */
6340        if (igb_test_staterr(rx_desc,
6341                             E1000_RXDEXT_STATERR_TCPE |
6342                             E1000_RXDEXT_STATERR_IPE)) {
6343                /* work around errata with sctp packets where the TCPE aka
6344                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6345                 * packets, (aka let the stack check the crc32c)
6346                 */
6347                if (!((skb->len == 60) &&
6348                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6349                        u64_stats_update_begin(&ring->rx_syncp);
6350                        ring->rx_stats.csum_err++;
6351                        u64_stats_update_end(&ring->rx_syncp);
6352                }
6353                /* let the stack verify checksum errors */
6354                return;
6355        }
6356        /* It must be a TCP or UDP packet with a valid checksum */
6357        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6358                                      E1000_RXD_STAT_UDPCS))
6359                skb->ip_summed = CHECKSUM_UNNECESSARY;
6360
6361        dev_dbg(ring->dev, "cksum success: bits %08X\n",
6362                le32_to_cpu(rx_desc->wb.upper.status_error));
6363}
6364
6365static inline void igb_rx_hash(struct igb_ring *ring,
6366                               union e1000_adv_rx_desc *rx_desc,
6367                               struct sk_buff *skb)
6368{
6369        if (ring->netdev->features & NETIF_F_RXHASH)
6370                skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6371}
6372
6373/**
6374 *  igb_is_non_eop - process handling of non-EOP buffers
6375 *  @rx_ring: Rx ring being processed
6376 *  @rx_desc: Rx descriptor for current buffer
6377 *  @skb: current socket buffer containing buffer in progress
6378 *
6379 *  This function updates next to clean.  If the buffer is an EOP buffer
6380 *  this function exits returning false, otherwise it will place the
6381 *  sk_buff in the next buffer to be chained and return true indicating
6382 *  that this is in fact a non-EOP buffer.
6383 **/
6384static bool igb_is_non_eop(struct igb_ring *rx_ring,
6385                           union e1000_adv_rx_desc *rx_desc)
6386{
6387        u32 ntc = rx_ring->next_to_clean + 1;
6388
6389        /* fetch, update, and store next to clean */
6390        ntc = (ntc < rx_ring->count) ? ntc : 0;
6391        rx_ring->next_to_clean = ntc;
6392
6393        prefetch(IGB_RX_DESC(rx_ring, ntc));
6394
6395        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6396                return false;
6397
6398        return true;
6399}
6400
6401/**
6402 *  igb_get_headlen - determine size of header for LRO/GRO
6403 *  @data: pointer to the start of the headers
6404 *  @max_len: total length of section to find headers in
6405 *
6406 *  This function is meant to determine the length of headers that will
6407 *  be recognized by hardware for LRO, and GRO offloads.  The main
6408 *  motivation of doing this is to only perform one pull for IPv4 TCP
6409 *  packets so that we can do basic things like calculating the gso_size
6410 *  based on the average data per packet.
6411 **/
6412static unsigned int igb_get_headlen(unsigned char *data,
6413                                    unsigned int max_len)
6414{
6415        union {
6416                unsigned char *network;
6417                /* l2 headers */
6418                struct ethhdr *eth;
6419                struct vlan_hdr *vlan;
6420                /* l3 headers */
6421                struct iphdr *ipv4;
6422                struct ipv6hdr *ipv6;
6423        } hdr;
6424        __be16 protocol;
6425        u8 nexthdr = 0; /* default to not TCP */
6426        u8 hlen;
6427
6428        /* this should never happen, but better safe than sorry */
6429        if (max_len < ETH_HLEN)
6430                return max_len;
6431
6432        /* initialize network frame pointer */
6433        hdr.network = data;
6434
6435        /* set first protocol and move network header forward */
6436        protocol = hdr.eth->h_proto;
6437        hdr.network += ETH_HLEN;
6438
6439        /* handle any vlan tag if present */
6440        if (protocol == __constant_htons(ETH_P_8021Q)) {
6441                if ((hdr.network - data) > (max_len - VLAN_HLEN))
6442                        return max_len;
6443
6444                protocol = hdr.vlan->h_vlan_encapsulated_proto;
6445                hdr.network += VLAN_HLEN;
6446        }
6447
6448        /* handle L3 protocols */
6449        if (protocol == __constant_htons(ETH_P_IP)) {
6450                if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6451                        return max_len;
6452
6453                /* access ihl as a u8 to avoid unaligned access on ia64 */
6454                hlen = (hdr.network[0] & 0x0F) << 2;
6455
6456                /* verify hlen meets minimum size requirements */
6457                if (hlen < sizeof(struct iphdr))
6458                        return hdr.network - data;
6459
6460                /* record next protocol if header is present */
6461                if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6462                        nexthdr = hdr.ipv4->protocol;
6463        } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6464                if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6465                        return max_len;
6466
6467                /* record next protocol */
6468                nexthdr = hdr.ipv6->nexthdr;
6469                hlen = sizeof(struct ipv6hdr);
6470        } else {
6471                return hdr.network - data;
6472        }
6473
6474        /* relocate pointer to start of L4 header */
6475        hdr.network += hlen;
6476
6477        /* finally sort out TCP */
6478        if (nexthdr == IPPROTO_TCP) {
6479                if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6480                        return max_len;
6481
6482                /* access doff as a u8 to avoid unaligned access on ia64 */
6483                hlen = (hdr.network[12] & 0xF0) >> 2;
6484
6485                /* verify hlen meets minimum size requirements */
6486                if (hlen < sizeof(struct tcphdr))
6487                        return hdr.network - data;
6488
6489                hdr.network += hlen;
6490        } else if (nexthdr == IPPROTO_UDP) {
6491                if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6492                        return max_len;
6493
6494                hdr.network += sizeof(struct udphdr);
6495        }
6496
6497        /* If everything has gone correctly hdr.network should be the
6498         * data section of the packet and will be the end of the header.
6499         * If not then it probably represents the end of the last recognized
6500         * header.
6501         */
6502        if ((hdr.network - data) < max_len)
6503                return hdr.network - data;
6504        else
6505                return max_len;
6506}
6507
6508/**
6509 *  igb_pull_tail - igb specific version of skb_pull_tail
6510 *  @rx_ring: rx descriptor ring packet is being transacted on
6511 *  @rx_desc: pointer to the EOP Rx descriptor
6512 *  @skb: pointer to current skb being adjusted
6513 *
6514 *  This function is an igb specific version of __pskb_pull_tail.  The
6515 *  main difference between this version and the original function is that
6516 *  this function can make several assumptions about the state of things
6517 *  that allow for significant optimizations versus the standard function.
6518 *  As a result we can do things like drop a frag and maintain an accurate
6519 *  truesize for the skb.
6520 */
6521static void igb_pull_tail(struct igb_ring *rx_ring,
6522                          union e1000_adv_rx_desc *rx_desc,
6523                          struct sk_buff *skb)
6524{
6525        struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6526        unsigned char *va;
6527        unsigned int pull_len;
6528
6529        /* it is valid to use page_address instead of kmap since we are
6530         * working with pages allocated out of the lomem pool per
6531         * alloc_page(GFP_ATOMIC)
6532         */
6533        va = skb_frag_address(frag);
6534
6535        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6536                /* retrieve timestamp from buffer */
6537                igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6538
6539                /* update pointers to remove timestamp header */
6540                skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6541                frag->page_offset += IGB_TS_HDR_LEN;
6542                skb->data_len -= IGB_TS_HDR_LEN;
6543                skb->len -= IGB_TS_HDR_LEN;
6544
6545                /* move va to start of packet data */
6546                va += IGB_TS_HDR_LEN;
6547        }
6548
6549        /* we need the header to contain the greater of either ETH_HLEN or
6550         * 60 bytes if the skb->len is less than 60 for skb_pad.
6551         */
6552        pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6553
6554        /* align pull length to size of long to optimize memcpy performance */
6555        skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6556
6557        /* update all of the pointers */
6558        skb_frag_size_sub(frag, pull_len);
6559        frag->page_offset += pull_len;
6560        skb->data_len -= pull_len;
6561        skb->tail += pull_len;
6562}
6563
6564/**
6565 *  igb_cleanup_headers - Correct corrupted or empty headers
6566 *  @rx_ring: rx descriptor ring packet is being transacted on
6567 *  @rx_desc: pointer to the EOP Rx descriptor
6568 *  @skb: pointer to current skb being fixed
6569 *
6570 *  Address the case where we are pulling data in on pages only
6571 *  and as such no data is present in the skb header.
6572 *
6573 *  In addition if skb is not at least 60 bytes we need to pad it so that
6574 *  it is large enough to qualify as a valid Ethernet frame.
6575 *
6576 *  Returns true if an error was encountered and skb was freed.
6577 **/
6578static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6579                                union e1000_adv_rx_desc *rx_desc,
6580                                struct sk_buff *skb)
6581{
6582        if (unlikely((igb_test_staterr(rx_desc,
6583                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6584                struct net_device *netdev = rx_ring->netdev;
6585                if (!(netdev->features & NETIF_F_RXALL)) {
6586                        dev_kfree_skb_any(skb);
6587                        return true;
6588                }
6589        }
6590
6591        /* place header in linear portion of buffer */
6592        if (skb_is_nonlinear(skb))
6593                igb_pull_tail(rx_ring, rx_desc, skb);
6594
6595        /* if skb_pad returns an error the skb was freed */
6596        if (unlikely(skb->len < 60)) {
6597                int pad_len = 60 - skb->len;
6598
6599                if (skb_pad(skb, pad_len))
6600                        return true;
6601                __skb_put(skb, pad_len);
6602        }
6603
6604        return false;
6605}
6606
6607/**
6608 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6609 *  @rx_ring: rx descriptor ring packet is being transacted on
6610 *  @rx_desc: pointer to the EOP Rx descriptor
6611 *  @skb: pointer to current skb being populated
6612 *
6613 *  This function checks the ring, descriptor, and packet information in
6614 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6615 *  other fields within the skb.
6616 **/
6617static void igb_process_skb_fields(struct igb_ring *rx_ring,
6618                                   union e1000_adv_rx_desc *rx_desc,
6619                                   struct sk_buff *skb)
6620{
6621        struct net_device *dev = rx_ring->netdev;
6622
6623        igb_rx_hash(rx_ring, rx_desc, skb);
6624
6625        igb_rx_checksum(rx_ring, rx_desc, skb);
6626
6627        igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6628
6629        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6630            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6631                u16 vid;
6632                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6633                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6634                        vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6635                else
6636                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6637
6638                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6639        }
6640
6641        skb_record_rx_queue(skb, rx_ring->queue_index);
6642
6643        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6644}
6645
6646static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6647{
6648        struct igb_ring *rx_ring = q_vector->rx.ring;
6649        struct sk_buff *skb = rx_ring->skb;
6650        unsigned int total_bytes = 0, total_packets = 0;
6651        u16 cleaned_count = igb_desc_unused(rx_ring);
6652
6653        do {
6654                union e1000_adv_rx_desc *rx_desc;
6655
6656                /* return some buffers to hardware, one at a time is too slow */
6657                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6658                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
6659                        cleaned_count = 0;
6660                }
6661
6662                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6663
6664                if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6665                        break;
6666
6667                /* This memory barrier is needed to keep us from reading
6668                 * any other fields out of the rx_desc until we know the
6669                 * RXD_STAT_DD bit is set
6670                 */
6671                rmb();
6672
6673                /* retrieve a buffer from the ring */
6674                skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6675
6676                /* exit if we failed to retrieve a buffer */
6677                if (!skb)
6678                        break;
6679
6680                cleaned_count++;
6681
6682                /* fetch next buffer in frame if non-eop */
6683                if (igb_is_non_eop(rx_ring, rx_desc))
6684                        continue;
6685
6686                /* verify the packet layout is correct */
6687                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6688                        skb = NULL;
6689                        continue;
6690                }
6691
6692                /* probably a little skewed due to removing CRC */
6693                total_bytes += skb->len;
6694
6695                /* populate checksum, timestamp, VLAN, and protocol */
6696                igb_process_skb_fields(rx_ring, rx_desc, skb);
6697
6698                napi_gro_receive(&q_vector->napi, skb);
6699
6700                /* reset skb pointer */
6701                skb = NULL;
6702
6703                /* update budget accounting */
6704                total_packets++;
6705        } while (likely(total_packets < budget));
6706
6707        /* place incomplete frames back on ring for completion */
6708        rx_ring->skb = skb;
6709
6710        u64_stats_update_begin(&rx_ring->rx_syncp);
6711        rx_ring->rx_stats.packets += total_packets;
6712        rx_ring->rx_stats.bytes += total_bytes;
6713        u64_stats_update_end(&rx_ring->rx_syncp);
6714        q_vector->rx.total_packets += total_packets;
6715        q_vector->rx.total_bytes += total_bytes;
6716
6717        if (cleaned_count)
6718                igb_alloc_rx_buffers(rx_ring, cleaned_count);
6719
6720        return (total_packets < budget);
6721}
6722
6723static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6724                                  struct igb_rx_buffer *bi)
6725{
6726        struct page *page = bi->page;
6727        dma_addr_t dma;
6728
6729        /* since we are recycling buffers we should seldom need to alloc */
6730        if (likely(page))
6731                return true;
6732
6733        /* alloc new page for storage */
6734        page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6735        if (unlikely(!page)) {
6736                rx_ring->rx_stats.alloc_failed++;
6737                return false;
6738        }
6739
6740        /* map page for use */
6741        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6742
6743        /* if mapping failed free memory back to system since
6744         * there isn't much point in holding memory we can't use
6745         */
6746        if (dma_mapping_error(rx_ring->dev, dma)) {
6747                __free_page(page);
6748
6749                rx_ring->rx_stats.alloc_failed++;
6750                return false;
6751        }
6752
6753        bi->dma = dma;
6754        bi->page = page;
6755        bi->page_offset = 0;
6756
6757        return true;
6758}
6759
6760/**
6761 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
6762 *  @adapter: address of board private structure
6763 **/
6764void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6765{
6766        union e1000_adv_rx_desc *rx_desc;
6767        struct igb_rx_buffer *bi;
6768        u16 i = rx_ring->next_to_use;
6769
6770        /* nothing to do */
6771        if (!cleaned_count)
6772                return;
6773
6774        rx_desc = IGB_RX_DESC(rx_ring, i);
6775        bi = &rx_ring->rx_buffer_info[i];
6776        i -= rx_ring->count;
6777
6778        do {
6779                if (!igb_alloc_mapped_page(rx_ring, bi))
6780                        break;
6781
6782                /* Refresh the desc even if buffer_addrs didn't change
6783                 * because each write-back erases this info.
6784                 */
6785                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
6786
6787                rx_desc++;
6788                bi++;
6789                i++;
6790                if (unlikely(!i)) {
6791                        rx_desc = IGB_RX_DESC(rx_ring, 0);
6792                        bi = rx_ring->rx_buffer_info;
6793                        i -= rx_ring->count;
6794                }
6795
6796                /* clear the hdr_addr for the next_to_use descriptor */
6797                rx_desc->read.hdr_addr = 0;
6798
6799                cleaned_count--;
6800        } while (cleaned_count);
6801
6802        i += rx_ring->count;
6803
6804        if (rx_ring->next_to_use != i) {
6805                /* record the next descriptor to use */
6806                rx_ring->next_to_use = i;
6807
6808                /* update next to alloc since we have filled the ring */
6809                rx_ring->next_to_alloc = i;
6810
6811                /* Force memory writes to complete before letting h/w
6812                 * know there are new descriptors to fetch.  (Only
6813                 * applicable for weak-ordered memory model archs,
6814                 * such as IA-64).
6815                 */
6816                wmb();
6817                writel(i, rx_ring->tail);
6818        }
6819}
6820
6821/**
6822 * igb_mii_ioctl -
6823 * @netdev:
6824 * @ifreq:
6825 * @cmd:
6826 **/
6827static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6828{
6829        struct igb_adapter *adapter = netdev_priv(netdev);
6830        struct mii_ioctl_data *data = if_mii(ifr);
6831
6832        if (adapter->hw.phy.media_type != e1000_media_type_copper)
6833                return -EOPNOTSUPP;
6834
6835        switch (cmd) {
6836        case SIOCGMIIPHY:
6837                data->phy_id = adapter->hw.phy.addr;
6838                break;
6839        case SIOCGMIIREG:
6840                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6841                                     &data->val_out))
6842                        return -EIO;
6843                break;
6844        case SIOCSMIIREG:
6845        default:
6846                return -EOPNOTSUPP;
6847        }
6848        return 0;
6849}
6850
6851/**
6852 * igb_ioctl -
6853 * @netdev:
6854 * @ifreq:
6855 * @cmd:
6856 **/
6857static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6858{
6859        switch (cmd) {
6860        case SIOCGMIIPHY:
6861        case SIOCGMIIREG:
6862        case SIOCSMIIREG:
6863                return igb_mii_ioctl(netdev, ifr, cmd);
6864        case SIOCSHWTSTAMP:
6865                return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6866        default:
6867                return -EOPNOTSUPP;
6868        }
6869}
6870
6871s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6872{
6873        struct igb_adapter *adapter = hw->back;
6874
6875        if (pcie_capability_read_word(adapter->pdev, reg, value))
6876                return -E1000_ERR_CONFIG;
6877
6878        return 0;
6879}
6880
6881s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6882{
6883        struct igb_adapter *adapter = hw->back;
6884
6885        if (pcie_capability_write_word(adapter->pdev, reg, *value))
6886                return -E1000_ERR_CONFIG;
6887
6888        return 0;
6889}
6890
6891static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6892{
6893        struct igb_adapter *adapter = netdev_priv(netdev);
6894        struct e1000_hw *hw = &adapter->hw;
6895        u32 ctrl, rctl;
6896        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
6897
6898        if (enable) {
6899                /* enable VLAN tag insert/strip */
6900                ctrl = rd32(E1000_CTRL);
6901                ctrl |= E1000_CTRL_VME;
6902                wr32(E1000_CTRL, ctrl);
6903
6904                /* Disable CFI check */
6905                rctl = rd32(E1000_RCTL);
6906                rctl &= ~E1000_RCTL_CFIEN;
6907                wr32(E1000_RCTL, rctl);
6908        } else {
6909                /* disable VLAN tag insert/strip */
6910                ctrl = rd32(E1000_CTRL);
6911                ctrl &= ~E1000_CTRL_VME;
6912                wr32(E1000_CTRL, ctrl);
6913        }
6914
6915        igb_rlpml_set(adapter);
6916}
6917
6918static int igb_vlan_rx_add_vid(struct net_device *netdev,
6919                               __be16 proto, u16 vid)
6920{
6921        struct igb_adapter *adapter = netdev_priv(netdev);
6922        struct e1000_hw *hw = &adapter->hw;
6923        int pf_id = adapter->vfs_allocated_count;
6924
6925        /* attempt to add filter to vlvf array */
6926        igb_vlvf_set(adapter, vid, true, pf_id);
6927
6928        /* add the filter since PF can receive vlans w/o entry in vlvf */
6929        igb_vfta_set(hw, vid, true);
6930
6931        set_bit(vid, adapter->active_vlans);
6932
6933        return 0;
6934}
6935
6936static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6937                                __be16 proto, u16 vid)
6938{
6939        struct igb_adapter *adapter = netdev_priv(netdev);
6940        struct e1000_hw *hw = &adapter->hw;
6941        int pf_id = adapter->vfs_allocated_count;
6942        s32 err;
6943
6944        /* remove vlan from VLVF table array */
6945        err = igb_vlvf_set(adapter, vid, false, pf_id);
6946
6947        /* if vid was not present in VLVF just remove it from table */
6948        if (err)
6949                igb_vfta_set(hw, vid, false);
6950
6951        clear_bit(vid, adapter->active_vlans);
6952
6953        return 0;
6954}
6955
6956static void igb_restore_vlan(struct igb_adapter *adapter)
6957{
6958        u16 vid;
6959
6960        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6961
6962        for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6963                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
6964}
6965
6966int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6967{
6968        struct pci_dev *pdev = adapter->pdev;
6969        struct e1000_mac_info *mac = &adapter->hw.mac;
6970
6971        mac->autoneg = 0;
6972
6973        /* Make sure dplx is at most 1 bit and lsb of speed is not set
6974         * for the switch() below to work
6975         */
6976        if ((spd & 1) || (dplx & ~1))
6977                goto err_inval;
6978
6979        /* Fiber NIC's only allow 1000 gbps Full duplex
6980         * and 100Mbps Full duplex for 100baseFx sfp
6981         */
6982        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6983                switch (spd + dplx) {
6984                case SPEED_10 + DUPLEX_HALF:
6985                case SPEED_10 + DUPLEX_FULL:
6986                case SPEED_100 + DUPLEX_HALF:
6987                        goto err_inval;
6988                default:
6989                        break;
6990                }
6991        }
6992
6993        switch (spd + dplx) {
6994        case SPEED_10 + DUPLEX_HALF:
6995                mac->forced_speed_duplex = ADVERTISE_10_HALF;
6996                break;
6997        case SPEED_10 + DUPLEX_FULL:
6998                mac->forced_speed_duplex = ADVERTISE_10_FULL;
6999                break;
7000        case SPEED_100 + DUPLEX_HALF:
7001                mac->forced_speed_duplex = ADVERTISE_100_HALF;
7002                break;
7003        case SPEED_100 + DUPLEX_FULL:
7004                mac->forced_speed_duplex = ADVERTISE_100_FULL;
7005                break;
7006        case SPEED_1000 + DUPLEX_FULL:
7007                mac->autoneg = 1;
7008                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7009                break;
7010        case SPEED_1000 + DUPLEX_HALF: /* not supported */
7011        default:
7012                goto err_inval;
7013        }
7014
7015        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7016        adapter->hw.phy.mdix = AUTO_ALL_MODES;
7017
7018        return 0;
7019
7020err_inval:
7021        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7022        return -EINVAL;
7023}
7024
7025static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7026                          bool runtime)
7027{
7028        struct net_device *netdev = pci_get_drvdata(pdev);
7029        struct igb_adapter *adapter = netdev_priv(netdev);
7030        struct e1000_hw *hw = &adapter->hw;
7031        u32 ctrl, rctl, status;
7032        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7033#ifdef CONFIG_PM
7034        int retval = 0;
7035#endif
7036
7037        netif_device_detach(netdev);
7038
7039        if (netif_running(netdev))
7040                __igb_close(netdev, true);
7041
7042        igb_clear_interrupt_scheme(adapter);
7043
7044#ifdef CONFIG_PM
7045        retval = pci_save_state(pdev);
7046        if (retval)
7047                return retval;
7048#endif
7049
7050        status = rd32(E1000_STATUS);
7051        if (status & E1000_STATUS_LU)
7052                wufc &= ~E1000_WUFC_LNKC;
7053
7054        if (wufc) {
7055                igb_setup_rctl(adapter);
7056                igb_set_rx_mode(netdev);
7057
7058                /* turn on all-multi mode if wake on multicast is enabled */
7059                if (wufc & E1000_WUFC_MC) {
7060                        rctl = rd32(E1000_RCTL);
7061                        rctl |= E1000_RCTL_MPE;
7062                        wr32(E1000_RCTL, rctl);
7063                }
7064
7065                ctrl = rd32(E1000_CTRL);
7066                /* advertise wake from D3Cold */
7067                #define E1000_CTRL_ADVD3WUC 0x00100000
7068                /* phy power management enable */
7069                #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7070                ctrl |= E1000_CTRL_ADVD3WUC;
7071                wr32(E1000_CTRL, ctrl);
7072
7073                /* Allow time for pending master requests to run */
7074                igb_disable_pcie_master(hw);
7075
7076                wr32(E1000_WUC, E1000_WUC_PME_EN);
7077                wr32(E1000_WUFC, wufc);
7078        } else {
7079                wr32(E1000_WUC, 0);
7080                wr32(E1000_WUFC, 0);
7081        }
7082
7083        *enable_wake = wufc || adapter->en_mng_pt;
7084        if (!*enable_wake)
7085                igb_power_down_link(adapter);
7086        else
7087                igb_power_up_link(adapter);
7088
7089        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7090         * would have already happened in close and is redundant.
7091         */
7092        igb_release_hw_control(adapter);
7093
7094        pci_disable_device(pdev);
7095
7096        return 0;
7097}
7098
7099#ifdef CONFIG_PM
7100#ifdef CONFIG_PM_SLEEP
7101static int igb_suspend(struct device *dev)
7102{
7103        int retval;
7104        bool wake;
7105        struct pci_dev *pdev = to_pci_dev(dev);
7106
7107        retval = __igb_shutdown(pdev, &wake, 0);
7108        if (retval)
7109                return retval;
7110
7111        if (wake) {
7112                pci_prepare_to_sleep(pdev);
7113        } else {
7114                pci_wake_from_d3(pdev, false);
7115                pci_set_power_state(pdev, PCI_D3hot);
7116        }
7117
7118        return 0;
7119}
7120#endif /* CONFIG_PM_SLEEP */
7121
7122static int igb_resume(struct device *dev)
7123{
7124        struct pci_dev *pdev = to_pci_dev(dev);
7125        struct net_device *netdev = pci_get_drvdata(pdev);
7126        struct igb_adapter *adapter = netdev_priv(netdev);
7127        struct e1000_hw *hw = &adapter->hw;
7128        u32 err;
7129
7130        pci_set_power_state(pdev, PCI_D0);
7131        pci_restore_state(pdev);
7132        pci_save_state(pdev);
7133
7134        err = pci_enable_device_mem(pdev);
7135        if (err) {
7136                dev_err(&pdev->dev,
7137                        "igb: Cannot enable PCI device from suspend\n");
7138                return err;
7139        }
7140        pci_set_master(pdev);
7141
7142        pci_enable_wake(pdev, PCI_D3hot, 0);
7143        pci_enable_wake(pdev, PCI_D3cold, 0);
7144
7145        if (igb_init_interrupt_scheme(adapter, true)) {
7146                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7147                return -ENOMEM;
7148        }
7149
7150        igb_reset(adapter);
7151
7152        /* let the f/w know that the h/w is now under the control of the
7153         * driver.
7154         */
7155        igb_get_hw_control(adapter);
7156
7157        wr32(E1000_WUS, ~0);
7158
7159        if (netdev->flags & IFF_UP) {
7160                rtnl_lock();
7161                err = __igb_open(netdev, true);
7162                rtnl_unlock();
7163                if (err)
7164                        return err;
7165        }
7166
7167        netif_device_attach(netdev);
7168        return 0;
7169}
7170
7171#ifdef CONFIG_PM_RUNTIME
7172static int igb_runtime_idle(struct device *dev)
7173{
7174        struct pci_dev *pdev = to_pci_dev(dev);
7175        struct net_device *netdev = pci_get_drvdata(pdev);
7176        struct igb_adapter *adapter = netdev_priv(netdev);
7177
7178        if (!igb_has_link(adapter))
7179                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7180
7181        return -EBUSY;
7182}
7183
7184static int igb_runtime_suspend(struct device *dev)
7185{
7186        struct pci_dev *pdev = to_pci_dev(dev);
7187        int retval;
7188        bool wake;
7189
7190        retval = __igb_shutdown(pdev, &wake, 1);
7191        if (retval)
7192                return retval;
7193
7194        if (wake) {
7195                pci_prepare_to_sleep(pdev);
7196        } else {
7197                pci_wake_from_d3(pdev, false);
7198                pci_set_power_state(pdev, PCI_D3hot);
7199        }
7200
7201        return 0;
7202}
7203
7204static int igb_runtime_resume(struct device *dev)
7205{
7206        return igb_resume(dev);
7207}
7208#endif /* CONFIG_PM_RUNTIME */
7209#endif
7210
7211static void igb_shutdown(struct pci_dev *pdev)
7212{
7213        bool wake;
7214
7215        __igb_shutdown(pdev, &wake, 0);
7216
7217        if (system_state == SYSTEM_POWER_OFF) {
7218                pci_wake_from_d3(pdev, wake);
7219                pci_set_power_state(pdev, PCI_D3hot);
7220        }
7221}
7222
7223#ifdef CONFIG_PCI_IOV
7224static int igb_sriov_reinit(struct pci_dev *dev)
7225{
7226        struct net_device *netdev = pci_get_drvdata(dev);
7227        struct igb_adapter *adapter = netdev_priv(netdev);
7228        struct pci_dev *pdev = adapter->pdev;
7229
7230        rtnl_lock();
7231
7232        if (netif_running(netdev))
7233                igb_close(netdev);
7234
7235        igb_clear_interrupt_scheme(adapter);
7236
7237        igb_init_queue_configuration(adapter);
7238
7239        if (igb_init_interrupt_scheme(adapter, true)) {
7240                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7241                return -ENOMEM;
7242        }
7243
7244        if (netif_running(netdev))
7245                igb_open(netdev);
7246
7247        rtnl_unlock();
7248
7249        return 0;
7250}
7251
7252static int igb_pci_disable_sriov(struct pci_dev *dev)
7253{
7254        int err = igb_disable_sriov(dev);
7255
7256        if (!err)
7257                err = igb_sriov_reinit(dev);
7258
7259        return err;
7260}
7261
7262static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7263{
7264        int err = igb_enable_sriov(dev, num_vfs);
7265
7266        if (err)
7267                goto out;
7268
7269        err = igb_sriov_reinit(dev);
7270        if (!err)
7271                return num_vfs;
7272
7273out:
7274        return err;
7275}
7276
7277#endif
7278static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7279{
7280#ifdef CONFIG_PCI_IOV
7281        if (num_vfs == 0)
7282                return igb_pci_disable_sriov(dev);
7283        else
7284                return igb_pci_enable_sriov(dev, num_vfs);
7285#endif
7286        return 0;
7287}
7288
7289#ifdef CONFIG_NET_POLL_CONTROLLER
7290/* Polling 'interrupt' - used by things like netconsole to send skbs
7291 * without having to re-enable interrupts. It's not called while
7292 * the interrupt routine is executing.
7293 */
7294static void igb_netpoll(struct net_device *netdev)
7295{
7296        struct igb_adapter *adapter = netdev_priv(netdev);
7297        struct e1000_hw *hw = &adapter->hw;
7298        struct igb_q_vector *q_vector;
7299        int i;
7300
7301        for (i = 0; i < adapter->num_q_vectors; i++) {
7302                q_vector = adapter->q_vector[i];
7303                if (adapter->msix_entries)
7304                        wr32(E1000_EIMC, q_vector->eims_value);
7305                else
7306                        igb_irq_disable(adapter);
7307                napi_schedule(&q_vector->napi);
7308        }
7309}
7310#endif /* CONFIG_NET_POLL_CONTROLLER */
7311
7312/**
7313 *  igb_io_error_detected - called when PCI error is detected
7314 *  @pdev: Pointer to PCI device
7315 *  @state: The current pci connection state
7316 *
7317 *  This function is called after a PCI bus error affecting
7318 *  this device has been detected.
7319 **/
7320static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7321                                              pci_channel_state_t state)
7322{
7323        struct net_device *netdev = pci_get_drvdata(pdev);
7324        struct igb_adapter *adapter = netdev_priv(netdev);
7325
7326        netif_device_detach(netdev);
7327
7328        if (state == pci_channel_io_perm_failure)
7329                return PCI_ERS_RESULT_DISCONNECT;
7330
7331        if (netif_running(netdev))
7332                igb_down(adapter);
7333        pci_disable_device(pdev);
7334
7335        /* Request a slot slot reset. */
7336        return PCI_ERS_RESULT_NEED_RESET;
7337}
7338
7339/**
7340 *  igb_io_slot_reset - called after the pci bus has been reset.
7341 *  @pdev: Pointer to PCI device
7342 *
7343 *  Restart the card from scratch, as if from a cold-boot. Implementation
7344 *  resembles the first-half of the igb_resume routine.
7345 **/
7346static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7347{
7348        struct net_device *netdev = pci_get_drvdata(pdev);
7349        struct igb_adapter *adapter = netdev_priv(netdev);
7350        struct e1000_hw *hw = &adapter->hw;
7351        pci_ers_result_t result;
7352        int err;
7353
7354        if (pci_enable_device_mem(pdev)) {
7355                dev_err(&pdev->dev,
7356                        "Cannot re-enable PCI device after reset.\n");
7357                result = PCI_ERS_RESULT_DISCONNECT;
7358        } else {
7359                pci_set_master(pdev);
7360                pci_restore_state(pdev);
7361                pci_save_state(pdev);
7362
7363                pci_enable_wake(pdev, PCI_D3hot, 0);
7364                pci_enable_wake(pdev, PCI_D3cold, 0);
7365
7366                igb_reset(adapter);
7367                wr32(E1000_WUS, ~0);
7368                result = PCI_ERS_RESULT_RECOVERED;
7369        }
7370
7371        err = pci_cleanup_aer_uncorrect_error_status(pdev);
7372        if (err) {
7373                dev_err(&pdev->dev,
7374                        "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7375                        err);
7376                /* non-fatal, continue */
7377        }
7378
7379        return result;
7380}
7381
7382/**
7383 *  igb_io_resume - called when traffic can start flowing again.
7384 *  @pdev: Pointer to PCI device
7385 *
7386 *  This callback is called when the error recovery driver tells us that
7387 *  its OK to resume normal operation. Implementation resembles the
7388 *  second-half of the igb_resume routine.
7389 */
7390static void igb_io_resume(struct pci_dev *pdev)
7391{
7392        struct net_device *netdev = pci_get_drvdata(pdev);
7393        struct igb_adapter *adapter = netdev_priv(netdev);
7394
7395        if (netif_running(netdev)) {
7396                if (igb_up(adapter)) {
7397                        dev_err(&pdev->dev, "igb_up failed after reset\n");
7398                        return;
7399                }
7400        }
7401
7402        netif_device_attach(netdev);
7403
7404        /* let the f/w know that the h/w is now under the control of the
7405         * driver.
7406         */
7407        igb_get_hw_control(adapter);
7408}
7409
7410static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7411                             u8 qsel)
7412{
7413        u32 rar_low, rar_high;
7414        struct e1000_hw *hw = &adapter->hw;
7415
7416        /* HW expects these in little endian so we reverse the byte order
7417         * from network order (big endian) to little endian
7418         */
7419        rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7420                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7421        rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7422
7423        /* Indicate to hardware the Address is Valid. */
7424        rar_high |= E1000_RAH_AV;
7425
7426        if (hw->mac.type == e1000_82575)
7427                rar_high |= E1000_RAH_POOL_1 * qsel;
7428        else
7429                rar_high |= E1000_RAH_POOL_1 << qsel;
7430
7431        wr32(E1000_RAL(index), rar_low);
7432        wrfl();
7433        wr32(E1000_RAH(index), rar_high);
7434        wrfl();
7435}
7436
7437static int igb_set_vf_mac(struct igb_adapter *adapter,
7438                          int vf, unsigned char *mac_addr)
7439{
7440        struct e1000_hw *hw = &adapter->hw;
7441        /* VF MAC addresses start at end of receive addresses and moves
7442         * towards the first, as a result a collision should not be possible
7443         */
7444        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7445
7446        memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7447
7448        igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7449
7450        return 0;
7451}
7452
7453static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7454{
7455        struct igb_adapter *adapter = netdev_priv(netdev);
7456        if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7457                return -EINVAL;
7458        adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7459        dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7460        dev_info(&adapter->pdev->dev,
7461                 "Reload the VF driver to make this change effective.");
7462        if (test_bit(__IGB_DOWN, &adapter->state)) {
7463                dev_warn(&adapter->pdev->dev,
7464                         "The VF MAC address has been set, but the PF device is not up.\n");
7465                dev_warn(&adapter->pdev->dev,
7466                         "Bring the PF device up before attempting to use the VF device.\n");
7467        }
7468        return igb_set_vf_mac(adapter, vf, mac);
7469}
7470
7471static int igb_link_mbps(int internal_link_speed)
7472{
7473        switch (internal_link_speed) {
7474        case SPEED_100:
7475                return 100;
7476        case SPEED_1000:
7477                return 1000;
7478        default:
7479                return 0;
7480        }
7481}
7482
7483static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7484                                  int link_speed)
7485{
7486        int rf_dec, rf_int;
7487        u32 bcnrc_val;
7488
7489        if (tx_rate != 0) {
7490                /* Calculate the rate factor values to set */
7491                rf_int = link_speed / tx_rate;
7492                rf_dec = (link_speed - (rf_int * tx_rate));
7493                rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7494                         tx_rate;
7495
7496                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7497                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7498                              E1000_RTTBCNRC_RF_INT_MASK);
7499                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7500        } else {
7501                bcnrc_val = 0;
7502        }
7503
7504        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7505        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7506         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7507         */
7508        wr32(E1000_RTTBCNRM, 0x14);
7509        wr32(E1000_RTTBCNRC, bcnrc_val);
7510}
7511
7512static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7513{
7514        int actual_link_speed, i;
7515        bool reset_rate = false;
7516
7517        /* VF TX rate limit was not set or not supported */
7518        if ((adapter->vf_rate_link_speed == 0) ||
7519            (adapter->hw.mac.type != e1000_82576))
7520                return;
7521
7522        actual_link_speed = igb_link_mbps(adapter->link_speed);
7523        if (actual_link_speed != adapter->vf_rate_link_speed) {
7524                reset_rate = true;
7525                adapter->vf_rate_link_speed = 0;
7526                dev_info(&adapter->pdev->dev,
7527                         "Link speed has been changed. VF Transmit rate is disabled\n");
7528        }
7529
7530        for (i = 0; i < adapter->vfs_allocated_count; i++) {
7531                if (reset_rate)
7532                        adapter->vf_data[i].tx_rate = 0;
7533
7534                igb_set_vf_rate_limit(&adapter->hw, i,
7535                                      adapter->vf_data[i].tx_rate,
7536                                      actual_link_speed);
7537        }
7538}
7539
7540static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7541{
7542        struct igb_adapter *adapter = netdev_priv(netdev);
7543        struct e1000_hw *hw = &adapter->hw;
7544        int actual_link_speed;
7545
7546        if (hw->mac.type != e1000_82576)
7547                return -EOPNOTSUPP;
7548
7549        actual_link_speed = igb_link_mbps(adapter->link_speed);
7550        if ((vf >= adapter->vfs_allocated_count) ||
7551            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7552            (tx_rate < 0) || (tx_rate > actual_link_speed))
7553                return -EINVAL;
7554
7555        adapter->vf_rate_link_speed = actual_link_speed;
7556        adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7557        igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7558
7559        return 0;
7560}
7561
7562static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7563                                   bool setting)
7564{
7565        struct igb_adapter *adapter = netdev_priv(netdev);
7566        struct e1000_hw *hw = &adapter->hw;
7567        u32 reg_val, reg_offset;
7568
7569        if (!adapter->vfs_allocated_count)
7570                return -EOPNOTSUPP;
7571
7572        if (vf >= adapter->vfs_allocated_count)
7573                return -EINVAL;
7574
7575        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7576        reg_val = rd32(reg_offset);
7577        if (setting)
7578                reg_val |= ((1 << vf) |
7579                            (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7580        else
7581                reg_val &= ~((1 << vf) |
7582                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7583        wr32(reg_offset, reg_val);
7584
7585        adapter->vf_data[vf].spoofchk_enabled = setting;
7586        return E1000_SUCCESS;
7587}
7588
7589static int igb_ndo_get_vf_config(struct net_device *netdev,
7590                                 int vf, struct ifla_vf_info *ivi)
7591{
7592        struct igb_adapter *adapter = netdev_priv(netdev);
7593        if (vf >= adapter->vfs_allocated_count)
7594                return -EINVAL;
7595        ivi->vf = vf;
7596        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7597        ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7598        ivi->vlan = adapter->vf_data[vf].pf_vlan;
7599        ivi->qos = adapter->vf_data[vf].pf_qos;
7600        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7601        return 0;
7602}
7603
7604static void igb_vmm_control(struct igb_adapter *adapter)
7605{
7606        struct e1000_hw *hw = &adapter->hw;
7607        u32 reg;
7608
7609        switch (hw->mac.type) {
7610        case e1000_82575:
7611        case e1000_i210:
7612        case e1000_i211:
7613        case e1000_i354:
7614        default:
7615                /* replication is not supported for 82575 */
7616                return;
7617        case e1000_82576:
7618                /* notify HW that the MAC is adding vlan tags */
7619                reg = rd32(E1000_DTXCTL);
7620                reg |= E1000_DTXCTL_VLAN_ADDED;
7621                wr32(E1000_DTXCTL, reg);
7622        case e1000_82580:
7623                /* enable replication vlan tag stripping */
7624                reg = rd32(E1000_RPLOLR);
7625                reg |= E1000_RPLOLR_STRVLAN;
7626                wr32(E1000_RPLOLR, reg);
7627        case e1000_i350:
7628                /* none of the above registers are supported by i350 */
7629                break;
7630        }
7631
7632        if (adapter->vfs_allocated_count) {
7633                igb_vmdq_set_loopback_pf(hw, true);
7634                igb_vmdq_set_replication_pf(hw, true);
7635                igb_vmdq_set_anti_spoofing_pf(hw, true,
7636                                              adapter->vfs_allocated_count);
7637        } else {
7638                igb_vmdq_set_loopback_pf(hw, false);
7639                igb_vmdq_set_replication_pf(hw, false);
7640        }
7641}
7642
7643static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7644{
7645        struct e1000_hw *hw = &adapter->hw;
7646        u32 dmac_thr;
7647        u16 hwm;
7648
7649        if (hw->mac.type > e1000_82580) {
7650                if (adapter->flags & IGB_FLAG_DMAC) {
7651                        u32 reg;
7652
7653                        /* force threshold to 0. */
7654                        wr32(E1000_DMCTXTH, 0);
7655
7656                        /* DMA Coalescing high water mark needs to be greater
7657                         * than the Rx threshold. Set hwm to PBA - max frame
7658                         * size in 16B units, capping it at PBA - 6KB.
7659                         */
7660                        hwm = 64 * pba - adapter->max_frame_size / 16;
7661                        if (hwm < 64 * (pba - 6))
7662                                hwm = 64 * (pba - 6);
7663                        reg = rd32(E1000_FCRTC);
7664                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7665                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7666                                & E1000_FCRTC_RTH_COAL_MASK);
7667                        wr32(E1000_FCRTC, reg);
7668
7669                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7670                         * frame size, capping it at PBA - 10KB.
7671                         */
7672                        dmac_thr = pba - adapter->max_frame_size / 512;
7673                        if (dmac_thr < pba - 10)
7674                                dmac_thr = pba - 10;
7675                        reg = rd32(E1000_DMACR);
7676                        reg &= ~E1000_DMACR_DMACTHR_MASK;
7677                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7678                                & E1000_DMACR_DMACTHR_MASK);
7679
7680                        /* transition to L0x or L1 if available..*/
7681                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7682
7683                        /* watchdog timer= +-1000 usec in 32usec intervals */
7684                        reg |= (1000 >> 5);
7685
7686                        /* Disable BMC-to-OS Watchdog Enable */
7687                        if (hw->mac.type != e1000_i354)
7688                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7689
7690                        wr32(E1000_DMACR, reg);
7691
7692                        /* no lower threshold to disable
7693                         * coalescing(smart fifb)-UTRESH=0
7694                         */
7695                        wr32(E1000_DMCRTRH, 0);
7696
7697                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7698
7699                        wr32(E1000_DMCTLX, reg);
7700
7701                        /* free space in tx packet buffer to wake from
7702                         * DMA coal
7703                         */
7704                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7705                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7706
7707                        /* make low power state decision controlled
7708                         * by DMA coal
7709                         */
7710                        reg = rd32(E1000_PCIEMISC);
7711                        reg &= ~E1000_PCIEMISC_LX_DECISION;
7712                        wr32(E1000_PCIEMISC, reg);
7713                } /* endif adapter->dmac is not disabled */
7714        } else if (hw->mac.type == e1000_82580) {
7715                u32 reg = rd32(E1000_PCIEMISC);
7716                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7717                wr32(E1000_DMACR, 0);
7718        }
7719}
7720
7721/**
7722 *  igb_read_i2c_byte - Reads 8 bit word over I2C
7723 *  @hw: pointer to hardware structure
7724 *  @byte_offset: byte offset to read
7725 *  @dev_addr: device address
7726 *  @data: value read
7727 *
7728 *  Performs byte read operation over I2C interface at
7729 *  a specified device address.
7730 **/
7731s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7732                      u8 dev_addr, u8 *data)
7733{
7734        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7735        struct i2c_client *this_client = adapter->i2c_client;
7736        s32 status;
7737        u16 swfw_mask = 0;
7738
7739        if (!this_client)
7740                return E1000_ERR_I2C;
7741
7742        swfw_mask = E1000_SWFW_PHY0_SM;
7743
7744        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7745            != E1000_SUCCESS)
7746                return E1000_ERR_SWFW_SYNC;
7747
7748        status = i2c_smbus_read_byte_data(this_client, byte_offset);
7749        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7750
7751        if (status < 0)
7752                return E1000_ERR_I2C;
7753        else {
7754                *data = status;
7755                return E1000_SUCCESS;
7756        }
7757}
7758
7759/**
7760 *  igb_write_i2c_byte - Writes 8 bit word over I2C
7761 *  @hw: pointer to hardware structure
7762 *  @byte_offset: byte offset to write
7763 *  @dev_addr: device address
7764 *  @data: value to write
7765 *
7766 *  Performs byte write operation over I2C interface at
7767 *  a specified device address.
7768 **/
7769s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7770                       u8 dev_addr, u8 data)
7771{
7772        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7773        struct i2c_client *this_client = adapter->i2c_client;
7774        s32 status;
7775        u16 swfw_mask = E1000_SWFW_PHY0_SM;
7776
7777        if (!this_client)
7778                return E1000_ERR_I2C;
7779
7780        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7781                return E1000_ERR_SWFW_SYNC;
7782        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7783        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7784
7785        if (status)
7786                return E1000_ERR_I2C;
7787        else
7788                return E1000_SUCCESS;
7789
7790}
7791/* igb_main.c */
7792