linux/drivers/net/ethernet/sgi/ioc3-eth.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
   7 *
   8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
   9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
  10 *
  11 * References:
  12 *  o IOC3 ASIC specification 4.51, 1996-04-18
  13 *  o IEEE 802.3 specification, 2000 edition
  14 *  o DP38840A Specification, National Semiconductor, March 1997
  15 *
  16 * To do:
  17 *
  18 *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
  19 *  o Handle allocation failures in ioc3_init_rings().
  20 *  o Use prefetching for large packets.  What is a good lower limit for
  21 *    prefetching?
  22 *  o We're probably allocating a bit too much memory.
  23 *  o Use hardware checksums.
  24 *  o Convert to using a IOC3 meta driver.
  25 *  o Which PHYs might possibly be attached to the IOC3 in real live,
  26 *    which workarounds are required for them?  Do we ever have Lucent's?
  27 *  o For the 2.5 branch kill the mii-tool ioctls.
  28 */
  29
  30#define IOC3_NAME       "ioc3-eth"
  31#define IOC3_VERSION    "2.6.3-4"
  32
  33#include <linux/init.h>
  34#include <linux/delay.h>
  35#include <linux/kernel.h>
  36#include <linux/mm.h>
  37#include <linux/errno.h>
  38#include <linux/module.h>
  39#include <linux/pci.h>
  40#include <linux/crc32.h>
  41#include <linux/mii.h>
  42#include <linux/in.h>
  43#include <linux/ip.h>
  44#include <linux/tcp.h>
  45#include <linux/udp.h>
  46#include <linux/dma-mapping.h>
  47#include <linux/gfp.h>
  48
  49#ifdef CONFIG_SERIAL_8250
  50#include <linux/serial_core.h>
  51#include <linux/serial_8250.h>
  52#include <linux/serial_reg.h>
  53#endif
  54
  55#include <linux/netdevice.h>
  56#include <linux/etherdevice.h>
  57#include <linux/ethtool.h>
  58#include <linux/skbuff.h>
  59#include <net/ip.h>
  60
  61#include <asm/byteorder.h>
  62#include <asm/io.h>
  63#include <asm/pgtable.h>
  64#include <asm/uaccess.h>
  65#include <asm/sn/types.h>
  66#include <asm/sn/ioc3.h>
  67#include <asm/pci/bridge.h>
  68
  69/*
  70 * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
  71 * value must be a power of two.
  72 */
  73#define RX_BUFFS 64
  74
  75#define ETCSR_FD        ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
  76#define ETCSR_HD        ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
  77
  78/* Private per NIC data of the driver.  */
  79struct ioc3_private {
  80        struct ioc3 *regs;
  81        unsigned long *rxr;             /* pointer to receiver ring */
  82        struct ioc3_etxd *txr;
  83        struct sk_buff *rx_skbs[512];
  84        struct sk_buff *tx_skbs[128];
  85        int rx_ci;                      /* RX consumer index */
  86        int rx_pi;                      /* RX producer index */
  87        int tx_ci;                      /* TX consumer index */
  88        int tx_pi;                      /* TX producer index */
  89        int txqlen;
  90        u32 emcr, ehar_h, ehar_l;
  91        spinlock_t ioc3_lock;
  92        struct mii_if_info mii;
  93
  94        struct pci_dev *pdev;
  95
  96        /* Members used by autonegotiation  */
  97        struct timer_list ioc3_timer;
  98};
  99
 100static inline struct net_device *priv_netdev(struct ioc3_private *dev)
 101{
 102        return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
 103}
 104
 105static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 106static void ioc3_set_multicast_list(struct net_device *dev);
 107static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
 108static void ioc3_timeout(struct net_device *dev);
 109static inline unsigned int ioc3_hash(const unsigned char *addr);
 110static inline void ioc3_stop(struct ioc3_private *ip);
 111static void ioc3_init(struct net_device *dev);
 112
 113static const char ioc3_str[] = "IOC3 Ethernet";
 114static const struct ethtool_ops ioc3_ethtool_ops;
 115
 116/* We use this to acquire receive skb's that we can DMA directly into. */
 117
 118#define IOC3_CACHELINE  128UL
 119
 120static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
 121{
 122        return (~addr + 1) & (IOC3_CACHELINE - 1UL);
 123}
 124
 125static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
 126        unsigned int gfp_mask)
 127{
 128        struct sk_buff *skb;
 129
 130        skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
 131        if (likely(skb)) {
 132                int offset = aligned_rx_skb_addr((unsigned long) skb->data);
 133                if (offset)
 134                        skb_reserve(skb, offset);
 135        }
 136
 137        return skb;
 138}
 139
 140static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
 141{
 142#ifdef CONFIG_SGI_IP27
 143        vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
 144
 145        return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
 146               ((unsigned long)ptr & TO_PHYS_MASK);
 147#else
 148        return virt_to_bus(ptr);
 149#endif
 150}
 151
 152/* BEWARE: The IOC3 documentation documents the size of rx buffers as
 153   1644 while it's actually 1664.  This one was nasty to track down ...  */
 154#define RX_OFFSET               10
 155#define RX_BUF_ALLOC_SIZE       (1664 + RX_OFFSET + IOC3_CACHELINE)
 156
 157/* DMA barrier to separate cached and uncached accesses.  */
 158#define BARRIER()                                                       \
 159        __asm__("sync" ::: "memory")
 160
 161
 162#define IOC3_SIZE 0x100000
 163
 164/*
 165 * IOC3 is a big endian device
 166 *
 167 * Unorthodox but makes the users of these macros more readable - the pointer
 168 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
 169 * in the environment.
 170 */
 171#define ioc3_r_mcr()            be32_to_cpu(ioc3->mcr)
 172#define ioc3_w_mcr(v)           do { ioc3->mcr = cpu_to_be32(v); } while (0)
 173#define ioc3_w_gpcr_s(v)        do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
 174#define ioc3_r_emcr()           be32_to_cpu(ioc3->emcr)
 175#define ioc3_w_emcr(v)          do { ioc3->emcr = cpu_to_be32(v); } while (0)
 176#define ioc3_r_eisr()           be32_to_cpu(ioc3->eisr)
 177#define ioc3_w_eisr(v)          do { ioc3->eisr = cpu_to_be32(v); } while (0)
 178#define ioc3_r_eier()           be32_to_cpu(ioc3->eier)
 179#define ioc3_w_eier(v)          do { ioc3->eier = cpu_to_be32(v); } while (0)
 180#define ioc3_r_ercsr()          be32_to_cpu(ioc3->ercsr)
 181#define ioc3_w_ercsr(v)         do { ioc3->ercsr = cpu_to_be32(v); } while (0)
 182#define ioc3_r_erbr_h()         be32_to_cpu(ioc3->erbr_h)
 183#define ioc3_w_erbr_h(v)        do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
 184#define ioc3_r_erbr_l()         be32_to_cpu(ioc3->erbr_l)
 185#define ioc3_w_erbr_l(v)        do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
 186#define ioc3_r_erbar()          be32_to_cpu(ioc3->erbar)
 187#define ioc3_w_erbar(v)         do { ioc3->erbar = cpu_to_be32(v); } while (0)
 188#define ioc3_r_ercir()          be32_to_cpu(ioc3->ercir)
 189#define ioc3_w_ercir(v)         do { ioc3->ercir = cpu_to_be32(v); } while (0)
 190#define ioc3_r_erpir()          be32_to_cpu(ioc3->erpir)
 191#define ioc3_w_erpir(v)         do { ioc3->erpir = cpu_to_be32(v); } while (0)
 192#define ioc3_r_ertr()           be32_to_cpu(ioc3->ertr)
 193#define ioc3_w_ertr(v)          do { ioc3->ertr = cpu_to_be32(v); } while (0)
 194#define ioc3_r_etcsr()          be32_to_cpu(ioc3->etcsr)
 195#define ioc3_w_etcsr(v)         do { ioc3->etcsr = cpu_to_be32(v); } while (0)
 196#define ioc3_r_ersr()           be32_to_cpu(ioc3->ersr)
 197#define ioc3_w_ersr(v)          do { ioc3->ersr = cpu_to_be32(v); } while (0)
 198#define ioc3_r_etcdc()          be32_to_cpu(ioc3->etcdc)
 199#define ioc3_w_etcdc(v)         do { ioc3->etcdc = cpu_to_be32(v); } while (0)
 200#define ioc3_r_ebir()           be32_to_cpu(ioc3->ebir)
 201#define ioc3_w_ebir(v)          do { ioc3->ebir = cpu_to_be32(v); } while (0)
 202#define ioc3_r_etbr_h()         be32_to_cpu(ioc3->etbr_h)
 203#define ioc3_w_etbr_h(v)        do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
 204#define ioc3_r_etbr_l()         be32_to_cpu(ioc3->etbr_l)
 205#define ioc3_w_etbr_l(v)        do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
 206#define ioc3_r_etcir()          be32_to_cpu(ioc3->etcir)
 207#define ioc3_w_etcir(v)         do { ioc3->etcir = cpu_to_be32(v); } while (0)
 208#define ioc3_r_etpir()          be32_to_cpu(ioc3->etpir)
 209#define ioc3_w_etpir(v)         do { ioc3->etpir = cpu_to_be32(v); } while (0)
 210#define ioc3_r_emar_h()         be32_to_cpu(ioc3->emar_h)
 211#define ioc3_w_emar_h(v)        do { ioc3->emar_h = cpu_to_be32(v); } while (0)
 212#define ioc3_r_emar_l()         be32_to_cpu(ioc3->emar_l)
 213#define ioc3_w_emar_l(v)        do { ioc3->emar_l = cpu_to_be32(v); } while (0)
 214#define ioc3_r_ehar_h()         be32_to_cpu(ioc3->ehar_h)
 215#define ioc3_w_ehar_h(v)        do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
 216#define ioc3_r_ehar_l()         be32_to_cpu(ioc3->ehar_l)
 217#define ioc3_w_ehar_l(v)        do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
 218#define ioc3_r_micr()           be32_to_cpu(ioc3->micr)
 219#define ioc3_w_micr(v)          do { ioc3->micr = cpu_to_be32(v); } while (0)
 220#define ioc3_r_midr_r()         be32_to_cpu(ioc3->midr_r)
 221#define ioc3_w_midr_r(v)        do { ioc3->midr_r = cpu_to_be32(v); } while (0)
 222#define ioc3_r_midr_w()         be32_to_cpu(ioc3->midr_w)
 223#define ioc3_w_midr_w(v)        do { ioc3->midr_w = cpu_to_be32(v); } while (0)
 224
 225static inline u32 mcr_pack(u32 pulse, u32 sample)
 226{
 227        return (pulse << 10) | (sample << 2);
 228}
 229
 230static int nic_wait(struct ioc3 *ioc3)
 231{
 232        u32 mcr;
 233
 234        do {
 235                mcr = ioc3_r_mcr();
 236        } while (!(mcr & 2));
 237
 238        return mcr & 1;
 239}
 240
 241static int nic_reset(struct ioc3 *ioc3)
 242{
 243        int presence;
 244
 245        ioc3_w_mcr(mcr_pack(500, 65));
 246        presence = nic_wait(ioc3);
 247
 248        ioc3_w_mcr(mcr_pack(0, 500));
 249        nic_wait(ioc3);
 250
 251        return presence;
 252}
 253
 254static inline int nic_read_bit(struct ioc3 *ioc3)
 255{
 256        int result;
 257
 258        ioc3_w_mcr(mcr_pack(6, 13));
 259        result = nic_wait(ioc3);
 260        ioc3_w_mcr(mcr_pack(0, 100));
 261        nic_wait(ioc3);
 262
 263        return result;
 264}
 265
 266static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
 267{
 268        if (bit)
 269                ioc3_w_mcr(mcr_pack(6, 110));
 270        else
 271                ioc3_w_mcr(mcr_pack(80, 30));
 272
 273        nic_wait(ioc3);
 274}
 275
 276/*
 277 * Read a byte from an iButton device
 278 */
 279static u32 nic_read_byte(struct ioc3 *ioc3)
 280{
 281        u32 result = 0;
 282        int i;
 283
 284        for (i = 0; i < 8; i++)
 285                result = (result >> 1) | (nic_read_bit(ioc3) << 7);
 286
 287        return result;
 288}
 289
 290/*
 291 * Write a byte to an iButton device
 292 */
 293static void nic_write_byte(struct ioc3 *ioc3, int byte)
 294{
 295        int i, bit;
 296
 297        for (i = 8; i; i--) {
 298                bit = byte & 1;
 299                byte >>= 1;
 300
 301                nic_write_bit(ioc3, bit);
 302        }
 303}
 304
 305static u64 nic_find(struct ioc3 *ioc3, int *last)
 306{
 307        int a, b, index, disc;
 308        u64 address = 0;
 309
 310        nic_reset(ioc3);
 311        /* Search ROM.  */
 312        nic_write_byte(ioc3, 0xf0);
 313
 314        /* Algorithm from ``Book of iButton Standards''.  */
 315        for (index = 0, disc = 0; index < 64; index++) {
 316                a = nic_read_bit(ioc3);
 317                b = nic_read_bit(ioc3);
 318
 319                if (a && b) {
 320                        printk("NIC search failed (not fatal).\n");
 321                        *last = 0;
 322                        return 0;
 323                }
 324
 325                if (!a && !b) {
 326                        if (index == *last) {
 327                                address |= 1UL << index;
 328                        } else if (index > *last) {
 329                                address &= ~(1UL << index);
 330                                disc = index;
 331                        } else if ((address & (1UL << index)) == 0)
 332                                disc = index;
 333                        nic_write_bit(ioc3, address & (1UL << index));
 334                        continue;
 335                } else {
 336                        if (a)
 337                                address |= 1UL << index;
 338                        else
 339                                address &= ~(1UL << index);
 340                        nic_write_bit(ioc3, a);
 341                        continue;
 342                }
 343        }
 344
 345        *last = disc;
 346
 347        return address;
 348}
 349
 350static int nic_init(struct ioc3 *ioc3)
 351{
 352        const char *unknown = "unknown";
 353        const char *type = unknown;
 354        u8 crc;
 355        u8 serial[6];
 356        int save = 0, i;
 357
 358        while (1) {
 359                u64 reg;
 360                reg = nic_find(ioc3, &save);
 361
 362                switch (reg & 0xff) {
 363                case 0x91:
 364                        type = "DS1981U";
 365                        break;
 366                default:
 367                        if (save == 0) {
 368                                /* Let the caller try again.  */
 369                                return -1;
 370                        }
 371                        continue;
 372                }
 373
 374                nic_reset(ioc3);
 375
 376                /* Match ROM.  */
 377                nic_write_byte(ioc3, 0x55);
 378                for (i = 0; i < 8; i++)
 379                        nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
 380
 381                reg >>= 8; /* Shift out type.  */
 382                for (i = 0; i < 6; i++) {
 383                        serial[i] = reg & 0xff;
 384                        reg >>= 8;
 385                }
 386                crc = reg & 0xff;
 387                break;
 388        }
 389
 390        printk("Found %s NIC", type);
 391        if (type != unknown)
 392                printk (" registration number %pM, CRC %02x", serial, crc);
 393        printk(".\n");
 394
 395        return 0;
 396}
 397
 398/*
 399 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
 400 * SN0 / SN00 nodeboards and PCI cards.
 401 */
 402static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
 403{
 404        struct ioc3 *ioc3 = ip->regs;
 405        u8 nic[14];
 406        int tries = 2; /* There may be some problem with the battery?  */
 407        int i;
 408
 409        ioc3_w_gpcr_s(1 << 21);
 410
 411        while (tries--) {
 412                if (!nic_init(ioc3))
 413                        break;
 414                udelay(500);
 415        }
 416
 417        if (tries < 0) {
 418                printk("Failed to read MAC address\n");
 419                return;
 420        }
 421
 422        /* Read Memory.  */
 423        nic_write_byte(ioc3, 0xf0);
 424        nic_write_byte(ioc3, 0x00);
 425        nic_write_byte(ioc3, 0x00);
 426
 427        for (i = 13; i >= 0; i--)
 428                nic[i] = nic_read_byte(ioc3);
 429
 430        for (i = 2; i < 8; i++)
 431                priv_netdev(ip)->dev_addr[i - 2] = nic[i];
 432}
 433
 434/*
 435 * Ok, this is hosed by design.  It's necessary to know what machine the
 436 * NIC is in in order to know how to read the NIC address.  We also have
 437 * to know if it's a PCI card or a NIC in on the node board ...
 438 */
 439static void ioc3_get_eaddr(struct ioc3_private *ip)
 440{
 441        ioc3_get_eaddr_nic(ip);
 442
 443        printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
 444}
 445
 446static void __ioc3_set_mac_address(struct net_device *dev)
 447{
 448        struct ioc3_private *ip = netdev_priv(dev);
 449        struct ioc3 *ioc3 = ip->regs;
 450
 451        ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
 452        ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
 453                      (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
 454}
 455
 456static int ioc3_set_mac_address(struct net_device *dev, void *addr)
 457{
 458        struct ioc3_private *ip = netdev_priv(dev);
 459        struct sockaddr *sa = addr;
 460
 461        memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
 462
 463        spin_lock_irq(&ip->ioc3_lock);
 464        __ioc3_set_mac_address(dev);
 465        spin_unlock_irq(&ip->ioc3_lock);
 466
 467        return 0;
 468}
 469
 470/*
 471 * Caller must hold the ioc3_lock ever for MII readers.  This is also
 472 * used to protect the transmitter side but it's low contention.
 473 */
 474static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
 475{
 476        struct ioc3_private *ip = netdev_priv(dev);
 477        struct ioc3 *ioc3 = ip->regs;
 478
 479        while (ioc3_r_micr() & MICR_BUSY);
 480        ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
 481        while (ioc3_r_micr() & MICR_BUSY);
 482
 483        return ioc3_r_midr_r() & MIDR_DATA_MASK;
 484}
 485
 486static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
 487{
 488        struct ioc3_private *ip = netdev_priv(dev);
 489        struct ioc3 *ioc3 = ip->regs;
 490
 491        while (ioc3_r_micr() & MICR_BUSY);
 492        ioc3_w_midr_w(data);
 493        ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
 494        while (ioc3_r_micr() & MICR_BUSY);
 495}
 496
 497static int ioc3_mii_init(struct ioc3_private *ip);
 498
 499static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
 500{
 501        struct ioc3_private *ip = netdev_priv(dev);
 502        struct ioc3 *ioc3 = ip->regs;
 503
 504        dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
 505        return &dev->stats;
 506}
 507
 508static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
 509{
 510        struct ethhdr *eh = eth_hdr(skb);
 511        uint32_t csum, ehsum;
 512        unsigned int proto;
 513        struct iphdr *ih;
 514        uint16_t *ew;
 515        unsigned char *cp;
 516
 517        /*
 518         * Did hardware handle the checksum at all?  The cases we can handle
 519         * are:
 520         *
 521         * - TCP and UDP checksums of IPv4 only.
 522         * - IPv6 would be doable but we keep that for later ...
 523         * - Only unfragmented packets.  Did somebody already tell you
 524         *   fragmentation is evil?
 525         * - don't care about packet size.  Worst case when processing a
 526         *   malformed packet we'll try to access the packet at ip header +
 527         *   64 bytes which is still inside the skb.  Even in the unlikely
 528         *   case where the checksum is right the higher layers will still
 529         *   drop the packet as appropriate.
 530         */
 531        if (eh->h_proto != htons(ETH_P_IP))
 532                return;
 533
 534        ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
 535        if (ip_is_fragment(ih))
 536                return;
 537
 538        proto = ih->protocol;
 539        if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
 540                return;
 541
 542        /* Same as tx - compute csum of pseudo header  */
 543        csum = hwsum +
 544               (ih->tot_len - (ih->ihl << 2)) +
 545               htons((uint16_t)ih->protocol) +
 546               (ih->saddr >> 16) + (ih->saddr & 0xffff) +
 547               (ih->daddr >> 16) + (ih->daddr & 0xffff);
 548
 549        /* Sum up ethernet dest addr, src addr and protocol  */
 550        ew = (uint16_t *) eh;
 551        ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
 552
 553        ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 554        ehsum = (ehsum & 0xffff) + (ehsum >> 16);
 555
 556        csum += 0xffff ^ ehsum;
 557
 558        /* In the next step we also subtract the 1's complement
 559           checksum of the trailing ethernet CRC.  */
 560        cp = (char *)eh + len;  /* points at trailing CRC */
 561        if (len & 1) {
 562                csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
 563                csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
 564        } else {
 565                csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
 566                csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
 567        }
 568
 569        csum = (csum & 0xffff) + (csum >> 16);
 570        csum = (csum & 0xffff) + (csum >> 16);
 571
 572        if (csum == 0xffff)
 573                skb->ip_summed = CHECKSUM_UNNECESSARY;
 574}
 575
 576static inline void ioc3_rx(struct net_device *dev)
 577{
 578        struct ioc3_private *ip = netdev_priv(dev);
 579        struct sk_buff *skb, *new_skb;
 580        struct ioc3 *ioc3 = ip->regs;
 581        int rx_entry, n_entry, len;
 582        struct ioc3_erxbuf *rxb;
 583        unsigned long *rxr;
 584        u32 w0, err;
 585
 586        rxr = ip->rxr;          /* Ring base */
 587        rx_entry = ip->rx_ci;                           /* RX consume index */
 588        n_entry = ip->rx_pi;
 589
 590        skb = ip->rx_skbs[rx_entry];
 591        rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 592        w0 = be32_to_cpu(rxb->w0);
 593
 594        while (w0 & ERXBUF_V) {
 595                err = be32_to_cpu(rxb->err);            /* It's valid ...  */
 596                if (err & ERXBUF_GOODPKT) {
 597                        len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
 598                        skb_trim(skb, len);
 599                        skb->protocol = eth_type_trans(skb, dev);
 600
 601                        new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 602                        if (!new_skb) {
 603                                /* Ouch, drop packet and just recycle packet
 604                                   to keep the ring filled.  */
 605                                dev->stats.rx_dropped++;
 606                                new_skb = skb;
 607                                goto next;
 608                        }
 609
 610                        if (likely(dev->features & NETIF_F_RXCSUM))
 611                                ioc3_tcpudp_checksum(skb,
 612                                        w0 & ERXBUF_IPCKSUM_MASK, len);
 613
 614                        netif_rx(skb);
 615
 616                        ip->rx_skbs[rx_entry] = NULL;   /* Poison  */
 617
 618                        /* Because we reserve afterwards. */
 619                        skb_put(new_skb, (1664 + RX_OFFSET));
 620                        rxb = (struct ioc3_erxbuf *) new_skb->data;
 621                        skb_reserve(new_skb, RX_OFFSET);
 622
 623                        dev->stats.rx_packets++;                /* Statistics */
 624                        dev->stats.rx_bytes += len;
 625                } else {
 626                        /* The frame is invalid and the skb never
 627                           reached the network layer so we can just
 628                           recycle it.  */
 629                        new_skb = skb;
 630                        dev->stats.rx_errors++;
 631                }
 632                if (err & ERXBUF_CRCERR)        /* Statistics */
 633                        dev->stats.rx_crc_errors++;
 634                if (err & ERXBUF_FRAMERR)
 635                        dev->stats.rx_frame_errors++;
 636next:
 637                ip->rx_skbs[n_entry] = new_skb;
 638                rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
 639                rxb->w0 = 0;                            /* Clear valid flag */
 640                n_entry = (n_entry + 1) & 511;          /* Update erpir */
 641
 642                /* Now go on to the next ring entry.  */
 643                rx_entry = (rx_entry + 1) & 511;
 644                skb = ip->rx_skbs[rx_entry];
 645                rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 646                w0 = be32_to_cpu(rxb->w0);
 647        }
 648        ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
 649        ip->rx_pi = n_entry;
 650        ip->rx_ci = rx_entry;
 651}
 652
 653static inline void ioc3_tx(struct net_device *dev)
 654{
 655        struct ioc3_private *ip = netdev_priv(dev);
 656        unsigned long packets, bytes;
 657        struct ioc3 *ioc3 = ip->regs;
 658        int tx_entry, o_entry;
 659        struct sk_buff *skb;
 660        u32 etcir;
 661
 662        spin_lock(&ip->ioc3_lock);
 663        etcir = ioc3_r_etcir();
 664
 665        tx_entry = (etcir >> 7) & 127;
 666        o_entry = ip->tx_ci;
 667        packets = 0;
 668        bytes = 0;
 669
 670        while (o_entry != tx_entry) {
 671                packets++;
 672                skb = ip->tx_skbs[o_entry];
 673                bytes += skb->len;
 674                dev_kfree_skb_irq(skb);
 675                ip->tx_skbs[o_entry] = NULL;
 676
 677                o_entry = (o_entry + 1) & 127;          /* Next */
 678
 679                etcir = ioc3_r_etcir();                 /* More pkts sent?  */
 680                tx_entry = (etcir >> 7) & 127;
 681        }
 682
 683        dev->stats.tx_packets += packets;
 684        dev->stats.tx_bytes += bytes;
 685        ip->txqlen -= packets;
 686
 687        if (ip->txqlen < 128)
 688                netif_wake_queue(dev);
 689
 690        ip->tx_ci = o_entry;
 691        spin_unlock(&ip->ioc3_lock);
 692}
 693
 694/*
 695 * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
 696 * software problems, so we should try to recover
 697 * more gracefully if this ever happens.  In theory we might be flooded
 698 * with such error interrupts if something really goes wrong, so we might
 699 * also consider to take the interface down.
 700 */
 701static void ioc3_error(struct net_device *dev, u32 eisr)
 702{
 703        struct ioc3_private *ip = netdev_priv(dev);
 704        unsigned char *iface = dev->name;
 705
 706        spin_lock(&ip->ioc3_lock);
 707
 708        if (eisr & EISR_RXOFLO)
 709                printk(KERN_ERR "%s: RX overflow.\n", iface);
 710        if (eisr & EISR_RXBUFOFLO)
 711                printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
 712        if (eisr & EISR_RXMEMERR)
 713                printk(KERN_ERR "%s: RX PCI error.\n", iface);
 714        if (eisr & EISR_RXPARERR)
 715                printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
 716        if (eisr & EISR_TXBUFUFLO)
 717                printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
 718        if (eisr & EISR_TXMEMERR)
 719                printk(KERN_ERR "%s: TX PCI error.\n", iface);
 720
 721        ioc3_stop(ip);
 722        ioc3_init(dev);
 723        ioc3_mii_init(ip);
 724
 725        netif_wake_queue(dev);
 726
 727        spin_unlock(&ip->ioc3_lock);
 728}
 729
 730/* The interrupt handler does all of the Rx thread work and cleans up
 731   after the Tx thread.  */
 732static irqreturn_t ioc3_interrupt(int irq, void *_dev)
 733{
 734        struct net_device *dev = (struct net_device *)_dev;
 735        struct ioc3_private *ip = netdev_priv(dev);
 736        struct ioc3 *ioc3 = ip->regs;
 737        const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
 738                            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
 739                            EISR_TXEXPLICIT | EISR_TXMEMERR;
 740        u32 eisr;
 741
 742        eisr = ioc3_r_eisr() & enabled;
 743
 744        ioc3_w_eisr(eisr);
 745        (void) ioc3_r_eisr();                           /* Flush */
 746
 747        if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
 748                    EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
 749                ioc3_error(dev, eisr);
 750        if (eisr & EISR_RXTIMERINT)
 751                ioc3_rx(dev);
 752        if (eisr & EISR_TXEXPLICIT)
 753                ioc3_tx(dev);
 754
 755        return IRQ_HANDLED;
 756}
 757
 758static inline void ioc3_setup_duplex(struct ioc3_private *ip)
 759{
 760        struct ioc3 *ioc3 = ip->regs;
 761
 762        if (ip->mii.full_duplex) {
 763                ioc3_w_etcsr(ETCSR_FD);
 764                ip->emcr |= EMCR_DUPLEX;
 765        } else {
 766                ioc3_w_etcsr(ETCSR_HD);
 767                ip->emcr &= ~EMCR_DUPLEX;
 768        }
 769        ioc3_w_emcr(ip->emcr);
 770}
 771
 772static void ioc3_timer(unsigned long data)
 773{
 774        struct ioc3_private *ip = (struct ioc3_private *) data;
 775
 776        /* Print the link status if it has changed */
 777        mii_check_media(&ip->mii, 1, 0);
 778        ioc3_setup_duplex(ip);
 779
 780        ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
 781        add_timer(&ip->ioc3_timer);
 782}
 783
 784/*
 785 * Try to find a PHY.  There is no apparent relation between the MII addresses
 786 * in the SGI documentation and what we find in reality, so we simply probe
 787 * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
 788 * onboard IOC3s has the special oddity that probing doesn't seem to find it
 789 * yet the interface seems to work fine, so if probing fails we for now will
 790 * simply default to PHY 31 instead of bailing out.
 791 */
 792static int ioc3_mii_init(struct ioc3_private *ip)
 793{
 794        struct net_device *dev = priv_netdev(ip);
 795        int i, found = 0, res = 0;
 796        int ioc3_phy_workaround = 1;
 797        u16 word;
 798
 799        for (i = 0; i < 32; i++) {
 800                word = ioc3_mdio_read(dev, i, MII_PHYSID1);
 801
 802                if (word != 0xffff && word != 0x0000) {
 803                        found = 1;
 804                        break;                  /* Found a PHY          */
 805                }
 806        }
 807
 808        if (!found) {
 809                if (ioc3_phy_workaround)
 810                        i = 31;
 811                else {
 812                        ip->mii.phy_id = -1;
 813                        res = -ENODEV;
 814                        goto out;
 815                }
 816        }
 817
 818        ip->mii.phy_id = i;
 819
 820out:
 821        return res;
 822}
 823
 824static void ioc3_mii_start(struct ioc3_private *ip)
 825{
 826        ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
 827        ip->ioc3_timer.data = (unsigned long) ip;
 828        ip->ioc3_timer.function = ioc3_timer;
 829        add_timer(&ip->ioc3_timer);
 830}
 831
 832static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
 833{
 834        struct sk_buff *skb;
 835        int i;
 836
 837        for (i = ip->rx_ci; i & 15; i++) {
 838                ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
 839                ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
 840        }
 841        ip->rx_pi &= 511;
 842        ip->rx_ci &= 511;
 843
 844        for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
 845                struct ioc3_erxbuf *rxb;
 846                skb = ip->rx_skbs[i];
 847                rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
 848                rxb->w0 = 0;
 849        }
 850}
 851
 852static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
 853{
 854        struct sk_buff *skb;
 855        int i;
 856
 857        for (i=0; i < 128; i++) {
 858                skb = ip->tx_skbs[i];
 859                if (skb) {
 860                        ip->tx_skbs[i] = NULL;
 861                        dev_kfree_skb_any(skb);
 862                }
 863                ip->txr[i].cmd = 0;
 864        }
 865        ip->tx_pi = 0;
 866        ip->tx_ci = 0;
 867}
 868
 869static void ioc3_free_rings(struct ioc3_private *ip)
 870{
 871        struct sk_buff *skb;
 872        int rx_entry, n_entry;
 873
 874        if (ip->txr) {
 875                ioc3_clean_tx_ring(ip);
 876                free_pages((unsigned long)ip->txr, 2);
 877                ip->txr = NULL;
 878        }
 879
 880        if (ip->rxr) {
 881                n_entry = ip->rx_ci;
 882                rx_entry = ip->rx_pi;
 883
 884                while (n_entry != rx_entry) {
 885                        skb = ip->rx_skbs[n_entry];
 886                        if (skb)
 887                                dev_kfree_skb_any(skb);
 888
 889                        n_entry = (n_entry + 1) & 511;
 890                }
 891                free_page((unsigned long)ip->rxr);
 892                ip->rxr = NULL;
 893        }
 894}
 895
 896static void ioc3_alloc_rings(struct net_device *dev)
 897{
 898        struct ioc3_private *ip = netdev_priv(dev);
 899        struct ioc3_erxbuf *rxb;
 900        unsigned long *rxr;
 901        int i;
 902
 903        if (ip->rxr == NULL) {
 904                /* Allocate and initialize rx ring.  4kb = 512 entries  */
 905                ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 906                rxr = ip->rxr;
 907                if (!rxr)
 908                        printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
 909
 910                /* Now the rx buffers.  The RX ring may be larger but
 911                   we only allocate 16 buffers for now.  Need to tune
 912                   this for performance and memory later.  */
 913                for (i = 0; i < RX_BUFFS; i++) {
 914                        struct sk_buff *skb;
 915
 916                        skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
 917                        if (!skb) {
 918                                show_free_areas(0);
 919                                continue;
 920                        }
 921
 922                        ip->rx_skbs[i] = skb;
 923
 924                        /* Because we reserve afterwards. */
 925                        skb_put(skb, (1664 + RX_OFFSET));
 926                        rxb = (struct ioc3_erxbuf *) skb->data;
 927                        rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
 928                        skb_reserve(skb, RX_OFFSET);
 929                }
 930                ip->rx_ci = 0;
 931                ip->rx_pi = RX_BUFFS;
 932        }
 933
 934        if (ip->txr == NULL) {
 935                /* Allocate and initialize tx rings.  16kb = 128 bufs.  */
 936                ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
 937                if (!ip->txr)
 938                        printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
 939                ip->tx_pi = 0;
 940                ip->tx_ci = 0;
 941        }
 942}
 943
 944static void ioc3_init_rings(struct net_device *dev)
 945{
 946        struct ioc3_private *ip = netdev_priv(dev);
 947        struct ioc3 *ioc3 = ip->regs;
 948        unsigned long ring;
 949
 950        ioc3_free_rings(ip);
 951        ioc3_alloc_rings(dev);
 952
 953        ioc3_clean_rx_ring(ip);
 954        ioc3_clean_tx_ring(ip);
 955
 956        /* Now the rx ring base, consume & produce registers.  */
 957        ring = ioc3_map(ip->rxr, 0);
 958        ioc3_w_erbr_h(ring >> 32);
 959        ioc3_w_erbr_l(ring & 0xffffffff);
 960        ioc3_w_ercir(ip->rx_ci << 3);
 961        ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
 962
 963        ring = ioc3_map(ip->txr, 0);
 964
 965        ip->txqlen = 0;                                 /* nothing queued  */
 966
 967        /* Now the tx ring base, consume & produce registers.  */
 968        ioc3_w_etbr_h(ring >> 32);
 969        ioc3_w_etbr_l(ring & 0xffffffff);
 970        ioc3_w_etpir(ip->tx_pi << 7);
 971        ioc3_w_etcir(ip->tx_ci << 7);
 972        (void) ioc3_r_etcir();                          /* Flush */
 973}
 974
 975static inline void ioc3_ssram_disc(struct ioc3_private *ip)
 976{
 977        struct ioc3 *ioc3 = ip->regs;
 978        volatile u32 *ssram0 = &ioc3->ssram[0x0000];
 979        volatile u32 *ssram1 = &ioc3->ssram[0x4000];
 980        unsigned int pattern = 0x5555;
 981
 982        /* Assume the larger size SSRAM and enable parity checking */
 983        ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
 984
 985        *ssram0 = pattern;
 986        *ssram1 = ~pattern & IOC3_SSRAM_DM;
 987
 988        if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
 989            (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
 990                /* set ssram size to 64 KB */
 991                ip->emcr = EMCR_RAMPAR;
 992                ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
 993        } else
 994                ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
 995}
 996
 997static void ioc3_init(struct net_device *dev)
 998{
 999        struct ioc3_private *ip = netdev_priv(dev);
1000        struct ioc3 *ioc3 = ip->regs;
1001
1002        del_timer_sync(&ip->ioc3_timer);        /* Kill if running      */
1003
1004        ioc3_w_emcr(EMCR_RST);                  /* Reset                */
1005        (void) ioc3_r_emcr();                   /* Flush WB             */
1006        udelay(4);                              /* Give it time ...     */
1007        ioc3_w_emcr(0);
1008        (void) ioc3_r_emcr();
1009
1010        /* Misc registers  */
1011#ifdef CONFIG_SGI_IP27
1012        ioc3_w_erbar(PCI64_ATTR_BAR >> 32);     /* Barrier on last store */
1013#else
1014        ioc3_w_erbar(0);                        /* Let PCI API get it right */
1015#endif
1016        (void) ioc3_r_etcdc();                  /* Clear on read */
1017        ioc3_w_ercsr(15);                       /* RX low watermark  */
1018        ioc3_w_ertr(0);                         /* Interrupt immediately */
1019        __ioc3_set_mac_address(dev);
1020        ioc3_w_ehar_h(ip->ehar_h);
1021        ioc3_w_ehar_l(ip->ehar_l);
1022        ioc3_w_ersr(42);                        /* XXX should be random */
1023
1024        ioc3_init_rings(dev);
1025
1026        ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1027                     EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1028        ioc3_w_emcr(ip->emcr);
1029        ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1030                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1031                    EISR_TXEXPLICIT | EISR_TXMEMERR);
1032        (void) ioc3_r_eier();
1033}
1034
1035static inline void ioc3_stop(struct ioc3_private *ip)
1036{
1037        struct ioc3 *ioc3 = ip->regs;
1038
1039        ioc3_w_emcr(0);                         /* Shutup */
1040        ioc3_w_eier(0);                         /* Disable interrupts */
1041        (void) ioc3_r_eier();                   /* Flush */
1042}
1043
1044static int ioc3_open(struct net_device *dev)
1045{
1046        struct ioc3_private *ip = netdev_priv(dev);
1047
1048        if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1049                printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1050
1051                return -EAGAIN;
1052        }
1053
1054        ip->ehar_h = 0;
1055        ip->ehar_l = 0;
1056        ioc3_init(dev);
1057        ioc3_mii_start(ip);
1058
1059        netif_start_queue(dev);
1060        return 0;
1061}
1062
1063static int ioc3_close(struct net_device *dev)
1064{
1065        struct ioc3_private *ip = netdev_priv(dev);
1066
1067        del_timer_sync(&ip->ioc3_timer);
1068
1069        netif_stop_queue(dev);
1070
1071        ioc3_stop(ip);
1072        free_irq(dev->irq, dev);
1073
1074        ioc3_free_rings(ip);
1075        return 0;
1076}
1077
1078/*
1079 * MENET cards have four IOC3 chips, which are attached to two sets of
1080 * PCI slot resources each: the primary connections are on slots
1081 * 0..3 and the secondaries are on 4..7
1082 *
1083 * All four ethernets are brought out to connectors; six serial ports
1084 * (a pair from each of the first three IOC3s) are brought out to
1085 * MiniDINs; all other subdevices are left swinging in the wind, leave
1086 * them disabled.
1087 */
1088
1089static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1090{
1091        struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1092        int ret = 0;
1093
1094        if (dev) {
1095                if (dev->vendor == PCI_VENDOR_ID_SGI &&
1096                        dev->device == PCI_DEVICE_ID_SGI_IOC3)
1097                        ret = 1;
1098                pci_dev_put(dev);
1099        }
1100
1101        return ret;
1102}
1103
1104static int ioc3_is_menet(struct pci_dev *pdev)
1105{
1106        return pdev->bus->parent == NULL &&
1107               ioc3_adjacent_is_ioc3(pdev, 0) &&
1108               ioc3_adjacent_is_ioc3(pdev, 1) &&
1109               ioc3_adjacent_is_ioc3(pdev, 2);
1110}
1111
1112#ifdef CONFIG_SERIAL_8250
1113/*
1114 * Note about serial ports and consoles:
1115 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1116 * connected to the master node (look in ip27_setup_console() and
1117 * ip27prom_console_write()).
1118 *
1119 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1120 * addresses on a partitioned machine. Since we currently use the ioc3
1121 * serial ports, we use dynamic serial port discovery that the serial.c
1122 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1123 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1124 * than UARTB's, although UARTA on o200s has traditionally been known as
1125 * port 0. So, we just use one serial port from each ioc3 (since the
1126 * serial driver adds addresses to get to higher ports).
1127 *
1128 * The first one to do a register_console becomes the preferred console
1129 * (if there is no kernel command line console= directive). /dev/console
1130 * (ie 5, 1) is then "aliased" into the device number returned by the
1131 * "device" routine referred to in this console structure
1132 * (ip27prom_console_dev).
1133 *
1134 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1135 * around ioc3 oddities in this respect.
1136 *
1137 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1138 * can be programmed in the SCR register if the DLAB bit is set.
1139 *
1140 * Register to interrupt zero because we share the interrupt with
1141 * the serial driver which we don't properly support yet.
1142 *
1143 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1144 * registered.
1145 */
1146static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1147{
1148#define COSMISC_CONSTANT 6
1149
1150        struct uart_8250_port port = {
1151                .port = {
1152                        .irq            = 0,
1153                        .flags          = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1154                        .iotype         = UPIO_MEM,
1155                        .regshift       = 0,
1156                        .uartclk        = (22000000 << 1) / COSMISC_CONSTANT,
1157
1158                        .membase        = (unsigned char __iomem *) uart,
1159                        .mapbase        = (unsigned long) uart,
1160                }
1161        };
1162        unsigned char lcr;
1163
1164        lcr = uart->iu_lcr;
1165        uart->iu_lcr = lcr | UART_LCR_DLAB;
1166        uart->iu_scr = COSMISC_CONSTANT,
1167        uart->iu_lcr = lcr;
1168        uart->iu_lcr;
1169        serial8250_register_8250_port(&port);
1170}
1171
1172static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1173{
1174        /*
1175         * We need to recognice and treat the fourth MENET serial as it
1176         * does not have an SuperIO chip attached to it, therefore attempting
1177         * to access it will result in bus errors.  We call something an
1178         * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1179         * in it.  This is paranoid but we want to avoid blowing up on a
1180         * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1181         * not paranoid enough ...
1182         */
1183        if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1184                return;
1185
1186        /*
1187         * Switch IOC3 to PIO mode.  It probably already was but let's be
1188         * paranoid
1189         */
1190        ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1191        ioc3->gpcr_s;
1192        ioc3->gppr_6 = 0;
1193        ioc3->gppr_6;
1194        ioc3->gppr_7 = 0;
1195        ioc3->gppr_7;
1196        ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1197        ioc3->sscr_a;
1198        ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1199        ioc3->sscr_b;
1200        /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1201        ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1202                            SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1203                            SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1204                            SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1205        ioc3->sio_iec |= SIO_IR_SA_INT;
1206        ioc3->sscr_a = 0;
1207        ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1208                            SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1209                            SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1210                            SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1211        ioc3->sio_iec |= SIO_IR_SB_INT;
1212        ioc3->sscr_b = 0;
1213
1214        ioc3_8250_register(&ioc3->sregs.uarta);
1215        ioc3_8250_register(&ioc3->sregs.uartb);
1216}
1217#endif
1218
1219static const struct net_device_ops ioc3_netdev_ops = {
1220        .ndo_open               = ioc3_open,
1221        .ndo_stop               = ioc3_close,
1222        .ndo_start_xmit         = ioc3_start_xmit,
1223        .ndo_tx_timeout         = ioc3_timeout,
1224        .ndo_get_stats          = ioc3_get_stats,
1225        .ndo_set_rx_mode        = ioc3_set_multicast_list,
1226        .ndo_do_ioctl           = ioc3_ioctl,
1227        .ndo_validate_addr      = eth_validate_addr,
1228        .ndo_set_mac_address    = ioc3_set_mac_address,
1229        .ndo_change_mtu         = eth_change_mtu,
1230};
1231
1232static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1233{
1234        unsigned int sw_physid1, sw_physid2;
1235        struct net_device *dev = NULL;
1236        struct ioc3_private *ip;
1237        struct ioc3 *ioc3;
1238        unsigned long ioc3_base, ioc3_size;
1239        u32 vendor, model, rev;
1240        int err, pci_using_dac;
1241
1242        /* Configure DMA attributes. */
1243        err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1244        if (!err) {
1245                pci_using_dac = 1;
1246                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1247                if (err < 0) {
1248                        printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1249                               "for consistent allocations\n", pci_name(pdev));
1250                        goto out;
1251                }
1252        } else {
1253                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1254                if (err) {
1255                        printk(KERN_ERR "%s: No usable DMA configuration, "
1256                               "aborting.\n", pci_name(pdev));
1257                        goto out;
1258                }
1259                pci_using_dac = 0;
1260        }
1261
1262        if (pci_enable_device(pdev))
1263                return -ENODEV;
1264
1265        dev = alloc_etherdev(sizeof(struct ioc3_private));
1266        if (!dev) {
1267                err = -ENOMEM;
1268                goto out_disable;
1269        }
1270
1271        if (pci_using_dac)
1272                dev->features |= NETIF_F_HIGHDMA;
1273
1274        err = pci_request_regions(pdev, "ioc3");
1275        if (err)
1276                goto out_free;
1277
1278        SET_NETDEV_DEV(dev, &pdev->dev);
1279
1280        ip = netdev_priv(dev);
1281
1282        dev->irq = pdev->irq;
1283
1284        ioc3_base = pci_resource_start(pdev, 0);
1285        ioc3_size = pci_resource_len(pdev, 0);
1286        ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1287        if (!ioc3) {
1288                printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1289                       pci_name(pdev));
1290                err = -ENOMEM;
1291                goto out_res;
1292        }
1293        ip->regs = ioc3;
1294
1295#ifdef CONFIG_SERIAL_8250
1296        ioc3_serial_probe(pdev, ioc3);
1297#endif
1298
1299        spin_lock_init(&ip->ioc3_lock);
1300        init_timer(&ip->ioc3_timer);
1301
1302        ioc3_stop(ip);
1303        ioc3_init(dev);
1304
1305        ip->pdev = pdev;
1306
1307        ip->mii.phy_id_mask = 0x1f;
1308        ip->mii.reg_num_mask = 0x1f;
1309        ip->mii.dev = dev;
1310        ip->mii.mdio_read = ioc3_mdio_read;
1311        ip->mii.mdio_write = ioc3_mdio_write;
1312
1313        ioc3_mii_init(ip);
1314
1315        if (ip->mii.phy_id == -1) {
1316                printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1317                       pci_name(pdev));
1318                err = -ENODEV;
1319                goto out_stop;
1320        }
1321
1322        ioc3_mii_start(ip);
1323        ioc3_ssram_disc(ip);
1324        ioc3_get_eaddr(ip);
1325
1326        /* The IOC3-specific entries in the device structure. */
1327        dev->watchdog_timeo     = 5 * HZ;
1328        dev->netdev_ops         = &ioc3_netdev_ops;
1329        dev->ethtool_ops        = &ioc3_ethtool_ops;
1330        dev->hw_features        = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1331        dev->features           = NETIF_F_IP_CSUM;
1332
1333        sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1334        sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1335
1336        err = register_netdev(dev);
1337        if (err)
1338                goto out_stop;
1339
1340        mii_check_media(&ip->mii, 1, 1);
1341        ioc3_setup_duplex(ip);
1342
1343        vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1344        model  = (sw_physid2 >> 4) & 0x3f;
1345        rev    = sw_physid2 & 0xf;
1346        printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1347               "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1348        printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1349               ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1350
1351        return 0;
1352
1353out_stop:
1354        ioc3_stop(ip);
1355        del_timer_sync(&ip->ioc3_timer);
1356        ioc3_free_rings(ip);
1357out_res:
1358        pci_release_regions(pdev);
1359out_free:
1360        free_netdev(dev);
1361out_disable:
1362        /*
1363         * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1364         * such a weird device ...
1365         */
1366out:
1367        return err;
1368}
1369
1370static void ioc3_remove_one(struct pci_dev *pdev)
1371{
1372        struct net_device *dev = pci_get_drvdata(pdev);
1373        struct ioc3_private *ip = netdev_priv(dev);
1374        struct ioc3 *ioc3 = ip->regs;
1375
1376        unregister_netdev(dev);
1377        del_timer_sync(&ip->ioc3_timer);
1378
1379        iounmap(ioc3);
1380        pci_release_regions(pdev);
1381        free_netdev(dev);
1382        /*
1383         * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1384         * such a weird device ...
1385         */
1386}
1387
1388static DEFINE_PCI_DEVICE_TABLE(ioc3_pci_tbl) = {
1389        { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1390        { 0 }
1391};
1392MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1393
1394static struct pci_driver ioc3_driver = {
1395        .name           = "ioc3-eth",
1396        .id_table       = ioc3_pci_tbl,
1397        .probe          = ioc3_probe,
1398        .remove         = ioc3_remove_one,
1399};
1400
1401static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1402{
1403        unsigned long data;
1404        struct ioc3_private *ip = netdev_priv(dev);
1405        struct ioc3 *ioc3 = ip->regs;
1406        unsigned int len;
1407        struct ioc3_etxd *desc;
1408        uint32_t w0 = 0;
1409        int produce;
1410
1411        /*
1412         * IOC3 has a fairly simple minded checksumming hardware which simply
1413         * adds up the 1's complement checksum for the entire packet and
1414         * inserts it at an offset which can be specified in the descriptor
1415         * into the transmit packet.  This means we have to compensate for the
1416         * MAC header which should not be summed and the TCP/UDP pseudo headers
1417         * manually.
1418         */
1419        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1420                const struct iphdr *ih = ip_hdr(skb);
1421                const int proto = ntohs(ih->protocol);
1422                unsigned int csoff;
1423                uint32_t csum, ehsum;
1424                uint16_t *eh;
1425
1426                /* The MAC header.  skb->mac seem the logic approach
1427                   to find the MAC header - except it's a NULL pointer ...  */
1428                eh = (uint16_t *) skb->data;
1429
1430                /* Sum up dest addr, src addr and protocol  */
1431                ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1432
1433                /* Fold ehsum.  can't use csum_fold which negates also ...  */
1434                ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1435                ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1436
1437                /* Skip IP header; it's sum is always zero and was
1438                   already filled in by ip_output.c */
1439                csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1440                                          ih->tot_len - (ih->ihl << 2),
1441                                          proto, 0xffff ^ ehsum);
1442
1443                csum = (csum & 0xffff) + (csum >> 16);  /* Fold again */
1444                csum = (csum & 0xffff) + (csum >> 16);
1445
1446                csoff = ETH_HLEN + (ih->ihl << 2);
1447                if (proto == IPPROTO_UDP) {
1448                        csoff += offsetof(struct udphdr, check);
1449                        udp_hdr(skb)->check = csum;
1450                }
1451                if (proto == IPPROTO_TCP) {
1452                        csoff += offsetof(struct tcphdr, check);
1453                        tcp_hdr(skb)->check = csum;
1454                }
1455
1456                w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1457        }
1458
1459        spin_lock_irq(&ip->ioc3_lock);
1460
1461        data = (unsigned long) skb->data;
1462        len = skb->len;
1463
1464        produce = ip->tx_pi;
1465        desc = &ip->txr[produce];
1466
1467        if (len <= 104) {
1468                /* Short packet, let's copy it directly into the ring.  */
1469                skb_copy_from_linear_data(skb, desc->data, skb->len);
1470                if (len < ETH_ZLEN) {
1471                        /* Very short packet, pad with zeros at the end. */
1472                        memset(desc->data + len, 0, ETH_ZLEN - len);
1473                        len = ETH_ZLEN;
1474                }
1475                desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1476                desc->bufcnt = cpu_to_be32(len);
1477        } else if ((data ^ (data + len - 1)) & 0x4000) {
1478                unsigned long b2 = (data | 0x3fffUL) + 1UL;
1479                unsigned long s1 = b2 - data;
1480                unsigned long s2 = data + len - b2;
1481
1482                desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1483                                           ETXD_B1V | ETXD_B2V | w0);
1484                desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1485                                           (s2 << ETXD_B2CNT_SHIFT));
1486                desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1487                desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1488        } else {
1489                /* Normal sized packet that doesn't cross a page boundary. */
1490                desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1491                desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1492                desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1493        }
1494
1495        BARRIER();
1496
1497        ip->tx_skbs[produce] = skb;                     /* Remember skb */
1498        produce = (produce + 1) & 127;
1499        ip->tx_pi = produce;
1500        ioc3_w_etpir(produce << 7);                     /* Fire ... */
1501
1502        ip->txqlen++;
1503
1504        if (ip->txqlen >= 127)
1505                netif_stop_queue(dev);
1506
1507        spin_unlock_irq(&ip->ioc3_lock);
1508
1509        return NETDEV_TX_OK;
1510}
1511
1512static void ioc3_timeout(struct net_device *dev)
1513{
1514        struct ioc3_private *ip = netdev_priv(dev);
1515
1516        printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1517
1518        spin_lock_irq(&ip->ioc3_lock);
1519
1520        ioc3_stop(ip);
1521        ioc3_init(dev);
1522        ioc3_mii_init(ip);
1523        ioc3_mii_start(ip);
1524
1525        spin_unlock_irq(&ip->ioc3_lock);
1526
1527        netif_wake_queue(dev);
1528}
1529
1530/*
1531 * Given a multicast ethernet address, this routine calculates the
1532 * address's bit index in the logical address filter mask
1533 */
1534
1535static inline unsigned int ioc3_hash(const unsigned char *addr)
1536{
1537        unsigned int temp = 0;
1538        u32 crc;
1539        int bits;
1540
1541        crc = ether_crc_le(ETH_ALEN, addr);
1542
1543        crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1544        for (bits = 6; --bits >= 0; ) {
1545                temp <<= 1;
1546                temp |= (crc & 0x1);
1547                crc >>= 1;
1548        }
1549
1550        return temp;
1551}
1552
1553static void ioc3_get_drvinfo (struct net_device *dev,
1554        struct ethtool_drvinfo *info)
1555{
1556        struct ioc3_private *ip = netdev_priv(dev);
1557
1558        strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1559        strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1560        strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1561}
1562
1563static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1564{
1565        struct ioc3_private *ip = netdev_priv(dev);
1566        int rc;
1567
1568        spin_lock_irq(&ip->ioc3_lock);
1569        rc = mii_ethtool_gset(&ip->mii, cmd);
1570        spin_unlock_irq(&ip->ioc3_lock);
1571
1572        return rc;
1573}
1574
1575static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1576{
1577        struct ioc3_private *ip = netdev_priv(dev);
1578        int rc;
1579
1580        spin_lock_irq(&ip->ioc3_lock);
1581        rc = mii_ethtool_sset(&ip->mii, cmd);
1582        spin_unlock_irq(&ip->ioc3_lock);
1583
1584        return rc;
1585}
1586
1587static int ioc3_nway_reset(struct net_device *dev)
1588{
1589        struct ioc3_private *ip = netdev_priv(dev);
1590        int rc;
1591
1592        spin_lock_irq(&ip->ioc3_lock);
1593        rc = mii_nway_restart(&ip->mii);
1594        spin_unlock_irq(&ip->ioc3_lock);
1595
1596        return rc;
1597}
1598
1599static u32 ioc3_get_link(struct net_device *dev)
1600{
1601        struct ioc3_private *ip = netdev_priv(dev);
1602        int rc;
1603
1604        spin_lock_irq(&ip->ioc3_lock);
1605        rc = mii_link_ok(&ip->mii);
1606        spin_unlock_irq(&ip->ioc3_lock);
1607
1608        return rc;
1609}
1610
1611static const struct ethtool_ops ioc3_ethtool_ops = {
1612        .get_drvinfo            = ioc3_get_drvinfo,
1613        .get_settings           = ioc3_get_settings,
1614        .set_settings           = ioc3_set_settings,
1615        .nway_reset             = ioc3_nway_reset,
1616        .get_link               = ioc3_get_link,
1617};
1618
1619static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1620{
1621        struct ioc3_private *ip = netdev_priv(dev);
1622        int rc;
1623
1624        spin_lock_irq(&ip->ioc3_lock);
1625        rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1626        spin_unlock_irq(&ip->ioc3_lock);
1627
1628        return rc;
1629}
1630
1631static void ioc3_set_multicast_list(struct net_device *dev)
1632{
1633        struct netdev_hw_addr *ha;
1634        struct ioc3_private *ip = netdev_priv(dev);
1635        struct ioc3 *ioc3 = ip->regs;
1636        u64 ehar = 0;
1637
1638        netif_stop_queue(dev);                          /* Lock out others. */
1639
1640        if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous.  */
1641                ip->emcr |= EMCR_PROMISC;
1642                ioc3_w_emcr(ip->emcr);
1643                (void) ioc3_r_emcr();
1644        } else {
1645                ip->emcr &= ~EMCR_PROMISC;
1646                ioc3_w_emcr(ip->emcr);                  /* Clear promiscuous. */
1647                (void) ioc3_r_emcr();
1648
1649                if ((dev->flags & IFF_ALLMULTI) ||
1650                    (netdev_mc_count(dev) > 64)) {
1651                        /* Too many for hashing to make sense or we want all
1652                           multicast packets anyway,  so skip computing all the
1653                           hashes and just accept all packets.  */
1654                        ip->ehar_h = 0xffffffff;
1655                        ip->ehar_l = 0xffffffff;
1656                } else {
1657                        netdev_for_each_mc_addr(ha, dev) {
1658                                ehar |= (1UL << ioc3_hash(ha->addr));
1659                        }
1660                        ip->ehar_h = ehar >> 32;
1661                        ip->ehar_l = ehar & 0xffffffff;
1662                }
1663                ioc3_w_ehar_h(ip->ehar_h);
1664                ioc3_w_ehar_l(ip->ehar_l);
1665        }
1666
1667        netif_wake_queue(dev);                  /* Let us get going again. */
1668}
1669
1670module_pci_driver(ioc3_driver);
1671MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1672MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1673MODULE_LICENSE("GPL");
1674