linux/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27#include "ixgbe.h"
  28#include <linux/export.h>
  29#include <linux/ptp_classify.h>
  30
  31/*
  32 * The 82599 and the X540 do not have true 64bit nanosecond scale
  33 * counter registers. Instead, SYSTIME is defined by a fixed point
  34 * system which allows the user to define the scale counter increment
  35 * value at every level change of the oscillator driving the SYSTIME
  36 * value. For both devices the TIMINCA:IV field defines this
  37 * increment. On the X540 device, 31 bits are provided. However on the
  38 * 82599 only provides 24 bits. The time unit is determined by the
  39 * clock frequency of the oscillator in combination with the TIMINCA
  40 * register. When these devices link at 10Gb the oscillator has a
  41 * period of 6.4ns. In order to convert the scale counter into
  42 * nanoseconds the cyclecounter and timecounter structures are
  43 * used. The SYSTIME registers need to be converted to ns values by use
  44 * of only a right shift (division by power of 2). The following math
  45 * determines the largest incvalue that will fit into the available
  46 * bits in the TIMINCA register.
  47 *
  48 * PeriodWidth: Number of bits to store the clock period
  49 * MaxWidth: The maximum width value of the TIMINCA register
  50 * Period: The clock period for the oscillator
  51 * round(): discard the fractional portion of the calculation
  52 *
  53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
  54 *
  55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
  56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
  57 *
  58 * The period also changes based on the link speed:
  59 * At 10Gb link or no link, the period remains the same.
  60 * At 1Gb link, the period is multiplied by 10. (64ns)
  61 * At 100Mb link, the period is multiplied by 100. (640ns)
  62 *
  63 * The calculated value allows us to right shift the SYSTIME register
  64 * value in order to quickly convert it into a nanosecond clock,
  65 * while allowing for the maximum possible adjustment value.
  66 *
  67 * These diagrams are only for the 10Gb link period
  68 *
  69 *           SYSTIMEH            SYSTIMEL
  70 *       +--------------+  +--------------+
  71 * X540  |      32      |  | 1 | 3 |  28  |
  72 *       *--------------+  +--------------+
  73 *        \________ 36 bits ______/  fract
  74 *
  75 *       +--------------+  +--------------+
  76 * 82599 |      32      |  | 8 | 3 |  21  |
  77 *       *--------------+  +--------------+
  78 *        \________ 43 bits ______/  fract
  79 *
  80 * The 36 bit X540 SYSTIME overflows every
  81 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
  82 *
  83 * The 43 bit 82599 SYSTIME overflows every
  84 *   2^43 * 10^-9 / 3600 = 2.4 hours
  85 */
  86#define IXGBE_INCVAL_10GB 0x66666666
  87#define IXGBE_INCVAL_1GB  0x40000000
  88#define IXGBE_INCVAL_100  0x50000000
  89
  90#define IXGBE_INCVAL_SHIFT_10GB  28
  91#define IXGBE_INCVAL_SHIFT_1GB   24
  92#define IXGBE_INCVAL_SHIFT_100   21
  93
  94#define IXGBE_INCVAL_SHIFT_82599 7
  95#define IXGBE_INCPER_SHIFT_82599 24
  96#define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
  97
  98#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
  99#define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
 100
 101#ifndef NSECS_PER_SEC
 102#define NSECS_PER_SEC 1000000000ULL
 103#endif
 104
 105/**
 106 * ixgbe_ptp_setup_sdp
 107 * @hw: the hardware private structure
 108 *
 109 * this function enables or disables the clock out feature on SDP0 for
 110 * the X540 device. It will create a 1second periodic output that can
 111 * be used as the PPS (via an interrupt).
 112 *
 113 * It calculates when the systime will be on an exact second, and then
 114 * aligns the start of the PPS signal to that value. The shift is
 115 * necessary because it can change based on the link speed.
 116 */
 117static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
 118{
 119        struct ixgbe_hw *hw = &adapter->hw;
 120        int shift = adapter->cc.shift;
 121        u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
 122        u64 ns = 0, clock_edge = 0;
 123
 124        if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
 125            (hw->mac.type == ixgbe_mac_X540)) {
 126
 127                /* disable the pin first */
 128                IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
 129                IXGBE_WRITE_FLUSH(hw);
 130
 131                esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
 132
 133                /*
 134                 * enable the SDP0 pin as output, and connected to the
 135                 * native function for Timesync (ClockOut)
 136                 */
 137                esdp |= (IXGBE_ESDP_SDP0_DIR |
 138                         IXGBE_ESDP_SDP0_NATIVE);
 139
 140                /*
 141                 * enable the Clock Out feature on SDP0, and allow
 142                 * interrupts to occur when the pin changes
 143                 */
 144                tsauxc = (IXGBE_TSAUXC_EN_CLK |
 145                          IXGBE_TSAUXC_SYNCLK |
 146                          IXGBE_TSAUXC_SDP0_INT);
 147
 148                /* clock period (or pulse length) */
 149                clktiml = (u32)(NSECS_PER_SEC << shift);
 150                clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
 151
 152                /*
 153                 * Account for the cyclecounter wrap-around value by
 154                 * using the converted ns value of the current time to
 155                 * check for when the next aligned second would occur.
 156                 */
 157                clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
 158                clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
 159                ns = timecounter_cyc2time(&adapter->tc, clock_edge);
 160
 161                div_u64_rem(ns, NSECS_PER_SEC, &rem);
 162                clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
 163
 164                /* specify the initial clock start time */
 165                trgttiml = (u32)clock_edge;
 166                trgttimh = (u32)(clock_edge >> 32);
 167
 168                IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
 169                IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
 170                IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
 171                IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
 172
 173                IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
 174                IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
 175        } else {
 176                IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
 177        }
 178
 179        IXGBE_WRITE_FLUSH(hw);
 180}
 181
 182/**
 183 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
 184 * @cc: the cyclecounter structure
 185 *
 186 * this function reads the cyclecounter registers and is called by the
 187 * cyclecounter structure used to construct a ns counter from the
 188 * arbitrary fixed point registers
 189 */
 190static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
 191{
 192        struct ixgbe_adapter *adapter =
 193                container_of(cc, struct ixgbe_adapter, cc);
 194        struct ixgbe_hw *hw = &adapter->hw;
 195        u64 stamp = 0;
 196
 197        stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
 198        stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
 199
 200        return stamp;
 201}
 202
 203/**
 204 * ixgbe_ptp_adjfreq
 205 * @ptp: the ptp clock structure
 206 * @ppb: parts per billion adjustment from base
 207 *
 208 * adjust the frequency of the ptp cycle counter by the
 209 * indicated ppb from the base frequency.
 210 */
 211static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 212{
 213        struct ixgbe_adapter *adapter =
 214                container_of(ptp, struct ixgbe_adapter, ptp_caps);
 215        struct ixgbe_hw *hw = &adapter->hw;
 216        u64 freq;
 217        u32 diff, incval;
 218        int neg_adj = 0;
 219
 220        if (ppb < 0) {
 221                neg_adj = 1;
 222                ppb = -ppb;
 223        }
 224
 225        smp_mb();
 226        incval = ACCESS_ONCE(adapter->base_incval);
 227
 228        freq = incval;
 229        freq *= ppb;
 230        diff = div_u64(freq, 1000000000ULL);
 231
 232        incval = neg_adj ? (incval - diff) : (incval + diff);
 233
 234        switch (hw->mac.type) {
 235        case ixgbe_mac_X540:
 236                IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
 237                break;
 238        case ixgbe_mac_82599EB:
 239                IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
 240                                (1 << IXGBE_INCPER_SHIFT_82599) |
 241                                incval);
 242                break;
 243        default:
 244                break;
 245        }
 246
 247        return 0;
 248}
 249
 250/**
 251 * ixgbe_ptp_adjtime
 252 * @ptp: the ptp clock structure
 253 * @delta: offset to adjust the cycle counter by
 254 *
 255 * adjust the timer by resetting the timecounter structure.
 256 */
 257static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 258{
 259        struct ixgbe_adapter *adapter =
 260                container_of(ptp, struct ixgbe_adapter, ptp_caps);
 261        unsigned long flags;
 262        u64 now;
 263
 264        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 265
 266        now = timecounter_read(&adapter->tc);
 267        now += delta;
 268
 269        /* reset the timecounter */
 270        timecounter_init(&adapter->tc,
 271                         &adapter->cc,
 272                         now);
 273
 274        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 275
 276        ixgbe_ptp_setup_sdp(adapter);
 277
 278        return 0;
 279}
 280
 281/**
 282 * ixgbe_ptp_gettime
 283 * @ptp: the ptp clock structure
 284 * @ts: timespec structure to hold the current time value
 285 *
 286 * read the timecounter and return the correct value on ns,
 287 * after converting it into a struct timespec.
 288 */
 289static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
 290{
 291        struct ixgbe_adapter *adapter =
 292                container_of(ptp, struct ixgbe_adapter, ptp_caps);
 293        u64 ns;
 294        u32 remainder;
 295        unsigned long flags;
 296
 297        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 298        ns = timecounter_read(&adapter->tc);
 299        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 300
 301        ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
 302        ts->tv_nsec = remainder;
 303
 304        return 0;
 305}
 306
 307/**
 308 * ixgbe_ptp_settime
 309 * @ptp: the ptp clock structure
 310 * @ts: the timespec containing the new time for the cycle counter
 311 *
 312 * reset the timecounter to use a new base value instead of the kernel
 313 * wall timer value.
 314 */
 315static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
 316                             const struct timespec *ts)
 317{
 318        struct ixgbe_adapter *adapter =
 319                container_of(ptp, struct ixgbe_adapter, ptp_caps);
 320        u64 ns;
 321        unsigned long flags;
 322
 323        ns = ts->tv_sec * 1000000000ULL;
 324        ns += ts->tv_nsec;
 325
 326        /* reset the timecounter */
 327        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 328        timecounter_init(&adapter->tc, &adapter->cc, ns);
 329        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 330
 331        ixgbe_ptp_setup_sdp(adapter);
 332        return 0;
 333}
 334
 335/**
 336 * ixgbe_ptp_enable
 337 * @ptp: the ptp clock structure
 338 * @rq: the requested feature to change
 339 * @on: whether to enable or disable the feature
 340 *
 341 * enable (or disable) ancillary features of the phc subsystem.
 342 * our driver only supports the PPS feature on the X540
 343 */
 344static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
 345                            struct ptp_clock_request *rq, int on)
 346{
 347        struct ixgbe_adapter *adapter =
 348                container_of(ptp, struct ixgbe_adapter, ptp_caps);
 349
 350        /**
 351         * When PPS is enabled, unmask the interrupt for the ClockOut
 352         * feature, so that the interrupt handler can send the PPS
 353         * event when the clock SDP triggers. Clear mask when PPS is
 354         * disabled
 355         */
 356        if (rq->type == PTP_CLK_REQ_PPS) {
 357                switch (adapter->hw.mac.type) {
 358                case ixgbe_mac_X540:
 359                        if (on)
 360                                adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
 361                        else
 362                                adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
 363
 364                        ixgbe_ptp_setup_sdp(adapter);
 365                        return 0;
 366                default:
 367                        break;
 368                }
 369        }
 370
 371        return -ENOTSUPP;
 372}
 373
 374/**
 375 * ixgbe_ptp_check_pps_event
 376 * @adapter: the private adapter structure
 377 * @eicr: the interrupt cause register value
 378 *
 379 * This function is called by the interrupt routine when checking for
 380 * interrupts. It will check and handle a pps event.
 381 */
 382void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
 383{
 384        struct ixgbe_hw *hw = &adapter->hw;
 385        struct ptp_clock_event event;
 386
 387        event.type = PTP_CLOCK_PPS;
 388
 389        /* this check is necessary in case the interrupt was enabled via some
 390         * alternative means (ex. debug_fs). Better to check here than
 391         * everywhere that calls this function.
 392         */
 393        if (!adapter->ptp_clock)
 394                return;
 395
 396        switch (hw->mac.type) {
 397        case ixgbe_mac_X540:
 398                ptp_clock_event(adapter->ptp_clock, &event);
 399                break;
 400        default:
 401                break;
 402        }
 403}
 404
 405/**
 406 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
 407 * @adapter: private adapter struct
 408 *
 409 * this watchdog task periodically reads the timecounter
 410 * in order to prevent missing when the system time registers wrap
 411 * around. This needs to be run approximately twice a minute.
 412 */
 413void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
 414{
 415        bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
 416                                             IXGBE_OVERFLOW_PERIOD);
 417        struct timespec ts;
 418
 419        if (timeout) {
 420                ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
 421                adapter->last_overflow_check = jiffies;
 422        }
 423}
 424
 425/**
 426 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
 427 * @adapter: private network adapter structure
 428 *
 429 * this watchdog task is scheduled to detect error case where hardware has
 430 * dropped an Rx packet that was timestamped when the ring is full. The
 431 * particular error is rare but leaves the device in a state unable to timestamp
 432 * any future packets.
 433 */
 434void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
 435{
 436        struct ixgbe_hw *hw = &adapter->hw;
 437        struct ixgbe_ring *rx_ring;
 438        u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
 439        unsigned long rx_event;
 440        int n;
 441
 442        /* if we don't have a valid timestamp in the registers, just update the
 443         * timeout counter and exit
 444         */
 445        if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
 446                adapter->last_rx_ptp_check = jiffies;
 447                return;
 448        }
 449
 450        /* determine the most recent watchdog or rx_timestamp event */
 451        rx_event = adapter->last_rx_ptp_check;
 452        for (n = 0; n < adapter->num_rx_queues; n++) {
 453                rx_ring = adapter->rx_ring[n];
 454                if (time_after(rx_ring->last_rx_timestamp, rx_event))
 455                        rx_event = rx_ring->last_rx_timestamp;
 456        }
 457
 458        /* only need to read the high RXSTMP register to clear the lock */
 459        if (time_is_before_jiffies(rx_event + 5*HZ)) {
 460                IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
 461                adapter->last_rx_ptp_check = jiffies;
 462
 463                e_warn(drv, "clearing RX Timestamp hang");
 464        }
 465}
 466
 467/**
 468 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 469 * @adapter: the private adapter struct
 470 *
 471 * if the timestamp is valid, we convert it into the timecounter ns
 472 * value, then store that result into the shhwtstamps structure which
 473 * is passed up the network stack
 474 */
 475static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
 476{
 477        struct ixgbe_hw *hw = &adapter->hw;
 478        struct skb_shared_hwtstamps shhwtstamps;
 479        u64 regval = 0, ns;
 480        unsigned long flags;
 481
 482        regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
 483        regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
 484
 485        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 486        ns = timecounter_cyc2time(&adapter->tc, regval);
 487        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 488
 489        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 490        shhwtstamps.hwtstamp = ns_to_ktime(ns);
 491        skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
 492
 493        dev_kfree_skb_any(adapter->ptp_tx_skb);
 494        adapter->ptp_tx_skb = NULL;
 495}
 496
 497/**
 498 * ixgbe_ptp_tx_hwtstamp_work
 499 * @work: pointer to the work struct
 500 *
 501 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
 502 * timestamp has been taken for the current skb. It is necesary, because the
 503 * descriptor's "done" bit does not correlate with the timestamp event.
 504 */
 505static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
 506{
 507        struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
 508                                                     ptp_tx_work);
 509        struct ixgbe_hw *hw = &adapter->hw;
 510        bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 511                                              IXGBE_PTP_TX_TIMEOUT);
 512        u32 tsynctxctl;
 513
 514        /* we have to have a valid skb */
 515        if (!adapter->ptp_tx_skb)
 516                return;
 517
 518        if (timeout) {
 519                dev_kfree_skb_any(adapter->ptp_tx_skb);
 520                adapter->ptp_tx_skb = NULL;
 521                e_warn(drv, "clearing Tx Timestamp hang");
 522                return;
 523        }
 524
 525        tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
 526        if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
 527                ixgbe_ptp_tx_hwtstamp(adapter);
 528        else
 529                /* reschedule to keep checking if it's not available yet */
 530                schedule_work(&adapter->ptp_tx_work);
 531}
 532
 533/**
 534 * __ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
 535 * @q_vector: structure containing interrupt and ring information
 536 * @skb: particular skb to send timestamp with
 537 *
 538 * if the timestamp is valid, we convert it into the timecounter ns
 539 * value, then store that result into the shhwtstamps structure which
 540 * is passed up the network stack
 541 */
 542void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
 543                             struct sk_buff *skb)
 544{
 545        struct ixgbe_adapter *adapter;
 546        struct ixgbe_hw *hw;
 547        struct skb_shared_hwtstamps *shhwtstamps;
 548        u64 regval = 0, ns;
 549        u32 tsyncrxctl;
 550        unsigned long flags;
 551
 552        /* we cannot process timestamps on a ring without a q_vector */
 553        if (!q_vector || !q_vector->adapter)
 554                return;
 555
 556        adapter = q_vector->adapter;
 557        hw = &adapter->hw;
 558
 559        /*
 560         * Read the tsyncrxctl register afterwards in order to prevent taking an
 561         * I/O hit on every packet.
 562         */
 563        tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
 564        if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
 565                return;
 566
 567        regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
 568        regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
 569
 570
 571        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 572        ns = timecounter_cyc2time(&adapter->tc, regval);
 573        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 574
 575        shhwtstamps = skb_hwtstamps(skb);
 576        shhwtstamps->hwtstamp = ns_to_ktime(ns);
 577}
 578
 579/**
 580 * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
 581 * @adapter: pointer to adapter struct
 582 * @ifreq: ioctl data
 583 * @cmd: particular ioctl requested
 584 *
 585 * Outgoing time stamping can be enabled and disabled. Play nice and
 586 * disable it when requested, although it shouldn't case any overhead
 587 * when no packet needs it. At most one packet in the queue may be
 588 * marked for time stamping, otherwise it would be impossible to tell
 589 * for sure to which packet the hardware time stamp belongs.
 590 *
 591 * Incoming time stamping has to be configured via the hardware
 592 * filters. Not all combinations are supported, in particular event
 593 * type has to be specified. Matching the kind of event packet is
 594 * not supported, with the exception of "all V2 events regardless of
 595 * level 2 or 4".
 596 *
 597 * Since hardware always timestamps Path delay packets when timestamping V2
 598 * packets, regardless of the type specified in the register, only use V2
 599 * Event mode. This more accurately tells the user what the hardware is going
 600 * to do anyways.
 601 */
 602int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
 603                             struct ifreq *ifr, int cmd)
 604{
 605        struct ixgbe_hw *hw = &adapter->hw;
 606        struct hwtstamp_config config;
 607        u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
 608        u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
 609        u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
 610        bool is_l2 = false;
 611        u32 regval;
 612
 613        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 614                return -EFAULT;
 615
 616        /* reserved for future extensions */
 617        if (config.flags)
 618                return -EINVAL;
 619
 620        switch (config.tx_type) {
 621        case HWTSTAMP_TX_OFF:
 622                tsync_tx_ctl = 0;
 623        case HWTSTAMP_TX_ON:
 624                break;
 625        default:
 626                return -ERANGE;
 627        }
 628
 629        switch (config.rx_filter) {
 630        case HWTSTAMP_FILTER_NONE:
 631                tsync_rx_ctl = 0;
 632                tsync_rx_mtrl = 0;
 633                break;
 634        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 635                tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
 636                tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
 637                break;
 638        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 639                tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
 640                tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
 641                break;
 642        case HWTSTAMP_FILTER_PTP_V2_EVENT:
 643        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 644        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 645        case HWTSTAMP_FILTER_PTP_V2_SYNC:
 646        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 647        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 648        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 649        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 650        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 651                tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
 652                is_l2 = true;
 653                config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 654                break;
 655        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 656        case HWTSTAMP_FILTER_ALL:
 657        default:
 658                /*
 659                 * register RXMTRL must be set in order to do V1 packets,
 660                 * therefore it is not possible to time stamp both V1 Sync and
 661                 * Delay_Req messages and hardware does not support
 662                 * timestamping all packets => return error
 663                 */
 664                config.rx_filter = HWTSTAMP_FILTER_NONE;
 665                return -ERANGE;
 666        }
 667
 668        if (hw->mac.type == ixgbe_mac_82598EB) {
 669                if (tsync_rx_ctl | tsync_tx_ctl)
 670                        return -ERANGE;
 671                return 0;
 672        }
 673
 674        /* define ethertype filter for timestamping L2 packets */
 675        if (is_l2)
 676                IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
 677                                (IXGBE_ETQF_FILTER_EN | /* enable filter */
 678                                 IXGBE_ETQF_1588 | /* enable timestamping */
 679                                 ETH_P_1588));     /* 1588 eth protocol type */
 680        else
 681                IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
 682
 683
 684        /* enable/disable TX */
 685        regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
 686        regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
 687        regval |= tsync_tx_ctl;
 688        IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
 689
 690        /* enable/disable RX */
 691        regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
 692        regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
 693        regval |= tsync_rx_ctl;
 694        IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
 695
 696        /* define which PTP packets are time stamped */
 697        IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
 698
 699        IXGBE_WRITE_FLUSH(hw);
 700
 701        /* clear TX/RX time stamp registers, just to be sure */
 702        regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
 703        regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
 704
 705        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 706                -EFAULT : 0;
 707}
 708
 709/**
 710 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
 711 * @adapter: pointer to the adapter structure
 712 *
 713 * This function should be called to set the proper values for the TIMINCA
 714 * register and tell the cyclecounter structure what the tick rate of SYSTIME
 715 * is. It does not directly modify SYSTIME registers or the timecounter
 716 * structure. It should be called whenever a new TIMINCA value is necessary,
 717 * such as during initialization or when the link speed changes.
 718 */
 719void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
 720{
 721        struct ixgbe_hw *hw = &adapter->hw;
 722        u32 incval = 0;
 723        u32 shift = 0;
 724        unsigned long flags;
 725
 726        /**
 727         * Scale the NIC cycle counter by a large factor so that
 728         * relatively small corrections to the frequency can be added
 729         * or subtracted. The drawbacks of a large factor include
 730         * (a) the clock register overflows more quickly, (b) the cycle
 731         * counter structure must be able to convert the systime value
 732         * to nanoseconds using only a multiplier and a right-shift,
 733         * and (c) the value must fit within the timinca register space
 734         * => math based on internal DMA clock rate and available bits
 735         *
 736         * Note that when there is no link, internal DMA clock is same as when
 737         * link speed is 10Gb. Set the registers correctly even when link is
 738         * down to preserve the clock setting
 739         */
 740        switch (adapter->link_speed) {
 741        case IXGBE_LINK_SPEED_100_FULL:
 742                incval = IXGBE_INCVAL_100;
 743                shift = IXGBE_INCVAL_SHIFT_100;
 744                break;
 745        case IXGBE_LINK_SPEED_1GB_FULL:
 746                incval = IXGBE_INCVAL_1GB;
 747                shift = IXGBE_INCVAL_SHIFT_1GB;
 748                break;
 749        case IXGBE_LINK_SPEED_10GB_FULL:
 750        default:
 751                incval = IXGBE_INCVAL_10GB;
 752                shift = IXGBE_INCVAL_SHIFT_10GB;
 753                break;
 754        }
 755
 756        /**
 757         * Modify the calculated values to fit within the correct
 758         * number of bits specified by the hardware. The 82599 doesn't
 759         * have the same space as the X540, so bitshift the calculated
 760         * values to fit.
 761         */
 762        switch (hw->mac.type) {
 763        case ixgbe_mac_X540:
 764                IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
 765                break;
 766        case ixgbe_mac_82599EB:
 767                incval >>= IXGBE_INCVAL_SHIFT_82599;
 768                shift -= IXGBE_INCVAL_SHIFT_82599;
 769                IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
 770                                (1 << IXGBE_INCPER_SHIFT_82599) |
 771                                incval);
 772                break;
 773        default:
 774                /* other devices aren't supported */
 775                return;
 776        }
 777
 778        /* update the base incval used to calculate frequency adjustment */
 779        ACCESS_ONCE(adapter->base_incval) = incval;
 780        smp_mb();
 781
 782        /* need lock to prevent incorrect read while modifying cyclecounter */
 783        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 784
 785        memset(&adapter->cc, 0, sizeof(adapter->cc));
 786        adapter->cc.read = ixgbe_ptp_read;
 787        adapter->cc.mask = CLOCKSOURCE_MASK(64);
 788        adapter->cc.shift = shift;
 789        adapter->cc.mult = 1;
 790
 791        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 792}
 793
 794/**
 795 * ixgbe_ptp_reset
 796 * @adapter: the ixgbe private board structure
 797 *
 798 * When the MAC resets, all timesync features are reset. This function should be
 799 * called to re-enable the PTP clock structure. It will re-init the timecounter
 800 * structure based on the kernel time as well as setup the cycle counter data.
 801 */
 802void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
 803{
 804        struct ixgbe_hw *hw = &adapter->hw;
 805        unsigned long flags;
 806
 807        /* set SYSTIME registers to 0 just in case */
 808        IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
 809        IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
 810        IXGBE_WRITE_FLUSH(hw);
 811
 812        ixgbe_ptp_start_cyclecounter(adapter);
 813
 814        spin_lock_irqsave(&adapter->tmreg_lock, flags);
 815
 816        /* reset the ns time counter */
 817        timecounter_init(&adapter->tc, &adapter->cc,
 818                         ktime_to_ns(ktime_get_real()));
 819
 820        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 821
 822        /*
 823         * Now that the shift has been calculated and the systime
 824         * registers reset, (re-)enable the Clock out feature
 825         */
 826        ixgbe_ptp_setup_sdp(adapter);
 827}
 828
 829/**
 830 * ixgbe_ptp_init
 831 * @adapter: the ixgbe private adapter structure
 832 *
 833 * This function performs the required steps for enabling ptp
 834 * support. If ptp support has already been loaded it simply calls the
 835 * cyclecounter init routine and exits.
 836 */
 837void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
 838{
 839        struct net_device *netdev = adapter->netdev;
 840
 841        switch (adapter->hw.mac.type) {
 842        case ixgbe_mac_X540:
 843                snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
 844                adapter->ptp_caps.owner = THIS_MODULE;
 845                adapter->ptp_caps.max_adj = 250000000;
 846                adapter->ptp_caps.n_alarm = 0;
 847                adapter->ptp_caps.n_ext_ts = 0;
 848                adapter->ptp_caps.n_per_out = 0;
 849                adapter->ptp_caps.pps = 1;
 850                adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
 851                adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
 852                adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
 853                adapter->ptp_caps.settime = ixgbe_ptp_settime;
 854                adapter->ptp_caps.enable = ixgbe_ptp_enable;
 855                break;
 856        case ixgbe_mac_82599EB:
 857                snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
 858                adapter->ptp_caps.owner = THIS_MODULE;
 859                adapter->ptp_caps.max_adj = 250000000;
 860                adapter->ptp_caps.n_alarm = 0;
 861                adapter->ptp_caps.n_ext_ts = 0;
 862                adapter->ptp_caps.n_per_out = 0;
 863                adapter->ptp_caps.pps = 0;
 864                adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
 865                adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
 866                adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
 867                adapter->ptp_caps.settime = ixgbe_ptp_settime;
 868                adapter->ptp_caps.enable = ixgbe_ptp_enable;
 869                break;
 870        default:
 871                adapter->ptp_clock = NULL;
 872                return;
 873        }
 874
 875        spin_lock_init(&adapter->tmreg_lock);
 876        INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
 877
 878        adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
 879                                                &adapter->pdev->dev);
 880        if (IS_ERR(adapter->ptp_clock)) {
 881                adapter->ptp_clock = NULL;
 882                e_dev_err("ptp_clock_register failed\n");
 883        } else
 884                e_dev_info("registered PHC device on %s\n", netdev->name);
 885
 886        ixgbe_ptp_reset(adapter);
 887
 888        /* set the flag that PTP has been enabled */
 889        adapter->flags2 |= IXGBE_FLAG2_PTP_ENABLED;
 890
 891        return;
 892}
 893
 894/**
 895 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
 896 * @adapter: pointer to adapter struct
 897 *
 898 * this function stops the ptp support, and cancels the delayed work.
 899 */
 900void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
 901{
 902        /* stop the overflow check task */
 903        adapter->flags2 &= ~(IXGBE_FLAG2_PTP_ENABLED |
 904                             IXGBE_FLAG2_PTP_PPS_ENABLED);
 905
 906        ixgbe_ptp_setup_sdp(adapter);
 907
 908        cancel_work_sync(&adapter->ptp_tx_work);
 909        if (adapter->ptp_tx_skb) {
 910                dev_kfree_skb_any(adapter->ptp_tx_skb);
 911                adapter->ptp_tx_skb = NULL;
 912        }
 913
 914        if (adapter->ptp_clock) {
 915                ptp_clock_unregister(adapter->ptp_clock);
 916                adapter->ptp_clock = NULL;
 917                e_dev_info("removed PHC on %s\n",
 918                           adapter->netdev->name);
 919        }
 920}
 921