linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2011 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *      The event contains the packet's UUID and sequence number, together
  20 *      with the hardware timestamp.  The PTP receive packet queue is searched
  21 *      for this UUID/sequence number and, if found, put on a pending queue.
  22 *      Packets not matching are delivered without timestamps (MCDI events will
  23 *      always arrive after the actual packet).
  24 *      It is important for the operation of the PTP protocol that the ordering
  25 *      of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *      If work waiting, synchronise host/hardware time
  29 *
  30 *      Transmit: send packet through MC, which returns the transmission time
  31 *      that is converted to an appropriate timestamp.
  32 *
  33 *      Receive: the packet's reception time is converted to an appropriate
  34 *      timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define MAX_EVENT_FRAGS                 3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define MAX_SYNCHRONISE_WAIT_MS         2
  57
  58/* How long, at most, to spend synchronising */
  59#define SYNCHRONISE_PERIOD_NS           250000
  60
  61/* How often to update the shared memory time */
  62#define SYNCHRONISATION_GRANULARITY_NS  200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define MIN_SYNCHRONISATION_NS          120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define MAX_SYNCHRONISATION_NS          1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define MAX_RECEIVE_EVENTS              8
  72
  73/* Length of (modified) moving average. */
  74#define AVERAGE_LENGTH                  16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS           10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET        22
  84
  85#define PTP_V1_VERSION_LENGTH   2
  86#define PTP_V1_VERSION_OFFSET   28
  87
  88#define PTP_V1_UUID_LENGTH      6
  89#define PTP_V1_UUID_OFFSET      50
  90
  91#define PTP_V1_SEQUENCE_LENGTH  2
  92#define PTP_V1_SEQUENCE_OFFSET  58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define PTP_V1_MIN_LENGTH       64
  98
  99#define PTP_V2_VERSION_LENGTH   1
 100#define PTP_V2_VERSION_OFFSET   29
 101
 102#define PTP_V2_UUID_LENGTH      8
 103#define PTP_V2_UUID_OFFSET      48
 104
 105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 106 * the MC only captures the last six bytes of the clock identity. These values
 107 * reflect those, not the ones used in the standard.  The standard permits
 108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 109 */
 110#define PTP_V2_MC_UUID_LENGTH   6
 111#define PTP_V2_MC_UUID_OFFSET   50
 112
 113#define PTP_V2_SEQUENCE_LENGTH  2
 114#define PTP_V2_SEQUENCE_OFFSET  58
 115
 116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 117 * includes IP header.
 118 */
 119#define PTP_V2_MIN_LENGTH       63
 120
 121#define PTP_MIN_LENGTH          63
 122
 123#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 124#define PTP_EVENT_PORT          319
 125#define PTP_GENERAL_PORT        320
 126
 127/* Annoyingly the format of the version numbers are different between
 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 129 */
 130#define PTP_VERSION_V1          1
 131
 132#define PTP_VERSION_V2          2
 133#define PTP_VERSION_V2_MASK     0x0f
 134
 135enum ptp_packet_state {
 136        PTP_PACKET_STATE_UNMATCHED = 0,
 137        PTP_PACKET_STATE_MATCHED,
 138        PTP_PACKET_STATE_TIMED_OUT,
 139        PTP_PACKET_STATE_MATCH_UNWANTED
 140};
 141
 142/* NIC synchronised with single word of time only comprising
 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 144 */
 145#define MC_NANOSECOND_BITS      30
 146#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 147#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 148
 149/* Maximum parts-per-billion adjustment that is acceptable */
 150#define MAX_PPB                 1000000
 151
 152/* Number of bits required to hold the above */
 153#define MAX_PPB_BITS            20
 154
 155/* Number of extra bits allowed when calculating fractional ns.
 156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 157 * be less than 63.
 158 */
 159#define PPB_EXTRA_BITS          2
 160
 161/* Precalculate scale word to avoid long long division at runtime */
 162#define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
 163                        MAX_PPB_BITS)) / 1000000000LL)
 164
 165#define PTP_SYNC_ATTEMPTS       4
 166
 167/**
 168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 169 * @words: UUID and (partial) sequence number
 170 * @expiry: Time after which the packet should be delivered irrespective of
 171 *            event arrival.
 172 * @state: The state of the packet - whether it is ready for processing or
 173 *         whether that is of no interest.
 174 */
 175struct efx_ptp_match {
 176        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 177        unsigned long expiry;
 178        enum ptp_packet_state state;
 179};
 180
 181/**
 182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 183 * @seq0: First part of (PTP) UUID
 184 * @seq1: Second part of (PTP) UUID and sequence number
 185 * @hwtimestamp: Event timestamp
 186 */
 187struct efx_ptp_event_rx {
 188        struct list_head link;
 189        u32 seq0;
 190        u32 seq1;
 191        ktime_t hwtimestamp;
 192        unsigned long expiry;
 193};
 194
 195/**
 196 * struct efx_ptp_timeset - Synchronisation between host and MC
 197 * @host_start: Host time immediately before hardware timestamp taken
 198 * @seconds: Hardware timestamp, seconds
 199 * @nanoseconds: Hardware timestamp, nanoseconds
 200 * @host_end: Host time immediately after hardware timestamp taken
 201 * @waitns: Number of nanoseconds between hardware timestamp being read and
 202 *          host end time being seen
 203 * @window: Difference of host_end and host_start
 204 * @valid: Whether this timeset is valid
 205 */
 206struct efx_ptp_timeset {
 207        u32 host_start;
 208        u32 seconds;
 209        u32 nanoseconds;
 210        u32 host_end;
 211        u32 waitns;
 212        u32 window;     /* Derived: end - start, allowing for wrap */
 213};
 214
 215/**
 216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 217 * @channel: The PTP channel
 218 * @rxq: Receive queue (awaiting timestamps)
 219 * @txq: Transmit queue
 220 * @evt_list: List of MC receive events awaiting packets
 221 * @evt_free_list: List of free events
 222 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 223 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 224 * @workwq: Work queue for processing pending PTP operations
 225 * @work: Work task
 226 * @reset_required: A serious error has occurred and the PTP task needs to be
 227 *                  reset (disable, enable).
 228 * @rxfilter_event: Receive filter when operating
 229 * @rxfilter_general: Receive filter when operating
 230 * @config: Current timestamp configuration
 231 * @enabled: PTP operation enabled
 232 * @mode: Mode in which PTP operating (PTP version)
 233 * @evt_frags: Partly assembled PTP events
 234 * @evt_frag_idx: Current fragment number
 235 * @evt_code: Last event code
 236 * @start: Address at which MC indicates ready for synchronisation
 237 * @host_time_pps: Host time at last PPS
 238 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
 239 * @base_sync_ns: Number of nanoseconds for last synchronisation.
 240 * @base_sync_valid: Whether base_sync_time is valid.
 241 * @current_adjfreq: Current ppb adjustment.
 242 * @phc_clock: Pointer to registered phc device
 243 * @phc_clock_info: Registration structure for phc device
 244 * @pps_work: pps work task for handling pps events
 245 * @pps_workwq: pps work queue
 246 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 247 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 248 *         allocations in main data path).
 249 * @debug_ptp_dir: PTP debugfs directory
 250 * @missed_rx_sync: Number of packets received without syncrhonisation.
 251 * @good_syncs: Number of successful synchronisations.
 252 * @no_time_syncs: Number of synchronisations with no good times.
 253 * @bad_sync_durations: Number of synchronisations with bad durations.
 254 * @bad_syncs: Number of failed synchronisations.
 255 * @last_sync_time: Number of nanoseconds for last synchronisation.
 256 * @sync_timeouts: Number of synchronisation timeouts
 257 * @fast_syncs: Number of synchronisations requiring short delay
 258 * @min_sync_delta: Minimum time between event and synchronisation
 259 * @max_sync_delta: Maximum time between event and synchronisation
 260 * @average_sync_delta: Average time between event and synchronisation.
 261 *                      Modified moving average.
 262 * @last_sync_delta: Last time between event and synchronisation
 263 * @mc_stats: Context value for MC statistics
 264 * @timeset: Last set of synchronisation statistics.
 265 */
 266struct efx_ptp_data {
 267        struct efx_channel *channel;
 268        struct sk_buff_head rxq;
 269        struct sk_buff_head txq;
 270        struct list_head evt_list;
 271        struct list_head evt_free_list;
 272        spinlock_t evt_lock;
 273        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 274        struct workqueue_struct *workwq;
 275        struct work_struct work;
 276        bool reset_required;
 277        u32 rxfilter_event;
 278        u32 rxfilter_general;
 279        bool rxfilter_installed;
 280        struct hwtstamp_config config;
 281        bool enabled;
 282        unsigned int mode;
 283        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 284        int evt_frag_idx;
 285        int evt_code;
 286        struct efx_buffer start;
 287        struct pps_event_time host_time_pps;
 288        unsigned last_sync_ns;
 289        unsigned base_sync_ns;
 290        bool base_sync_valid;
 291        s64 current_adjfreq;
 292        struct ptp_clock *phc_clock;
 293        struct ptp_clock_info phc_clock_info;
 294        struct work_struct pps_work;
 295        struct workqueue_struct *pps_workwq;
 296        bool nic_ts_enabled;
 297        u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
 298                               MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
 299        struct efx_ptp_timeset
 300        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 301};
 302
 303static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 304static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 305static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
 306static int efx_phc_settime(struct ptp_clock_info *ptp,
 307                           const struct timespec *e_ts);
 308static int efx_phc_enable(struct ptp_clock_info *ptp,
 309                          struct ptp_clock_request *request, int on);
 310
 311/* Enable MCDI PTP support. */
 312static int efx_ptp_enable(struct efx_nic *efx)
 313{
 314        u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN];
 315
 316        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 317        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 318                       efx->ptp_data->channel->channel);
 319        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 320
 321        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 322                            NULL, 0, NULL);
 323}
 324
 325/* Disable MCDI PTP support.
 326 *
 327 * Note that this function should never rely on the presence of ptp_data -
 328 * may be called before that exists.
 329 */
 330static int efx_ptp_disable(struct efx_nic *efx)
 331{
 332        u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN];
 333
 334        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 335        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 336                            NULL, 0, NULL);
 337}
 338
 339static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 340{
 341        struct sk_buff *skb;
 342
 343        while ((skb = skb_dequeue(q))) {
 344                local_bh_disable();
 345                netif_receive_skb(skb);
 346                local_bh_enable();
 347        }
 348}
 349
 350static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 351{
 352        netif_err(efx, drv, efx->net_dev,
 353                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 354                  "vector. PTP disabled\n");
 355}
 356
 357/* Repeatedly send the host time to the MC which will capture the hardware
 358 * time.
 359 */
 360static void efx_ptp_send_times(struct efx_nic *efx,
 361                               struct pps_event_time *last_time)
 362{
 363        struct pps_event_time now;
 364        struct timespec limit;
 365        struct efx_ptp_data *ptp = efx->ptp_data;
 366        struct timespec start;
 367        int *mc_running = ptp->start.addr;
 368
 369        pps_get_ts(&now);
 370        start = now.ts_real;
 371        limit = now.ts_real;
 372        timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 373
 374        /* Write host time for specified period or until MC is done */
 375        while ((timespec_compare(&now.ts_real, &limit) < 0) &&
 376               ACCESS_ONCE(*mc_running)) {
 377                struct timespec update_time;
 378                unsigned int host_time;
 379
 380                /* Don't update continuously to avoid saturating the PCIe bus */
 381                update_time = now.ts_real;
 382                timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 383                do {
 384                        pps_get_ts(&now);
 385                } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
 386                         ACCESS_ONCE(*mc_running));
 387
 388                /* Synchronise NIC with single word of time only */
 389                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 390                             now.ts_real.tv_nsec);
 391                /* Update host time in NIC memory */
 392                _efx_writed(efx, cpu_to_le32(host_time),
 393                            FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
 394        }
 395        *last_time = now;
 396}
 397
 398/* Read a timeset from the MC's results and partial process. */
 399static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
 400{
 401        unsigned start_ns, end_ns;
 402
 403        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 404        timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
 405        timeset->nanoseconds = MCDI_DWORD(data,
 406                                         PTP_OUT_SYNCHRONIZE_NANOSECONDS);
 407        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 408        timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 409
 410        /* Ignore seconds */
 411        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 412        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 413        /* Allow for rollover */
 414        if (end_ns < start_ns)
 415                end_ns += NSEC_PER_SEC;
 416        /* Determine duration of operation */
 417        timeset->window = end_ns - start_ns;
 418}
 419
 420/* Process times received from MC.
 421 *
 422 * Extract times from returned results, and establish the minimum value
 423 * seen.  The minimum value represents the "best" possible time and events
 424 * too much greater than this are rejected - the machine is, perhaps, too
 425 * busy. A number of readings are taken so that, hopefully, at least one good
 426 * synchronisation will be seen in the results.
 427 */
 428static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
 429                                 size_t response_length,
 430                                 const struct pps_event_time *last_time)
 431{
 432        unsigned number_readings = (response_length /
 433                               MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN);
 434        unsigned i;
 435        unsigned total;
 436        unsigned ngood = 0;
 437        unsigned last_good = 0;
 438        struct efx_ptp_data *ptp = efx->ptp_data;
 439        u32 last_sec;
 440        u32 start_sec;
 441        struct timespec delta;
 442
 443        if (number_readings == 0)
 444                return -EAGAIN;
 445
 446        /* Read the set of results and increment stats for any results that
 447         * appera to be erroneous.
 448         */
 449        for (i = 0; i < number_readings; i++) {
 450                efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
 451                synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN;
 452        }
 453
 454        /* Find the last good host-MC synchronization result. The MC times
 455         * when it finishes reading the host time so the corrected window time
 456         * should be fairly constant for a given platform.
 457         */
 458        total = 0;
 459        for (i = 0; i < number_readings; i++)
 460                if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
 461                        unsigned win;
 462
 463                        win = ptp->timeset[i].window - ptp->timeset[i].waitns;
 464                        if (win >= MIN_SYNCHRONISATION_NS &&
 465                            win < MAX_SYNCHRONISATION_NS) {
 466                                total += ptp->timeset[i].window;
 467                                ngood++;
 468                                last_good = i;
 469                        }
 470                }
 471
 472        if (ngood == 0) {
 473                netif_warn(efx, drv, efx->net_dev,
 474                           "PTP no suitable synchronisations %dns\n",
 475                           ptp->base_sync_ns);
 476                return -EAGAIN;
 477        }
 478
 479        /* Average minimum this synchronisation */
 480        ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
 481        if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
 482                ptp->base_sync_valid = true;
 483                ptp->base_sync_ns = ptp->last_sync_ns;
 484        }
 485
 486        /* Calculate delay from actual PPS to last_time */
 487        delta.tv_nsec =
 488                ptp->timeset[last_good].nanoseconds +
 489                last_time->ts_real.tv_nsec -
 490                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 491
 492        /* It is possible that the seconds rolled over between taking
 493         * the start reading and the last value written by the host.  The
 494         * timescales are such that a gap of more than one second is never
 495         * expected.
 496         */
 497        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 498        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 499        if (start_sec != last_sec) {
 500                if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 501                        netif_warn(efx, hw, efx->net_dev,
 502                                   "PTP bad synchronisation seconds\n");
 503                        return -EAGAIN;
 504                } else {
 505                        delta.tv_sec = 1;
 506                }
 507        } else {
 508                delta.tv_sec = 0;
 509        }
 510
 511        ptp->host_time_pps = *last_time;
 512        pps_sub_ts(&ptp->host_time_pps, delta);
 513
 514        return 0;
 515}
 516
 517/* Synchronize times between the host and the MC */
 518static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 519{
 520        struct efx_ptp_data *ptp = efx->ptp_data;
 521        u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX];
 522        size_t response_length;
 523        int rc;
 524        unsigned long timeout;
 525        struct pps_event_time last_time = {};
 526        unsigned int loops = 0;
 527        int *start = ptp->start.addr;
 528
 529        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
 530        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
 531                       num_readings);
 532        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
 533                       (u32)ptp->start.dma_addr);
 534        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
 535                       (u32)((u64)ptp->start.dma_addr >> 32));
 536
 537        /* Clear flag that signals MC ready */
 538        ACCESS_ONCE(*start) = 0;
 539        efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
 540                           MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
 541
 542        /* Wait for start from MCDI (or timeout) */
 543        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
 544        while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
 545                udelay(20);     /* Usually start MCDI execution quickly */
 546                loops++;
 547        }
 548
 549        if (ACCESS_ONCE(*start))
 550                efx_ptp_send_times(efx, &last_time);
 551
 552        /* Collect results */
 553        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
 554                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
 555                                 synch_buf, sizeof(synch_buf),
 556                                 &response_length);
 557        if (rc == 0)
 558                rc = efx_ptp_process_times(efx, synch_buf, response_length,
 559                                           &last_time);
 560
 561        return rc;
 562}
 563
 564/* Transmit a PTP packet, via the MCDI interface, to the wire. */
 565static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
 566{
 567        u8 *txbuf = efx->ptp_data->txbuf;
 568        struct skb_shared_hwtstamps timestamps;
 569        int rc = -EIO;
 570        /* MCDI driver requires word aligned lengths */
 571        size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
 572        u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
 573
 574        MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
 575        MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
 576        if (skb_shinfo(skb)->nr_frags != 0) {
 577                rc = skb_linearize(skb);
 578                if (rc != 0)
 579                        goto fail;
 580        }
 581
 582        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 583                rc = skb_checksum_help(skb);
 584                if (rc != 0)
 585                        goto fail;
 586        }
 587        skb_copy_from_linear_data(skb,
 588                                  &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST],
 589                                  len);
 590        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
 591                          sizeof(txtime), &len);
 592        if (rc != 0)
 593                goto fail;
 594
 595        memset(&timestamps, 0, sizeof(timestamps));
 596        timestamps.hwtstamp = ktime_set(
 597                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
 598                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
 599
 600        skb_tstamp_tx(skb, &timestamps);
 601
 602        rc = 0;
 603
 604fail:
 605        dev_kfree_skb(skb);
 606
 607        return rc;
 608}
 609
 610static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
 611{
 612        struct efx_ptp_data *ptp = efx->ptp_data;
 613        struct list_head *cursor;
 614        struct list_head *next;
 615
 616        /* Drop time-expired events */
 617        spin_lock_bh(&ptp->evt_lock);
 618        if (!list_empty(&ptp->evt_list)) {
 619                list_for_each_safe(cursor, next, &ptp->evt_list) {
 620                        struct efx_ptp_event_rx *evt;
 621
 622                        evt = list_entry(cursor, struct efx_ptp_event_rx,
 623                                         link);
 624                        if (time_after(jiffies, evt->expiry)) {
 625                                list_move(&evt->link, &ptp->evt_free_list);
 626                                netif_warn(efx, hw, efx->net_dev,
 627                                           "PTP rx event dropped\n");
 628                        }
 629                }
 630        }
 631        spin_unlock_bh(&ptp->evt_lock);
 632}
 633
 634static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
 635                                              struct sk_buff *skb)
 636{
 637        struct efx_ptp_data *ptp = efx->ptp_data;
 638        bool evts_waiting;
 639        struct list_head *cursor;
 640        struct list_head *next;
 641        struct efx_ptp_match *match;
 642        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
 643
 644        spin_lock_bh(&ptp->evt_lock);
 645        evts_waiting = !list_empty(&ptp->evt_list);
 646        spin_unlock_bh(&ptp->evt_lock);
 647
 648        if (!evts_waiting)
 649                return PTP_PACKET_STATE_UNMATCHED;
 650
 651        match = (struct efx_ptp_match *)skb->cb;
 652        /* Look for a matching timestamp in the event queue */
 653        spin_lock_bh(&ptp->evt_lock);
 654        list_for_each_safe(cursor, next, &ptp->evt_list) {
 655                struct efx_ptp_event_rx *evt;
 656
 657                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
 658                if ((evt->seq0 == match->words[0]) &&
 659                    (evt->seq1 == match->words[1])) {
 660                        struct skb_shared_hwtstamps *timestamps;
 661
 662                        /* Match - add in hardware timestamp */
 663                        timestamps = skb_hwtstamps(skb);
 664                        timestamps->hwtstamp = evt->hwtimestamp;
 665
 666                        match->state = PTP_PACKET_STATE_MATCHED;
 667                        rc = PTP_PACKET_STATE_MATCHED;
 668                        list_move(&evt->link, &ptp->evt_free_list);
 669                        break;
 670                }
 671        }
 672        spin_unlock_bh(&ptp->evt_lock);
 673
 674        return rc;
 675}
 676
 677/* Process any queued receive events and corresponding packets
 678 *
 679 * q is returned with all the packets that are ready for delivery.
 680 * true is returned if at least one of those packets requires
 681 * synchronisation.
 682 */
 683static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
 684{
 685        struct efx_ptp_data *ptp = efx->ptp_data;
 686        bool rc = false;
 687        struct sk_buff *skb;
 688
 689        while ((skb = skb_dequeue(&ptp->rxq))) {
 690                struct efx_ptp_match *match;
 691
 692                match = (struct efx_ptp_match *)skb->cb;
 693                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
 694                        __skb_queue_tail(q, skb);
 695                } else if (efx_ptp_match_rx(efx, skb) ==
 696                           PTP_PACKET_STATE_MATCHED) {
 697                        rc = true;
 698                        __skb_queue_tail(q, skb);
 699                } else if (time_after(jiffies, match->expiry)) {
 700                        match->state = PTP_PACKET_STATE_TIMED_OUT;
 701                        netif_warn(efx, rx_err, efx->net_dev,
 702                                   "PTP packet - no timestamp seen\n");
 703                        __skb_queue_tail(q, skb);
 704                } else {
 705                        /* Replace unprocessed entry and stop */
 706                        skb_queue_head(&ptp->rxq, skb);
 707                        break;
 708                }
 709        }
 710
 711        return rc;
 712}
 713
 714/* Complete processing of a received packet */
 715static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
 716{
 717        local_bh_disable();
 718        netif_receive_skb(skb);
 719        local_bh_enable();
 720}
 721
 722static int efx_ptp_start(struct efx_nic *efx)
 723{
 724        struct efx_ptp_data *ptp = efx->ptp_data;
 725        struct efx_filter_spec rxfilter;
 726        int rc;
 727
 728        ptp->reset_required = false;
 729
 730        /* Must filter on both event and general ports to ensure
 731         * that there is no packet re-ordering.
 732         */
 733        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
 734                           efx_rx_queue_index(
 735                                   efx_channel_get_rx_queue(ptp->channel)));
 736        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
 737                                       htonl(PTP_ADDRESS),
 738                                       htons(PTP_EVENT_PORT));
 739        if (rc != 0)
 740                return rc;
 741
 742        rc = efx_filter_insert_filter(efx, &rxfilter, true);
 743        if (rc < 0)
 744                return rc;
 745        ptp->rxfilter_event = rc;
 746
 747        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
 748                           efx_rx_queue_index(
 749                                   efx_channel_get_rx_queue(ptp->channel)));
 750        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
 751                                       htonl(PTP_ADDRESS),
 752                                       htons(PTP_GENERAL_PORT));
 753        if (rc != 0)
 754                goto fail;
 755
 756        rc = efx_filter_insert_filter(efx, &rxfilter, true);
 757        if (rc < 0)
 758                goto fail;
 759        ptp->rxfilter_general = rc;
 760
 761        rc = efx_ptp_enable(efx);
 762        if (rc != 0)
 763                goto fail2;
 764
 765        ptp->evt_frag_idx = 0;
 766        ptp->current_adjfreq = 0;
 767        ptp->rxfilter_installed = true;
 768
 769        return 0;
 770
 771fail2:
 772        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 773                                  ptp->rxfilter_general);
 774fail:
 775        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 776                                  ptp->rxfilter_event);
 777
 778        return rc;
 779}
 780
 781static int efx_ptp_stop(struct efx_nic *efx)
 782{
 783        struct efx_ptp_data *ptp = efx->ptp_data;
 784        int rc = efx_ptp_disable(efx);
 785        struct list_head *cursor;
 786        struct list_head *next;
 787
 788        if (ptp->rxfilter_installed) {
 789                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 790                                          ptp->rxfilter_general);
 791                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 792                                          ptp->rxfilter_event);
 793                ptp->rxfilter_installed = false;
 794        }
 795
 796        /* Make sure RX packets are really delivered */
 797        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
 798        skb_queue_purge(&efx->ptp_data->txq);
 799
 800        /* Drop any pending receive events */
 801        spin_lock_bh(&efx->ptp_data->evt_lock);
 802        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
 803                list_move(cursor, &efx->ptp_data->evt_free_list);
 804        }
 805        spin_unlock_bh(&efx->ptp_data->evt_lock);
 806
 807        return rc;
 808}
 809
 810static void efx_ptp_pps_worker(struct work_struct *work)
 811{
 812        struct efx_ptp_data *ptp =
 813                container_of(work, struct efx_ptp_data, pps_work);
 814        struct efx_nic *efx = ptp->channel->efx;
 815        struct ptp_clock_event ptp_evt;
 816
 817        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
 818                return;
 819
 820        ptp_evt.type = PTP_CLOCK_PPSUSR;
 821        ptp_evt.pps_times = ptp->host_time_pps;
 822        ptp_clock_event(ptp->phc_clock, &ptp_evt);
 823}
 824
 825/* Process any pending transmissions and timestamp any received packets.
 826 */
 827static void efx_ptp_worker(struct work_struct *work)
 828{
 829        struct efx_ptp_data *ptp_data =
 830                container_of(work, struct efx_ptp_data, work);
 831        struct efx_nic *efx = ptp_data->channel->efx;
 832        struct sk_buff *skb;
 833        struct sk_buff_head tempq;
 834
 835        if (ptp_data->reset_required) {
 836                efx_ptp_stop(efx);
 837                efx_ptp_start(efx);
 838                return;
 839        }
 840
 841        efx_ptp_drop_time_expired_events(efx);
 842
 843        __skb_queue_head_init(&tempq);
 844        if (efx_ptp_process_events(efx, &tempq) ||
 845            !skb_queue_empty(&ptp_data->txq)) {
 846
 847                while ((skb = skb_dequeue(&ptp_data->txq)))
 848                        efx_ptp_xmit_skb(efx, skb);
 849        }
 850
 851        while ((skb = __skb_dequeue(&tempq)))
 852                efx_ptp_process_rx(efx, skb);
 853}
 854
 855/* Initialise PTP channel and state.
 856 *
 857 * Setting core_index to zero causes the queue to be initialised and doesn't
 858 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
 859 */
 860static int efx_ptp_probe_channel(struct efx_channel *channel)
 861{
 862        struct efx_nic *efx = channel->efx;
 863        struct efx_ptp_data *ptp;
 864        int rc = 0;
 865        unsigned int pos;
 866
 867        channel->irq_moderation = 0;
 868        channel->rx_queue.core_index = 0;
 869
 870        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
 871        efx->ptp_data = ptp;
 872        if (!efx->ptp_data)
 873                return -ENOMEM;
 874
 875        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
 876        if (rc != 0)
 877                goto fail1;
 878
 879        ptp->channel = channel;
 880        skb_queue_head_init(&ptp->rxq);
 881        skb_queue_head_init(&ptp->txq);
 882        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
 883        if (!ptp->workwq) {
 884                rc = -ENOMEM;
 885                goto fail2;
 886        }
 887
 888        INIT_WORK(&ptp->work, efx_ptp_worker);
 889        ptp->config.flags = 0;
 890        ptp->config.tx_type = HWTSTAMP_TX_OFF;
 891        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
 892        INIT_LIST_HEAD(&ptp->evt_list);
 893        INIT_LIST_HEAD(&ptp->evt_free_list);
 894        spin_lock_init(&ptp->evt_lock);
 895        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
 896                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
 897
 898        ptp->phc_clock_info.owner = THIS_MODULE;
 899        snprintf(ptp->phc_clock_info.name,
 900                 sizeof(ptp->phc_clock_info.name),
 901                 "%pm", efx->net_dev->perm_addr);
 902        ptp->phc_clock_info.max_adj = MAX_PPB;
 903        ptp->phc_clock_info.n_alarm = 0;
 904        ptp->phc_clock_info.n_ext_ts = 0;
 905        ptp->phc_clock_info.n_per_out = 0;
 906        ptp->phc_clock_info.pps = 1;
 907        ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
 908        ptp->phc_clock_info.adjtime = efx_phc_adjtime;
 909        ptp->phc_clock_info.gettime = efx_phc_gettime;
 910        ptp->phc_clock_info.settime = efx_phc_settime;
 911        ptp->phc_clock_info.enable = efx_phc_enable;
 912
 913        ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
 914                                            &efx->pci_dev->dev);
 915        if (IS_ERR(ptp->phc_clock)) {
 916                rc = PTR_ERR(ptp->phc_clock);
 917                goto fail3;
 918        }
 919
 920        INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
 921        ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
 922        if (!ptp->pps_workwq) {
 923                rc = -ENOMEM;
 924                goto fail4;
 925        }
 926        ptp->nic_ts_enabled = false;
 927
 928        return 0;
 929fail4:
 930        ptp_clock_unregister(efx->ptp_data->phc_clock);
 931
 932fail3:
 933        destroy_workqueue(efx->ptp_data->workwq);
 934
 935fail2:
 936        efx_nic_free_buffer(efx, &ptp->start);
 937
 938fail1:
 939        kfree(efx->ptp_data);
 940        efx->ptp_data = NULL;
 941
 942        return rc;
 943}
 944
 945static void efx_ptp_remove_channel(struct efx_channel *channel)
 946{
 947        struct efx_nic *efx = channel->efx;
 948
 949        if (!efx->ptp_data)
 950                return;
 951
 952        (void)efx_ptp_disable(channel->efx);
 953
 954        cancel_work_sync(&efx->ptp_data->work);
 955        cancel_work_sync(&efx->ptp_data->pps_work);
 956
 957        skb_queue_purge(&efx->ptp_data->rxq);
 958        skb_queue_purge(&efx->ptp_data->txq);
 959
 960        ptp_clock_unregister(efx->ptp_data->phc_clock);
 961
 962        destroy_workqueue(efx->ptp_data->workwq);
 963        destroy_workqueue(efx->ptp_data->pps_workwq);
 964
 965        efx_nic_free_buffer(efx, &efx->ptp_data->start);
 966        kfree(efx->ptp_data);
 967}
 968
 969static void efx_ptp_get_channel_name(struct efx_channel *channel,
 970                                     char *buf, size_t len)
 971{
 972        snprintf(buf, len, "%s-ptp", channel->efx->name);
 973}
 974
 975/* Determine whether this packet should be processed by the PTP module
 976 * or transmitted conventionally.
 977 */
 978bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
 979{
 980        return efx->ptp_data &&
 981                efx->ptp_data->enabled &&
 982                skb->len >= PTP_MIN_LENGTH &&
 983                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
 984                likely(skb->protocol == htons(ETH_P_IP)) &&
 985                ip_hdr(skb)->protocol == IPPROTO_UDP &&
 986                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
 987}
 988
 989/* Receive a PTP packet.  Packets are queued until the arrival of
 990 * the receive timestamp from the MC - this will probably occur after the
 991 * packet arrival because of the processing in the MC.
 992 */
 993static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
 994{
 995        struct efx_nic *efx = channel->efx;
 996        struct efx_ptp_data *ptp = efx->ptp_data;
 997        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
 998        u8 *match_data_012, *match_data_345;
 999        unsigned int version;
1000
1001        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1002
1003        /* Correct version? */
1004        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1005                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1006                        return false;
1007                }
1008                version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1009                if (version != PTP_VERSION_V1) {
1010                        return false;
1011                }
1012
1013                /* PTP V1 uses all six bytes of the UUID to match the packet
1014                 * to the timestamp
1015                 */
1016                match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1017                match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
1018        } else {
1019                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1020                        return false;
1021                }
1022                version = skb->data[PTP_V2_VERSION_OFFSET];
1023                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1024                        return false;
1025                }
1026
1027                /* The original V2 implementation uses bytes 2-7 of
1028                 * the UUID to match the packet to the timestamp. This
1029                 * discards two of the bytes of the MAC address used
1030                 * to create the UUID (SF bug 33070).  The PTP V2
1031                 * enhanced mode fixes this issue and uses bytes 0-2
1032                 * and byte 5-7 of the UUID.
1033                 */
1034                match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1035                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1036                        match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1037                } else {
1038                        match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1039                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1040                }
1041        }
1042
1043        /* Does this packet require timestamping? */
1044        if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1045                struct skb_shared_hwtstamps *timestamps;
1046
1047                match->state = PTP_PACKET_STATE_UNMATCHED;
1048
1049                /* Clear all timestamps held: filled in later */
1050                timestamps = skb_hwtstamps(skb);
1051                memset(timestamps, 0, sizeof(*timestamps));
1052
1053                /* We expect the sequence number to be in the same position in
1054                 * the packet for PTP V1 and V2
1055                 */
1056                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1057                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1058
1059                /* Extract UUID/Sequence information */
1060                match->words[0] = (match_data_012[0]         |
1061                                   (match_data_012[1] << 8)  |
1062                                   (match_data_012[2] << 16) |
1063                                   (match_data_345[0] << 24));
1064                match->words[1] = (match_data_345[1]         |
1065                                   (match_data_345[2] << 8)  |
1066                                   (skb->data[PTP_V1_SEQUENCE_OFFSET +
1067                                              PTP_V1_SEQUENCE_LENGTH - 1] <<
1068                                    16));
1069        } else {
1070                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1071        }
1072
1073        skb_queue_tail(&ptp->rxq, skb);
1074        queue_work(ptp->workwq, &ptp->work);
1075
1076        return true;
1077}
1078
1079/* Transmit a PTP packet.  This has to be transmitted by the MC
1080 * itself, through an MCDI call.  MCDI calls aren't permitted
1081 * in the transmit path so defer the actual transmission to a suitable worker.
1082 */
1083int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1084{
1085        struct efx_ptp_data *ptp = efx->ptp_data;
1086
1087        skb_queue_tail(&ptp->txq, skb);
1088
1089        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1090            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1091                efx_xmit_hwtstamp_pending(skb);
1092        queue_work(ptp->workwq, &ptp->work);
1093
1094        return NETDEV_TX_OK;
1095}
1096
1097static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1098                               unsigned int new_mode)
1099{
1100        if ((enable_wanted != efx->ptp_data->enabled) ||
1101            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1102                int rc;
1103
1104                if (enable_wanted) {
1105                        /* Change of mode requires disable */
1106                        if (efx->ptp_data->enabled &&
1107                            (efx->ptp_data->mode != new_mode)) {
1108                                efx->ptp_data->enabled = false;
1109                                rc = efx_ptp_stop(efx);
1110                                if (rc != 0)
1111                                        return rc;
1112                        }
1113
1114                        /* Set new operating mode and establish
1115                         * baseline synchronisation, which must
1116                         * succeed.
1117                         */
1118                        efx->ptp_data->mode = new_mode;
1119                        rc = efx_ptp_start(efx);
1120                        if (rc == 0) {
1121                                rc = efx_ptp_synchronize(efx,
1122                                                         PTP_SYNC_ATTEMPTS * 2);
1123                                if (rc != 0)
1124                                        efx_ptp_stop(efx);
1125                        }
1126                } else {
1127                        rc = efx_ptp_stop(efx);
1128                }
1129
1130                if (rc != 0)
1131                        return rc;
1132
1133                efx->ptp_data->enabled = enable_wanted;
1134        }
1135
1136        return 0;
1137}
1138
1139static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1140{
1141        bool enable_wanted = false;
1142        unsigned int new_mode;
1143        int rc;
1144
1145        if (init->flags)
1146                return -EINVAL;
1147
1148        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1149            (init->tx_type != HWTSTAMP_TX_ON))
1150                return -ERANGE;
1151
1152        new_mode = efx->ptp_data->mode;
1153        /* Determine whether any PTP HW operations are required */
1154        switch (init->rx_filter) {
1155        case HWTSTAMP_FILTER_NONE:
1156                break;
1157        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1158        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1159        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1160                init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1161                new_mode = MC_CMD_PTP_MODE_V1;
1162                enable_wanted = true;
1163                break;
1164        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1165        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1166        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1167        /* Although these three are accepted only IPV4 packets will be
1168         * timestamped
1169         */
1170                init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1171                new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
1172                enable_wanted = true;
1173                break;
1174        case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175        case HWTSTAMP_FILTER_PTP_V2_SYNC:
1176        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1177        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1178        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1180                /* Non-IP + IPv6 timestamping not supported */
1181                return -ERANGE;
1182                break;
1183        default:
1184                return -ERANGE;
1185        }
1186
1187        if (init->tx_type != HWTSTAMP_TX_OFF)
1188                enable_wanted = true;
1189
1190        /* Old versions of the firmware do not support the improved
1191         * UUID filtering option (SF bug 33070).  If the firmware does
1192         * not accept the enhanced mode, fall back to the standard PTP
1193         * v2 UUID filtering.
1194         */
1195        rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1196        if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
1197                rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
1198        if (rc != 0)
1199                return rc;
1200
1201        efx->ptp_data->config = *init;
1202
1203        return 0;
1204}
1205
1206void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1207{
1208        struct efx_ptp_data *ptp = efx->ptp_data;
1209
1210        if (!ptp)
1211                return;
1212
1213        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1214                                     SOF_TIMESTAMPING_RX_HARDWARE |
1215                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1216        ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1217        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1218        ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1219                               1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1220                               1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1221                               1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1222                               1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1223                               1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1224                               1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1225}
1226
1227int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1228{
1229        struct hwtstamp_config config;
1230        int rc;
1231
1232        /* Not a PTP enabled port */
1233        if (!efx->ptp_data)
1234                return -EOPNOTSUPP;
1235
1236        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1237                return -EFAULT;
1238
1239        rc = efx_ptp_ts_init(efx, &config);
1240        if (rc != 0)
1241                return rc;
1242
1243        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1244                ? -EFAULT : 0;
1245}
1246
1247static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1248{
1249        struct efx_ptp_data *ptp = efx->ptp_data;
1250
1251        netif_err(efx, hw, efx->net_dev,
1252                "PTP unexpected event length: got %d expected %d\n",
1253                ptp->evt_frag_idx, expected_frag_len);
1254        ptp->reset_required = true;
1255        queue_work(ptp->workwq, &ptp->work);
1256}
1257
1258/* Process a completed receive event.  Put it on the event queue and
1259 * start worker thread.  This is required because event and their
1260 * correspoding packets may come in either order.
1261 */
1262static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1263{
1264        struct efx_ptp_event_rx *evt = NULL;
1265
1266        if (ptp->evt_frag_idx != 3) {
1267                ptp_event_failure(efx, 3);
1268                return;
1269        }
1270
1271        spin_lock_bh(&ptp->evt_lock);
1272        if (!list_empty(&ptp->evt_free_list)) {
1273                evt = list_first_entry(&ptp->evt_free_list,
1274                                       struct efx_ptp_event_rx, link);
1275                list_del(&evt->link);
1276
1277                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1278                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1279                                             MCDI_EVENT_SRC)        |
1280                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1281                                              MCDI_EVENT_SRC) << 8) |
1282                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1283                                              MCDI_EVENT_SRC) << 16));
1284                evt->hwtimestamp = ktime_set(
1285                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1286                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1287                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1288                list_add_tail(&evt->link, &ptp->evt_list);
1289
1290                queue_work(ptp->workwq, &ptp->work);
1291        } else {
1292                netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1293        }
1294        spin_unlock_bh(&ptp->evt_lock);
1295}
1296
1297static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1298{
1299        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1300        if (ptp->evt_frag_idx != 1) {
1301                ptp_event_failure(efx, 1);
1302                return;
1303        }
1304
1305        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1306}
1307
1308static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1309{
1310        if (ptp->nic_ts_enabled)
1311                queue_work(ptp->pps_workwq, &ptp->pps_work);
1312}
1313
1314void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1315{
1316        struct efx_ptp_data *ptp = efx->ptp_data;
1317        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1318
1319        if (!ptp->enabled)
1320                return;
1321
1322        if (ptp->evt_frag_idx == 0) {
1323                ptp->evt_code = code;
1324        } else if (ptp->evt_code != code) {
1325                netif_err(efx, hw, efx->net_dev,
1326                          "PTP out of sequence event %d\n", code);
1327                ptp->evt_frag_idx = 0;
1328        }
1329
1330        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1331        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1332                /* Process resulting event */
1333                switch (code) {
1334                case MCDI_EVENT_CODE_PTP_RX:
1335                        ptp_event_rx(efx, ptp);
1336                        break;
1337                case MCDI_EVENT_CODE_PTP_FAULT:
1338                        ptp_event_fault(efx, ptp);
1339                        break;
1340                case MCDI_EVENT_CODE_PTP_PPS:
1341                        ptp_event_pps(efx, ptp);
1342                        break;
1343                default:
1344                        netif_err(efx, hw, efx->net_dev,
1345                                  "PTP unknown event %d\n", code);
1346                        break;
1347                }
1348                ptp->evt_frag_idx = 0;
1349        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1350                netif_err(efx, hw, efx->net_dev,
1351                          "PTP too many event fragments\n");
1352                ptp->evt_frag_idx = 0;
1353        }
1354}
1355
1356static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1357{
1358        struct efx_ptp_data *ptp_data = container_of(ptp,
1359                                                     struct efx_ptp_data,
1360                                                     phc_clock_info);
1361        struct efx_nic *efx = ptp_data->channel->efx;
1362        u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN];
1363        s64 adjustment_ns;
1364        int rc;
1365
1366        if (delta > MAX_PPB)
1367                delta = MAX_PPB;
1368        else if (delta < -MAX_PPB)
1369                delta = -MAX_PPB;
1370
1371        /* Convert ppb to fixed point ns. */
1372        adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1373                         (PPB_EXTRA_BITS + MAX_PPB_BITS));
1374
1375        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1376        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1377        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1378                       (u32)(adjustment_ns >> 32));
1379        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1380        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1381        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1382                          NULL, 0, NULL);
1383        if (rc != 0)
1384                return rc;
1385
1386        ptp_data->current_adjfreq = delta;
1387        return 0;
1388}
1389
1390static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1391{
1392        struct efx_ptp_data *ptp_data = container_of(ptp,
1393                                                     struct efx_ptp_data,
1394                                                     phc_clock_info);
1395        struct efx_nic *efx = ptp_data->channel->efx;
1396        struct timespec delta_ts = ns_to_timespec(delta);
1397        u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN];
1398
1399        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1400        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1401        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1402        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1403        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1404        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1405                            NULL, 0, NULL);
1406}
1407
1408static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1409{
1410        struct efx_ptp_data *ptp_data = container_of(ptp,
1411                                                     struct efx_ptp_data,
1412                                                     phc_clock_info);
1413        struct efx_nic *efx = ptp_data->channel->efx;
1414        u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN];
1415        u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN];
1416        int rc;
1417
1418        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1419
1420        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1421                          outbuf, sizeof(outbuf), NULL);
1422        if (rc != 0)
1423                return rc;
1424
1425        ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1426        ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1427        return 0;
1428}
1429
1430static int efx_phc_settime(struct ptp_clock_info *ptp,
1431                           const struct timespec *e_ts)
1432{
1433        /* Get the current NIC time, efx_phc_gettime.
1434         * Subtract from the desired time to get the offset
1435         * call efx_phc_adjtime with the offset
1436         */
1437        int rc;
1438        struct timespec time_now;
1439        struct timespec delta;
1440
1441        rc = efx_phc_gettime(ptp, &time_now);
1442        if (rc != 0)
1443                return rc;
1444
1445        delta = timespec_sub(*e_ts, time_now);
1446
1447        rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1448        if (rc != 0)
1449                return rc;
1450
1451        return 0;
1452}
1453
1454static int efx_phc_enable(struct ptp_clock_info *ptp,
1455                          struct ptp_clock_request *request,
1456                          int enable)
1457{
1458        struct efx_ptp_data *ptp_data = container_of(ptp,
1459                                                     struct efx_ptp_data,
1460                                                     phc_clock_info);
1461        if (request->type != PTP_CLK_REQ_PPS)
1462                return -EOPNOTSUPP;
1463
1464        ptp_data->nic_ts_enabled = !!enable;
1465        return 0;
1466}
1467
1468static const struct efx_channel_type efx_ptp_channel_type = {
1469        .handle_no_channel      = efx_ptp_handle_no_channel,
1470        .pre_probe              = efx_ptp_probe_channel,
1471        .post_remove            = efx_ptp_remove_channel,
1472        .get_name               = efx_ptp_get_channel_name,
1473        /* no copy operation; there is no need to reallocate this channel */
1474        .receive_skb            = efx_ptp_rx,
1475        .keep_eventq            = false,
1476};
1477
1478void efx_ptp_probe(struct efx_nic *efx)
1479{
1480        /* Check whether PTP is implemented on this NIC.  The DISABLE
1481         * operation will succeed if and only if it is implemented.
1482         */
1483        if (efx_ptp_disable(efx) == 0)
1484                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1485                        &efx_ptp_channel_type;
1486}
1487