linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/sched.h>
  31#include <linux/netdevice.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_common.h"
  35#include "ixgbe_phy.h"
  36
  37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  43                                        u16 count);
  44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  48
  49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  50static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  51static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  52                                             u16 words, u16 *data);
  53static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  54                                             u16 words, u16 *data);
  55static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  56                                                 u16 offset);
  57static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  58
  59/**
  60 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  61 *  control
  62 *  @hw: pointer to hardware structure
  63 *
  64 *  There are several phys that do not support autoneg flow control. This
  65 *  function check the device id to see if the associated phy supports
  66 *  autoneg flow control.
  67 **/
  68s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  69{
  70
  71        switch (hw->device_id) {
  72        case IXGBE_DEV_ID_X540T:
  73        case IXGBE_DEV_ID_X540T1:
  74        case IXGBE_DEV_ID_82599_T3_LOM:
  75                return 0;
  76        default:
  77                return IXGBE_ERR_FC_NOT_SUPPORTED;
  78        }
  79}
  80
  81/**
  82 *  ixgbe_setup_fc - Set up flow control
  83 *  @hw: pointer to hardware structure
  84 *
  85 *  Called at init time to set up flow control.
  86 **/
  87static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
  88{
  89        s32 ret_val = 0;
  90        u32 reg = 0, reg_bp = 0;
  91        u16 reg_cu = 0;
  92        bool got_lock = false;
  93
  94        /*
  95         * Validate the requested mode.  Strict IEEE mode does not allow
  96         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
  97         */
  98        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
  99                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 100                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 101                goto out;
 102        }
 103
 104        /*
 105         * 10gig parts do not have a word in the EEPROM to determine the
 106         * default flow control setting, so we explicitly set it to full.
 107         */
 108        if (hw->fc.requested_mode == ixgbe_fc_default)
 109                hw->fc.requested_mode = ixgbe_fc_full;
 110
 111        /*
 112         * Set up the 1G and 10G flow control advertisement registers so the
 113         * HW will be able to do fc autoneg once the cable is plugged in.  If
 114         * we link at 10G, the 1G advertisement is harmless and vice versa.
 115         */
 116        switch (hw->phy.media_type) {
 117        case ixgbe_media_type_fiber:
 118        case ixgbe_media_type_backplane:
 119                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 120                reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 121                break;
 122        case ixgbe_media_type_copper:
 123                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 124                                        MDIO_MMD_AN, &reg_cu);
 125                break;
 126        default:
 127                break;
 128        }
 129
 130        /*
 131         * The possible values of fc.requested_mode are:
 132         * 0: Flow control is completely disabled
 133         * 1: Rx flow control is enabled (we can receive pause frames,
 134         *    but not send pause frames).
 135         * 2: Tx flow control is enabled (we can send pause frames but
 136         *    we do not support receiving pause frames).
 137         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 138         * other: Invalid.
 139         */
 140        switch (hw->fc.requested_mode) {
 141        case ixgbe_fc_none:
 142                /* Flow control completely disabled by software override. */
 143                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 144                if (hw->phy.media_type == ixgbe_media_type_backplane)
 145                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 146                                    IXGBE_AUTOC_ASM_PAUSE);
 147                else if (hw->phy.media_type == ixgbe_media_type_copper)
 148                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 149                break;
 150        case ixgbe_fc_tx_pause:
 151                /*
 152                 * Tx Flow control is enabled, and Rx Flow control is
 153                 * disabled by software override.
 154                 */
 155                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 156                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 157                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 158                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 159                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 160                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 161                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 162                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 163                }
 164                break;
 165        case ixgbe_fc_rx_pause:
 166                /*
 167                 * Rx Flow control is enabled and Tx Flow control is
 168                 * disabled by software override. Since there really
 169                 * isn't a way to advertise that we are capable of RX
 170                 * Pause ONLY, we will advertise that we support both
 171                 * symmetric and asymmetric Rx PAUSE, as such we fall
 172                 * through to the fc_full statement.  Later, we will
 173                 * disable the adapter's ability to send PAUSE frames.
 174                 */
 175        case ixgbe_fc_full:
 176                /* Flow control (both Rx and Tx) is enabled by SW override. */
 177                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 178                if (hw->phy.media_type == ixgbe_media_type_backplane)
 179                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 180                                  IXGBE_AUTOC_ASM_PAUSE;
 181                else if (hw->phy.media_type == ixgbe_media_type_copper)
 182                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 183                break;
 184        default:
 185                hw_dbg(hw, "Flow control param set incorrectly\n");
 186                ret_val = IXGBE_ERR_CONFIG;
 187                goto out;
 188                break;
 189        }
 190
 191        if (hw->mac.type != ixgbe_mac_X540) {
 192                /*
 193                 * Enable auto-negotiation between the MAC & PHY;
 194                 * the MAC will advertise clause 37 flow control.
 195                 */
 196                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 197                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 198
 199                /* Disable AN timeout */
 200                if (hw->fc.strict_ieee)
 201                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 202
 203                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 204                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 205        }
 206
 207        /*
 208         * AUTOC restart handles negotiation of 1G and 10G on backplane
 209         * and copper. There is no need to set the PCS1GCTL register.
 210         *
 211         */
 212        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 213                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 214                 * LESM is on, likewise reset_pipeline requries the lock as
 215                 * it also writes AUTOC.
 216                 */
 217                if ((hw->mac.type == ixgbe_mac_82599EB) &&
 218                    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
 219                        ret_val = hw->mac.ops.acquire_swfw_sync(hw,
 220                                                        IXGBE_GSSR_MAC_CSR_SM);
 221                        if (ret_val)
 222                                goto out;
 223
 224                        got_lock = true;
 225                }
 226
 227                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
 228
 229                if (hw->mac.type == ixgbe_mac_82599EB)
 230                        ixgbe_reset_pipeline_82599(hw);
 231
 232                if (got_lock)
 233                        hw->mac.ops.release_swfw_sync(hw,
 234                                                      IXGBE_GSSR_MAC_CSR_SM);
 235
 236        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 237                    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
 238                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 239                                      MDIO_MMD_AN, reg_cu);
 240        }
 241
 242        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 243out:
 244        return ret_val;
 245}
 246
 247/**
 248 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 249 *  @hw: pointer to hardware structure
 250 *
 251 *  Starts the hardware by filling the bus info structure and media type, clears
 252 *  all on chip counters, initializes receive address registers, multicast
 253 *  table, VLAN filter table, calls routine to set up link and flow control
 254 *  settings, and leaves transmit and receive units disabled and uninitialized
 255 **/
 256s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 257{
 258        u32 ctrl_ext;
 259
 260        /* Set the media type */
 261        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 262
 263        /* Identify the PHY */
 264        hw->phy.ops.identify(hw);
 265
 266        /* Clear the VLAN filter table */
 267        hw->mac.ops.clear_vfta(hw);
 268
 269        /* Clear statistics registers */
 270        hw->mac.ops.clear_hw_cntrs(hw);
 271
 272        /* Set No Snoop Disable */
 273        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 274        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 275        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 276        IXGBE_WRITE_FLUSH(hw);
 277
 278        /* Setup flow control */
 279        ixgbe_setup_fc(hw);
 280
 281        /* Clear adapter stopped flag */
 282        hw->adapter_stopped = false;
 283
 284        return 0;
 285}
 286
 287/**
 288 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 289 *  @hw: pointer to hw structure
 290 *
 291 * Performs the init sequence common to the second generation
 292 * of 10 GbE devices.
 293 * Devices in the second generation:
 294 *     82599
 295 *     X540
 296 **/
 297s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 298{
 299        u32 i;
 300        u32 regval;
 301
 302        /* Clear the rate limiters */
 303        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 304                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 305                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 306        }
 307        IXGBE_WRITE_FLUSH(hw);
 308
 309        /* Disable relaxed ordering */
 310        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 311                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 312                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 313                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 314        }
 315
 316        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 317                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 318                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 319                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 320                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 321        }
 322
 323        return 0;
 324}
 325
 326/**
 327 *  ixgbe_init_hw_generic - Generic hardware initialization
 328 *  @hw: pointer to hardware structure
 329 *
 330 *  Initialize the hardware by resetting the hardware, filling the bus info
 331 *  structure and media type, clears all on chip counters, initializes receive
 332 *  address registers, multicast table, VLAN filter table, calls routine to set
 333 *  up link and flow control settings, and leaves transmit and receive units
 334 *  disabled and uninitialized
 335 **/
 336s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 337{
 338        s32 status;
 339
 340        /* Reset the hardware */
 341        status = hw->mac.ops.reset_hw(hw);
 342
 343        if (status == 0) {
 344                /* Start the HW */
 345                status = hw->mac.ops.start_hw(hw);
 346        }
 347
 348        return status;
 349}
 350
 351/**
 352 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 353 *  @hw: pointer to hardware structure
 354 *
 355 *  Clears all hardware statistics counters by reading them from the hardware
 356 *  Statistics counters are clear on read.
 357 **/
 358s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 359{
 360        u16 i = 0;
 361
 362        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 363        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 364        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 365        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 366        for (i = 0; i < 8; i++)
 367                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 368
 369        IXGBE_READ_REG(hw, IXGBE_MLFC);
 370        IXGBE_READ_REG(hw, IXGBE_MRFC);
 371        IXGBE_READ_REG(hw, IXGBE_RLEC);
 372        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 373        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 374        if (hw->mac.type >= ixgbe_mac_82599EB) {
 375                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 376                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 377        } else {
 378                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 379                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 380        }
 381
 382        for (i = 0; i < 8; i++) {
 383                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 384                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 385                if (hw->mac.type >= ixgbe_mac_82599EB) {
 386                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 387                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 388                } else {
 389                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 390                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 391                }
 392        }
 393        if (hw->mac.type >= ixgbe_mac_82599EB)
 394                for (i = 0; i < 8; i++)
 395                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 396        IXGBE_READ_REG(hw, IXGBE_PRC64);
 397        IXGBE_READ_REG(hw, IXGBE_PRC127);
 398        IXGBE_READ_REG(hw, IXGBE_PRC255);
 399        IXGBE_READ_REG(hw, IXGBE_PRC511);
 400        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 401        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 402        IXGBE_READ_REG(hw, IXGBE_GPRC);
 403        IXGBE_READ_REG(hw, IXGBE_BPRC);
 404        IXGBE_READ_REG(hw, IXGBE_MPRC);
 405        IXGBE_READ_REG(hw, IXGBE_GPTC);
 406        IXGBE_READ_REG(hw, IXGBE_GORCL);
 407        IXGBE_READ_REG(hw, IXGBE_GORCH);
 408        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 409        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 410        if (hw->mac.type == ixgbe_mac_82598EB)
 411                for (i = 0; i < 8; i++)
 412                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 413        IXGBE_READ_REG(hw, IXGBE_RUC);
 414        IXGBE_READ_REG(hw, IXGBE_RFC);
 415        IXGBE_READ_REG(hw, IXGBE_ROC);
 416        IXGBE_READ_REG(hw, IXGBE_RJC);
 417        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 418        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 419        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 420        IXGBE_READ_REG(hw, IXGBE_TORL);
 421        IXGBE_READ_REG(hw, IXGBE_TORH);
 422        IXGBE_READ_REG(hw, IXGBE_TPR);
 423        IXGBE_READ_REG(hw, IXGBE_TPT);
 424        IXGBE_READ_REG(hw, IXGBE_PTC64);
 425        IXGBE_READ_REG(hw, IXGBE_PTC127);
 426        IXGBE_READ_REG(hw, IXGBE_PTC255);
 427        IXGBE_READ_REG(hw, IXGBE_PTC511);
 428        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 429        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 430        IXGBE_READ_REG(hw, IXGBE_MPTC);
 431        IXGBE_READ_REG(hw, IXGBE_BPTC);
 432        for (i = 0; i < 16; i++) {
 433                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 434                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 435                if (hw->mac.type >= ixgbe_mac_82599EB) {
 436                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 437                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 438                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 439                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 440                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 441                } else {
 442                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 443                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 444                }
 445        }
 446
 447        if (hw->mac.type == ixgbe_mac_X540) {
 448                if (hw->phy.id == 0)
 449                        hw->phy.ops.identify(hw);
 450                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 451                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 452                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 453                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 454        }
 455
 456        return 0;
 457}
 458
 459/**
 460 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 461 *  @hw: pointer to hardware structure
 462 *  @pba_num: stores the part number string from the EEPROM
 463 *  @pba_num_size: part number string buffer length
 464 *
 465 *  Reads the part number string from the EEPROM.
 466 **/
 467s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 468                                  u32 pba_num_size)
 469{
 470        s32 ret_val;
 471        u16 data;
 472        u16 pba_ptr;
 473        u16 offset;
 474        u16 length;
 475
 476        if (pba_num == NULL) {
 477                hw_dbg(hw, "PBA string buffer was null\n");
 478                return IXGBE_ERR_INVALID_ARGUMENT;
 479        }
 480
 481        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 482        if (ret_val) {
 483                hw_dbg(hw, "NVM Read Error\n");
 484                return ret_val;
 485        }
 486
 487        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 488        if (ret_val) {
 489                hw_dbg(hw, "NVM Read Error\n");
 490                return ret_val;
 491        }
 492
 493        /*
 494         * if data is not ptr guard the PBA must be in legacy format which
 495         * means pba_ptr is actually our second data word for the PBA number
 496         * and we can decode it into an ascii string
 497         */
 498        if (data != IXGBE_PBANUM_PTR_GUARD) {
 499                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 500
 501                /* we will need 11 characters to store the PBA */
 502                if (pba_num_size < 11) {
 503                        hw_dbg(hw, "PBA string buffer too small\n");
 504                        return IXGBE_ERR_NO_SPACE;
 505                }
 506
 507                /* extract hex string from data and pba_ptr */
 508                pba_num[0] = (data >> 12) & 0xF;
 509                pba_num[1] = (data >> 8) & 0xF;
 510                pba_num[2] = (data >> 4) & 0xF;
 511                pba_num[3] = data & 0xF;
 512                pba_num[4] = (pba_ptr >> 12) & 0xF;
 513                pba_num[5] = (pba_ptr >> 8) & 0xF;
 514                pba_num[6] = '-';
 515                pba_num[7] = 0;
 516                pba_num[8] = (pba_ptr >> 4) & 0xF;
 517                pba_num[9] = pba_ptr & 0xF;
 518
 519                /* put a null character on the end of our string */
 520                pba_num[10] = '\0';
 521
 522                /* switch all the data but the '-' to hex char */
 523                for (offset = 0; offset < 10; offset++) {
 524                        if (pba_num[offset] < 0xA)
 525                                pba_num[offset] += '0';
 526                        else if (pba_num[offset] < 0x10)
 527                                pba_num[offset] += 'A' - 0xA;
 528                }
 529
 530                return 0;
 531        }
 532
 533        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 534        if (ret_val) {
 535                hw_dbg(hw, "NVM Read Error\n");
 536                return ret_val;
 537        }
 538
 539        if (length == 0xFFFF || length == 0) {
 540                hw_dbg(hw, "NVM PBA number section invalid length\n");
 541                return IXGBE_ERR_PBA_SECTION;
 542        }
 543
 544        /* check if pba_num buffer is big enough */
 545        if (pba_num_size  < (((u32)length * 2) - 1)) {
 546                hw_dbg(hw, "PBA string buffer too small\n");
 547                return IXGBE_ERR_NO_SPACE;
 548        }
 549
 550        /* trim pba length from start of string */
 551        pba_ptr++;
 552        length--;
 553
 554        for (offset = 0; offset < length; offset++) {
 555                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 556                if (ret_val) {
 557                        hw_dbg(hw, "NVM Read Error\n");
 558                        return ret_val;
 559                }
 560                pba_num[offset * 2] = (u8)(data >> 8);
 561                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 562        }
 563        pba_num[offset * 2] = '\0';
 564
 565        return 0;
 566}
 567
 568/**
 569 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 570 *  @hw: pointer to hardware structure
 571 *  @mac_addr: Adapter MAC address
 572 *
 573 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 574 *  A reset of the adapter must be performed prior to calling this function
 575 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 576 **/
 577s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 578{
 579        u32 rar_high;
 580        u32 rar_low;
 581        u16 i;
 582
 583        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 584        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 585
 586        for (i = 0; i < 4; i++)
 587                mac_addr[i] = (u8)(rar_low >> (i*8));
 588
 589        for (i = 0; i < 2; i++)
 590                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 591
 592        return 0;
 593}
 594
 595enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 596{
 597        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 598        case IXGBE_PCI_LINK_WIDTH_1:
 599                return ixgbe_bus_width_pcie_x1;
 600        case IXGBE_PCI_LINK_WIDTH_2:
 601                return ixgbe_bus_width_pcie_x2;
 602        case IXGBE_PCI_LINK_WIDTH_4:
 603                return ixgbe_bus_width_pcie_x4;
 604        case IXGBE_PCI_LINK_WIDTH_8:
 605                return ixgbe_bus_width_pcie_x8;
 606        default:
 607                return ixgbe_bus_width_unknown;
 608        }
 609}
 610
 611enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 612{
 613        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 614        case IXGBE_PCI_LINK_SPEED_2500:
 615                return ixgbe_bus_speed_2500;
 616        case IXGBE_PCI_LINK_SPEED_5000:
 617                return ixgbe_bus_speed_5000;
 618        case IXGBE_PCI_LINK_SPEED_8000:
 619                return ixgbe_bus_speed_8000;
 620        default:
 621                return ixgbe_bus_speed_unknown;
 622        }
 623}
 624
 625/**
 626 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 627 *  @hw: pointer to hardware structure
 628 *
 629 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 630 **/
 631s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 632{
 633        struct ixgbe_adapter *adapter = hw->back;
 634        struct ixgbe_mac_info *mac = &hw->mac;
 635        u16 link_status;
 636
 637        hw->bus.type = ixgbe_bus_type_pci_express;
 638
 639        /* Get the negotiated link width and speed from PCI config space */
 640        pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 641                             &link_status);
 642
 643        hw->bus.width = ixgbe_convert_bus_width(link_status);
 644        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 645
 646        mac->ops.set_lan_id(hw);
 647
 648        return 0;
 649}
 650
 651/**
 652 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 653 *  @hw: pointer to the HW structure
 654 *
 655 *  Determines the LAN function id by reading memory-mapped registers
 656 *  and swaps the port value if requested.
 657 **/
 658void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 659{
 660        struct ixgbe_bus_info *bus = &hw->bus;
 661        u32 reg;
 662
 663        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 664        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 665        bus->lan_id = bus->func;
 666
 667        /* check for a port swap */
 668        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 669        if (reg & IXGBE_FACTPS_LFS)
 670                bus->func ^= 0x1;
 671}
 672
 673/**
 674 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 675 *  @hw: pointer to hardware structure
 676 *
 677 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 678 *  disables transmit and receive units. The adapter_stopped flag is used by
 679 *  the shared code and drivers to determine if the adapter is in a stopped
 680 *  state and should not touch the hardware.
 681 **/
 682s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 683{
 684        u32 reg_val;
 685        u16 i;
 686
 687        /*
 688         * Set the adapter_stopped flag so other driver functions stop touching
 689         * the hardware
 690         */
 691        hw->adapter_stopped = true;
 692
 693        /* Disable the receive unit */
 694        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
 695
 696        /* Clear interrupt mask to stop interrupts from being generated */
 697        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 698
 699        /* Clear any pending interrupts, flush previous writes */
 700        IXGBE_READ_REG(hw, IXGBE_EICR);
 701
 702        /* Disable the transmit unit.  Each queue must be disabled. */
 703        for (i = 0; i < hw->mac.max_tx_queues; i++)
 704                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 705
 706        /* Disable the receive unit by stopping each queue */
 707        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 708                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 709                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 710                reg_val |= IXGBE_RXDCTL_SWFLSH;
 711                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 712        }
 713
 714        /* flush all queues disables */
 715        IXGBE_WRITE_FLUSH(hw);
 716        usleep_range(1000, 2000);
 717
 718        /*
 719         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 720         * access and verify no pending requests
 721         */
 722        return ixgbe_disable_pcie_master(hw);
 723}
 724
 725/**
 726 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 727 *  @hw: pointer to hardware structure
 728 *  @index: led number to turn on
 729 **/
 730s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 731{
 732        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 733
 734        /* To turn on the LED, set mode to ON. */
 735        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 736        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 737        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 738        IXGBE_WRITE_FLUSH(hw);
 739
 740        return 0;
 741}
 742
 743/**
 744 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 745 *  @hw: pointer to hardware structure
 746 *  @index: led number to turn off
 747 **/
 748s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 749{
 750        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 751
 752        /* To turn off the LED, set mode to OFF. */
 753        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 754        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 755        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 756        IXGBE_WRITE_FLUSH(hw);
 757
 758        return 0;
 759}
 760
 761/**
 762 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 763 *  @hw: pointer to hardware structure
 764 *
 765 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 766 *  ixgbe_hw struct in order to set up EEPROM access.
 767 **/
 768s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 769{
 770        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 771        u32 eec;
 772        u16 eeprom_size;
 773
 774        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 775                eeprom->type = ixgbe_eeprom_none;
 776                /* Set default semaphore delay to 10ms which is a well
 777                 * tested value */
 778                eeprom->semaphore_delay = 10;
 779                /* Clear EEPROM page size, it will be initialized as needed */
 780                eeprom->word_page_size = 0;
 781
 782                /*
 783                 * Check for EEPROM present first.
 784                 * If not present leave as none
 785                 */
 786                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 787                if (eec & IXGBE_EEC_PRES) {
 788                        eeprom->type = ixgbe_eeprom_spi;
 789
 790                        /*
 791                         * SPI EEPROM is assumed here.  This code would need to
 792                         * change if a future EEPROM is not SPI.
 793                         */
 794                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 795                                            IXGBE_EEC_SIZE_SHIFT);
 796                        eeprom->word_size = 1 << (eeprom_size +
 797                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 798                }
 799
 800                if (eec & IXGBE_EEC_ADDR_SIZE)
 801                        eeprom->address_bits = 16;
 802                else
 803                        eeprom->address_bits = 8;
 804                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 805                          "%d\n", eeprom->type, eeprom->word_size,
 806                          eeprom->address_bits);
 807        }
 808
 809        return 0;
 810}
 811
 812/**
 813 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 814 *  @hw: pointer to hardware structure
 815 *  @offset: offset within the EEPROM to write
 816 *  @words: number of words
 817 *  @data: 16 bit word(s) to write to EEPROM
 818 *
 819 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 820 **/
 821s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 822                                               u16 words, u16 *data)
 823{
 824        s32 status = 0;
 825        u16 i, count;
 826
 827        hw->eeprom.ops.init_params(hw);
 828
 829        if (words == 0) {
 830                status = IXGBE_ERR_INVALID_ARGUMENT;
 831                goto out;
 832        }
 833
 834        if (offset + words > hw->eeprom.word_size) {
 835                status = IXGBE_ERR_EEPROM;
 836                goto out;
 837        }
 838
 839        /*
 840         * The EEPROM page size cannot be queried from the chip. We do lazy
 841         * initialization. It is worth to do that when we write large buffer.
 842         */
 843        if ((hw->eeprom.word_page_size == 0) &&
 844            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 845                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 846
 847        /*
 848         * We cannot hold synchronization semaphores for too long
 849         * to avoid other entity starvation. However it is more efficient
 850         * to read in bursts than synchronizing access for each word.
 851         */
 852        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 853                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 854                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 855                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 856                                                            count, &data[i]);
 857
 858                if (status != 0)
 859                        break;
 860        }
 861
 862out:
 863        return status;
 864}
 865
 866/**
 867 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 868 *  @hw: pointer to hardware structure
 869 *  @offset: offset within the EEPROM to be written to
 870 *  @words: number of word(s)
 871 *  @data: 16 bit word(s) to be written to the EEPROM
 872 *
 873 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 874 *  EEPROM will most likely contain an invalid checksum.
 875 **/
 876static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 877                                              u16 words, u16 *data)
 878{
 879        s32 status;
 880        u16 word;
 881        u16 page_size;
 882        u16 i;
 883        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 884
 885        /* Prepare the EEPROM for writing  */
 886        status = ixgbe_acquire_eeprom(hw);
 887
 888        if (status == 0) {
 889                if (ixgbe_ready_eeprom(hw) != 0) {
 890                        ixgbe_release_eeprom(hw);
 891                        status = IXGBE_ERR_EEPROM;
 892                }
 893        }
 894
 895        if (status == 0) {
 896                for (i = 0; i < words; i++) {
 897                        ixgbe_standby_eeprom(hw);
 898
 899                        /*  Send the WRITE ENABLE command (8 bit opcode )  */
 900                        ixgbe_shift_out_eeprom_bits(hw,
 901                                                  IXGBE_EEPROM_WREN_OPCODE_SPI,
 902                                                  IXGBE_EEPROM_OPCODE_BITS);
 903
 904                        ixgbe_standby_eeprom(hw);
 905
 906                        /*
 907                         * Some SPI eeproms use the 8th address bit embedded
 908                         * in the opcode
 909                         */
 910                        if ((hw->eeprom.address_bits == 8) &&
 911                            ((offset + i) >= 128))
 912                                write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 913
 914                        /* Send the Write command (8-bit opcode + addr) */
 915                        ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 916                                                    IXGBE_EEPROM_OPCODE_BITS);
 917                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 918                                                    hw->eeprom.address_bits);
 919
 920                        page_size = hw->eeprom.word_page_size;
 921
 922                        /* Send the data in burst via SPI*/
 923                        do {
 924                                word = data[i];
 925                                word = (word >> 8) | (word << 8);
 926                                ixgbe_shift_out_eeprom_bits(hw, word, 16);
 927
 928                                if (page_size == 0)
 929                                        break;
 930
 931                                /* do not wrap around page */
 932                                if (((offset + i) & (page_size - 1)) ==
 933                                    (page_size - 1))
 934                                        break;
 935                        } while (++i < words);
 936
 937                        ixgbe_standby_eeprom(hw);
 938                        usleep_range(10000, 20000);
 939                }
 940                /* Done with writing - release the EEPROM */
 941                ixgbe_release_eeprom(hw);
 942        }
 943
 944        return status;
 945}
 946
 947/**
 948 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 949 *  @hw: pointer to hardware structure
 950 *  @offset: offset within the EEPROM to be written to
 951 *  @data: 16 bit word to be written to the EEPROM
 952 *
 953 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 954 *  EEPROM will most likely contain an invalid checksum.
 955 **/
 956s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 957{
 958        s32 status;
 959
 960        hw->eeprom.ops.init_params(hw);
 961
 962        if (offset >= hw->eeprom.word_size) {
 963                status = IXGBE_ERR_EEPROM;
 964                goto out;
 965        }
 966
 967        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 968
 969out:
 970        return status;
 971}
 972
 973/**
 974 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 975 *  @hw: pointer to hardware structure
 976 *  @offset: offset within the EEPROM to be read
 977 *  @words: number of word(s)
 978 *  @data: read 16 bit words(s) from EEPROM
 979 *
 980 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 981 **/
 982s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 983                                              u16 words, u16 *data)
 984{
 985        s32 status = 0;
 986        u16 i, count;
 987
 988        hw->eeprom.ops.init_params(hw);
 989
 990        if (words == 0) {
 991                status = IXGBE_ERR_INVALID_ARGUMENT;
 992                goto out;
 993        }
 994
 995        if (offset + words > hw->eeprom.word_size) {
 996                status = IXGBE_ERR_EEPROM;
 997                goto out;
 998        }
 999
1000        /*
1001         * We cannot hold synchronization semaphores for too long
1002         * to avoid other entity starvation. However it is more efficient
1003         * to read in bursts than synchronizing access for each word.
1004         */
1005        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1006                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1007                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1008
1009                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1010                                                           count, &data[i]);
1011
1012                if (status != 0)
1013                        break;
1014        }
1015
1016out:
1017        return status;
1018}
1019
1020/**
1021 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1022 *  @hw: pointer to hardware structure
1023 *  @offset: offset within the EEPROM to be read
1024 *  @words: number of word(s)
1025 *  @data: read 16 bit word(s) from EEPROM
1026 *
1027 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1028 **/
1029static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1030                                             u16 words, u16 *data)
1031{
1032        s32 status;
1033        u16 word_in;
1034        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1035        u16 i;
1036
1037        /* Prepare the EEPROM for reading  */
1038        status = ixgbe_acquire_eeprom(hw);
1039
1040        if (status == 0) {
1041                if (ixgbe_ready_eeprom(hw) != 0) {
1042                        ixgbe_release_eeprom(hw);
1043                        status = IXGBE_ERR_EEPROM;
1044                }
1045        }
1046
1047        if (status == 0) {
1048                for (i = 0; i < words; i++) {
1049                        ixgbe_standby_eeprom(hw);
1050                        /*
1051                         * Some SPI eeproms use the 8th address bit embedded
1052                         * in the opcode
1053                         */
1054                        if ((hw->eeprom.address_bits == 8) &&
1055                            ((offset + i) >= 128))
1056                                read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057
1058                        /* Send the READ command (opcode + addr) */
1059                        ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060                                                    IXGBE_EEPROM_OPCODE_BITS);
1061                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062                                                    hw->eeprom.address_bits);
1063
1064                        /* Read the data. */
1065                        word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066                        data[i] = (word_in >> 8) | (word_in << 8);
1067                }
1068
1069                /* End this read operation */
1070                ixgbe_release_eeprom(hw);
1071        }
1072
1073        return status;
1074}
1075
1076/**
1077 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1078 *  @hw: pointer to hardware structure
1079 *  @offset: offset within the EEPROM to be read
1080 *  @data: read 16 bit value from EEPROM
1081 *
1082 *  Reads 16 bit value from EEPROM through bit-bang method
1083 **/
1084s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1085                                       u16 *data)
1086{
1087        s32 status;
1088
1089        hw->eeprom.ops.init_params(hw);
1090
1091        if (offset >= hw->eeprom.word_size) {
1092                status = IXGBE_ERR_EEPROM;
1093                goto out;
1094        }
1095
1096        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1097
1098out:
1099        return status;
1100}
1101
1102/**
1103 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1104 *  @hw: pointer to hardware structure
1105 *  @offset: offset of word in the EEPROM to read
1106 *  @words: number of word(s)
1107 *  @data: 16 bit word(s) from the EEPROM
1108 *
1109 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1110 **/
1111s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1112                                   u16 words, u16 *data)
1113{
1114        u32 eerd;
1115        s32 status = 0;
1116        u32 i;
1117
1118        hw->eeprom.ops.init_params(hw);
1119
1120        if (words == 0) {
1121                status = IXGBE_ERR_INVALID_ARGUMENT;
1122                goto out;
1123        }
1124
1125        if (offset >= hw->eeprom.word_size) {
1126                status = IXGBE_ERR_EEPROM;
1127                goto out;
1128        }
1129
1130        for (i = 0; i < words; i++) {
1131                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1132                       IXGBE_EEPROM_RW_REG_START;
1133
1134                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1135                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1136
1137                if (status == 0) {
1138                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1139                                   IXGBE_EEPROM_RW_REG_DATA);
1140                } else {
1141                        hw_dbg(hw, "Eeprom read timed out\n");
1142                        goto out;
1143                }
1144        }
1145out:
1146        return status;
1147}
1148
1149/**
1150 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1151 *  @hw: pointer to hardware structure
1152 *  @offset: offset within the EEPROM to be used as a scratch pad
1153 *
1154 *  Discover EEPROM page size by writing marching data at given offset.
1155 *  This function is called only when we are writing a new large buffer
1156 *  at given offset so the data would be overwritten anyway.
1157 **/
1158static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1159                                                 u16 offset)
1160{
1161        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1162        s32 status = 0;
1163        u16 i;
1164
1165        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1166                data[i] = i;
1167
1168        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1169        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1170                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1171        hw->eeprom.word_page_size = 0;
1172        if (status != 0)
1173                goto out;
1174
1175        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1176        if (status != 0)
1177                goto out;
1178
1179        /*
1180         * When writing in burst more than the actual page size
1181         * EEPROM address wraps around current page.
1182         */
1183        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1184
1185        hw_dbg(hw, "Detected EEPROM page size = %d words.",
1186               hw->eeprom.word_page_size);
1187out:
1188        return status;
1189}
1190
1191/**
1192 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1193 *  @hw: pointer to hardware structure
1194 *  @offset: offset of  word in the EEPROM to read
1195 *  @data: word read from the EEPROM
1196 *
1197 *  Reads a 16 bit word from the EEPROM using the EERD register.
1198 **/
1199s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1200{
1201        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1202}
1203
1204/**
1205 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1206 *  @hw: pointer to hardware structure
1207 *  @offset: offset of  word in the EEPROM to write
1208 *  @words: number of words
1209 *  @data: word(s) write to the EEPROM
1210 *
1211 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1212 **/
1213s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1214                                    u16 words, u16 *data)
1215{
1216        u32 eewr;
1217        s32 status = 0;
1218        u16 i;
1219
1220        hw->eeprom.ops.init_params(hw);
1221
1222        if (words == 0) {
1223                status = IXGBE_ERR_INVALID_ARGUMENT;
1224                goto out;
1225        }
1226
1227        if (offset >= hw->eeprom.word_size) {
1228                status = IXGBE_ERR_EEPROM;
1229                goto out;
1230        }
1231
1232        for (i = 0; i < words; i++) {
1233                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1234                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1235                       IXGBE_EEPROM_RW_REG_START;
1236
1237                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1238                if (status != 0) {
1239                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1240                        goto out;
1241                }
1242
1243                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1244
1245                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1246                if (status != 0) {
1247                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1248                        goto out;
1249                }
1250        }
1251
1252out:
1253        return status;
1254}
1255
1256/**
1257 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1258 *  @hw: pointer to hardware structure
1259 *  @offset: offset of  word in the EEPROM to write
1260 *  @data: word write to the EEPROM
1261 *
1262 *  Write a 16 bit word to the EEPROM using the EEWR register.
1263 **/
1264s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1265{
1266        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1267}
1268
1269/**
1270 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1271 *  @hw: pointer to hardware structure
1272 *  @ee_reg: EEPROM flag for polling
1273 *
1274 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1275 *  read or write is done respectively.
1276 **/
1277static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1278{
1279        u32 i;
1280        u32 reg;
1281        s32 status = IXGBE_ERR_EEPROM;
1282
1283        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1284                if (ee_reg == IXGBE_NVM_POLL_READ)
1285                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1286                else
1287                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1288
1289                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1290                        status = 0;
1291                        break;
1292                }
1293                udelay(5);
1294        }
1295        return status;
1296}
1297
1298/**
1299 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1300 *  @hw: pointer to hardware structure
1301 *
1302 *  Prepares EEPROM for access using bit-bang method. This function should
1303 *  be called before issuing a command to the EEPROM.
1304 **/
1305static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1306{
1307        s32 status = 0;
1308        u32 eec;
1309        u32 i;
1310
1311        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1312                status = IXGBE_ERR_SWFW_SYNC;
1313
1314        if (status == 0) {
1315                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1316
1317                /* Request EEPROM Access */
1318                eec |= IXGBE_EEC_REQ;
1319                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1320
1321                for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1322                        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1323                        if (eec & IXGBE_EEC_GNT)
1324                                break;
1325                        udelay(5);
1326                }
1327
1328                /* Release if grant not acquired */
1329                if (!(eec & IXGBE_EEC_GNT)) {
1330                        eec &= ~IXGBE_EEC_REQ;
1331                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1332                        hw_dbg(hw, "Could not acquire EEPROM grant\n");
1333
1334                        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1335                        status = IXGBE_ERR_EEPROM;
1336                }
1337
1338                /* Setup EEPROM for Read/Write */
1339                if (status == 0) {
1340                        /* Clear CS and SK */
1341                        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1342                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1343                        IXGBE_WRITE_FLUSH(hw);
1344                        udelay(1);
1345                }
1346        }
1347        return status;
1348}
1349
1350/**
1351 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1352 *  @hw: pointer to hardware structure
1353 *
1354 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1355 **/
1356static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1357{
1358        s32 status = IXGBE_ERR_EEPROM;
1359        u32 timeout = 2000;
1360        u32 i;
1361        u32 swsm;
1362
1363        /* Get SMBI software semaphore between device drivers first */
1364        for (i = 0; i < timeout; i++) {
1365                /*
1366                 * If the SMBI bit is 0 when we read it, then the bit will be
1367                 * set and we have the semaphore
1368                 */
1369                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1370                if (!(swsm & IXGBE_SWSM_SMBI)) {
1371                        status = 0;
1372                        break;
1373                }
1374                udelay(50);
1375        }
1376
1377        if (i == timeout) {
1378                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1379                       "not granted.\n");
1380                /*
1381                 * this release is particularly important because our attempts
1382                 * above to get the semaphore may have succeeded, and if there
1383                 * was a timeout, we should unconditionally clear the semaphore
1384                 * bits to free the driver to make progress
1385                 */
1386                ixgbe_release_eeprom_semaphore(hw);
1387
1388                udelay(50);
1389                /*
1390                 * one last try
1391                 * If the SMBI bit is 0 when we read it, then the bit will be
1392                 * set and we have the semaphore
1393                 */
1394                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1395                if (!(swsm & IXGBE_SWSM_SMBI))
1396                        status = 0;
1397        }
1398
1399        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1400        if (status == 0) {
1401                for (i = 0; i < timeout; i++) {
1402                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1403
1404                        /* Set the SW EEPROM semaphore bit to request access */
1405                        swsm |= IXGBE_SWSM_SWESMBI;
1406                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1407
1408                        /*
1409                         * If we set the bit successfully then we got the
1410                         * semaphore.
1411                         */
1412                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1413                        if (swsm & IXGBE_SWSM_SWESMBI)
1414                                break;
1415
1416                        udelay(50);
1417                }
1418
1419                /*
1420                 * Release semaphores and return error if SW EEPROM semaphore
1421                 * was not granted because we don't have access to the EEPROM
1422                 */
1423                if (i >= timeout) {
1424                        hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1425                               "not granted.\n");
1426                        ixgbe_release_eeprom_semaphore(hw);
1427                        status = IXGBE_ERR_EEPROM;
1428                }
1429        } else {
1430                hw_dbg(hw, "Software semaphore SMBI between device drivers "
1431                       "not granted.\n");
1432        }
1433
1434        return status;
1435}
1436
1437/**
1438 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1439 *  @hw: pointer to hardware structure
1440 *
1441 *  This function clears hardware semaphore bits.
1442 **/
1443static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1444{
1445        u32 swsm;
1446
1447        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1448
1449        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1450        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1451        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1452        IXGBE_WRITE_FLUSH(hw);
1453}
1454
1455/**
1456 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1457 *  @hw: pointer to hardware structure
1458 **/
1459static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1460{
1461        s32 status = 0;
1462        u16 i;
1463        u8 spi_stat_reg;
1464
1465        /*
1466         * Read "Status Register" repeatedly until the LSB is cleared.  The
1467         * EEPROM will signal that the command has been completed by clearing
1468         * bit 0 of the internal status register.  If it's not cleared within
1469         * 5 milliseconds, then error out.
1470         */
1471        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1472                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1473                                            IXGBE_EEPROM_OPCODE_BITS);
1474                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1475                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1476                        break;
1477
1478                udelay(5);
1479                ixgbe_standby_eeprom(hw);
1480        }
1481
1482        /*
1483         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1484         * devices (and only 0-5mSec on 5V devices)
1485         */
1486        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1487                hw_dbg(hw, "SPI EEPROM Status error\n");
1488                status = IXGBE_ERR_EEPROM;
1489        }
1490
1491        return status;
1492}
1493
1494/**
1495 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1496 *  @hw: pointer to hardware structure
1497 **/
1498static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1499{
1500        u32 eec;
1501
1502        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1503
1504        /* Toggle CS to flush commands */
1505        eec |= IXGBE_EEC_CS;
1506        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1507        IXGBE_WRITE_FLUSH(hw);
1508        udelay(1);
1509        eec &= ~IXGBE_EEC_CS;
1510        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1511        IXGBE_WRITE_FLUSH(hw);
1512        udelay(1);
1513}
1514
1515/**
1516 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1517 *  @hw: pointer to hardware structure
1518 *  @data: data to send to the EEPROM
1519 *  @count: number of bits to shift out
1520 **/
1521static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1522                                        u16 count)
1523{
1524        u32 eec;
1525        u32 mask;
1526        u32 i;
1527
1528        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1529
1530        /*
1531         * Mask is used to shift "count" bits of "data" out to the EEPROM
1532         * one bit at a time.  Determine the starting bit based on count
1533         */
1534        mask = 0x01 << (count - 1);
1535
1536        for (i = 0; i < count; i++) {
1537                /*
1538                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1539                 * "1", and then raising and then lowering the clock (the SK
1540                 * bit controls the clock input to the EEPROM).  A "0" is
1541                 * shifted out to the EEPROM by setting "DI" to "0" and then
1542                 * raising and then lowering the clock.
1543                 */
1544                if (data & mask)
1545                        eec |= IXGBE_EEC_DI;
1546                else
1547                        eec &= ~IXGBE_EEC_DI;
1548
1549                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1550                IXGBE_WRITE_FLUSH(hw);
1551
1552                udelay(1);
1553
1554                ixgbe_raise_eeprom_clk(hw, &eec);
1555                ixgbe_lower_eeprom_clk(hw, &eec);
1556
1557                /*
1558                 * Shift mask to signify next bit of data to shift in to the
1559                 * EEPROM
1560                 */
1561                mask = mask >> 1;
1562        }
1563
1564        /* We leave the "DI" bit set to "0" when we leave this routine. */
1565        eec &= ~IXGBE_EEC_DI;
1566        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1567        IXGBE_WRITE_FLUSH(hw);
1568}
1569
1570/**
1571 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1572 *  @hw: pointer to hardware structure
1573 **/
1574static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1575{
1576        u32 eec;
1577        u32 i;
1578        u16 data = 0;
1579
1580        /*
1581         * In order to read a register from the EEPROM, we need to shift
1582         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1583         * the clock input to the EEPROM (setting the SK bit), and then reading
1584         * the value of the "DO" bit.  During this "shifting in" process the
1585         * "DI" bit should always be clear.
1586         */
1587        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1588
1589        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1590
1591        for (i = 0; i < count; i++) {
1592                data = data << 1;
1593                ixgbe_raise_eeprom_clk(hw, &eec);
1594
1595                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1596
1597                eec &= ~(IXGBE_EEC_DI);
1598                if (eec & IXGBE_EEC_DO)
1599                        data |= 1;
1600
1601                ixgbe_lower_eeprom_clk(hw, &eec);
1602        }
1603
1604        return data;
1605}
1606
1607/**
1608 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1609 *  @hw: pointer to hardware structure
1610 *  @eec: EEC register's current value
1611 **/
1612static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1613{
1614        /*
1615         * Raise the clock input to the EEPROM
1616         * (setting the SK bit), then delay
1617         */
1618        *eec = *eec | IXGBE_EEC_SK;
1619        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1620        IXGBE_WRITE_FLUSH(hw);
1621        udelay(1);
1622}
1623
1624/**
1625 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1626 *  @hw: pointer to hardware structure
1627 *  @eecd: EECD's current value
1628 **/
1629static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1630{
1631        /*
1632         * Lower the clock input to the EEPROM (clearing the SK bit), then
1633         * delay
1634         */
1635        *eec = *eec & ~IXGBE_EEC_SK;
1636        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1637        IXGBE_WRITE_FLUSH(hw);
1638        udelay(1);
1639}
1640
1641/**
1642 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1643 *  @hw: pointer to hardware structure
1644 **/
1645static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1646{
1647        u32 eec;
1648
1649        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1650
1651        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1652        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1653
1654        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1655        IXGBE_WRITE_FLUSH(hw);
1656
1657        udelay(1);
1658
1659        /* Stop requesting EEPROM access */
1660        eec &= ~IXGBE_EEC_REQ;
1661        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1662
1663        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1664
1665        /*
1666         * Delay before attempt to obtain semaphore again to allow FW
1667         * access. semaphore_delay is in ms we need us for usleep_range
1668         */
1669        usleep_range(hw->eeprom.semaphore_delay * 1000,
1670                     hw->eeprom.semaphore_delay * 2000);
1671}
1672
1673/**
1674 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1675 *  @hw: pointer to hardware structure
1676 **/
1677u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1678{
1679        u16 i;
1680        u16 j;
1681        u16 checksum = 0;
1682        u16 length = 0;
1683        u16 pointer = 0;
1684        u16 word = 0;
1685
1686        /* Include 0x0-0x3F in the checksum */
1687        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1688                if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1689                        hw_dbg(hw, "EEPROM read failed\n");
1690                        break;
1691                }
1692                checksum += word;
1693        }
1694
1695        /* Include all data from pointers except for the fw pointer */
1696        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1697                hw->eeprom.ops.read(hw, i, &pointer);
1698
1699                /* Make sure the pointer seems valid */
1700                if (pointer != 0xFFFF && pointer != 0) {
1701                        hw->eeprom.ops.read(hw, pointer, &length);
1702
1703                        if (length != 0xFFFF && length != 0) {
1704                                for (j = pointer+1; j <= pointer+length; j++) {
1705                                        hw->eeprom.ops.read(hw, j, &word);
1706                                        checksum += word;
1707                                }
1708                        }
1709                }
1710        }
1711
1712        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1713
1714        return checksum;
1715}
1716
1717/**
1718 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1719 *  @hw: pointer to hardware structure
1720 *  @checksum_val: calculated checksum
1721 *
1722 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1723 *  caller does not need checksum_val, the value can be NULL.
1724 **/
1725s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1726                                           u16 *checksum_val)
1727{
1728        s32 status;
1729        u16 checksum;
1730        u16 read_checksum = 0;
1731
1732        /*
1733         * Read the first word from the EEPROM. If this times out or fails, do
1734         * not continue or we could be in for a very long wait while every
1735         * EEPROM read fails
1736         */
1737        status = hw->eeprom.ops.read(hw, 0, &checksum);
1738
1739        if (status == 0) {
1740                checksum = hw->eeprom.ops.calc_checksum(hw);
1741
1742                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1743
1744                /*
1745                 * Verify read checksum from EEPROM is the same as
1746                 * calculated checksum
1747                 */
1748                if (read_checksum != checksum)
1749                        status = IXGBE_ERR_EEPROM_CHECKSUM;
1750
1751                /* If the user cares, return the calculated checksum */
1752                if (checksum_val)
1753                        *checksum_val = checksum;
1754        } else {
1755                hw_dbg(hw, "EEPROM read failed\n");
1756        }
1757
1758        return status;
1759}
1760
1761/**
1762 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1763 *  @hw: pointer to hardware structure
1764 **/
1765s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1766{
1767        s32 status;
1768        u16 checksum;
1769
1770        /*
1771         * Read the first word from the EEPROM. If this times out or fails, do
1772         * not continue or we could be in for a very long wait while every
1773         * EEPROM read fails
1774         */
1775        status = hw->eeprom.ops.read(hw, 0, &checksum);
1776
1777        if (status == 0) {
1778                checksum = hw->eeprom.ops.calc_checksum(hw);
1779                status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1780                                              checksum);
1781        } else {
1782                hw_dbg(hw, "EEPROM read failed\n");
1783        }
1784
1785        return status;
1786}
1787
1788/**
1789 *  ixgbe_set_rar_generic - Set Rx address register
1790 *  @hw: pointer to hardware structure
1791 *  @index: Receive address register to write
1792 *  @addr: Address to put into receive address register
1793 *  @vmdq: VMDq "set" or "pool" index
1794 *  @enable_addr: set flag that address is active
1795 *
1796 *  Puts an ethernet address into a receive address register.
1797 **/
1798s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1799                          u32 enable_addr)
1800{
1801        u32 rar_low, rar_high;
1802        u32 rar_entries = hw->mac.num_rar_entries;
1803
1804        /* Make sure we are using a valid rar index range */
1805        if (index >= rar_entries) {
1806                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1807                return IXGBE_ERR_INVALID_ARGUMENT;
1808        }
1809
1810        /* setup VMDq pool selection before this RAR gets enabled */
1811        hw->mac.ops.set_vmdq(hw, index, vmdq);
1812
1813        /*
1814         * HW expects these in little endian so we reverse the byte
1815         * order from network order (big endian) to little endian
1816         */
1817        rar_low = ((u32)addr[0] |
1818                   ((u32)addr[1] << 8) |
1819                   ((u32)addr[2] << 16) |
1820                   ((u32)addr[3] << 24));
1821        /*
1822         * Some parts put the VMDq setting in the extra RAH bits,
1823         * so save everything except the lower 16 bits that hold part
1824         * of the address and the address valid bit.
1825         */
1826        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1827        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1828        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1829
1830        if (enable_addr != 0)
1831                rar_high |= IXGBE_RAH_AV;
1832
1833        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1834        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1835
1836        return 0;
1837}
1838
1839/**
1840 *  ixgbe_clear_rar_generic - Remove Rx address register
1841 *  @hw: pointer to hardware structure
1842 *  @index: Receive address register to write
1843 *
1844 *  Clears an ethernet address from a receive address register.
1845 **/
1846s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1847{
1848        u32 rar_high;
1849        u32 rar_entries = hw->mac.num_rar_entries;
1850
1851        /* Make sure we are using a valid rar index range */
1852        if (index >= rar_entries) {
1853                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1854                return IXGBE_ERR_INVALID_ARGUMENT;
1855        }
1856
1857        /*
1858         * Some parts put the VMDq setting in the extra RAH bits,
1859         * so save everything except the lower 16 bits that hold part
1860         * of the address and the address valid bit.
1861         */
1862        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1863        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1864
1865        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1866        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1867
1868        /* clear VMDq pool/queue selection for this RAR */
1869        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1870
1871        return 0;
1872}
1873
1874/**
1875 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1876 *  @hw: pointer to hardware structure
1877 *
1878 *  Places the MAC address in receive address register 0 and clears the rest
1879 *  of the receive address registers. Clears the multicast table. Assumes
1880 *  the receiver is in reset when the routine is called.
1881 **/
1882s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1883{
1884        u32 i;
1885        u32 rar_entries = hw->mac.num_rar_entries;
1886
1887        /*
1888         * If the current mac address is valid, assume it is a software override
1889         * to the permanent address.
1890         * Otherwise, use the permanent address from the eeprom.
1891         */
1892        if (!is_valid_ether_addr(hw->mac.addr)) {
1893                /* Get the MAC address from the RAR0 for later reference */
1894                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1895
1896                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1897        } else {
1898                /* Setup the receive address. */
1899                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1900                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1901
1902                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1903
1904                /*  clear VMDq pool/queue selection for RAR 0 */
1905                hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1906        }
1907        hw->addr_ctrl.overflow_promisc = 0;
1908
1909        hw->addr_ctrl.rar_used_count = 1;
1910
1911        /* Zero out the other receive addresses. */
1912        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913        for (i = 1; i < rar_entries; i++) {
1914                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1916        }
1917
1918        /* Clear the MTA */
1919        hw->addr_ctrl.mta_in_use = 0;
1920        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1921
1922        hw_dbg(hw, " Clearing MTA\n");
1923        for (i = 0; i < hw->mac.mcft_size; i++)
1924                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1925
1926        if (hw->mac.ops.init_uta_tables)
1927                hw->mac.ops.init_uta_tables(hw);
1928
1929        return 0;
1930}
1931
1932/**
1933 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934 *  @hw: pointer to hardware structure
1935 *  @mc_addr: the multicast address
1936 *
1937 *  Extracts the 12 bits, from a multicast address, to determine which
1938 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939 *  incoming rx multicast addresses, to determine the bit-vector to check in
1940 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1942 *  to mc_filter_type.
1943 **/
1944static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1945{
1946        u32 vector = 0;
1947
1948        switch (hw->mac.mc_filter_type) {
1949        case 0:   /* use bits [47:36] of the address */
1950                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951                break;
1952        case 1:   /* use bits [46:35] of the address */
1953                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954                break;
1955        case 2:   /* use bits [45:34] of the address */
1956                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957                break;
1958        case 3:   /* use bits [43:32] of the address */
1959                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960                break;
1961        default:  /* Invalid mc_filter_type */
1962                hw_dbg(hw, "MC filter type param set incorrectly\n");
1963                break;
1964        }
1965
1966        /* vector can only be 12-bits or boundary will be exceeded */
1967        vector &= 0xFFF;
1968        return vector;
1969}
1970
1971/**
1972 *  ixgbe_set_mta - Set bit-vector in multicast table
1973 *  @hw: pointer to hardware structure
1974 *  @hash_value: Multicast address hash value
1975 *
1976 *  Sets the bit-vector in the multicast table.
1977 **/
1978static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1979{
1980        u32 vector;
1981        u32 vector_bit;
1982        u32 vector_reg;
1983
1984        hw->addr_ctrl.mta_in_use++;
1985
1986        vector = ixgbe_mta_vector(hw, mc_addr);
1987        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1988
1989        /*
1990         * The MTA is a register array of 128 32-bit registers. It is treated
1991         * like an array of 4096 bits.  We want to set bit
1992         * BitArray[vector_value]. So we figure out what register the bit is
1993         * in, read it, OR in the new bit, then write back the new value.  The
1994         * register is determined by the upper 7 bits of the vector value and
1995         * the bit within that register are determined by the lower 5 bits of
1996         * the value.
1997         */
1998        vector_reg = (vector >> 5) & 0x7F;
1999        vector_bit = vector & 0x1F;
2000        hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2001}
2002
2003/**
2004 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005 *  @hw: pointer to hardware structure
2006 *  @netdev: pointer to net device structure
2007 *
2008 *  The given list replaces any existing list. Clears the MC addrs from receive
2009 *  address registers and the multicast table. Uses unused receive address
2010 *  registers for the first multicast addresses, and hashes the rest into the
2011 *  multicast table.
2012 **/
2013s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014                                      struct net_device *netdev)
2015{
2016        struct netdev_hw_addr *ha;
2017        u32 i;
2018
2019        /*
2020         * Set the new number of MC addresses that we are being requested to
2021         * use.
2022         */
2023        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024        hw->addr_ctrl.mta_in_use = 0;
2025
2026        /* Clear mta_shadow */
2027        hw_dbg(hw, " Clearing MTA\n");
2028        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2029
2030        /* Update mta shadow */
2031        netdev_for_each_mc_addr(ha, netdev) {
2032                hw_dbg(hw, " Adding the multicast addresses:\n");
2033                ixgbe_set_mta(hw, ha->addr);
2034        }
2035
2036        /* Enable mta */
2037        for (i = 0; i < hw->mac.mcft_size; i++)
2038                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039                                      hw->mac.mta_shadow[i]);
2040
2041        if (hw->addr_ctrl.mta_in_use > 0)
2042                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2044
2045        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046        return 0;
2047}
2048
2049/**
2050 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2051 *  @hw: pointer to hardware structure
2052 *
2053 *  Enables multicast address in RAR and the use of the multicast hash table.
2054 **/
2055s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2056{
2057        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2058
2059        if (a->mta_in_use > 0)
2060                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061                                hw->mac.mc_filter_type);
2062
2063        return 0;
2064}
2065
2066/**
2067 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2068 *  @hw: pointer to hardware structure
2069 *
2070 *  Disables multicast address in RAR and the use of the multicast hash table.
2071 **/
2072s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2073{
2074        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075
2076        if (a->mta_in_use > 0)
2077                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2078
2079        return 0;
2080}
2081
2082/**
2083 *  ixgbe_fc_enable_generic - Enable flow control
2084 *  @hw: pointer to hardware structure
2085 *
2086 *  Enable flow control according to the current settings.
2087 **/
2088s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2089{
2090        s32 ret_val = 0;
2091        u32 mflcn_reg, fccfg_reg;
2092        u32 reg;
2093        u32 fcrtl, fcrth;
2094        int i;
2095
2096        /*
2097         * Validate the water mark configuration for packet buffer 0.  Zero
2098         * water marks indicate that the packet buffer was not configured
2099         * and the watermarks for packet buffer 0 should always be configured.
2100         */
2101        if (!hw->fc.low_water ||
2102            !hw->fc.high_water[0] ||
2103            !hw->fc.pause_time) {
2104                hw_dbg(hw, "Invalid water mark configuration\n");
2105                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2106                goto out;
2107        }
2108
2109        /* Negotiate the fc mode to use */
2110        ixgbe_fc_autoneg(hw);
2111
2112        /* Disable any previous flow control settings */
2113        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2114        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2115
2116        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2117        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2118
2119        /*
2120         * The possible values of fc.current_mode are:
2121         * 0: Flow control is completely disabled
2122         * 1: Rx flow control is enabled (we can receive pause frames,
2123         *    but not send pause frames).
2124         * 2: Tx flow control is enabled (we can send pause frames but
2125         *    we do not support receiving pause frames).
2126         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2127         * other: Invalid.
2128         */
2129        switch (hw->fc.current_mode) {
2130        case ixgbe_fc_none:
2131                /*
2132                 * Flow control is disabled by software override or autoneg.
2133                 * The code below will actually disable it in the HW.
2134                 */
2135                break;
2136        case ixgbe_fc_rx_pause:
2137                /*
2138                 * Rx Flow control is enabled and Tx Flow control is
2139                 * disabled by software override. Since there really
2140                 * isn't a way to advertise that we are capable of RX
2141                 * Pause ONLY, we will advertise that we support both
2142                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2143                 * disable the adapter's ability to send PAUSE frames.
2144                 */
2145                mflcn_reg |= IXGBE_MFLCN_RFCE;
2146                break;
2147        case ixgbe_fc_tx_pause:
2148                /*
2149                 * Tx Flow control is enabled, and Rx Flow control is
2150                 * disabled by software override.
2151                 */
2152                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2153                break;
2154        case ixgbe_fc_full:
2155                /* Flow control (both Rx and Tx) is enabled by SW override. */
2156                mflcn_reg |= IXGBE_MFLCN_RFCE;
2157                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2158                break;
2159        default:
2160                hw_dbg(hw, "Flow control param set incorrectly\n");
2161                ret_val = IXGBE_ERR_CONFIG;
2162                goto out;
2163                break;
2164        }
2165
2166        /* Set 802.3x based flow control settings. */
2167        mflcn_reg |= IXGBE_MFLCN_DPF;
2168        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2170
2171        fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2172
2173        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2175                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2176                    hw->fc.high_water[i]) {
2177                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2178                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2179                } else {
2180                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2181                        /*
2182                         * In order to prevent Tx hangs when the internal Tx
2183                         * switch is enabled we must set the high water mark
2184                         * to the maximum FCRTH value.  This allows the Tx
2185                         * switch to function even under heavy Rx workloads.
2186                         */
2187                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2188                }
2189
2190                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2191        }
2192
2193        /* Configure pause time (2 TCs per register) */
2194        reg = hw->fc.pause_time * 0x00010001;
2195        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2197
2198        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2199
2200out:
2201        return ret_val;
2202}
2203
2204/**
2205 *  ixgbe_negotiate_fc - Negotiate flow control
2206 *  @hw: pointer to hardware structure
2207 *  @adv_reg: flow control advertised settings
2208 *  @lp_reg: link partner's flow control settings
2209 *  @adv_sym: symmetric pause bit in advertisement
2210 *  @adv_asm: asymmetric pause bit in advertisement
2211 *  @lp_sym: symmetric pause bit in link partner advertisement
2212 *  @lp_asm: asymmetric pause bit in link partner advertisement
2213 *
2214 *  Find the intersection between advertised settings and link partner's
2215 *  advertised settings
2216 **/
2217static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2218                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2219{
2220        if ((!(adv_reg)) ||  (!(lp_reg)))
2221                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2222
2223        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2224                /*
2225                 * Now we need to check if the user selected Rx ONLY
2226                 * of pause frames.  In this case, we had to advertise
2227                 * FULL flow control because we could not advertise RX
2228                 * ONLY. Hence, we must now check to see if we need to
2229                 * turn OFF the TRANSMISSION of PAUSE frames.
2230                 */
2231                if (hw->fc.requested_mode == ixgbe_fc_full) {
2232                        hw->fc.current_mode = ixgbe_fc_full;
2233                        hw_dbg(hw, "Flow Control = FULL.\n");
2234                } else {
2235                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2236                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2237                }
2238        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2239                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2240                hw->fc.current_mode = ixgbe_fc_tx_pause;
2241                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2242        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2243                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2244                hw->fc.current_mode = ixgbe_fc_rx_pause;
2245                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2246        } else {
2247                hw->fc.current_mode = ixgbe_fc_none;
2248                hw_dbg(hw, "Flow Control = NONE.\n");
2249        }
2250        return 0;
2251}
2252
2253/**
2254 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255 *  @hw: pointer to hardware structure
2256 *
2257 *  Enable flow control according on 1 gig fiber.
2258 **/
2259static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2260{
2261        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2262        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2263
2264        /*
2265         * On multispeed fiber at 1g, bail out if
2266         * - link is up but AN did not complete, or if
2267         * - link is up and AN completed but timed out
2268         */
2269
2270        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2271        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2272            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2273                goto out;
2274
2275        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2276        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2277
2278        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2279                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2280                               IXGBE_PCS1GANA_ASM_PAUSE,
2281                               IXGBE_PCS1GANA_SYM_PAUSE,
2282                               IXGBE_PCS1GANA_ASM_PAUSE);
2283
2284out:
2285        return ret_val;
2286}
2287
2288/**
2289 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290 *  @hw: pointer to hardware structure
2291 *
2292 *  Enable flow control according to IEEE clause 37.
2293 **/
2294static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2295{
2296        u32 links2, anlp1_reg, autoc_reg, links;
2297        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2298
2299        /*
2300         * On backplane, bail out if
2301         * - backplane autoneg was not completed, or if
2302         * - we are 82599 and link partner is not AN enabled
2303         */
2304        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2305        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2306                goto out;
2307
2308        if (hw->mac.type == ixgbe_mac_82599EB) {
2309                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2310                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2311                        goto out;
2312        }
2313        /*
2314         * Read the 10g AN autoc and LP ability registers and resolve
2315         * local flow control settings accordingly
2316         */
2317        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2318        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2319
2320        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2321                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2322                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2323
2324out:
2325        return ret_val;
2326}
2327
2328/**
2329 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330 *  @hw: pointer to hardware structure
2331 *
2332 *  Enable flow control according to IEEE clause 37.
2333 **/
2334static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2335{
2336        u16 technology_ability_reg = 0;
2337        u16 lp_technology_ability_reg = 0;
2338
2339        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340                             MDIO_MMD_AN,
2341                             &technology_ability_reg);
2342        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2343                             MDIO_MMD_AN,
2344                             &lp_technology_ability_reg);
2345
2346        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2347                                  (u32)lp_technology_ability_reg,
2348                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2349                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2350}
2351
2352/**
2353 *  ixgbe_fc_autoneg - Configure flow control
2354 *  @hw: pointer to hardware structure
2355 *
2356 *  Compares our advertised flow control capabilities to those advertised by
2357 *  our link partner, and determines the proper flow control mode to use.
2358 **/
2359void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2360{
2361        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2362        ixgbe_link_speed speed;
2363        bool link_up;
2364
2365        /*
2366         * AN should have completed when the cable was plugged in.
2367         * Look for reasons to bail out.  Bail out if:
2368         * - FC autoneg is disabled, or if
2369         * - link is not up.
2370         *
2371         * Since we're being called from an LSC, link is already known to be up.
2372         * So use link_up_wait_to_complete=false.
2373         */
2374        if (hw->fc.disable_fc_autoneg)
2375                goto out;
2376
2377        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2378        if (!link_up)
2379                goto out;
2380
2381        switch (hw->phy.media_type) {
2382        /* Autoneg flow control on fiber adapters */
2383        case ixgbe_media_type_fiber:
2384                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2385                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2386                break;
2387
2388        /* Autoneg flow control on backplane adapters */
2389        case ixgbe_media_type_backplane:
2390                ret_val = ixgbe_fc_autoneg_backplane(hw);
2391                break;
2392
2393        /* Autoneg flow control on copper adapters */
2394        case ixgbe_media_type_copper:
2395                if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2396                        ret_val = ixgbe_fc_autoneg_copper(hw);
2397                break;
2398
2399        default:
2400                break;
2401        }
2402
2403out:
2404        if (ret_val == 0) {
2405                hw->fc.fc_was_autonegged = true;
2406        } else {
2407                hw->fc.fc_was_autonegged = false;
2408                hw->fc.current_mode = hw->fc.requested_mode;
2409        }
2410}
2411
2412/**
2413 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2414 *  @hw: pointer to hardware structure
2415 *
2416 *  Disables PCI-Express master access and verifies there are no pending
2417 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418 *  bit hasn't caused the master requests to be disabled, else 0
2419 *  is returned signifying master requests disabled.
2420 **/
2421static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2422{
2423        struct ixgbe_adapter *adapter = hw->back;
2424        s32 status = 0;
2425        u32 i;
2426        u16 value;
2427
2428        /* Always set this bit to ensure any future transactions are blocked */
2429        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2430
2431        /* Exit if master requests are blocked */
2432        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2433                goto out;
2434
2435        /* Poll for master request bit to clear */
2436        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2437                udelay(100);
2438                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2439                        goto out;
2440        }
2441
2442        /*
2443         * Two consecutive resets are required via CTRL.RST per datasheet
2444         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2445         * of this need.  The first reset prevents new master requests from
2446         * being issued by our device.  We then must wait 1usec or more for any
2447         * remaining completions from the PCIe bus to trickle in, and then reset
2448         * again to clear out any effects they may have had on our device.
2449         */
2450        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2451        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2452
2453        /*
2454         * Before proceeding, make sure that the PCIe block does not have
2455         * transactions pending.
2456         */
2457        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2458                udelay(100);
2459                pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2460                                                         &value);
2461                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2462                        goto out;
2463        }
2464
2465        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2466        status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2467
2468out:
2469        return status;
2470}
2471
2472/**
2473 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474 *  @hw: pointer to hardware structure
2475 *  @mask: Mask to specify which semaphore to acquire
2476 *
2477 *  Acquires the SWFW semaphore through the GSSR register for the specified
2478 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2479 **/
2480s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2481{
2482        u32 gssr;
2483        u32 swmask = mask;
2484        u32 fwmask = mask << 5;
2485        s32 timeout = 200;
2486
2487        while (timeout) {
2488                /*
2489                 * SW EEPROM semaphore bit is used for access to all
2490                 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2491                 */
2492                if (ixgbe_get_eeprom_semaphore(hw))
2493                        return IXGBE_ERR_SWFW_SYNC;
2494
2495                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2496                if (!(gssr & (fwmask | swmask)))
2497                        break;
2498
2499                /*
2500                 * Firmware currently using resource (fwmask) or other software
2501                 * thread currently using resource (swmask)
2502                 */
2503                ixgbe_release_eeprom_semaphore(hw);
2504                usleep_range(5000, 10000);
2505                timeout--;
2506        }
2507
2508        if (!timeout) {
2509                hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510                return IXGBE_ERR_SWFW_SYNC;
2511        }
2512
2513        gssr |= swmask;
2514        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2515
2516        ixgbe_release_eeprom_semaphore(hw);
2517        return 0;
2518}
2519
2520/**
2521 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2522 *  @hw: pointer to hardware structure
2523 *  @mask: Mask to specify which semaphore to release
2524 *
2525 *  Releases the SWFW semaphore through the GSSR register for the specified
2526 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2527 **/
2528void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2529{
2530        u32 gssr;
2531        u32 swmask = mask;
2532
2533        ixgbe_get_eeprom_semaphore(hw);
2534
2535        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2536        gssr &= ~swmask;
2537        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2538
2539        ixgbe_release_eeprom_semaphore(hw);
2540}
2541
2542/**
2543 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2544 *  @hw: pointer to hardware structure
2545 *
2546 *  Stops the receive data path and waits for the HW to internally
2547 *  empty the Rx security block.
2548 **/
2549s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2550{
2551#define IXGBE_MAX_SECRX_POLL 40
2552        int i;
2553        int secrxreg;
2554
2555        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2556        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2557        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2558        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2559                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2560                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2561                        break;
2562                else
2563                        /* Use interrupt-safe sleep just in case */
2564                        udelay(1000);
2565        }
2566
2567        /* For informational purposes only */
2568        if (i >= IXGBE_MAX_SECRX_POLL)
2569                hw_dbg(hw, "Rx unit being enabled before security "
2570                       "path fully disabled.  Continuing with init.\n");
2571
2572        return 0;
2573
2574}
2575
2576/**
2577 *  ixgbe_enable_rx_buff - Enables the receive data path
2578 *  @hw: pointer to hardware structure
2579 *
2580 *  Enables the receive data path
2581 **/
2582s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2583{
2584        int secrxreg;
2585
2586        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2587        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2588        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2589        IXGBE_WRITE_FLUSH(hw);
2590
2591        return 0;
2592}
2593
2594/**
2595 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596 *  @hw: pointer to hardware structure
2597 *  @regval: register value to write to RXCTRL
2598 *
2599 *  Enables the Rx DMA unit
2600 **/
2601s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2602{
2603        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2604
2605        return 0;
2606}
2607
2608/**
2609 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2610 *  @hw: pointer to hardware structure
2611 *  @index: led number to blink
2612 **/
2613s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2614{
2615        ixgbe_link_speed speed = 0;
2616        bool link_up = false;
2617        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2618        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2619        s32 ret_val = 0;
2620
2621        /*
2622         * Link must be up to auto-blink the LEDs;
2623         * Force it if link is down.
2624         */
2625        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2626
2627        if (!link_up) {
2628                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2629                 * LESM is on.
2630                 */
2631                bool got_lock = false;
2632
2633                if ((hw->mac.type == ixgbe_mac_82599EB) &&
2634                    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2635                        ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2636                                                        IXGBE_GSSR_MAC_CSR_SM);
2637                        if (ret_val)
2638                                goto out;
2639
2640                        got_lock = true;
2641                }
2642                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2643                autoc_reg |= IXGBE_AUTOC_FLU;
2644                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2645                IXGBE_WRITE_FLUSH(hw);
2646
2647                if (got_lock)
2648                        hw->mac.ops.release_swfw_sync(hw,
2649                                                      IXGBE_GSSR_MAC_CSR_SM);
2650                usleep_range(10000, 20000);
2651        }
2652
2653        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2654        led_reg |= IXGBE_LED_BLINK(index);
2655        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2656        IXGBE_WRITE_FLUSH(hw);
2657
2658out:
2659        return ret_val;
2660}
2661
2662/**
2663 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2664 *  @hw: pointer to hardware structure
2665 *  @index: led number to stop blinking
2666 **/
2667s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2668{
2669        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2670        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2671        s32 ret_val = 0;
2672        bool got_lock = false;
2673
2674        /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2675         * LESM is on.
2676         */
2677        if ((hw->mac.type == ixgbe_mac_82599EB) &&
2678            ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2679                ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2680                                                IXGBE_GSSR_MAC_CSR_SM);
2681                if (ret_val)
2682                        goto out;
2683
2684                got_lock = true;
2685        }
2686
2687        autoc_reg &= ~IXGBE_AUTOC_FLU;
2688        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2689        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2690
2691        if (hw->mac.type == ixgbe_mac_82599EB)
2692                ixgbe_reset_pipeline_82599(hw);
2693
2694        if (got_lock)
2695                hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2696
2697        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2698        led_reg &= ~IXGBE_LED_BLINK(index);
2699        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2700        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2701        IXGBE_WRITE_FLUSH(hw);
2702
2703out:
2704        return ret_val;
2705}
2706
2707/**
2708 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2709 *  @hw: pointer to hardware structure
2710 *  @san_mac_offset: SAN MAC address offset
2711 *
2712 *  This function will read the EEPROM location for the SAN MAC address
2713 *  pointer, and returns the value at that location.  This is used in both
2714 *  get and set mac_addr routines.
2715 **/
2716static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2717                                        u16 *san_mac_offset)
2718{
2719        /*
2720         * First read the EEPROM pointer to see if the MAC addresses are
2721         * available.
2722         */
2723        hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2724
2725        return 0;
2726}
2727
2728/**
2729 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2730 *  @hw: pointer to hardware structure
2731 *  @san_mac_addr: SAN MAC address
2732 *
2733 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2734 *  per-port, so set_lan_id() must be called before reading the addresses.
2735 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2736 *  upon for non-SFP connections, so we must call it here.
2737 **/
2738s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2739{
2740        u16 san_mac_data, san_mac_offset;
2741        u8 i;
2742
2743        /*
2744         * First read the EEPROM pointer to see if the MAC addresses are
2745         * available.  If they're not, no point in calling set_lan_id() here.
2746         */
2747        ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2748
2749        if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2750                /*
2751                 * No addresses available in this EEPROM.  It's not an
2752                 * error though, so just wipe the local address and return.
2753                 */
2754                for (i = 0; i < 6; i++)
2755                        san_mac_addr[i] = 0xFF;
2756
2757                goto san_mac_addr_out;
2758        }
2759
2760        /* make sure we know which port we need to program */
2761        hw->mac.ops.set_lan_id(hw);
2762        /* apply the port offset to the address offset */
2763        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2764                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2765        for (i = 0; i < 3; i++) {
2766                hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2767                san_mac_addr[i * 2] = (u8)(san_mac_data);
2768                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2769                san_mac_offset++;
2770        }
2771
2772san_mac_addr_out:
2773        return 0;
2774}
2775
2776/**
2777 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2778 *  @hw: pointer to hardware structure
2779 *
2780 *  Read PCIe configuration space, and get the MSI-X vector count from
2781 *  the capabilities table.
2782 **/
2783u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2784{
2785        struct ixgbe_adapter *adapter = hw->back;
2786        u16 msix_count = 1;
2787        u16 max_msix_count;
2788        u16 pcie_offset;
2789
2790        switch (hw->mac.type) {
2791        case ixgbe_mac_82598EB:
2792                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2793                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2794                break;
2795        case ixgbe_mac_82599EB:
2796        case ixgbe_mac_X540:
2797                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2798                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2799                break;
2800        default:
2801                return msix_count;
2802        }
2803
2804        pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2805        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2806
2807        /* MSI-X count is zero-based in HW */
2808        msix_count++;
2809
2810        if (msix_count > max_msix_count)
2811                msix_count = max_msix_count;
2812
2813        return msix_count;
2814}
2815
2816/**
2817 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2818 *  @hw: pointer to hardware struct
2819 *  @rar: receive address register index to disassociate
2820 *  @vmdq: VMDq pool index to remove from the rar
2821 **/
2822s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2823{
2824        u32 mpsar_lo, mpsar_hi;
2825        u32 rar_entries = hw->mac.num_rar_entries;
2826
2827        /* Make sure we are using a valid rar index range */
2828        if (rar >= rar_entries) {
2829                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2830                return IXGBE_ERR_INVALID_ARGUMENT;
2831        }
2832
2833        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2834        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2835
2836        if (!mpsar_lo && !mpsar_hi)
2837                goto done;
2838
2839        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2840                if (mpsar_lo) {
2841                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2842                        mpsar_lo = 0;
2843                }
2844                if (mpsar_hi) {
2845                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2846                        mpsar_hi = 0;
2847                }
2848        } else if (vmdq < 32) {
2849                mpsar_lo &= ~(1 << vmdq);
2850                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2851        } else {
2852                mpsar_hi &= ~(1 << (vmdq - 32));
2853                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2854        }
2855
2856        /* was that the last pool using this rar? */
2857        if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2858                hw->mac.ops.clear_rar(hw, rar);
2859done:
2860        return 0;
2861}
2862
2863/**
2864 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2865 *  @hw: pointer to hardware struct
2866 *  @rar: receive address register index to associate with a VMDq index
2867 *  @vmdq: VMDq pool index
2868 **/
2869s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2870{
2871        u32 mpsar;
2872        u32 rar_entries = hw->mac.num_rar_entries;
2873
2874        /* Make sure we are using a valid rar index range */
2875        if (rar >= rar_entries) {
2876                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2877                return IXGBE_ERR_INVALID_ARGUMENT;
2878        }
2879
2880        if (vmdq < 32) {
2881                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2882                mpsar |= 1 << vmdq;
2883                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2884        } else {
2885                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2886                mpsar |= 1 << (vmdq - 32);
2887                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2888        }
2889        return 0;
2890}
2891
2892/**
2893 *  This function should only be involved in the IOV mode.
2894 *  In IOV mode, Default pool is next pool after the number of
2895 *  VFs advertized and not 0.
2896 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2897 *
2898 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2899 *  @hw: pointer to hardware struct
2900 *  @vmdq: VMDq pool index
2901 **/
2902s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2903{
2904        u32 rar = hw->mac.san_mac_rar_index;
2905
2906        if (vmdq < 32) {
2907                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2908                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2909        } else {
2910                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2911                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2912        }
2913
2914        return 0;
2915}
2916
2917/**
2918 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2919 *  @hw: pointer to hardware structure
2920 **/
2921s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2922{
2923        int i;
2924
2925        for (i = 0; i < 128; i++)
2926                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2927
2928        return 0;
2929}
2930
2931/**
2932 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2933 *  @hw: pointer to hardware structure
2934 *  @vlan: VLAN id to write to VLAN filter
2935 *
2936 *  return the VLVF index where this VLAN id should be placed
2937 *
2938 **/
2939static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2940{
2941        u32 bits = 0;
2942        u32 first_empty_slot = 0;
2943        s32 regindex;
2944
2945        /* short cut the special case */
2946        if (vlan == 0)
2947                return 0;
2948
2949        /*
2950          * Search for the vlan id in the VLVF entries. Save off the first empty
2951          * slot found along the way
2952          */
2953        for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2954                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2955                if (!bits && !(first_empty_slot))
2956                        first_empty_slot = regindex;
2957                else if ((bits & 0x0FFF) == vlan)
2958                        break;
2959        }
2960
2961        /*
2962          * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2963          * in the VLVF. Else use the first empty VLVF register for this
2964          * vlan id.
2965          */
2966        if (regindex >= IXGBE_VLVF_ENTRIES) {
2967                if (first_empty_slot)
2968                        regindex = first_empty_slot;
2969                else {
2970                        hw_dbg(hw, "No space in VLVF.\n");
2971                        regindex = IXGBE_ERR_NO_SPACE;
2972                }
2973        }
2974
2975        return regindex;
2976}
2977
2978/**
2979 *  ixgbe_set_vfta_generic - Set VLAN filter table
2980 *  @hw: pointer to hardware structure
2981 *  @vlan: VLAN id to write to VLAN filter
2982 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2983 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2984 *
2985 *  Turn on/off specified VLAN in the VLAN filter table.
2986 **/
2987s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2988                           bool vlan_on)
2989{
2990        s32 regindex;
2991        u32 bitindex;
2992        u32 vfta;
2993        u32 bits;
2994        u32 vt;
2995        u32 targetbit;
2996        bool vfta_changed = false;
2997
2998        if (vlan > 4095)
2999                return IXGBE_ERR_PARAM;
3000
3001        /*
3002         * this is a 2 part operation - first the VFTA, then the
3003         * VLVF and VLVFB if VT Mode is set
3004         * We don't write the VFTA until we know the VLVF part succeeded.
3005         */
3006
3007        /* Part 1
3008         * The VFTA is a bitstring made up of 128 32-bit registers
3009         * that enable the particular VLAN id, much like the MTA:
3010         *    bits[11-5]: which register
3011         *    bits[4-0]:  which bit in the register
3012         */
3013        regindex = (vlan >> 5) & 0x7F;
3014        bitindex = vlan & 0x1F;
3015        targetbit = (1 << bitindex);
3016        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3017
3018        if (vlan_on) {
3019                if (!(vfta & targetbit)) {
3020                        vfta |= targetbit;
3021                        vfta_changed = true;
3022                }
3023        } else {
3024                if ((vfta & targetbit)) {
3025                        vfta &= ~targetbit;
3026                        vfta_changed = true;
3027                }
3028        }
3029
3030        /* Part 2
3031         * If VT Mode is set
3032         *   Either vlan_on
3033         *     make sure the vlan is in VLVF
3034         *     set the vind bit in the matching VLVFB
3035         *   Or !vlan_on
3036         *     clear the pool bit and possibly the vind
3037         */
3038        vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3039        if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3040                s32 vlvf_index;
3041
3042                vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3043                if (vlvf_index < 0)
3044                        return vlvf_index;
3045
3046                if (vlan_on) {
3047                        /* set the pool bit */
3048                        if (vind < 32) {
3049                                bits = IXGBE_READ_REG(hw,
3050                                                IXGBE_VLVFB(vlvf_index*2));
3051                                bits |= (1 << vind);
3052                                IXGBE_WRITE_REG(hw,
3053                                                IXGBE_VLVFB(vlvf_index*2),
3054                                                bits);
3055                        } else {
3056                                bits = IXGBE_READ_REG(hw,
3057                                                IXGBE_VLVFB((vlvf_index*2)+1));
3058                                bits |= (1 << (vind-32));
3059                                IXGBE_WRITE_REG(hw,
3060                                                IXGBE_VLVFB((vlvf_index*2)+1),
3061                                                bits);
3062                        }
3063                } else {
3064                        /* clear the pool bit */
3065                        if (vind < 32) {
3066                                bits = IXGBE_READ_REG(hw,
3067                                                IXGBE_VLVFB(vlvf_index*2));
3068                                bits &= ~(1 << vind);
3069                                IXGBE_WRITE_REG(hw,
3070                                                IXGBE_VLVFB(vlvf_index*2),
3071                                                bits);
3072                                bits |= IXGBE_READ_REG(hw,
3073                                                IXGBE_VLVFB((vlvf_index*2)+1));
3074                        } else {
3075                                bits = IXGBE_READ_REG(hw,
3076                                                IXGBE_VLVFB((vlvf_index*2)+1));
3077                                bits &= ~(1 << (vind-32));
3078                                IXGBE_WRITE_REG(hw,
3079                                                IXGBE_VLVFB((vlvf_index*2)+1),
3080                                                bits);
3081                                bits |= IXGBE_READ_REG(hw,
3082                                                IXGBE_VLVFB(vlvf_index*2));
3083                        }
3084                }
3085
3086                /*
3087                 * If there are still bits set in the VLVFB registers
3088                 * for the VLAN ID indicated we need to see if the
3089                 * caller is requesting that we clear the VFTA entry bit.
3090                 * If the caller has requested that we clear the VFTA
3091                 * entry bit but there are still pools/VFs using this VLAN
3092                 * ID entry then ignore the request.  We're not worried
3093                 * about the case where we're turning the VFTA VLAN ID
3094                 * entry bit on, only when requested to turn it off as
3095                 * there may be multiple pools and/or VFs using the
3096                 * VLAN ID entry.  In that case we cannot clear the
3097                 * VFTA bit until all pools/VFs using that VLAN ID have also
3098                 * been cleared.  This will be indicated by "bits" being
3099                 * zero.
3100                 */
3101                if (bits) {
3102                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3103                                        (IXGBE_VLVF_VIEN | vlan));
3104                        if (!vlan_on) {
3105                                /* someone wants to clear the vfta entry
3106                                 * but some pools/VFs are still using it.
3107                                 * Ignore it. */
3108                                vfta_changed = false;
3109                        }
3110                }
3111                else
3112                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3113        }
3114
3115        if (vfta_changed)
3116                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3117
3118        return 0;
3119}
3120
3121/**
3122 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3123 *  @hw: pointer to hardware structure
3124 *
3125 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3126 **/
3127s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3128{
3129        u32 offset;
3130
3131        for (offset = 0; offset < hw->mac.vft_size; offset++)
3132                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3133
3134        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3135                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3136                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3137                IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3138        }
3139
3140        return 0;
3141}
3142
3143/**
3144 *  ixgbe_check_mac_link_generic - Determine link and speed status
3145 *  @hw: pointer to hardware structure
3146 *  @speed: pointer to link speed
3147 *  @link_up: true when link is up
3148 *  @link_up_wait_to_complete: bool used to wait for link up or not
3149 *
3150 *  Reads the links register to determine if link is up and the current speed
3151 **/
3152s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3153                                 bool *link_up, bool link_up_wait_to_complete)
3154{
3155        u32 links_reg, links_orig;
3156        u32 i;
3157
3158        /* clear the old state */
3159        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3160
3161        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3162
3163        if (links_orig != links_reg) {
3164                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3165                       links_orig, links_reg);
3166        }
3167
3168        if (link_up_wait_to_complete) {
3169                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3170                        if (links_reg & IXGBE_LINKS_UP) {
3171                                *link_up = true;
3172                                break;
3173                        } else {
3174                                *link_up = false;
3175                        }
3176                        msleep(100);
3177                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3178                }
3179        } else {
3180                if (links_reg & IXGBE_LINKS_UP)
3181                        *link_up = true;
3182                else
3183                        *link_up = false;
3184        }
3185
3186        if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3187            IXGBE_LINKS_SPEED_10G_82599)
3188                *speed = IXGBE_LINK_SPEED_10GB_FULL;
3189        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3190                 IXGBE_LINKS_SPEED_1G_82599)
3191                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3192        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3193                 IXGBE_LINKS_SPEED_100_82599)
3194                *speed = IXGBE_LINK_SPEED_100_FULL;
3195        else
3196                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3197
3198        return 0;
3199}
3200
3201/**
3202 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3203 *  the EEPROM
3204 *  @hw: pointer to hardware structure
3205 *  @wwnn_prefix: the alternative WWNN prefix
3206 *  @wwpn_prefix: the alternative WWPN prefix
3207 *
3208 *  This function will read the EEPROM from the alternative SAN MAC address
3209 *  block to check the support for the alternative WWNN/WWPN prefix support.
3210 **/
3211s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3212                                        u16 *wwpn_prefix)
3213{
3214        u16 offset, caps;
3215        u16 alt_san_mac_blk_offset;
3216
3217        /* clear output first */
3218        *wwnn_prefix = 0xFFFF;
3219        *wwpn_prefix = 0xFFFF;
3220
3221        /* check if alternative SAN MAC is supported */
3222        hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3223                            &alt_san_mac_blk_offset);
3224
3225        if ((alt_san_mac_blk_offset == 0) ||
3226            (alt_san_mac_blk_offset == 0xFFFF))
3227                goto wwn_prefix_out;
3228
3229        /* check capability in alternative san mac address block */
3230        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3231        hw->eeprom.ops.read(hw, offset, &caps);
3232        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3233                goto wwn_prefix_out;
3234
3235        /* get the corresponding prefix for WWNN/WWPN */
3236        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3237        hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3238
3239        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3240        hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3241
3242wwn_prefix_out:
3243        return 0;
3244}
3245
3246/**
3247 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3248 *  @hw: pointer to hardware structure
3249 *  @enable: enable or disable switch for anti-spoofing
3250 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3251 *
3252 **/
3253void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3254{
3255        int j;
3256        int pf_target_reg = pf >> 3;
3257        int pf_target_shift = pf % 8;
3258        u32 pfvfspoof = 0;
3259
3260        if (hw->mac.type == ixgbe_mac_82598EB)
3261                return;
3262
3263        if (enable)
3264                pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3265
3266        /*
3267         * PFVFSPOOF register array is size 8 with 8 bits assigned to
3268         * MAC anti-spoof enables in each register array element.
3269         */
3270        for (j = 0; j < pf_target_reg; j++)
3271                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3272
3273        /*
3274         * The PF should be allowed to spoof so that it can support
3275         * emulation mode NICs.  Do not set the bits assigned to the PF
3276         */
3277        pfvfspoof &= (1 << pf_target_shift) - 1;
3278        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3279
3280        /*
3281         * Remaining pools belong to the PF so they do not need to have
3282         * anti-spoofing enabled.
3283         */
3284        for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3285                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3286}
3287
3288/**
3289 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3290 *  @hw: pointer to hardware structure
3291 *  @enable: enable or disable switch for VLAN anti-spoofing
3292 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3293 *
3294 **/
3295void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3296{
3297        int vf_target_reg = vf >> 3;
3298        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3299        u32 pfvfspoof;
3300
3301        if (hw->mac.type == ixgbe_mac_82598EB)
3302                return;
3303
3304        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3305        if (enable)
3306                pfvfspoof |= (1 << vf_target_shift);
3307        else
3308                pfvfspoof &= ~(1 << vf_target_shift);
3309        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3310}
3311
3312/**
3313 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3314 *  @hw: pointer to hardware structure
3315 *  @device_caps: the EEPROM word with the extra device capabilities
3316 *
3317 *  This function will read the EEPROM location for the device capabilities,
3318 *  and return the word through device_caps.
3319 **/
3320s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3321{
3322        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3323
3324        return 0;
3325}
3326
3327/**
3328 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3329 * @hw: pointer to hardware structure
3330 * @num_pb: number of packet buffers to allocate
3331 * @headroom: reserve n KB of headroom
3332 * @strategy: packet buffer allocation strategy
3333 **/
3334void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3335                             int num_pb,
3336                             u32 headroom,
3337                             int strategy)
3338{
3339        u32 pbsize = hw->mac.rx_pb_size;
3340        int i = 0;
3341        u32 rxpktsize, txpktsize, txpbthresh;
3342
3343        /* Reserve headroom */
3344        pbsize -= headroom;
3345
3346        if (!num_pb)
3347                num_pb = 1;
3348
3349        /* Divide remaining packet buffer space amongst the number
3350         * of packet buffers requested using supplied strategy.
3351         */
3352        switch (strategy) {
3353        case (PBA_STRATEGY_WEIGHTED):
3354                /* pba_80_48 strategy weight first half of packet buffer with
3355                 * 5/8 of the packet buffer space.
3356                 */
3357                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3358                pbsize -= rxpktsize * (num_pb / 2);
3359                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3360                for (; i < (num_pb / 2); i++)
3361                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3362                /* Fall through to configure remaining packet buffers */
3363        case (PBA_STRATEGY_EQUAL):
3364                /* Divide the remaining Rx packet buffer evenly among the TCs */
3365                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3366                for (; i < num_pb; i++)
3367                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3368                break;
3369        default:
3370                break;
3371        }
3372
3373        /*
3374         * Setup Tx packet buffer and threshold equally for all TCs
3375         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3376         * 10 since the largest packet we support is just over 9K.
3377         */
3378        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3379        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3380        for (i = 0; i < num_pb; i++) {
3381                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3382                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3383        }
3384
3385        /* Clear unused TCs, if any, to zero buffer size*/
3386        for (; i < IXGBE_MAX_PB; i++) {
3387                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3388                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3389                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3390        }
3391}
3392
3393/**
3394 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3395 *  @buffer: pointer to EEPROM
3396 *  @length: size of EEPROM to calculate a checksum for
3397 *
3398 *  Calculates the checksum for some buffer on a specified length.  The
3399 *  checksum calculated is returned.
3400 **/
3401static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3402{
3403        u32 i;
3404        u8 sum = 0;
3405
3406        if (!buffer)
3407                return 0;
3408
3409        for (i = 0; i < length; i++)
3410                sum += buffer[i];
3411
3412        return (u8) (0 - sum);
3413}
3414
3415/**
3416 *  ixgbe_host_interface_command - Issue command to manageability block
3417 *  @hw: pointer to the HW structure
3418 *  @buffer: contains the command to write and where the return status will
3419 *           be placed
3420 *  @length: length of buffer, must be multiple of 4 bytes
3421 *
3422 *  Communicates with the manageability block.  On success return 0
3423 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3424 **/
3425static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3426                                        u32 length)
3427{
3428        u32 hicr, i, bi;
3429        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3430        u8 buf_len, dword_len;
3431
3432        s32 ret_val = 0;
3433
3434        if (length == 0 || length & 0x3 ||
3435            length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3436                hw_dbg(hw, "Buffer length failure.\n");
3437                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3438                goto out;
3439        }
3440
3441        /* Check that the host interface is enabled. */
3442        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3443        if ((hicr & IXGBE_HICR_EN) == 0) {
3444                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3445                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3446                goto out;
3447        }
3448
3449        /* Calculate length in DWORDs */
3450        dword_len = length >> 2;
3451
3452        /*
3453         * The device driver writes the relevant command block
3454         * into the ram area.
3455         */
3456        for (i = 0; i < dword_len; i++)
3457                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3458                                      i, cpu_to_le32(buffer[i]));
3459
3460        /* Setting this bit tells the ARC that a new command is pending. */
3461        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3462
3463        for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3464                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3465                if (!(hicr & IXGBE_HICR_C))
3466                        break;
3467                usleep_range(1000, 2000);
3468        }
3469
3470        /* Check command successful completion. */
3471        if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3472            (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3473                hw_dbg(hw, "Command has failed with no status valid.\n");
3474                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3475                goto out;
3476        }
3477
3478        /* Calculate length in DWORDs */
3479        dword_len = hdr_size >> 2;
3480
3481        /* first pull in the header so we know the buffer length */
3482        for (bi = 0; bi < dword_len; bi++) {
3483                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3484                le32_to_cpus(&buffer[bi]);
3485        }
3486
3487        /* If there is any thing in data position pull it in */
3488        buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3489        if (buf_len == 0)
3490                goto out;
3491
3492        if (length < (buf_len + hdr_size)) {
3493                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3494                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3495                goto out;
3496        }
3497
3498        /* Calculate length in DWORDs, add 3 for odd lengths */
3499        dword_len = (buf_len + 3) >> 2;
3500
3501        /* Pull in the rest of the buffer (bi is where we left off)*/
3502        for (; bi <= dword_len; bi++) {
3503                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3504                le32_to_cpus(&buffer[bi]);
3505        }
3506
3507out:
3508        return ret_val;
3509}
3510
3511/**
3512 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3513 *  @hw: pointer to the HW structure
3514 *  @maj: driver version major number
3515 *  @min: driver version minor number
3516 *  @build: driver version build number
3517 *  @sub: driver version sub build number
3518 *
3519 *  Sends driver version number to firmware through the manageability
3520 *  block.  On success return 0
3521 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3522 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3523 **/
3524s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3525                                 u8 build, u8 sub)
3526{
3527        struct ixgbe_hic_drv_info fw_cmd;
3528        int i;
3529        s32 ret_val = 0;
3530
3531        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3532                ret_val = IXGBE_ERR_SWFW_SYNC;
3533                goto out;
3534        }
3535
3536        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3537        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3538        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3539        fw_cmd.port_num = (u8)hw->bus.func;
3540        fw_cmd.ver_maj = maj;
3541        fw_cmd.ver_min = min;
3542        fw_cmd.ver_build = build;
3543        fw_cmd.ver_sub = sub;
3544        fw_cmd.hdr.checksum = 0;
3545        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3546                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3547        fw_cmd.pad = 0;
3548        fw_cmd.pad2 = 0;
3549
3550        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3551                ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3552                                                       sizeof(fw_cmd));
3553                if (ret_val != 0)
3554                        continue;
3555
3556                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3557                    FW_CEM_RESP_STATUS_SUCCESS)
3558                        ret_val = 0;
3559                else
3560                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3561
3562                break;
3563        }
3564
3565        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3566out:
3567        return ret_val;
3568}
3569
3570/**
3571 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3572 * @hw: pointer to the hardware structure
3573 *
3574 * The 82599 and x540 MACs can experience issues if TX work is still pending
3575 * when a reset occurs.  This function prevents this by flushing the PCIe
3576 * buffers on the system.
3577 **/
3578void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3579{
3580        u32 gcr_ext, hlreg0;
3581
3582        /*
3583         * If double reset is not requested then all transactions should
3584         * already be clear and as such there is no work to do
3585         */
3586        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3587                return;
3588
3589        /*
3590         * Set loopback enable to prevent any transmits from being sent
3591         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3592         * has already been cleared.
3593         */
3594        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3595        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3596
3597        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3598        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3599        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3600                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3601
3602        /* Flush all writes and allow 20usec for all transactions to clear */
3603        IXGBE_WRITE_FLUSH(hw);
3604        udelay(20);
3605
3606        /* restore previous register values */
3607        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3608        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3609}
3610
3611static const u8 ixgbe_emc_temp_data[4] = {
3612        IXGBE_EMC_INTERNAL_DATA,
3613        IXGBE_EMC_DIODE1_DATA,
3614        IXGBE_EMC_DIODE2_DATA,
3615        IXGBE_EMC_DIODE3_DATA
3616};
3617static const u8 ixgbe_emc_therm_limit[4] = {
3618        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3619        IXGBE_EMC_DIODE1_THERM_LIMIT,
3620        IXGBE_EMC_DIODE2_THERM_LIMIT,
3621        IXGBE_EMC_DIODE3_THERM_LIMIT
3622};
3623
3624/**
3625 *  ixgbe_get_ets_data - Extracts the ETS bit data
3626 *  @hw: pointer to hardware structure
3627 *  @ets_cfg: extected ETS data
3628 *  @ets_offset: offset of ETS data
3629 *
3630 *  Returns error code.
3631 **/
3632static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3633                              u16 *ets_offset)
3634{
3635        s32 status = 0;
3636
3637        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3638        if (status)
3639                goto out;
3640
3641        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3642                status = IXGBE_NOT_IMPLEMENTED;
3643                goto out;
3644        }
3645
3646        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3647        if (status)
3648                goto out;
3649
3650        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3651                status = IXGBE_NOT_IMPLEMENTED;
3652                goto out;
3653        }
3654
3655out:
3656        return status;
3657}
3658
3659/**
3660 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3661 *  @hw: pointer to hardware structure
3662 *
3663 *  Returns the thermal sensor data structure
3664 **/
3665s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3666{
3667        s32 status = 0;
3668        u16 ets_offset;
3669        u16 ets_cfg;
3670        u16 ets_sensor;
3671        u8  num_sensors;
3672        u8  i;
3673        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3674
3675        /* Only support thermal sensors attached to physical port 0 */
3676        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3677                status = IXGBE_NOT_IMPLEMENTED;
3678                goto out;
3679        }
3680
3681        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3682        if (status)
3683                goto out;
3684
3685        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3686        if (num_sensors > IXGBE_MAX_SENSORS)
3687                num_sensors = IXGBE_MAX_SENSORS;
3688
3689        for (i = 0; i < num_sensors; i++) {
3690                u8  sensor_index;
3691                u8  sensor_location;
3692
3693                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3694                                             &ets_sensor);
3695                if (status)
3696                        goto out;
3697
3698                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3699                                IXGBE_ETS_DATA_INDEX_SHIFT);
3700                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3701                                   IXGBE_ETS_DATA_LOC_SHIFT);
3702
3703                if (sensor_location != 0) {
3704                        status = hw->phy.ops.read_i2c_byte(hw,
3705                                        ixgbe_emc_temp_data[sensor_index],
3706                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3707                                        &data->sensor[i].temp);
3708                        if (status)
3709                                goto out;
3710                }
3711        }
3712out:
3713        return status;
3714}
3715
3716/**
3717 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3718 * @hw: pointer to hardware structure
3719 *
3720 * Inits the thermal sensor thresholds according to the NVM map
3721 * and save off the threshold and location values into mac.thermal_sensor_data
3722 **/
3723s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3724{
3725        s32 status = 0;
3726        u16 ets_offset;
3727        u16 ets_cfg;
3728        u16 ets_sensor;
3729        u8  low_thresh_delta;
3730        u8  num_sensors;
3731        u8  therm_limit;
3732        u8  i;
3733        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3734
3735        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3736
3737        /* Only support thermal sensors attached to physical port 0 */
3738        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3739                status = IXGBE_NOT_IMPLEMENTED;
3740                goto out;
3741        }
3742
3743        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3744        if (status)
3745                goto out;
3746
3747        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3748                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
3749        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3750        if (num_sensors > IXGBE_MAX_SENSORS)
3751                num_sensors = IXGBE_MAX_SENSORS;
3752
3753        for (i = 0; i < num_sensors; i++) {
3754                u8  sensor_index;
3755                u8  sensor_location;
3756
3757                hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3758                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3759                                IXGBE_ETS_DATA_INDEX_SHIFT);
3760                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3761                                   IXGBE_ETS_DATA_LOC_SHIFT);
3762                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3763
3764                hw->phy.ops.write_i2c_byte(hw,
3765                        ixgbe_emc_therm_limit[sensor_index],
3766                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3767
3768                if (sensor_location == 0)
3769                        continue;
3770
3771                data->sensor[i].location = sensor_location;
3772                data->sensor[i].caution_thresh = therm_limit;
3773                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3774        }
3775out:
3776        return status;
3777}
3778
3779