linux/drivers/net/hippi/rrunner.c
<<
>>
Prefs
   1/*
   2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   3 *
   4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   5 *
   6 * Thanks to Essential Communication for providing us with hardware
   7 * and very comprehensive documentation without which I would not have
   8 * been able to write this driver. A special thank you to John Gibbon
   9 * for sorting out the legal issues, with the NDA, allowing the code to
  10 * be released under the GPL.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18 * stupid bugs in my code.
  19 *
  20 * Softnet support and various other patches from Val Henson of
  21 * ODS/Essential.
  22 *
  23 * PCI DMA mapping code partly based on work by Francois Romieu.
  24 */
  25
  26
  27#define DEBUG 1
  28#define RX_DMA_SKBUFF 1
  29#define PKT_COPY_THRESHOLD 512
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/errno.h>
  34#include <linux/ioport.h>
  35#include <linux/pci.h>
  36#include <linux/kernel.h>
  37#include <linux/netdevice.h>
  38#include <linux/hippidevice.h>
  39#include <linux/skbuff.h>
  40#include <linux/init.h>
  41#include <linux/delay.h>
  42#include <linux/mm.h>
  43#include <linux/slab.h>
  44#include <net/sock.h>
  45
  46#include <asm/cache.h>
  47#include <asm/byteorder.h>
  48#include <asm/io.h>
  49#include <asm/irq.h>
  50#include <asm/uaccess.h>
  51
  52#define rr_if_busy(dev)     netif_queue_stopped(dev)
  53#define rr_if_running(dev)  netif_running(dev)
  54
  55#include "rrunner.h"
  56
  57#define RUN_AT(x) (jiffies + (x))
  58
  59
  60MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  61MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  62MODULE_LICENSE("GPL");
  63
  64static char version[] = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  65
  66
  67static const struct net_device_ops rr_netdev_ops = {
  68        .ndo_open               = rr_open,
  69        .ndo_stop               = rr_close,
  70        .ndo_do_ioctl           = rr_ioctl,
  71        .ndo_start_xmit         = rr_start_xmit,
  72        .ndo_change_mtu         = hippi_change_mtu,
  73        .ndo_set_mac_address    = hippi_mac_addr,
  74};
  75
  76/*
  77 * Implementation notes:
  78 *
  79 * The DMA engine only allows for DMA within physical 64KB chunks of
  80 * memory. The current approach of the driver (and stack) is to use
  81 * linear blocks of memory for the skbuffs. However, as the data block
  82 * is always the first part of the skb and skbs are 2^n aligned so we
  83 * are guarantted to get the whole block within one 64KB align 64KB
  84 * chunk.
  85 *
  86 * On the long term, relying on being able to allocate 64KB linear
  87 * chunks of memory is not feasible and the skb handling code and the
  88 * stack will need to know about I/O vectors or something similar.
  89 */
  90
  91static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  92{
  93        struct net_device *dev;
  94        static int version_disp;
  95        u8 pci_latency;
  96        struct rr_private *rrpriv;
  97        void *tmpptr;
  98        dma_addr_t ring_dma;
  99        int ret = -ENOMEM;
 100
 101        dev = alloc_hippi_dev(sizeof(struct rr_private));
 102        if (!dev)
 103                goto out3;
 104
 105        ret = pci_enable_device(pdev);
 106        if (ret) {
 107                ret = -ENODEV;
 108                goto out2;
 109        }
 110
 111        rrpriv = netdev_priv(dev);
 112
 113        SET_NETDEV_DEV(dev, &pdev->dev);
 114
 115        ret = pci_request_regions(pdev, "rrunner");
 116        if (ret < 0)
 117                goto out;
 118
 119        pci_set_drvdata(pdev, dev);
 120
 121        rrpriv->pci_dev = pdev;
 122
 123        spin_lock_init(&rrpriv->lock);
 124
 125        dev->netdev_ops = &rr_netdev_ops;
 126
 127        /* display version info if adapter is found */
 128        if (!version_disp) {
 129                /* set display flag to TRUE so that */
 130                /* we only display this string ONCE */
 131                version_disp = 1;
 132                printk(version);
 133        }
 134
 135        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 136        if (pci_latency <= 0x58){
 137                pci_latency = 0x58;
 138                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 139        }
 140
 141        pci_set_master(pdev);
 142
 143        printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 144               "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 145               (unsigned long long)pci_resource_start(pdev, 0),
 146               pdev->irq, pci_latency);
 147
 148        /*
 149         * Remap the MMIO regs into kernel space.
 150         */
 151        rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 152        if (!rrpriv->regs) {
 153                printk(KERN_ERR "%s:  Unable to map I/O register, "
 154                        "RoadRunner will be disabled.\n", dev->name);
 155                ret = -EIO;
 156                goto out;
 157        }
 158
 159        tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 160        rrpriv->tx_ring = tmpptr;
 161        rrpriv->tx_ring_dma = ring_dma;
 162
 163        if (!tmpptr) {
 164                ret = -ENOMEM;
 165                goto out;
 166        }
 167
 168        tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 169        rrpriv->rx_ring = tmpptr;
 170        rrpriv->rx_ring_dma = ring_dma;
 171
 172        if (!tmpptr) {
 173                ret = -ENOMEM;
 174                goto out;
 175        }
 176
 177        tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 178        rrpriv->evt_ring = tmpptr;
 179        rrpriv->evt_ring_dma = ring_dma;
 180
 181        if (!tmpptr) {
 182                ret = -ENOMEM;
 183                goto out;
 184        }
 185
 186        /*
 187         * Don't access any register before this point!
 188         */
 189#ifdef __BIG_ENDIAN
 190        writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 191                &rrpriv->regs->HostCtrl);
 192#endif
 193        /*
 194         * Need to add a case for little-endian 64-bit hosts here.
 195         */
 196
 197        rr_init(dev);
 198
 199        ret = register_netdev(dev);
 200        if (ret)
 201                goto out;
 202        return 0;
 203
 204 out:
 205        if (rrpriv->evt_ring)
 206                pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
 207                                    rrpriv->evt_ring_dma);
 208        if (rrpriv->rx_ring)
 209                pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 210                                    rrpriv->rx_ring_dma);
 211        if (rrpriv->tx_ring)
 212                pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 213                                    rrpriv->tx_ring_dma);
 214        if (rrpriv->regs)
 215                pci_iounmap(pdev, rrpriv->regs);
 216        if (pdev) {
 217                pci_release_regions(pdev);
 218                pci_set_drvdata(pdev, NULL);
 219        }
 220 out2:
 221        free_netdev(dev);
 222 out3:
 223        return ret;
 224}
 225
 226static void rr_remove_one(struct pci_dev *pdev)
 227{
 228        struct net_device *dev = pci_get_drvdata(pdev);
 229        struct rr_private *rr = netdev_priv(dev);
 230
 231        if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 232                printk(KERN_ERR "%s: trying to unload running NIC\n",
 233                       dev->name);
 234                writel(HALT_NIC, &rr->regs->HostCtrl);
 235        }
 236
 237        unregister_netdev(dev);
 238        pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 239                            rr->evt_ring_dma);
 240        pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 241                            rr->rx_ring_dma);
 242        pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 243                            rr->tx_ring_dma);
 244        pci_iounmap(pdev, rr->regs);
 245        pci_release_regions(pdev);
 246        pci_disable_device(pdev);
 247        pci_set_drvdata(pdev, NULL);
 248        free_netdev(dev);
 249}
 250
 251
 252/*
 253 * Commands are considered to be slow, thus there is no reason to
 254 * inline this.
 255 */
 256static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 257{
 258        struct rr_regs __iomem *regs;
 259        u32 idx;
 260
 261        regs = rrpriv->regs;
 262        /*
 263         * This is temporary - it will go away in the final version.
 264         * We probably also want to make this function inline.
 265         */
 266        if (readl(&regs->HostCtrl) & NIC_HALTED){
 267                printk("issuing command for halted NIC, code 0x%x, "
 268                       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 269                if (readl(&regs->Mode) & FATAL_ERR)
 270                        printk("error codes Fail1 %02x, Fail2 %02x\n",
 271                               readl(&regs->Fail1), readl(&regs->Fail2));
 272        }
 273
 274        idx = rrpriv->info->cmd_ctrl.pi;
 275
 276        writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 277        wmb();
 278
 279        idx = (idx - 1) % CMD_RING_ENTRIES;
 280        rrpriv->info->cmd_ctrl.pi = idx;
 281        wmb();
 282
 283        if (readl(&regs->Mode) & FATAL_ERR)
 284                printk("error code %02x\n", readl(&regs->Fail1));
 285}
 286
 287
 288/*
 289 * Reset the board in a sensible manner. The NIC is already halted
 290 * when we get here and a spin-lock is held.
 291 */
 292static int rr_reset(struct net_device *dev)
 293{
 294        struct rr_private *rrpriv;
 295        struct rr_regs __iomem *regs;
 296        u32 start_pc;
 297        int i;
 298
 299        rrpriv = netdev_priv(dev);
 300        regs = rrpriv->regs;
 301
 302        rr_load_firmware(dev);
 303
 304        writel(0x01000000, &regs->TX_state);
 305        writel(0xff800000, &regs->RX_state);
 306        writel(0, &regs->AssistState);
 307        writel(CLEAR_INTA, &regs->LocalCtrl);
 308        writel(0x01, &regs->BrkPt);
 309        writel(0, &regs->Timer);
 310        writel(0, &regs->TimerRef);
 311        writel(RESET_DMA, &regs->DmaReadState);
 312        writel(RESET_DMA, &regs->DmaWriteState);
 313        writel(0, &regs->DmaWriteHostHi);
 314        writel(0, &regs->DmaWriteHostLo);
 315        writel(0, &regs->DmaReadHostHi);
 316        writel(0, &regs->DmaReadHostLo);
 317        writel(0, &regs->DmaReadLen);
 318        writel(0, &regs->DmaWriteLen);
 319        writel(0, &regs->DmaWriteLcl);
 320        writel(0, &regs->DmaWriteIPchecksum);
 321        writel(0, &regs->DmaReadLcl);
 322        writel(0, &regs->DmaReadIPchecksum);
 323        writel(0, &regs->PciState);
 324#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 325        writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 326#elif (BITS_PER_LONG == 64)
 327        writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 328#else
 329        writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 330#endif
 331
 332#if 0
 333        /*
 334         * Don't worry, this is just black magic.
 335         */
 336        writel(0xdf000, &regs->RxBase);
 337        writel(0xdf000, &regs->RxPrd);
 338        writel(0xdf000, &regs->RxCon);
 339        writel(0xce000, &regs->TxBase);
 340        writel(0xce000, &regs->TxPrd);
 341        writel(0xce000, &regs->TxCon);
 342        writel(0, &regs->RxIndPro);
 343        writel(0, &regs->RxIndCon);
 344        writel(0, &regs->RxIndRef);
 345        writel(0, &regs->TxIndPro);
 346        writel(0, &regs->TxIndCon);
 347        writel(0, &regs->TxIndRef);
 348        writel(0xcc000, &regs->pad10[0]);
 349        writel(0, &regs->DrCmndPro);
 350        writel(0, &regs->DrCmndCon);
 351        writel(0, &regs->DwCmndPro);
 352        writel(0, &regs->DwCmndCon);
 353        writel(0, &regs->DwCmndRef);
 354        writel(0, &regs->DrDataPro);
 355        writel(0, &regs->DrDataCon);
 356        writel(0, &regs->DrDataRef);
 357        writel(0, &regs->DwDataPro);
 358        writel(0, &regs->DwDataCon);
 359        writel(0, &regs->DwDataRef);
 360#endif
 361
 362        writel(0xffffffff, &regs->MbEvent);
 363        writel(0, &regs->Event);
 364
 365        writel(0, &regs->TxPi);
 366        writel(0, &regs->IpRxPi);
 367
 368        writel(0, &regs->EvtCon);
 369        writel(0, &regs->EvtPrd);
 370
 371        rrpriv->info->evt_ctrl.pi = 0;
 372
 373        for (i = 0; i < CMD_RING_ENTRIES; i++)
 374                writel(0, &regs->CmdRing[i]);
 375
 376/*
 377 * Why 32 ? is this not cache line size dependent?
 378 */
 379        writel(RBURST_64|WBURST_64, &regs->PciState);
 380        wmb();
 381
 382        start_pc = rr_read_eeprom_word(rrpriv,
 383                        offsetof(struct eeprom, rncd_info.FwStart));
 384
 385#if (DEBUG > 1)
 386        printk("%s: Executing firmware at address 0x%06x\n",
 387               dev->name, start_pc);
 388#endif
 389
 390        writel(start_pc + 0x800, &regs->Pc);
 391        wmb();
 392        udelay(5);
 393
 394        writel(start_pc, &regs->Pc);
 395        wmb();
 396
 397        return 0;
 398}
 399
 400
 401/*
 402 * Read a string from the EEPROM.
 403 */
 404static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 405                                unsigned long offset,
 406                                unsigned char *buf,
 407                                unsigned long length)
 408{
 409        struct rr_regs __iomem *regs = rrpriv->regs;
 410        u32 misc, io, host, i;
 411
 412        io = readl(&regs->ExtIo);
 413        writel(0, &regs->ExtIo);
 414        misc = readl(&regs->LocalCtrl);
 415        writel(0, &regs->LocalCtrl);
 416        host = readl(&regs->HostCtrl);
 417        writel(host | HALT_NIC, &regs->HostCtrl);
 418        mb();
 419
 420        for (i = 0; i < length; i++){
 421                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 422                mb();
 423                buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 424                mb();
 425        }
 426
 427        writel(host, &regs->HostCtrl);
 428        writel(misc, &regs->LocalCtrl);
 429        writel(io, &regs->ExtIo);
 430        mb();
 431        return i;
 432}
 433
 434
 435/*
 436 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 437 * it to our CPU byte-order.
 438 */
 439static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 440                            size_t offset)
 441{
 442        __be32 word;
 443
 444        if ((rr_read_eeprom(rrpriv, offset,
 445                            (unsigned char *)&word, 4) == 4))
 446                return be32_to_cpu(word);
 447        return 0;
 448}
 449
 450
 451/*
 452 * Write a string to the EEPROM.
 453 *
 454 * This is only called when the firmware is not running.
 455 */
 456static unsigned int write_eeprom(struct rr_private *rrpriv,
 457                                 unsigned long offset,
 458                                 unsigned char *buf,
 459                                 unsigned long length)
 460{
 461        struct rr_regs __iomem *regs = rrpriv->regs;
 462        u32 misc, io, data, i, j, ready, error = 0;
 463
 464        io = readl(&regs->ExtIo);
 465        writel(0, &regs->ExtIo);
 466        misc = readl(&regs->LocalCtrl);
 467        writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 468        mb();
 469
 470        for (i = 0; i < length; i++){
 471                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 472                mb();
 473                data = buf[i] << 24;
 474                /*
 475                 * Only try to write the data if it is not the same
 476                 * value already.
 477                 */
 478                if ((readl(&regs->WinData) & 0xff000000) != data){
 479                        writel(data, &regs->WinData);
 480                        ready = 0;
 481                        j = 0;
 482                        mb();
 483                        while(!ready){
 484                                udelay(20);
 485                                if ((readl(&regs->WinData) & 0xff000000) ==
 486                                    data)
 487                                        ready = 1;
 488                                mb();
 489                                if (j++ > 5000){
 490                                        printk("data mismatch: %08x, "
 491                                               "WinData %08x\n", data,
 492                                               readl(&regs->WinData));
 493                                        ready = 1;
 494                                        error = 1;
 495                                }
 496                        }
 497                }
 498        }
 499
 500        writel(misc, &regs->LocalCtrl);
 501        writel(io, &regs->ExtIo);
 502        mb();
 503
 504        return error;
 505}
 506
 507
 508static int rr_init(struct net_device *dev)
 509{
 510        struct rr_private *rrpriv;
 511        struct rr_regs __iomem *regs;
 512        u32 sram_size, rev;
 513
 514        rrpriv = netdev_priv(dev);
 515        regs = rrpriv->regs;
 516
 517        rev = readl(&regs->FwRev);
 518        rrpriv->fw_rev = rev;
 519        if (rev > 0x00020024)
 520                printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 521                       ((rev >> 8) & 0xff), (rev & 0xff));
 522        else if (rev >= 0x00020000) {
 523                printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 524                       "later is recommended)\n", (rev >> 16),
 525                       ((rev >> 8) & 0xff), (rev & 0xff));
 526        }else{
 527                printk("  Firmware revision too old: %i.%i.%i, please "
 528                       "upgrade to 2.0.37 or later.\n",
 529                       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 530        }
 531
 532#if (DEBUG > 2)
 533        printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 534#endif
 535
 536        /*
 537         * Read the hardware address from the eeprom.  The HW address
 538         * is not really necessary for HIPPI but awfully convenient.
 539         * The pointer arithmetic to put it in dev_addr is ugly, but
 540         * Donald Becker does it this way for the GigE version of this
 541         * card and it's shorter and more portable than any
 542         * other method I've seen.  -VAL
 543         */
 544
 545        *(__be16 *)(dev->dev_addr) =
 546          htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 547        *(__be32 *)(dev->dev_addr+2) =
 548          htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 549
 550        printk("  MAC: %pM\n", dev->dev_addr);
 551
 552        sram_size = rr_read_eeprom_word(rrpriv, 8);
 553        printk("  SRAM size 0x%06x\n", sram_size);
 554
 555        return 0;
 556}
 557
 558
 559static int rr_init1(struct net_device *dev)
 560{
 561        struct rr_private *rrpriv;
 562        struct rr_regs __iomem *regs;
 563        unsigned long myjif, flags;
 564        struct cmd cmd;
 565        u32 hostctrl;
 566        int ecode = 0;
 567        short i;
 568
 569        rrpriv = netdev_priv(dev);
 570        regs = rrpriv->regs;
 571
 572        spin_lock_irqsave(&rrpriv->lock, flags);
 573
 574        hostctrl = readl(&regs->HostCtrl);
 575        writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 576        wmb();
 577
 578        if (hostctrl & PARITY_ERR){
 579                printk("%s: Parity error halting NIC - this is serious!\n",
 580                       dev->name);
 581                spin_unlock_irqrestore(&rrpriv->lock, flags);
 582                ecode = -EFAULT;
 583                goto error;
 584        }
 585
 586        set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 587        set_infoaddr(regs, rrpriv->info_dma);
 588
 589        rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 590        rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 591        rrpriv->info->evt_ctrl.mode = 0;
 592        rrpriv->info->evt_ctrl.pi = 0;
 593        set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 594
 595        rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 596        rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 597        rrpriv->info->cmd_ctrl.mode = 0;
 598        rrpriv->info->cmd_ctrl.pi = 15;
 599
 600        for (i = 0; i < CMD_RING_ENTRIES; i++) {
 601                writel(0, &regs->CmdRing[i]);
 602        }
 603
 604        for (i = 0; i < TX_RING_ENTRIES; i++) {
 605                rrpriv->tx_ring[i].size = 0;
 606                set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 607                rrpriv->tx_skbuff[i] = NULL;
 608        }
 609        rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 610        rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 611        rrpriv->info->tx_ctrl.mode = 0;
 612        rrpriv->info->tx_ctrl.pi = 0;
 613        set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 614
 615        /*
 616         * Set dirty_tx before we start receiving interrupts, otherwise
 617         * the interrupt handler might think it is supposed to process
 618         * tx ints before we are up and running, which may cause a null
 619         * pointer access in the int handler.
 620         */
 621        rrpriv->tx_full = 0;
 622        rrpriv->cur_rx = 0;
 623        rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 624
 625        rr_reset(dev);
 626
 627        /* Tuning values */
 628        writel(0x5000, &regs->ConRetry);
 629        writel(0x100, &regs->ConRetryTmr);
 630        writel(0x500000, &regs->ConTmout);
 631        writel(0x60, &regs->IntrTmr);
 632        writel(0x500000, &regs->TxDataMvTimeout);
 633        writel(0x200000, &regs->RxDataMvTimeout);
 634        writel(0x80, &regs->WriteDmaThresh);
 635        writel(0x80, &regs->ReadDmaThresh);
 636
 637        rrpriv->fw_running = 0;
 638        wmb();
 639
 640        hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 641        writel(hostctrl, &regs->HostCtrl);
 642        wmb();
 643
 644        spin_unlock_irqrestore(&rrpriv->lock, flags);
 645
 646        for (i = 0; i < RX_RING_ENTRIES; i++) {
 647                struct sk_buff *skb;
 648                dma_addr_t addr;
 649
 650                rrpriv->rx_ring[i].mode = 0;
 651                skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 652                if (!skb) {
 653                        printk(KERN_WARNING "%s: Unable to allocate memory "
 654                               "for receive ring - halting NIC\n", dev->name);
 655                        ecode = -ENOMEM;
 656                        goto error;
 657                }
 658                rrpriv->rx_skbuff[i] = skb;
 659                addr = pci_map_single(rrpriv->pci_dev, skb->data,
 660                        dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 661                /*
 662                 * Sanity test to see if we conflict with the DMA
 663                 * limitations of the Roadrunner.
 664                 */
 665                if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 666                        printk("skb alloc error\n");
 667
 668                set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 669                rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 670        }
 671
 672        rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 673        rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 674        rrpriv->rx_ctrl[4].mode = 8;
 675        rrpriv->rx_ctrl[4].pi = 0;
 676        wmb();
 677        set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 678
 679        udelay(1000);
 680
 681        /*
 682         * Now start the FirmWare.
 683         */
 684        cmd.code = C_START_FW;
 685        cmd.ring = 0;
 686        cmd.index = 0;
 687
 688        rr_issue_cmd(rrpriv, &cmd);
 689
 690        /*
 691         * Give the FirmWare time to chew on the `get running' command.
 692         */
 693        myjif = jiffies + 5 * HZ;
 694        while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 695                cpu_relax();
 696
 697        netif_start_queue(dev);
 698
 699        return ecode;
 700
 701 error:
 702        /*
 703         * We might have gotten here because we are out of memory,
 704         * make sure we release everything we allocated before failing
 705         */
 706        for (i = 0; i < RX_RING_ENTRIES; i++) {
 707                struct sk_buff *skb = rrpriv->rx_skbuff[i];
 708
 709                if (skb) {
 710                        pci_unmap_single(rrpriv->pci_dev,
 711                                         rrpriv->rx_ring[i].addr.addrlo,
 712                                         dev->mtu + HIPPI_HLEN,
 713                                         PCI_DMA_FROMDEVICE);
 714                        rrpriv->rx_ring[i].size = 0;
 715                        set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 716                        dev_kfree_skb(skb);
 717                        rrpriv->rx_skbuff[i] = NULL;
 718                }
 719        }
 720        return ecode;
 721}
 722
 723
 724/*
 725 * All events are considered to be slow (RX/TX ints do not generate
 726 * events) and are handled here, outside the main interrupt handler,
 727 * to reduce the size of the handler.
 728 */
 729static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 730{
 731        struct rr_private *rrpriv;
 732        struct rr_regs __iomem *regs;
 733        u32 tmp;
 734
 735        rrpriv = netdev_priv(dev);
 736        regs = rrpriv->regs;
 737
 738        while (prodidx != eidx){
 739                switch (rrpriv->evt_ring[eidx].code){
 740                case E_NIC_UP:
 741                        tmp = readl(&regs->FwRev);
 742                        printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 743                               "up and running\n", dev->name,
 744                               (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 745                        rrpriv->fw_running = 1;
 746                        writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 747                        wmb();
 748                        break;
 749                case E_LINK_ON:
 750                        printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 751                        break;
 752                case E_LINK_OFF:
 753                        printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 754                        break;
 755                case E_RX_IDLE:
 756                        printk(KERN_WARNING "%s: RX data not moving\n",
 757                               dev->name);
 758                        goto drop;
 759                case E_WATCHDOG:
 760                        printk(KERN_INFO "%s: The watchdog is here to see "
 761                               "us\n", dev->name);
 762                        break;
 763                case E_INTERN_ERR:
 764                        printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 765                               dev->name);
 766                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 767                               &regs->HostCtrl);
 768                        wmb();
 769                        break;
 770                case E_HOST_ERR:
 771                        printk(KERN_ERR "%s: Host software error\n",
 772                               dev->name);
 773                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 774                               &regs->HostCtrl);
 775                        wmb();
 776                        break;
 777                /*
 778                 * TX events.
 779                 */
 780                case E_CON_REJ:
 781                        printk(KERN_WARNING "%s: Connection rejected\n",
 782                               dev->name);
 783                        dev->stats.tx_aborted_errors++;
 784                        break;
 785                case E_CON_TMOUT:
 786                        printk(KERN_WARNING "%s: Connection timeout\n",
 787                               dev->name);
 788                        break;
 789                case E_DISC_ERR:
 790                        printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 791                               dev->name);
 792                        dev->stats.tx_aborted_errors++;
 793                        break;
 794                case E_INT_PRTY:
 795                        printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 796                               dev->name);
 797                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 798                               &regs->HostCtrl);
 799                        wmb();
 800                        break;
 801                case E_TX_IDLE:
 802                        printk(KERN_WARNING "%s: Transmitter idle\n",
 803                               dev->name);
 804                        break;
 805                case E_TX_LINK_DROP:
 806                        printk(KERN_WARNING "%s: Link lost during transmit\n",
 807                               dev->name);
 808                        dev->stats.tx_aborted_errors++;
 809                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 810                               &regs->HostCtrl);
 811                        wmb();
 812                        break;
 813                case E_TX_INV_RNG:
 814                        printk(KERN_ERR "%s: Invalid send ring block\n",
 815                               dev->name);
 816                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 817                               &regs->HostCtrl);
 818                        wmb();
 819                        break;
 820                case E_TX_INV_BUF:
 821                        printk(KERN_ERR "%s: Invalid send buffer address\n",
 822                               dev->name);
 823                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 824                               &regs->HostCtrl);
 825                        wmb();
 826                        break;
 827                case E_TX_INV_DSC:
 828                        printk(KERN_ERR "%s: Invalid descriptor address\n",
 829                               dev->name);
 830                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 831                               &regs->HostCtrl);
 832                        wmb();
 833                        break;
 834                /*
 835                 * RX events.
 836                 */
 837                case E_RX_RNG_OUT:
 838                        printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 839                        break;
 840
 841                case E_RX_PAR_ERR:
 842                        printk(KERN_WARNING "%s: Receive parity error\n",
 843                               dev->name);
 844                        goto drop;
 845                case E_RX_LLRC_ERR:
 846                        printk(KERN_WARNING "%s: Receive LLRC error\n",
 847                               dev->name);
 848                        goto drop;
 849                case E_PKT_LN_ERR:
 850                        printk(KERN_WARNING "%s: Receive packet length "
 851                               "error\n", dev->name);
 852                        goto drop;
 853                case E_DTA_CKSM_ERR:
 854                        printk(KERN_WARNING "%s: Data checksum error\n",
 855                               dev->name);
 856                        goto drop;
 857                case E_SHT_BST:
 858                        printk(KERN_WARNING "%s: Unexpected short burst "
 859                               "error\n", dev->name);
 860                        goto drop;
 861                case E_STATE_ERR:
 862                        printk(KERN_WARNING "%s: Recv. state transition"
 863                               " error\n", dev->name);
 864                        goto drop;
 865                case E_UNEXP_DATA:
 866                        printk(KERN_WARNING "%s: Unexpected data error\n",
 867                               dev->name);
 868                        goto drop;
 869                case E_LST_LNK_ERR:
 870                        printk(KERN_WARNING "%s: Link lost error\n",
 871                               dev->name);
 872                        goto drop;
 873                case E_FRM_ERR:
 874                        printk(KERN_WARNING "%s: Framming Error\n",
 875                               dev->name);
 876                        goto drop;
 877                case E_FLG_SYN_ERR:
 878                        printk(KERN_WARNING "%s: Flag sync. lost during "
 879                               "packet\n", dev->name);
 880                        goto drop;
 881                case E_RX_INV_BUF:
 882                        printk(KERN_ERR "%s: Invalid receive buffer "
 883                               "address\n", dev->name);
 884                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 885                               &regs->HostCtrl);
 886                        wmb();
 887                        break;
 888                case E_RX_INV_DSC:
 889                        printk(KERN_ERR "%s: Invalid receive descriptor "
 890                               "address\n", dev->name);
 891                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 892                               &regs->HostCtrl);
 893                        wmb();
 894                        break;
 895                case E_RNG_BLK:
 896                        printk(KERN_ERR "%s: Invalid ring block\n",
 897                               dev->name);
 898                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 899                               &regs->HostCtrl);
 900                        wmb();
 901                        break;
 902                drop:
 903                        /* Label packet to be dropped.
 904                         * Actual dropping occurs in rx
 905                         * handling.
 906                         *
 907                         * The index of packet we get to drop is
 908                         * the index of the packet following
 909                         * the bad packet. -kbf
 910                         */
 911                        {
 912                                u16 index = rrpriv->evt_ring[eidx].index;
 913                                index = (index + (RX_RING_ENTRIES - 1)) %
 914                                        RX_RING_ENTRIES;
 915                                rrpriv->rx_ring[index].mode |=
 916                                        (PACKET_BAD | PACKET_END);
 917                        }
 918                        break;
 919                default:
 920                        printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 921                               dev->name, rrpriv->evt_ring[eidx].code);
 922                }
 923                eidx = (eidx + 1) % EVT_RING_ENTRIES;
 924        }
 925
 926        rrpriv->info->evt_ctrl.pi = eidx;
 927        wmb();
 928        return eidx;
 929}
 930
 931
 932static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 933{
 934        struct rr_private *rrpriv = netdev_priv(dev);
 935        struct rr_regs __iomem *regs = rrpriv->regs;
 936
 937        do {
 938                struct rx_desc *desc;
 939                u32 pkt_len;
 940
 941                desc = &(rrpriv->rx_ring[index]);
 942                pkt_len = desc->size;
 943#if (DEBUG > 2)
 944                printk("index %i, rxlimit %i\n", index, rxlimit);
 945                printk("len %x, mode %x\n", pkt_len, desc->mode);
 946#endif
 947                if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 948                        dev->stats.rx_dropped++;
 949                        goto defer;
 950                }
 951
 952                if (pkt_len > 0){
 953                        struct sk_buff *skb, *rx_skb;
 954
 955                        rx_skb = rrpriv->rx_skbuff[index];
 956
 957                        if (pkt_len < PKT_COPY_THRESHOLD) {
 958                                skb = alloc_skb(pkt_len, GFP_ATOMIC);
 959                                if (skb == NULL){
 960                                        printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 961                                        dev->stats.rx_dropped++;
 962                                        goto defer;
 963                                } else {
 964                                        pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 965                                                                    desc->addr.addrlo,
 966                                                                    pkt_len,
 967                                                                    PCI_DMA_FROMDEVICE);
 968
 969                                        memcpy(skb_put(skb, pkt_len),
 970                                               rx_skb->data, pkt_len);
 971
 972                                        pci_dma_sync_single_for_device(rrpriv->pci_dev,
 973                                                                       desc->addr.addrlo,
 974                                                                       pkt_len,
 975                                                                       PCI_DMA_FROMDEVICE);
 976                                }
 977                        }else{
 978                                struct sk_buff *newskb;
 979
 980                                newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 981                                        GFP_ATOMIC);
 982                                if (newskb){
 983                                        dma_addr_t addr;
 984
 985                                        pci_unmap_single(rrpriv->pci_dev,
 986                                                desc->addr.addrlo, dev->mtu +
 987                                                HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 988                                        skb = rx_skb;
 989                                        skb_put(skb, pkt_len);
 990                                        rrpriv->rx_skbuff[index] = newskb;
 991                                        addr = pci_map_single(rrpriv->pci_dev,
 992                                                newskb->data,
 993                                                dev->mtu + HIPPI_HLEN,
 994                                                PCI_DMA_FROMDEVICE);
 995                                        set_rraddr(&desc->addr, addr);
 996                                } else {
 997                                        printk("%s: Out of memory, deferring "
 998                                               "packet\n", dev->name);
 999                                        dev->stats.rx_dropped++;
1000                                        goto defer;
1001                                }
1002                        }
1003                        skb->protocol = hippi_type_trans(skb, dev);
1004
1005                        netif_rx(skb);          /* send it up */
1006
1007                        dev->stats.rx_packets++;
1008                        dev->stats.rx_bytes += pkt_len;
1009                }
1010        defer:
1011                desc->mode = 0;
1012                desc->size = dev->mtu + HIPPI_HLEN;
1013
1014                if ((index & 7) == 7)
1015                        writel(index, &regs->IpRxPi);
1016
1017                index = (index + 1) % RX_RING_ENTRIES;
1018        } while(index != rxlimit);
1019
1020        rrpriv->cur_rx = index;
1021        wmb();
1022}
1023
1024
1025static irqreturn_t rr_interrupt(int irq, void *dev_id)
1026{
1027        struct rr_private *rrpriv;
1028        struct rr_regs __iomem *regs;
1029        struct net_device *dev = (struct net_device *)dev_id;
1030        u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1031
1032        rrpriv = netdev_priv(dev);
1033        regs = rrpriv->regs;
1034
1035        if (!(readl(&regs->HostCtrl) & RR_INT))
1036                return IRQ_NONE;
1037
1038        spin_lock(&rrpriv->lock);
1039
1040        prodidx = readl(&regs->EvtPrd);
1041        txcsmr = (prodidx >> 8) & 0xff;
1042        rxlimit = (prodidx >> 16) & 0xff;
1043        prodidx &= 0xff;
1044
1045#if (DEBUG > 2)
1046        printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1047               prodidx, rrpriv->info->evt_ctrl.pi);
1048#endif
1049        /*
1050         * Order here is important.  We must handle events
1051         * before doing anything else in order to catch
1052         * such things as LLRC errors, etc -kbf
1053         */
1054
1055        eidx = rrpriv->info->evt_ctrl.pi;
1056        if (prodidx != eidx)
1057                eidx = rr_handle_event(dev, prodidx, eidx);
1058
1059        rxindex = rrpriv->cur_rx;
1060        if (rxindex != rxlimit)
1061                rx_int(dev, rxlimit, rxindex);
1062
1063        txcon = rrpriv->dirty_tx;
1064        if (txcsmr != txcon) {
1065                do {
1066                        /* Due to occational firmware TX producer/consumer out
1067                         * of sync. error need to check entry in ring -kbf
1068                         */
1069                        if(rrpriv->tx_skbuff[txcon]){
1070                                struct tx_desc *desc;
1071                                struct sk_buff *skb;
1072
1073                                desc = &(rrpriv->tx_ring[txcon]);
1074                                skb = rrpriv->tx_skbuff[txcon];
1075
1076                                dev->stats.tx_packets++;
1077                                dev->stats.tx_bytes += skb->len;
1078
1079                                pci_unmap_single(rrpriv->pci_dev,
1080                                                 desc->addr.addrlo, skb->len,
1081                                                 PCI_DMA_TODEVICE);
1082                                dev_kfree_skb_irq(skb);
1083
1084                                rrpriv->tx_skbuff[txcon] = NULL;
1085                                desc->size = 0;
1086                                set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1087                                desc->mode = 0;
1088                        }
1089                        txcon = (txcon + 1) % TX_RING_ENTRIES;
1090                } while (txcsmr != txcon);
1091                wmb();
1092
1093                rrpriv->dirty_tx = txcon;
1094                if (rrpriv->tx_full && rr_if_busy(dev) &&
1095                    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1096                     != rrpriv->dirty_tx)){
1097                        rrpriv->tx_full = 0;
1098                        netif_wake_queue(dev);
1099                }
1100        }
1101
1102        eidx |= ((txcsmr << 8) | (rxlimit << 16));
1103        writel(eidx, &regs->EvtCon);
1104        wmb();
1105
1106        spin_unlock(&rrpriv->lock);
1107        return IRQ_HANDLED;
1108}
1109
1110static inline void rr_raz_tx(struct rr_private *rrpriv,
1111                             struct net_device *dev)
1112{
1113        int i;
1114
1115        for (i = 0; i < TX_RING_ENTRIES; i++) {
1116                struct sk_buff *skb = rrpriv->tx_skbuff[i];
1117
1118                if (skb) {
1119                        struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1120
1121                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1122                                skb->len, PCI_DMA_TODEVICE);
1123                        desc->size = 0;
1124                        set_rraddr(&desc->addr, 0);
1125                        dev_kfree_skb(skb);
1126                        rrpriv->tx_skbuff[i] = NULL;
1127                }
1128        }
1129}
1130
1131
1132static inline void rr_raz_rx(struct rr_private *rrpriv,
1133                             struct net_device *dev)
1134{
1135        int i;
1136
1137        for (i = 0; i < RX_RING_ENTRIES; i++) {
1138                struct sk_buff *skb = rrpriv->rx_skbuff[i];
1139
1140                if (skb) {
1141                        struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1142
1143                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1144                                dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1145                        desc->size = 0;
1146                        set_rraddr(&desc->addr, 0);
1147                        dev_kfree_skb(skb);
1148                        rrpriv->rx_skbuff[i] = NULL;
1149                }
1150        }
1151}
1152
1153static void rr_timer(unsigned long data)
1154{
1155        struct net_device *dev = (struct net_device *)data;
1156        struct rr_private *rrpriv = netdev_priv(dev);
1157        struct rr_regs __iomem *regs = rrpriv->regs;
1158        unsigned long flags;
1159
1160        if (readl(&regs->HostCtrl) & NIC_HALTED){
1161                printk("%s: Restarting nic\n", dev->name);
1162                memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1163                memset(rrpriv->info, 0, sizeof(struct rr_info));
1164                wmb();
1165
1166                rr_raz_tx(rrpriv, dev);
1167                rr_raz_rx(rrpriv, dev);
1168
1169                if (rr_init1(dev)) {
1170                        spin_lock_irqsave(&rrpriv->lock, flags);
1171                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1172                               &regs->HostCtrl);
1173                        spin_unlock_irqrestore(&rrpriv->lock, flags);
1174                }
1175        }
1176        rrpriv->timer.expires = RUN_AT(5*HZ);
1177        add_timer(&rrpriv->timer);
1178}
1179
1180
1181static int rr_open(struct net_device *dev)
1182{
1183        struct rr_private *rrpriv = netdev_priv(dev);
1184        struct pci_dev *pdev = rrpriv->pci_dev;
1185        struct rr_regs __iomem *regs;
1186        int ecode = 0;
1187        unsigned long flags;
1188        dma_addr_t dma_addr;
1189
1190        regs = rrpriv->regs;
1191
1192        if (rrpriv->fw_rev < 0x00020000) {
1193                printk(KERN_WARNING "%s: trying to configure device with "
1194                       "obsolete firmware\n", dev->name);
1195                ecode = -EBUSY;
1196                goto error;
1197        }
1198
1199        rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1200                                               256 * sizeof(struct ring_ctrl),
1201                                               &dma_addr);
1202        if (!rrpriv->rx_ctrl) {
1203                ecode = -ENOMEM;
1204                goto error;
1205        }
1206        rrpriv->rx_ctrl_dma = dma_addr;
1207        memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1208
1209        rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1210                                            &dma_addr);
1211        if (!rrpriv->info) {
1212                ecode = -ENOMEM;
1213                goto error;
1214        }
1215        rrpriv->info_dma = dma_addr;
1216        memset(rrpriv->info, 0, sizeof(struct rr_info));
1217        wmb();
1218
1219        spin_lock_irqsave(&rrpriv->lock, flags);
1220        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1221        readl(&regs->HostCtrl);
1222        spin_unlock_irqrestore(&rrpriv->lock, flags);
1223
1224        if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1225                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1226                       dev->name, pdev->irq);
1227                ecode = -EAGAIN;
1228                goto error;
1229        }
1230
1231        if ((ecode = rr_init1(dev)))
1232                goto error;
1233
1234        /* Set the timer to switch to check for link beat and perhaps switch
1235           to an alternate media type. */
1236        init_timer(&rrpriv->timer);
1237        rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1238        rrpriv->timer.data = (unsigned long)dev;
1239        rrpriv->timer.function = rr_timer;               /* timer handler */
1240        add_timer(&rrpriv->timer);
1241
1242        netif_start_queue(dev);
1243
1244        return ecode;
1245
1246 error:
1247        spin_lock_irqsave(&rrpriv->lock, flags);
1248        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1249        spin_unlock_irqrestore(&rrpriv->lock, flags);
1250
1251        if (rrpriv->info) {
1252                pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1253                                    rrpriv->info_dma);
1254                rrpriv->info = NULL;
1255        }
1256        if (rrpriv->rx_ctrl) {
1257                pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1258                                    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1259                rrpriv->rx_ctrl = NULL;
1260        }
1261
1262        netif_stop_queue(dev);
1263
1264        return ecode;
1265}
1266
1267
1268static void rr_dump(struct net_device *dev)
1269{
1270        struct rr_private *rrpriv;
1271        struct rr_regs __iomem *regs;
1272        u32 index, cons;
1273        short i;
1274        int len;
1275
1276        rrpriv = netdev_priv(dev);
1277        regs = rrpriv->regs;
1278
1279        printk("%s: dumping NIC TX rings\n", dev->name);
1280
1281        printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1282               readl(&regs->RxPrd), readl(&regs->TxPrd),
1283               readl(&regs->EvtPrd), readl(&regs->TxPi),
1284               rrpriv->info->tx_ctrl.pi);
1285
1286        printk("Error code 0x%x\n", readl(&regs->Fail1));
1287
1288        index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1289        cons = rrpriv->dirty_tx;
1290        printk("TX ring index %i, TX consumer %i\n",
1291               index, cons);
1292
1293        if (rrpriv->tx_skbuff[index]){
1294                len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1295                printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1296                for (i = 0; i < len; i++){
1297                        if (!(i & 7))
1298                                printk("\n");
1299                        printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1300                }
1301                printk("\n");
1302        }
1303
1304        if (rrpriv->tx_skbuff[cons]){
1305                len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1306                printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1307                printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1308                       rrpriv->tx_ring[cons].mode,
1309                       rrpriv->tx_ring[cons].size,
1310                       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1311                       (unsigned long)rrpriv->tx_skbuff[cons]->data,
1312                       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1313                for (i = 0; i < len; i++){
1314                        if (!(i & 7))
1315                                printk("\n");
1316                        printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1317                }
1318                printk("\n");
1319        }
1320
1321        printk("dumping TX ring info:\n");
1322        for (i = 0; i < TX_RING_ENTRIES; i++)
1323                printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1324                       rrpriv->tx_ring[i].mode,
1325                       rrpriv->tx_ring[i].size,
1326                       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1327
1328}
1329
1330
1331static int rr_close(struct net_device *dev)
1332{
1333        struct rr_private *rrpriv = netdev_priv(dev);
1334        struct rr_regs __iomem *regs = rrpriv->regs;
1335        struct pci_dev *pdev = rrpriv->pci_dev;
1336        unsigned long flags;
1337        u32 tmp;
1338        short i;
1339
1340        netif_stop_queue(dev);
1341
1342
1343        /*
1344         * Lock to make sure we are not cleaning up while another CPU
1345         * is handling interrupts.
1346         */
1347        spin_lock_irqsave(&rrpriv->lock, flags);
1348
1349        tmp = readl(&regs->HostCtrl);
1350        if (tmp & NIC_HALTED){
1351                printk("%s: NIC already halted\n", dev->name);
1352                rr_dump(dev);
1353        }else{
1354                tmp |= HALT_NIC | RR_CLEAR_INT;
1355                writel(tmp, &regs->HostCtrl);
1356                readl(&regs->HostCtrl);
1357        }
1358
1359        rrpriv->fw_running = 0;
1360
1361        del_timer_sync(&rrpriv->timer);
1362
1363        writel(0, &regs->TxPi);
1364        writel(0, &regs->IpRxPi);
1365
1366        writel(0, &regs->EvtCon);
1367        writel(0, &regs->EvtPrd);
1368
1369        for (i = 0; i < CMD_RING_ENTRIES; i++)
1370                writel(0, &regs->CmdRing[i]);
1371
1372        rrpriv->info->tx_ctrl.entries = 0;
1373        rrpriv->info->cmd_ctrl.pi = 0;
1374        rrpriv->info->evt_ctrl.pi = 0;
1375        rrpriv->rx_ctrl[4].entries = 0;
1376
1377        rr_raz_tx(rrpriv, dev);
1378        rr_raz_rx(rrpriv, dev);
1379
1380        pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1381                            rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1382        rrpriv->rx_ctrl = NULL;
1383
1384        pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1385                            rrpriv->info_dma);
1386        rrpriv->info = NULL;
1387
1388        free_irq(pdev->irq, dev);
1389        spin_unlock_irqrestore(&rrpriv->lock, flags);
1390
1391        return 0;
1392}
1393
1394
1395static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1396                                 struct net_device *dev)
1397{
1398        struct rr_private *rrpriv = netdev_priv(dev);
1399        struct rr_regs __iomem *regs = rrpriv->regs;
1400        struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1401        struct ring_ctrl *txctrl;
1402        unsigned long flags;
1403        u32 index, len = skb->len;
1404        u32 *ifield;
1405        struct sk_buff *new_skb;
1406
1407        if (readl(&regs->Mode) & FATAL_ERR)
1408                printk("error codes Fail1 %02x, Fail2 %02x\n",
1409                       readl(&regs->Fail1), readl(&regs->Fail2));
1410
1411        /*
1412         * We probably need to deal with tbusy here to prevent overruns.
1413         */
1414
1415        if (skb_headroom(skb) < 8){
1416                printk("incoming skb too small - reallocating\n");
1417                if (!(new_skb = dev_alloc_skb(len + 8))) {
1418                        dev_kfree_skb(skb);
1419                        netif_wake_queue(dev);
1420                        return NETDEV_TX_OK;
1421                }
1422                skb_reserve(new_skb, 8);
1423                skb_put(new_skb, len);
1424                skb_copy_from_linear_data(skb, new_skb->data, len);
1425                dev_kfree_skb(skb);
1426                skb = new_skb;
1427        }
1428
1429        ifield = (u32 *)skb_push(skb, 8);
1430
1431        ifield[0] = 0;
1432        ifield[1] = hcb->ifield;
1433
1434        /*
1435         * We don't need the lock before we are actually going to start
1436         * fiddling with the control blocks.
1437         */
1438        spin_lock_irqsave(&rrpriv->lock, flags);
1439
1440        txctrl = &rrpriv->info->tx_ctrl;
1441
1442        index = txctrl->pi;
1443
1444        rrpriv->tx_skbuff[index] = skb;
1445        set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1446                rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1447        rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1448        rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1449        txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1450        wmb();
1451        writel(txctrl->pi, &regs->TxPi);
1452
1453        if (txctrl->pi == rrpriv->dirty_tx){
1454                rrpriv->tx_full = 1;
1455                netif_stop_queue(dev);
1456        }
1457
1458        spin_unlock_irqrestore(&rrpriv->lock, flags);
1459
1460        return NETDEV_TX_OK;
1461}
1462
1463
1464/*
1465 * Read the firmware out of the EEPROM and put it into the SRAM
1466 * (or from user space - later)
1467 *
1468 * This operation requires the NIC to be halted and is performed with
1469 * interrupts disabled and with the spinlock hold.
1470 */
1471static int rr_load_firmware(struct net_device *dev)
1472{
1473        struct rr_private *rrpriv;
1474        struct rr_regs __iomem *regs;
1475        size_t eptr, segptr;
1476        int i, j;
1477        u32 localctrl, sptr, len, tmp;
1478        u32 p2len, p2size, nr_seg, revision, io, sram_size;
1479
1480        rrpriv = netdev_priv(dev);
1481        regs = rrpriv->regs;
1482
1483        if (dev->flags & IFF_UP)
1484                return -EBUSY;
1485
1486        if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1487                printk("%s: Trying to load firmware to a running NIC.\n",
1488                       dev->name);
1489                return -EBUSY;
1490        }
1491
1492        localctrl = readl(&regs->LocalCtrl);
1493        writel(0, &regs->LocalCtrl);
1494
1495        writel(0, &regs->EvtPrd);
1496        writel(0, &regs->RxPrd);
1497        writel(0, &regs->TxPrd);
1498
1499        /*
1500         * First wipe the entire SRAM, otherwise we might run into all
1501         * kinds of trouble ... sigh, this took almost all afternoon
1502         * to track down ;-(
1503         */
1504        io = readl(&regs->ExtIo);
1505        writel(0, &regs->ExtIo);
1506        sram_size = rr_read_eeprom_word(rrpriv, 8);
1507
1508        for (i = 200; i < sram_size / 4; i++){
1509                writel(i * 4, &regs->WinBase);
1510                mb();
1511                writel(0, &regs->WinData);
1512                mb();
1513        }
1514        writel(io, &regs->ExtIo);
1515        mb();
1516
1517        eptr = rr_read_eeprom_word(rrpriv,
1518                       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1519        eptr = ((eptr & 0x1fffff) >> 3);
1520
1521        p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1522        p2len = (p2len << 2);
1523        p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1524        p2size = ((p2size & 0x1fffff) >> 3);
1525
1526        if ((eptr < p2size) || (eptr > (p2size + p2len))){
1527                printk("%s: eptr is invalid\n", dev->name);
1528                goto out;
1529        }
1530
1531        revision = rr_read_eeprom_word(rrpriv,
1532                        offsetof(struct eeprom, manf.HeaderFmt));
1533
1534        if (revision != 1){
1535                printk("%s: invalid firmware format (%i)\n",
1536                       dev->name, revision);
1537                goto out;
1538        }
1539
1540        nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1541        eptr +=4;
1542#if (DEBUG > 1)
1543        printk("%s: nr_seg %i\n", dev->name, nr_seg);
1544#endif
1545
1546        for (i = 0; i < nr_seg; i++){
1547                sptr = rr_read_eeprom_word(rrpriv, eptr);
1548                eptr += 4;
1549                len = rr_read_eeprom_word(rrpriv, eptr);
1550                eptr += 4;
1551                segptr = rr_read_eeprom_word(rrpriv, eptr);
1552                segptr = ((segptr & 0x1fffff) >> 3);
1553                eptr += 4;
1554#if (DEBUG > 1)
1555                printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1556                       dev->name, i, sptr, len, segptr);
1557#endif
1558                for (j = 0; j < len; j++){
1559                        tmp = rr_read_eeprom_word(rrpriv, segptr);
1560                        writel(sptr, &regs->WinBase);
1561                        mb();
1562                        writel(tmp, &regs->WinData);
1563                        mb();
1564                        segptr += 4;
1565                        sptr += 4;
1566                }
1567        }
1568
1569out:
1570        writel(localctrl, &regs->LocalCtrl);
1571        mb();
1572        return 0;
1573}
1574
1575
1576static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1577{
1578        struct rr_private *rrpriv;
1579        unsigned char *image, *oldimage;
1580        unsigned long flags;
1581        unsigned int i;
1582        int error = -EOPNOTSUPP;
1583
1584        rrpriv = netdev_priv(dev);
1585
1586        switch(cmd){
1587        case SIOCRRGFW:
1588                if (!capable(CAP_SYS_RAWIO)){
1589                        return -EPERM;
1590                }
1591
1592                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1593                if (!image)
1594                        return -ENOMEM;
1595
1596                if (rrpriv->fw_running){
1597                        printk("%s: Firmware already running\n", dev->name);
1598                        error = -EPERM;
1599                        goto gf_out;
1600                }
1601
1602                spin_lock_irqsave(&rrpriv->lock, flags);
1603                i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1604                spin_unlock_irqrestore(&rrpriv->lock, flags);
1605                if (i != EEPROM_BYTES){
1606                        printk(KERN_ERR "%s: Error reading EEPROM\n",
1607                               dev->name);
1608                        error = -EFAULT;
1609                        goto gf_out;
1610                }
1611                error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1612                if (error)
1613                        error = -EFAULT;
1614        gf_out:
1615                kfree(image);
1616                return error;
1617
1618        case SIOCRRPFW:
1619                if (!capable(CAP_SYS_RAWIO)){
1620                        return -EPERM;
1621                }
1622
1623                image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1624                oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1625                if (!image || !oldimage) {
1626                        error = -ENOMEM;
1627                        goto wf_out;
1628                }
1629
1630                error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1631                if (error) {
1632                        error = -EFAULT;
1633                        goto wf_out;
1634                }
1635
1636                if (rrpriv->fw_running){
1637                        printk("%s: Firmware already running\n", dev->name);
1638                        error = -EPERM;
1639                        goto wf_out;
1640                }
1641
1642                printk("%s: Updating EEPROM firmware\n", dev->name);
1643
1644                spin_lock_irqsave(&rrpriv->lock, flags);
1645                error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1646                if (error)
1647                        printk(KERN_ERR "%s: Error writing EEPROM\n",
1648                               dev->name);
1649
1650                i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1651                spin_unlock_irqrestore(&rrpriv->lock, flags);
1652
1653                if (i != EEPROM_BYTES)
1654                        printk(KERN_ERR "%s: Error reading back EEPROM "
1655                               "image\n", dev->name);
1656
1657                error = memcmp(image, oldimage, EEPROM_BYTES);
1658                if (error){
1659                        printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1660                               dev->name);
1661                        error = -EFAULT;
1662                }
1663        wf_out:
1664                kfree(oldimage);
1665                kfree(image);
1666                return error;
1667
1668        case SIOCRRID:
1669                return put_user(0x52523032, (int __user *)rq->ifr_data);
1670        default:
1671                return error;
1672        }
1673}
1674
1675static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1676        { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1677                PCI_ANY_ID, PCI_ANY_ID, },
1678        { 0,}
1679};
1680MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1681
1682static struct pci_driver rr_driver = {
1683        .name           = "rrunner",
1684        .id_table       = rr_pci_tbl,
1685        .probe          = rr_init_one,
1686        .remove         = rr_remove_one,
1687};
1688
1689module_pci_driver(rr_driver);
1690