linux/drivers/net/wan/z85230.c
<<
>>
Prefs
   1/*
   2 *      This program is free software; you can redistribute it and/or
   3 *      modify it under the terms of the GNU General Public License
   4 *      as published by the Free Software Foundation; either version
   5 *      2 of the License, or (at your option) any later version.
   6 *
   7 *      (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   8 *      (c) Copyright 2000, 2001 Red Hat Inc
   9 *
  10 *      Development of this driver was funded by Equiinet Ltd
  11 *                      http://www.equiinet.com
  12 *
  13 *      ChangeLog:
  14 *
  15 *      Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  16 *      unification of all the Z85x30 asynchronous drivers for real.
  17 *
  18 *      DMA now uses get_free_page as kmalloc buffers may span a 64K 
  19 *      boundary.
  20 *
  21 *      Modified for SMP safety and SMP locking by Alan Cox
  22 *                                      <alan@lxorguk.ukuu.org.uk>
  23 *
  24 *      Performance
  25 *
  26 *      Z85230:
  27 *      Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  28 *      X.25 is not unrealistic on all machines. DMA mode can in theory
  29 *      handle T1/E1 quite nicely. In practice the limit seems to be about
  30 *      512Kbit->1Mbit depending on motherboard.
  31 *
  32 *      Z85C30:
  33 *      64K will take DMA, 9600 baud X.25 should be ok.
  34 *
  35 *      Z8530:
  36 *      Synchronous mode without DMA is unlikely to pass about 2400 baud.
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/kernel.h>
  43#include <linux/mm.h>
  44#include <linux/net.h>
  45#include <linux/skbuff.h>
  46#include <linux/netdevice.h>
  47#include <linux/if_arp.h>
  48#include <linux/delay.h>
  49#include <linux/hdlc.h>
  50#include <linux/ioport.h>
  51#include <linux/init.h>
  52#include <linux/gfp.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#define RT_LOCK
  56#define RT_UNLOCK
  57#include <linux/spinlock.h>
  58
  59#include "z85230.h"
  60
  61
  62/**
  63 *      z8530_read_port - Architecture specific interface function
  64 *      @p: port to read
  65 *
  66 *      Provided port access methods. The Comtrol SV11 requires no delays
  67 *      between accesses and uses PC I/O. Some drivers may need a 5uS delay
  68 *      
  69 *      In the longer term this should become an architecture specific
  70 *      section so that this can become a generic driver interface for all
  71 *      platforms. For now we only handle PC I/O ports with or without the
  72 *      dread 5uS sanity delay.
  73 *
  74 *      The caller must hold sufficient locks to avoid violating the horrible
  75 *      5uS delay rule.
  76 */
  77
  78static inline int z8530_read_port(unsigned long p)
  79{
  80        u8 r=inb(Z8530_PORT_OF(p));
  81        if(p&Z8530_PORT_SLEEP)  /* gcc should figure this out efficiently ! */
  82                udelay(5);
  83        return r;
  84}
  85
  86/**
  87 *      z8530_write_port - Architecture specific interface function
  88 *      @p: port to write
  89 *      @d: value to write
  90 *
  91 *      Write a value to a port with delays if need be. Note that the
  92 *      caller must hold locks to avoid read/writes from other contexts
  93 *      violating the 5uS rule
  94 *
  95 *      In the longer term this should become an architecture specific
  96 *      section so that this can become a generic driver interface for all
  97 *      platforms. For now we only handle PC I/O ports with or without the
  98 *      dread 5uS sanity delay.
  99 */
 100
 101
 102static inline void z8530_write_port(unsigned long p, u8 d)
 103{
 104        outb(d,Z8530_PORT_OF(p));
 105        if(p&Z8530_PORT_SLEEP)
 106                udelay(5);
 107}
 108
 109
 110
 111static void z8530_rx_done(struct z8530_channel *c);
 112static void z8530_tx_done(struct z8530_channel *c);
 113
 114
 115/**
 116 *      read_zsreg - Read a register from a Z85230 
 117 *      @c: Z8530 channel to read from (2 per chip)
 118 *      @reg: Register to read
 119 *      FIXME: Use a spinlock.
 120 *      
 121 *      Most of the Z8530 registers are indexed off the control registers.
 122 *      A read is done by writing to the control register and reading the
 123 *      register back.  The caller must hold the lock
 124 */
 125 
 126static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 127{
 128        if(reg)
 129                z8530_write_port(c->ctrlio, reg);
 130        return z8530_read_port(c->ctrlio);
 131}
 132
 133/**
 134 *      read_zsdata - Read the data port of a Z8530 channel
 135 *      @c: The Z8530 channel to read the data port from
 136 *
 137 *      The data port provides fast access to some things. We still
 138 *      have all the 5uS delays to worry about.
 139 */
 140
 141static inline u8 read_zsdata(struct z8530_channel *c)
 142{
 143        u8 r;
 144        r=z8530_read_port(c->dataio);
 145        return r;
 146}
 147
 148/**
 149 *      write_zsreg - Write to a Z8530 channel register
 150 *      @c: The Z8530 channel
 151 *      @reg: Register number
 152 *      @val: Value to write
 153 *
 154 *      Write a value to an indexed register. The caller must hold the lock
 155 *      to honour the irritating delay rules. We know about register 0
 156 *      being fast to access.
 157 *
 158 *      Assumes c->lock is held.
 159 */
 160static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 161{
 162        if(reg)
 163                z8530_write_port(c->ctrlio, reg);
 164        z8530_write_port(c->ctrlio, val);
 165
 166}
 167
 168/**
 169 *      write_zsctrl - Write to a Z8530 control register
 170 *      @c: The Z8530 channel
 171 *      @val: Value to write
 172 *
 173 *      Write directly to the control register on the Z8530
 174 */
 175
 176static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 177{
 178        z8530_write_port(c->ctrlio, val);
 179}
 180
 181/**
 182 *      write_zsdata - Write to a Z8530 control register
 183 *      @c: The Z8530 channel
 184 *      @val: Value to write
 185 *
 186 *      Write directly to the data register on the Z8530
 187 */
 188
 189
 190static inline void write_zsdata(struct z8530_channel *c, u8 val)
 191{
 192        z8530_write_port(c->dataio, val);
 193}
 194
 195/*
 196 *      Register loading parameters for a dead port
 197 */
 198 
 199u8 z8530_dead_port[]=
 200{
 201        255
 202};
 203
 204EXPORT_SYMBOL(z8530_dead_port);
 205
 206/*
 207 *      Register loading parameters for currently supported circuit types
 208 */
 209
 210
 211/*
 212 *      Data clocked by telco end. This is the correct data for the UK
 213 *      "kilostream" service, and most other similar services.
 214 */
 215 
 216u8 z8530_hdlc_kilostream[]=
 217{
 218        4,      SYNC_ENAB|SDLC|X1CLK,
 219        2,      0,      /* No vector */
 220        1,      0,
 221        3,      ENT_HM|RxCRC_ENAB|Rx8,
 222        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 223        9,      0,              /* Disable interrupts */
 224        6,      0xFF,
 225        7,      FLAG,
 226        10,     ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 227        11,     TCTRxCP,
 228        14,     DISDPLL,
 229        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 230        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 231        9,      NV|MIE|NORESET,
 232        255
 233};
 234
 235EXPORT_SYMBOL(z8530_hdlc_kilostream);
 236
 237/*
 238 *      As above but for enhanced chips.
 239 */
 240 
 241u8 z8530_hdlc_kilostream_85230[]=
 242{
 243        4,      SYNC_ENAB|SDLC|X1CLK,
 244        2,      0,      /* No vector */
 245        1,      0,
 246        3,      ENT_HM|RxCRC_ENAB|Rx8,
 247        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 248        9,      0,              /* Disable interrupts */
 249        6,      0xFF,
 250        7,      FLAG,
 251        10,     ABUNDER|NRZ|CRCPS,      /* MARKIDLE?? */
 252        11,     TCTRxCP,
 253        14,     DISDPLL,
 254        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 255        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 256        9,      NV|MIE|NORESET,
 257        23,     3,              /* Extended mode AUTO TX and EOM*/
 258        
 259        255
 260};
 261
 262EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 263
 264/**
 265 *      z8530_flush_fifo - Flush on chip RX FIFO
 266 *      @c: Channel to flush
 267 *
 268 *      Flush the receive FIFO. There is no specific option for this, we 
 269 *      blindly read bytes and discard them. Reading when there is no data
 270 *      is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 271 *      
 272 *      All locking is handled for the caller. On return data may still be
 273 *      present if it arrived during the flush.
 274 */
 275 
 276static void z8530_flush_fifo(struct z8530_channel *c)
 277{
 278        read_zsreg(c, R1);
 279        read_zsreg(c, R1);
 280        read_zsreg(c, R1);
 281        read_zsreg(c, R1);
 282        if(c->dev->type==Z85230)
 283        {
 284                read_zsreg(c, R1);
 285                read_zsreg(c, R1);
 286                read_zsreg(c, R1);
 287                read_zsreg(c, R1);
 288        }
 289}       
 290
 291/**
 292 *      z8530_rtsdtr - Control the outgoing DTS/RTS line
 293 *      @c: The Z8530 channel to control;
 294 *      @set: 1 to set, 0 to clear
 295 *
 296 *      Sets or clears DTR/RTS on the requested line. All locking is handled
 297 *      by the caller. For now we assume all boards use the actual RTS/DTR
 298 *      on the chip. Apparently one or two don't. We'll scream about them
 299 *      later.
 300 */
 301
 302static void z8530_rtsdtr(struct z8530_channel *c, int set)
 303{
 304        if (set)
 305                c->regs[5] |= (RTS | DTR);
 306        else
 307                c->regs[5] &= ~(RTS | DTR);
 308        write_zsreg(c, R5, c->regs[5]);
 309}
 310
 311/**
 312 *      z8530_rx - Handle a PIO receive event
 313 *      @c: Z8530 channel to process
 314 *
 315 *      Receive handler for receiving in PIO mode. This is much like the 
 316 *      async one but not quite the same or as complex
 317 *
 318 *      Note: Its intended that this handler can easily be separated from
 319 *      the main code to run realtime. That'll be needed for some machines
 320 *      (eg to ever clock 64kbits on a sparc ;)).
 321 *
 322 *      The RT_LOCK macros don't do anything now. Keep the code covered
 323 *      by them as short as possible in all circumstances - clocks cost
 324 *      baud. The interrupt handler is assumed to be atomic w.r.t. to
 325 *      other code - this is true in the RT case too.
 326 *
 327 *      We only cover the sync cases for this. If you want 2Mbit async
 328 *      do it yourself but consider medical assistance first. This non DMA 
 329 *      synchronous mode is portable code. The DMA mode assumes PCI like 
 330 *      ISA DMA
 331 *
 332 *      Called with the device lock held
 333 */
 334 
 335static void z8530_rx(struct z8530_channel *c)
 336{
 337        u8 ch,stat;
 338
 339        while(1)
 340        {
 341                /* FIFO empty ? */
 342                if(!(read_zsreg(c, R0)&1))
 343                        break;
 344                ch=read_zsdata(c);
 345                stat=read_zsreg(c, R1);
 346        
 347                /*
 348                 *      Overrun ?
 349                 */
 350                if(c->count < c->max)
 351                {
 352                        *c->dptr++=ch;
 353                        c->count++;
 354                }
 355
 356                if(stat&END_FR)
 357                {
 358                
 359                        /*
 360                         *      Error ?
 361                         */
 362                        if(stat&(Rx_OVR|CRC_ERR))
 363                        {
 364                                /* Rewind the buffer and return */
 365                                if(c->skb)
 366                                        c->dptr=c->skb->data;
 367                                c->count=0;
 368                                if(stat&Rx_OVR)
 369                                {
 370                                        pr_warn("%s: overrun\n", c->dev->name);
 371                                        c->rx_overrun++;
 372                                }
 373                                if(stat&CRC_ERR)
 374                                {
 375                                        c->rx_crc_err++;
 376                                        /* printk("crc error\n"); */
 377                                }
 378                                /* Shove the frame upstream */
 379                        }
 380                        else
 381                        {
 382                                /*
 383                                 *      Drop the lock for RX processing, or
 384                                 *      there are deadlocks
 385                                 */
 386                                z8530_rx_done(c);
 387                                write_zsctrl(c, RES_Rx_CRC);
 388                        }
 389                }
 390        }
 391        /*
 392         *      Clear irq
 393         */
 394        write_zsctrl(c, ERR_RES);
 395        write_zsctrl(c, RES_H_IUS);
 396}
 397
 398
 399/**
 400 *      z8530_tx - Handle a PIO transmit event
 401 *      @c: Z8530 channel to process
 402 *
 403 *      Z8530 transmit interrupt handler for the PIO mode. The basic
 404 *      idea is to attempt to keep the FIFO fed. We fill as many bytes
 405 *      in as possible, its quite possible that we won't keep up with the
 406 *      data rate otherwise.
 407 */
 408 
 409static void z8530_tx(struct z8530_channel *c)
 410{
 411        while(c->txcount) {
 412                /* FIFO full ? */
 413                if(!(read_zsreg(c, R0)&4))
 414                        return;
 415                c->txcount--;
 416                /*
 417                 *      Shovel out the byte
 418                 */
 419                write_zsreg(c, R8, *c->tx_ptr++);
 420                write_zsctrl(c, RES_H_IUS);
 421                /* We are about to underflow */
 422                if(c->txcount==0)
 423                {
 424                        write_zsctrl(c, RES_EOM_L);
 425                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 426                }
 427        }
 428
 429        
 430        /*
 431         *      End of frame TX - fire another one
 432         */
 433         
 434        write_zsctrl(c, RES_Tx_P);
 435
 436        z8530_tx_done(c);        
 437        write_zsctrl(c, RES_H_IUS);
 438}
 439
 440/**
 441 *      z8530_status - Handle a PIO status exception
 442 *      @chan: Z8530 channel to process
 443 *
 444 *      A status event occurred in PIO synchronous mode. There are several
 445 *      reasons the chip will bother us here. A transmit underrun means we
 446 *      failed to feed the chip fast enough and just broke a packet. A DCD
 447 *      change is a line up or down.
 448 */
 449
 450static void z8530_status(struct z8530_channel *chan)
 451{
 452        u8 status, altered;
 453
 454        status = read_zsreg(chan, R0);
 455        altered = chan->status ^ status;
 456
 457        chan->status = status;
 458
 459        if (status & TxEOM) {
 460/*              printk("%s: Tx underrun.\n", chan->dev->name); */
 461                chan->netdevice->stats.tx_fifo_errors++;
 462                write_zsctrl(chan, ERR_RES);
 463                z8530_tx_done(chan);
 464        }
 465
 466        if (altered & chan->dcdcheck)
 467        {
 468                if (status & chan->dcdcheck) {
 469                        pr_info("%s: DCD raised\n", chan->dev->name);
 470                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 471                        if (chan->netdevice)
 472                                netif_carrier_on(chan->netdevice);
 473                } else {
 474                        pr_info("%s: DCD lost\n", chan->dev->name);
 475                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 476                        z8530_flush_fifo(chan);
 477                        if (chan->netdevice)
 478                                netif_carrier_off(chan->netdevice);
 479                }
 480
 481        }
 482        write_zsctrl(chan, RES_EXT_INT);
 483        write_zsctrl(chan, RES_H_IUS);
 484}
 485
 486struct z8530_irqhandler z8530_sync =
 487{
 488        z8530_rx,
 489        z8530_tx,
 490        z8530_status
 491};
 492
 493EXPORT_SYMBOL(z8530_sync);
 494
 495/**
 496 *      z8530_dma_rx - Handle a DMA RX event
 497 *      @chan: Channel to handle
 498 *
 499 *      Non bus mastering DMA interfaces for the Z8x30 devices. This
 500 *      is really pretty PC specific. The DMA mode means that most receive
 501 *      events are handled by the DMA hardware. We get a kick here only if
 502 *      a frame ended.
 503 */
 504 
 505static void z8530_dma_rx(struct z8530_channel *chan)
 506{
 507        if(chan->rxdma_on)
 508        {
 509                /* Special condition check only */
 510                u8 status;
 511        
 512                read_zsreg(chan, R7);
 513                read_zsreg(chan, R6);
 514                
 515                status=read_zsreg(chan, R1);
 516        
 517                if(status&END_FR)
 518                {
 519                        z8530_rx_done(chan);    /* Fire up the next one */
 520                }               
 521                write_zsctrl(chan, ERR_RES);
 522                write_zsctrl(chan, RES_H_IUS);
 523        }
 524        else
 525        {
 526                /* DMA is off right now, drain the slow way */
 527                z8530_rx(chan);
 528        }       
 529}
 530
 531/**
 532 *      z8530_dma_tx - Handle a DMA TX event
 533 *      @chan:  The Z8530 channel to handle
 534 *
 535 *      We have received an interrupt while doing DMA transmissions. It
 536 *      shouldn't happen. Scream loudly if it does.
 537 */
 538 
 539static void z8530_dma_tx(struct z8530_channel *chan)
 540{
 541        if(!chan->dma_tx)
 542        {
 543                pr_warn("Hey who turned the DMA off?\n");
 544                z8530_tx(chan);
 545                return;
 546        }
 547        /* This shouldn't occur in DMA mode */
 548        pr_err("DMA tx - bogus event!\n");
 549        z8530_tx(chan);
 550}
 551
 552/**
 553 *      z8530_dma_status - Handle a DMA status exception
 554 *      @chan: Z8530 channel to process
 555 *      
 556 *      A status event occurred on the Z8530. We receive these for two reasons
 557 *      when in DMA mode. Firstly if we finished a packet transfer we get one
 558 *      and kick the next packet out. Secondly we may see a DCD change.
 559 *
 560 */
 561 
 562static void z8530_dma_status(struct z8530_channel *chan)
 563{
 564        u8 status, altered;
 565
 566        status=read_zsreg(chan, R0);
 567        altered=chan->status^status;
 568        
 569        chan->status=status;
 570
 571
 572        if(chan->dma_tx)
 573        {
 574                if(status&TxEOM)
 575                {
 576                        unsigned long flags;
 577        
 578                        flags=claim_dma_lock();
 579                        disable_dma(chan->txdma);
 580                        clear_dma_ff(chan->txdma);      
 581                        chan->txdma_on=0;
 582                        release_dma_lock(flags);
 583                        z8530_tx_done(chan);
 584                }
 585        }
 586
 587        if (altered & chan->dcdcheck)
 588        {
 589                if (status & chan->dcdcheck) {
 590                        pr_info("%s: DCD raised\n", chan->dev->name);
 591                        write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 592                        if (chan->netdevice)
 593                                netif_carrier_on(chan->netdevice);
 594                } else {
 595                        pr_info("%s: DCD lost\n", chan->dev->name);
 596                        write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 597                        z8530_flush_fifo(chan);
 598                        if (chan->netdevice)
 599                                netif_carrier_off(chan->netdevice);
 600                }
 601        }
 602
 603        write_zsctrl(chan, RES_EXT_INT);
 604        write_zsctrl(chan, RES_H_IUS);
 605}
 606
 607static struct z8530_irqhandler z8530_dma_sync = {
 608        z8530_dma_rx,
 609        z8530_dma_tx,
 610        z8530_dma_status
 611};
 612
 613static struct z8530_irqhandler z8530_txdma_sync = {
 614        z8530_rx,
 615        z8530_dma_tx,
 616        z8530_dma_status
 617};
 618
 619/**
 620 *      z8530_rx_clear - Handle RX events from a stopped chip
 621 *      @c: Z8530 channel to shut up
 622 *
 623 *      Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 624 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 625 *      (eg the MacII) we must clear the interrupt cause or die.
 626 */
 627
 628
 629static void z8530_rx_clear(struct z8530_channel *c)
 630{
 631        /*
 632         *      Data and status bytes
 633         */
 634        u8 stat;
 635
 636        read_zsdata(c);
 637        stat=read_zsreg(c, R1);
 638        
 639        if(stat&END_FR)
 640                write_zsctrl(c, RES_Rx_CRC);
 641        /*
 642         *      Clear irq
 643         */
 644        write_zsctrl(c, ERR_RES);
 645        write_zsctrl(c, RES_H_IUS);
 646}
 647
 648/**
 649 *      z8530_tx_clear - Handle TX events from a stopped chip
 650 *      @c: Z8530 channel to shut up
 651 *
 652 *      Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 653 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 654 *      (eg the MacII) we must clear the interrupt cause or die.
 655 */
 656
 657static void z8530_tx_clear(struct z8530_channel *c)
 658{
 659        write_zsctrl(c, RES_Tx_P);
 660        write_zsctrl(c, RES_H_IUS);
 661}
 662
 663/**
 664 *      z8530_status_clear - Handle status events from a stopped chip
 665 *      @chan: Z8530 channel to shut up
 666 *
 667 *      Status interrupt vectors for a Z8530 that is in 'parked' mode.
 668 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 669 *      (eg the MacII) we must clear the interrupt cause or die.
 670 */
 671
 672static void z8530_status_clear(struct z8530_channel *chan)
 673{
 674        u8 status=read_zsreg(chan, R0);
 675        if(status&TxEOM)
 676                write_zsctrl(chan, ERR_RES);
 677        write_zsctrl(chan, RES_EXT_INT);
 678        write_zsctrl(chan, RES_H_IUS);
 679}
 680
 681struct z8530_irqhandler z8530_nop=
 682{
 683        z8530_rx_clear,
 684        z8530_tx_clear,
 685        z8530_status_clear
 686};
 687
 688
 689EXPORT_SYMBOL(z8530_nop);
 690
 691/**
 692 *      z8530_interrupt - Handle an interrupt from a Z8530
 693 *      @irq:   Interrupt number
 694 *      @dev_id: The Z8530 device that is interrupting.
 695 *
 696 *      A Z85[2]30 device has stuck its hand in the air for attention.
 697 *      We scan both the channels on the chip for events and then call
 698 *      the channel specific call backs for each channel that has events.
 699 *      We have to use callback functions because the two channels can be
 700 *      in different modes.
 701 *
 702 *      Locking is done for the handlers. Note that locking is done
 703 *      at the chip level (the 5uS delay issue is per chip not per
 704 *      channel). c->lock for both channels points to dev->lock
 705 */
 706
 707irqreturn_t z8530_interrupt(int irq, void *dev_id)
 708{
 709        struct z8530_dev *dev=dev_id;
 710        u8 uninitialized_var(intr);
 711        static volatile int locker=0;
 712        int work=0;
 713        struct z8530_irqhandler *irqs;
 714        
 715        if(locker)
 716        {
 717                pr_err("IRQ re-enter\n");
 718                return IRQ_NONE;
 719        }
 720        locker=1;
 721
 722        spin_lock(&dev->lock);
 723
 724        while(++work<5000)
 725        {
 726
 727                intr = read_zsreg(&dev->chanA, R3);
 728                if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 729                        break;
 730        
 731                /* This holds the IRQ status. On the 8530 you must read it from chan 
 732                   A even though it applies to the whole chip */
 733                
 734                /* Now walk the chip and see what it is wanting - it may be
 735                   an IRQ for someone else remember */
 736                   
 737                irqs=dev->chanA.irqs;
 738
 739                if(intr & (CHARxIP|CHATxIP|CHAEXT))
 740                {
 741                        if(intr&CHARxIP)
 742                                irqs->rx(&dev->chanA);
 743                        if(intr&CHATxIP)
 744                                irqs->tx(&dev->chanA);
 745                        if(intr&CHAEXT)
 746                                irqs->status(&dev->chanA);
 747                }
 748
 749                irqs=dev->chanB.irqs;
 750
 751                if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 752                {
 753                        if(intr&CHBRxIP)
 754                                irqs->rx(&dev->chanB);
 755                        if(intr&CHBTxIP)
 756                                irqs->tx(&dev->chanB);
 757                        if(intr&CHBEXT)
 758                                irqs->status(&dev->chanB);
 759                }
 760        }
 761        spin_unlock(&dev->lock);
 762        if(work==5000)
 763                pr_err("%s: interrupt jammed - abort(0x%X)!\n",
 764                       dev->name, intr);
 765        /* Ok all done */
 766        locker=0;
 767        return IRQ_HANDLED;
 768}
 769
 770EXPORT_SYMBOL(z8530_interrupt);
 771
 772static const u8 reg_init[16]=
 773{
 774        0,0,0,0,
 775        0,0,0,0,
 776        0,0,0,0,
 777        0x55,0,0,0
 778};
 779
 780
 781/**
 782 *      z8530_sync_open - Open a Z8530 channel for PIO
 783 *      @dev:   The network interface we are using
 784 *      @c:     The Z8530 channel to open in synchronous PIO mode
 785 *
 786 *      Switch a Z8530 into synchronous mode without DMA assist. We
 787 *      raise the RTS/DTR and commence network operation.
 788 */
 789 
 790int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 791{
 792        unsigned long flags;
 793
 794        spin_lock_irqsave(c->lock, flags);
 795
 796        c->sync = 1;
 797        c->mtu = dev->mtu+64;
 798        c->count = 0;
 799        c->skb = NULL;
 800        c->skb2 = NULL;
 801        c->irqs = &z8530_sync;
 802
 803        /* This loads the double buffer up */
 804        z8530_rx_done(c);       /* Load the frame ring */
 805        z8530_rx_done(c);       /* Load the backup frame */
 806        z8530_rtsdtr(c,1);
 807        c->dma_tx = 0;
 808        c->regs[R1]|=TxINT_ENAB;
 809        write_zsreg(c, R1, c->regs[R1]);
 810        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 811
 812        spin_unlock_irqrestore(c->lock, flags);
 813        return 0;
 814}
 815
 816
 817EXPORT_SYMBOL(z8530_sync_open);
 818
 819/**
 820 *      z8530_sync_close - Close a PIO Z8530 channel
 821 *      @dev: Network device to close
 822 *      @c: Z8530 channel to disassociate and move to idle
 823 *
 824 *      Close down a Z8530 interface and switch its interrupt handlers
 825 *      to discard future events.
 826 */
 827 
 828int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 829{
 830        u8 chk;
 831        unsigned long flags;
 832        
 833        spin_lock_irqsave(c->lock, flags);
 834        c->irqs = &z8530_nop;
 835        c->max = 0;
 836        c->sync = 0;
 837        
 838        chk=read_zsreg(c,R0);
 839        write_zsreg(c, R3, c->regs[R3]);
 840        z8530_rtsdtr(c,0);
 841
 842        spin_unlock_irqrestore(c->lock, flags);
 843        return 0;
 844}
 845
 846EXPORT_SYMBOL(z8530_sync_close);
 847
 848/**
 849 *      z8530_sync_dma_open - Open a Z8530 for DMA I/O
 850 *      @dev: The network device to attach
 851 *      @c: The Z8530 channel to configure in sync DMA mode.
 852 *
 853 *      Set up a Z85x30 device for synchronous DMA in both directions. Two
 854 *      ISA DMA channels must be available for this to work. We assume ISA
 855 *      DMA driven I/O and PC limits on access.
 856 */
 857 
 858int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 859{
 860        unsigned long cflags, dflags;
 861        
 862        c->sync = 1;
 863        c->mtu = dev->mtu+64;
 864        c->count = 0;
 865        c->skb = NULL;
 866        c->skb2 = NULL;
 867        /*
 868         *      Load the DMA interfaces up
 869         */
 870        c->rxdma_on = 0;
 871        c->txdma_on = 0;
 872        
 873        /*
 874         *      Allocate the DMA flip buffers. Limit by page size.
 875         *      Everyone runs 1500 mtu or less on wan links so this
 876         *      should be fine.
 877         */
 878         
 879        if(c->mtu  > PAGE_SIZE/2)
 880                return -EMSGSIZE;
 881         
 882        c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 883        if(c->rx_buf[0]==NULL)
 884                return -ENOBUFS;
 885        c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 886        
 887        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 888        if(c->tx_dma_buf[0]==NULL)
 889        {
 890                free_page((unsigned long)c->rx_buf[0]);
 891                c->rx_buf[0]=NULL;
 892                return -ENOBUFS;
 893        }
 894        c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 895
 896        c->tx_dma_used=0;
 897        c->dma_tx = 1;
 898        c->dma_num=0;
 899        c->dma_ready=1;
 900        
 901        /*
 902         *      Enable DMA control mode
 903         */
 904
 905        spin_lock_irqsave(c->lock, cflags);
 906         
 907        /*
 908         *      TX DMA via DIR/REQ
 909         */
 910         
 911        c->regs[R14]|= DTRREQ;
 912        write_zsreg(c, R14, c->regs[R14]);     
 913
 914        c->regs[R1]&= ~TxINT_ENAB;
 915        write_zsreg(c, R1, c->regs[R1]);
 916        
 917        /*
 918         *      RX DMA via W/Req
 919         */      
 920
 921        c->regs[R1]|= WT_FN_RDYFN;
 922        c->regs[R1]|= WT_RDY_RT;
 923        c->regs[R1]|= INT_ERR_Rx;
 924        c->regs[R1]&= ~TxINT_ENAB;
 925        write_zsreg(c, R1, c->regs[R1]);
 926        c->regs[R1]|= WT_RDY_ENAB;
 927        write_zsreg(c, R1, c->regs[R1]);            
 928        
 929        /*
 930         *      DMA interrupts
 931         */
 932         
 933        /*
 934         *      Set up the DMA configuration
 935         */     
 936         
 937        dflags=claim_dma_lock();
 938         
 939        disable_dma(c->rxdma);
 940        clear_dma_ff(c->rxdma);
 941        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 942        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 943        set_dma_count(c->rxdma, c->mtu);
 944        enable_dma(c->rxdma);
 945
 946        disable_dma(c->txdma);
 947        clear_dma_ff(c->txdma);
 948        set_dma_mode(c->txdma, DMA_MODE_WRITE);
 949        disable_dma(c->txdma);
 950        
 951        release_dma_lock(dflags);
 952        
 953        /*
 954         *      Select the DMA interrupt handlers
 955         */
 956
 957        c->rxdma_on = 1;
 958        c->txdma_on = 1;
 959        c->tx_dma_used = 1;
 960         
 961        c->irqs = &z8530_dma_sync;
 962        z8530_rtsdtr(c,1);
 963        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 964
 965        spin_unlock_irqrestore(c->lock, cflags);
 966        
 967        return 0;
 968}
 969
 970EXPORT_SYMBOL(z8530_sync_dma_open);
 971
 972/**
 973 *      z8530_sync_dma_close - Close down DMA I/O
 974 *      @dev: Network device to detach
 975 *      @c: Z8530 channel to move into discard mode
 976 *
 977 *      Shut down a DMA mode synchronous interface. Halt the DMA, and
 978 *      free the buffers.
 979 */
 980 
 981int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 982{
 983        u8 chk;
 984        unsigned long flags;
 985        
 986        c->irqs = &z8530_nop;
 987        c->max = 0;
 988        c->sync = 0;
 989        
 990        /*
 991         *      Disable the PC DMA channels
 992         */
 993        
 994        flags=claim_dma_lock(); 
 995        disable_dma(c->rxdma);
 996        clear_dma_ff(c->rxdma);
 997        
 998        c->rxdma_on = 0;
 999        
1000        disable_dma(c->txdma);
1001        clear_dma_ff(c->txdma);
1002        release_dma_lock(flags);
1003        
1004        c->txdma_on = 0;
1005        c->tx_dma_used = 0;
1006
1007        spin_lock_irqsave(c->lock, flags);
1008
1009        /*
1010         *      Disable DMA control mode
1011         */
1012         
1013        c->regs[R1]&= ~WT_RDY_ENAB;
1014        write_zsreg(c, R1, c->regs[R1]);            
1015        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1016        c->regs[R1]|= INT_ALL_Rx;
1017        write_zsreg(c, R1, c->regs[R1]);
1018        c->regs[R14]&= ~DTRREQ;
1019        write_zsreg(c, R14, c->regs[R14]);   
1020        
1021        if(c->rx_buf[0])
1022        {
1023                free_page((unsigned long)c->rx_buf[0]);
1024                c->rx_buf[0]=NULL;
1025        }
1026        if(c->tx_dma_buf[0])
1027        {
1028                free_page((unsigned  long)c->tx_dma_buf[0]);
1029                c->tx_dma_buf[0]=NULL;
1030        }
1031        chk=read_zsreg(c,R0);
1032        write_zsreg(c, R3, c->regs[R3]);
1033        z8530_rtsdtr(c,0);
1034
1035        spin_unlock_irqrestore(c->lock, flags);
1036
1037        return 0;
1038}
1039
1040EXPORT_SYMBOL(z8530_sync_dma_close);
1041
1042/**
1043 *      z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1044 *      @dev: The network device to attach
1045 *      @c: The Z8530 channel to configure in sync DMA mode.
1046 *
1047 *      Set up a Z85x30 device for synchronous DMA tranmission. One
1048 *      ISA DMA channel must be available for this to work. The receive
1049 *      side is run in PIO mode, but then it has the bigger FIFO.
1050 */
1051
1052int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1053{
1054        unsigned long cflags, dflags;
1055
1056        printk("Opening sync interface for TX-DMA\n");
1057        c->sync = 1;
1058        c->mtu = dev->mtu+64;
1059        c->count = 0;
1060        c->skb = NULL;
1061        c->skb2 = NULL;
1062        
1063        /*
1064         *      Allocate the DMA flip buffers. Limit by page size.
1065         *      Everyone runs 1500 mtu or less on wan links so this
1066         *      should be fine.
1067         */
1068         
1069        if(c->mtu  > PAGE_SIZE/2)
1070                return -EMSGSIZE;
1071         
1072        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1073        if(c->tx_dma_buf[0]==NULL)
1074                return -ENOBUFS;
1075
1076        c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1077
1078
1079        spin_lock_irqsave(c->lock, cflags);
1080
1081        /*
1082         *      Load the PIO receive ring
1083         */
1084
1085        z8530_rx_done(c);
1086        z8530_rx_done(c);
1087
1088        /*
1089         *      Load the DMA interfaces up
1090         */
1091
1092        c->rxdma_on = 0;
1093        c->txdma_on = 0;
1094        
1095        c->tx_dma_used=0;
1096        c->dma_num=0;
1097        c->dma_ready=1;
1098        c->dma_tx = 1;
1099
1100        /*
1101         *      Enable DMA control mode
1102         */
1103
1104        /*
1105         *      TX DMA via DIR/REQ
1106         */
1107        c->regs[R14]|= DTRREQ;
1108        write_zsreg(c, R14, c->regs[R14]);     
1109        
1110        c->regs[R1]&= ~TxINT_ENAB;
1111        write_zsreg(c, R1, c->regs[R1]);
1112        
1113        /*
1114         *      Set up the DMA configuration
1115         */     
1116         
1117        dflags = claim_dma_lock();
1118
1119        disable_dma(c->txdma);
1120        clear_dma_ff(c->txdma);
1121        set_dma_mode(c->txdma, DMA_MODE_WRITE);
1122        disable_dma(c->txdma);
1123
1124        release_dma_lock(dflags);
1125        
1126        /*
1127         *      Select the DMA interrupt handlers
1128         */
1129
1130        c->rxdma_on = 0;
1131        c->txdma_on = 1;
1132        c->tx_dma_used = 1;
1133         
1134        c->irqs = &z8530_txdma_sync;
1135        z8530_rtsdtr(c,1);
1136        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1137        spin_unlock_irqrestore(c->lock, cflags);
1138        
1139        return 0;
1140}
1141
1142EXPORT_SYMBOL(z8530_sync_txdma_open);
1143
1144/**
1145 *      z8530_sync_txdma_close - Close down a TX driven DMA channel
1146 *      @dev: Network device to detach
1147 *      @c: Z8530 channel to move into discard mode
1148 *
1149 *      Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1150 *      and  free the buffers.
1151 */
1152
1153int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1154{
1155        unsigned long dflags, cflags;
1156        u8 chk;
1157
1158        
1159        spin_lock_irqsave(c->lock, cflags);
1160        
1161        c->irqs = &z8530_nop;
1162        c->max = 0;
1163        c->sync = 0;
1164        
1165        /*
1166         *      Disable the PC DMA channels
1167         */
1168         
1169        dflags = claim_dma_lock();
1170
1171        disable_dma(c->txdma);
1172        clear_dma_ff(c->txdma);
1173        c->txdma_on = 0;
1174        c->tx_dma_used = 0;
1175
1176        release_dma_lock(dflags);
1177
1178        /*
1179         *      Disable DMA control mode
1180         */
1181         
1182        c->regs[R1]&= ~WT_RDY_ENAB;
1183        write_zsreg(c, R1, c->regs[R1]);            
1184        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1185        c->regs[R1]|= INT_ALL_Rx;
1186        write_zsreg(c, R1, c->regs[R1]);
1187        c->regs[R14]&= ~DTRREQ;
1188        write_zsreg(c, R14, c->regs[R14]);   
1189        
1190        if(c->tx_dma_buf[0])
1191        {
1192                free_page((unsigned long)c->tx_dma_buf[0]);
1193                c->tx_dma_buf[0]=NULL;
1194        }
1195        chk=read_zsreg(c,R0);
1196        write_zsreg(c, R3, c->regs[R3]);
1197        z8530_rtsdtr(c,0);
1198
1199        spin_unlock_irqrestore(c->lock, cflags);
1200        return 0;
1201}
1202
1203
1204EXPORT_SYMBOL(z8530_sync_txdma_close);
1205
1206
1207/*
1208 *      Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1209 *      it exists...
1210 */
1211 
1212static const char *z8530_type_name[]={
1213        "Z8530",
1214        "Z85C30",
1215        "Z85230"
1216};
1217
1218/**
1219 *      z8530_describe - Uniformly describe a Z8530 port
1220 *      @dev: Z8530 device to describe
1221 *      @mapping: string holding mapping type (eg "I/O" or "Mem")
1222 *      @io: the port value in question
1223 *
1224 *      Describe a Z8530 in a standard format. We must pass the I/O as
1225 *      the port offset isn't predictable. The main reason for this function
1226 *      is to try and get a common format of report.
1227 */
1228
1229void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1230{
1231        pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1232                dev->name, 
1233                z8530_type_name[dev->type],
1234                mapping,
1235                Z8530_PORT_OF(io),
1236                dev->irq);
1237}
1238
1239EXPORT_SYMBOL(z8530_describe);
1240
1241/*
1242 *      Locked operation part of the z8530 init code
1243 */
1244 
1245static inline int do_z8530_init(struct z8530_dev *dev)
1246{
1247        /* NOP the interrupt handlers first - we might get a
1248           floating IRQ transition when we reset the chip */
1249        dev->chanA.irqs=&z8530_nop;
1250        dev->chanB.irqs=&z8530_nop;
1251        dev->chanA.dcdcheck=DCD;
1252        dev->chanB.dcdcheck=DCD;
1253
1254        /* Reset the chip */
1255        write_zsreg(&dev->chanA, R9, 0xC0);
1256        udelay(200);
1257        /* Now check its valid */
1258        write_zsreg(&dev->chanA, R12, 0xAA);
1259        if(read_zsreg(&dev->chanA, R12)!=0xAA)
1260                return -ENODEV;
1261        write_zsreg(&dev->chanA, R12, 0x55);
1262        if(read_zsreg(&dev->chanA, R12)!=0x55)
1263                return -ENODEV;
1264                
1265        dev->type=Z8530;
1266        
1267        /*
1268         *      See the application note.
1269         */
1270         
1271        write_zsreg(&dev->chanA, R15, 0x01);
1272        
1273        /*
1274         *      If we can set the low bit of R15 then
1275         *      the chip is enhanced.
1276         */
1277         
1278        if(read_zsreg(&dev->chanA, R15)==0x01)
1279        {
1280                /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1281                /* Put a char in the fifo */
1282                write_zsreg(&dev->chanA, R8, 0);
1283                if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1284                        dev->type = Z85230;     /* Has a FIFO */
1285                else
1286                        dev->type = Z85C30;     /* Z85C30, 1 byte FIFO */
1287        }
1288                
1289        /*
1290         *      The code assumes R7' and friends are
1291         *      off. Use write_zsext() for these and keep
1292         *      this bit clear.
1293         */
1294         
1295        write_zsreg(&dev->chanA, R15, 0);
1296                
1297        /*
1298         *      At this point it looks like the chip is behaving
1299         */
1300         
1301        memcpy(dev->chanA.regs, reg_init, 16);
1302        memcpy(dev->chanB.regs, reg_init ,16);
1303        
1304        return 0;
1305}
1306
1307/**
1308 *      z8530_init - Initialise a Z8530 device
1309 *      @dev: Z8530 device to initialise.
1310 *
1311 *      Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1312 *      is present, identify the type and then program it to hopefully
1313 *      keep quite and behave. This matters a lot, a Z8530 in the wrong
1314 *      state will sometimes get into stupid modes generating 10Khz
1315 *      interrupt streams and the like.
1316 *
1317 *      We set the interrupt handler up to discard any events, in case
1318 *      we get them during reset or setp.
1319 *
1320 *      Return 0 for success, or a negative value indicating the problem
1321 *      in errno form.
1322 */
1323
1324int z8530_init(struct z8530_dev *dev)
1325{
1326        unsigned long flags;
1327        int ret;
1328
1329        /* Set up the chip level lock */
1330        spin_lock_init(&dev->lock);
1331        dev->chanA.lock = &dev->lock;
1332        dev->chanB.lock = &dev->lock;
1333
1334        spin_lock_irqsave(&dev->lock, flags);
1335        ret = do_z8530_init(dev);
1336        spin_unlock_irqrestore(&dev->lock, flags);
1337
1338        return ret;
1339}
1340
1341
1342EXPORT_SYMBOL(z8530_init);
1343
1344/**
1345 *      z8530_shutdown - Shutdown a Z8530 device
1346 *      @dev: The Z8530 chip to shutdown
1347 *
1348 *      We set the interrupt handlers to silence any interrupts. We then 
1349 *      reset the chip and wait 100uS to be sure the reset completed. Just
1350 *      in case the caller then tries to do stuff.
1351 *
1352 *      This is called without the lock held
1353 */
1354 
1355int z8530_shutdown(struct z8530_dev *dev)
1356{
1357        unsigned long flags;
1358        /* Reset the chip */
1359
1360        spin_lock_irqsave(&dev->lock, flags);
1361        dev->chanA.irqs=&z8530_nop;
1362        dev->chanB.irqs=&z8530_nop;
1363        write_zsreg(&dev->chanA, R9, 0xC0);
1364        /* We must lock the udelay, the chip is offlimits here */
1365        udelay(100);
1366        spin_unlock_irqrestore(&dev->lock, flags);
1367        return 0;
1368}
1369
1370EXPORT_SYMBOL(z8530_shutdown);
1371
1372/**
1373 *      z8530_channel_load - Load channel data
1374 *      @c: Z8530 channel to configure
1375 *      @rtable: table of register, value pairs
1376 *      FIXME: ioctl to allow user uploaded tables
1377 *
1378 *      Load a Z8530 channel up from the system data. We use +16 to 
1379 *      indicate the "prime" registers. The value 255 terminates the
1380 *      table.
1381 */
1382
1383int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1384{
1385        unsigned long flags;
1386
1387        spin_lock_irqsave(c->lock, flags);
1388
1389        while(*rtable!=255)
1390        {
1391                int reg=*rtable++;
1392                if(reg>0x0F)
1393                        write_zsreg(c, R15, c->regs[15]|1);
1394                write_zsreg(c, reg&0x0F, *rtable);
1395                if(reg>0x0F)
1396                        write_zsreg(c, R15, c->regs[15]&~1);
1397                c->regs[reg]=*rtable++;
1398        }
1399        c->rx_function=z8530_null_rx;
1400        c->skb=NULL;
1401        c->tx_skb=NULL;
1402        c->tx_next_skb=NULL;
1403        c->mtu=1500;
1404        c->max=0;
1405        c->count=0;
1406        c->status=read_zsreg(c, R0);
1407        c->sync=1;
1408        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1409
1410        spin_unlock_irqrestore(c->lock, flags);
1411        return 0;
1412}
1413
1414EXPORT_SYMBOL(z8530_channel_load);
1415
1416
1417/**
1418 *      z8530_tx_begin - Begin packet transmission
1419 *      @c: The Z8530 channel to kick
1420 *
1421 *      This is the speed sensitive side of transmission. If we are called
1422 *      and no buffer is being transmitted we commence the next buffer. If
1423 *      nothing is queued we idle the sync. 
1424 *
1425 *      Note: We are handling this code path in the interrupt path, keep it
1426 *      fast or bad things will happen.
1427 *
1428 *      Called with the lock held.
1429 */
1430
1431static void z8530_tx_begin(struct z8530_channel *c)
1432{
1433        unsigned long flags;
1434        if(c->tx_skb)
1435                return;
1436                
1437        c->tx_skb=c->tx_next_skb;
1438        c->tx_next_skb=NULL;
1439        c->tx_ptr=c->tx_next_ptr;
1440        
1441        if(c->tx_skb==NULL)
1442        {
1443                /* Idle on */
1444                if(c->dma_tx)
1445                {
1446                        flags=claim_dma_lock();
1447                        disable_dma(c->txdma);
1448                        /*
1449                         *      Check if we crapped out.
1450                         */
1451                        if (get_dma_residue(c->txdma))
1452                        {
1453                                c->netdevice->stats.tx_dropped++;
1454                                c->netdevice->stats.tx_fifo_errors++;
1455                        }
1456                        release_dma_lock(flags);
1457                }
1458                c->txcount=0;
1459        }
1460        else
1461        {
1462                c->txcount=c->tx_skb->len;
1463                
1464                
1465                if(c->dma_tx)
1466                {
1467                        /*
1468                         *      FIXME. DMA is broken for the original 8530,
1469                         *      on the older parts we need to set a flag and
1470                         *      wait for a further TX interrupt to fire this
1471                         *      stage off       
1472                         */
1473                         
1474                        flags=claim_dma_lock();
1475                        disable_dma(c->txdma);
1476
1477                        /*
1478                         *      These two are needed by the 8530/85C30
1479                         *      and must be issued when idling.
1480                         */
1481                         
1482                        if(c->dev->type!=Z85230)
1483                        {
1484                                write_zsctrl(c, RES_Tx_CRC);
1485                                write_zsctrl(c, RES_EOM_L);
1486                        }       
1487                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1488                        clear_dma_ff(c->txdma);
1489                        set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1490                        set_dma_count(c->txdma, c->txcount);
1491                        enable_dma(c->txdma);
1492                        release_dma_lock(flags);
1493                        write_zsctrl(c, RES_EOM_L);
1494                        write_zsreg(c, R5, c->regs[R5]|TxENAB);
1495                }
1496                else
1497                {
1498
1499                        /* ABUNDER off */
1500                        write_zsreg(c, R10, c->regs[10]);
1501                        write_zsctrl(c, RES_Tx_CRC);
1502        
1503                        while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1504                        {               
1505                                write_zsreg(c, R8, *c->tx_ptr++);
1506                                c->txcount--;
1507                        }
1508
1509                }
1510        }
1511        /*
1512         *      Since we emptied tx_skb we can ask for more
1513         */
1514        netif_wake_queue(c->netdevice);
1515}
1516
1517/**
1518 *      z8530_tx_done - TX complete callback
1519 *      @c: The channel that completed a transmit.
1520 *
1521 *      This is called when we complete a packet send. We wake the queue,
1522 *      start the next packet going and then free the buffer of the existing
1523 *      packet. This code is fairly timing sensitive.
1524 *
1525 *      Called with the register lock held.
1526 */
1527
1528static void z8530_tx_done(struct z8530_channel *c)
1529{
1530        struct sk_buff *skb;
1531
1532        /* Actually this can happen.*/
1533        if (c->tx_skb == NULL)
1534                return;
1535
1536        skb = c->tx_skb;
1537        c->tx_skb = NULL;
1538        z8530_tx_begin(c);
1539        c->netdevice->stats.tx_packets++;
1540        c->netdevice->stats.tx_bytes += skb->len;
1541        dev_kfree_skb_irq(skb);
1542}
1543
1544/**
1545 *      z8530_null_rx - Discard a packet
1546 *      @c: The channel the packet arrived on
1547 *      @skb: The buffer
1548 *
1549 *      We point the receive handler at this function when idle. Instead
1550 *      of processing the frames we get to throw them away.
1551 */
1552 
1553void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1554{
1555        dev_kfree_skb_any(skb);
1556}
1557
1558EXPORT_SYMBOL(z8530_null_rx);
1559
1560/**
1561 *      z8530_rx_done - Receive completion callback
1562 *      @c: The channel that completed a receive
1563 *
1564 *      A new packet is complete. Our goal here is to get back into receive
1565 *      mode as fast as possible. On the Z85230 we could change to using
1566 *      ESCC mode, but on the older chips we have no choice. We flip to the
1567 *      new buffer immediately in DMA mode so that the DMA of the next
1568 *      frame can occur while we are copying the previous buffer to an sk_buff
1569 *
1570 *      Called with the lock held
1571 */
1572 
1573static void z8530_rx_done(struct z8530_channel *c)
1574{
1575        struct sk_buff *skb;
1576        int ct;
1577        
1578        /*
1579         *      Is our receive engine in DMA mode
1580         */
1581         
1582        if(c->rxdma_on)
1583        {
1584                /*
1585                 *      Save the ready state and the buffer currently
1586                 *      being used as the DMA target
1587                 */
1588                 
1589                int ready=c->dma_ready;
1590                unsigned char *rxb=c->rx_buf[c->dma_num];
1591                unsigned long flags;
1592                
1593                /*
1594                 *      Complete this DMA. Necessary to find the length
1595                 */             
1596                 
1597                flags=claim_dma_lock();
1598                
1599                disable_dma(c->rxdma);
1600                clear_dma_ff(c->rxdma);
1601                c->rxdma_on=0;
1602                ct=c->mtu-get_dma_residue(c->rxdma);
1603                if(ct<0)
1604                        ct=2;   /* Shit happens.. */
1605                c->dma_ready=0;
1606                
1607                /*
1608                 *      Normal case: the other slot is free, start the next DMA
1609                 *      into it immediately.
1610                 */
1611                 
1612                if(ready)
1613                {
1614                        c->dma_num^=1;
1615                        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1616                        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1617                        set_dma_count(c->rxdma, c->mtu);
1618                        c->rxdma_on = 1;
1619                        enable_dma(c->rxdma);
1620                        /* Stop any frames that we missed the head of 
1621                           from passing */
1622                        write_zsreg(c, R0, RES_Rx_CRC);
1623                }
1624                else
1625                        /* Can't occur as we dont reenable the DMA irq until
1626                           after the flip is done */
1627                        netdev_warn(c->netdevice, "DMA flip overrun!\n");
1628
1629                release_dma_lock(flags);
1630
1631                /*
1632                 *      Shove the old buffer into an sk_buff. We can't DMA
1633                 *      directly into one on a PC - it might be above the 16Mb
1634                 *      boundary. Optimisation - we could check to see if we
1635                 *      can avoid the copy. Optimisation 2 - make the memcpy
1636                 *      a copychecksum.
1637                 */
1638
1639                skb = dev_alloc_skb(ct);
1640                if (skb == NULL) {
1641                        c->netdevice->stats.rx_dropped++;
1642                        netdev_warn(c->netdevice, "Memory squeeze\n");
1643                } else {
1644                        skb_put(skb, ct);
1645                        skb_copy_to_linear_data(skb, rxb, ct);
1646                        c->netdevice->stats.rx_packets++;
1647                        c->netdevice->stats.rx_bytes += ct;
1648                }
1649                c->dma_ready = 1;
1650        } else {
1651                RT_LOCK;
1652                skb = c->skb;
1653
1654                /*
1655                 *      The game we play for non DMA is similar. We want to
1656                 *      get the controller set up for the next packet as fast
1657                 *      as possible. We potentially only have one byte + the
1658                 *      fifo length for this. Thus we want to flip to the new
1659                 *      buffer and then mess around copying and allocating
1660                 *      things. For the current case it doesn't matter but
1661                 *      if you build a system where the sync irq isn't blocked
1662                 *      by the kernel IRQ disable then you need only block the
1663                 *      sync IRQ for the RT_LOCK area.
1664                 *
1665                 */
1666                ct=c->count;
1667
1668                c->skb = c->skb2;
1669                c->count = 0;
1670                c->max = c->mtu;
1671                if (c->skb) {
1672                        c->dptr = c->skb->data;
1673                        c->max = c->mtu;
1674                } else {
1675                        c->count = 0;
1676                        c->max = 0;
1677                }
1678                RT_UNLOCK;
1679
1680                c->skb2 = dev_alloc_skb(c->mtu);
1681                if (c->skb2 == NULL)
1682                        netdev_warn(c->netdevice, "memory squeeze\n");
1683                else
1684                        skb_put(c->skb2, c->mtu);
1685                c->netdevice->stats.rx_packets++;
1686                c->netdevice->stats.rx_bytes += ct;
1687        }
1688        /*
1689         *      If we received a frame we must now process it.
1690         */
1691        if (skb) {
1692                skb_trim(skb, ct);
1693                c->rx_function(c, skb);
1694        } else {
1695                c->netdevice->stats.rx_dropped++;
1696                netdev_err(c->netdevice, "Lost a frame\n");
1697        }
1698}
1699
1700/**
1701 *      spans_boundary - Check a packet can be ISA DMA'd
1702 *      @skb: The buffer to check
1703 *
1704 *      Returns true if the buffer cross a DMA boundary on a PC. The poor
1705 *      thing can only DMA within a 64K block not across the edges of it.
1706 */
1707
1708static inline int spans_boundary(struct sk_buff *skb)
1709{
1710        unsigned long a=(unsigned long)skb->data;
1711        a^=(a+skb->len);
1712        if(a&0x00010000)        /* If the 64K bit is different.. */
1713                return 1;
1714        return 0;
1715}
1716
1717/**
1718 *      z8530_queue_xmit - Queue a packet
1719 *      @c: The channel to use
1720 *      @skb: The packet to kick down the channel
1721 *
1722 *      Queue a packet for transmission. Because we have rather
1723 *      hard to hit interrupt latencies for the Z85230 per packet 
1724 *      even in DMA mode we do the flip to DMA buffer if needed here
1725 *      not in the IRQ.
1726 *
1727 *      Called from the network code. The lock is not held at this 
1728 *      point.
1729 */
1730
1731netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1732{
1733        unsigned long flags;
1734        
1735        netif_stop_queue(c->netdevice);
1736        if(c->tx_next_skb)
1737                return NETDEV_TX_BUSY;
1738
1739        
1740        /* PC SPECIFIC - DMA limits */
1741        
1742        /*
1743         *      If we will DMA the transmit and its gone over the ISA bus
1744         *      limit, then copy to the flip buffer
1745         */
1746         
1747        if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1748        {
1749                /* 
1750                 *      Send the flip buffer, and flip the flippy bit.
1751                 *      We don't care which is used when just so long as
1752                 *      we never use the same buffer twice in a row. Since
1753                 *      only one buffer can be going out at a time the other
1754                 *      has to be safe.
1755                 */
1756                c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1757                c->tx_dma_used^=1;      /* Flip temp buffer */
1758                skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1759        }
1760        else
1761                c->tx_next_ptr=skb->data;       
1762        RT_LOCK;
1763        c->tx_next_skb=skb;
1764        RT_UNLOCK;
1765        
1766        spin_lock_irqsave(c->lock, flags);
1767        z8530_tx_begin(c);
1768        spin_unlock_irqrestore(c->lock, flags);
1769        
1770        return NETDEV_TX_OK;
1771}
1772
1773EXPORT_SYMBOL(z8530_queue_xmit);
1774
1775/*
1776 *      Module support
1777 */
1778static const char banner[] __initconst =
1779        KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1780
1781static int __init z85230_init_driver(void)
1782{
1783        printk(banner);
1784        return 0;
1785}
1786module_init(z85230_init_driver);
1787
1788static void __exit z85230_cleanup_driver(void)
1789{
1790}
1791module_exit(z85230_cleanup_driver);
1792
1793MODULE_AUTHOR("Red Hat Inc.");
1794MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1795MODULE_LICENSE("GPL");
1796