linux/drivers/pci/hotplug/cpqphp_ctrl.c
<<
>>
Prefs
   1/*
   2 * Compaq Hot Plug Controller Driver
   3 *
   4 * Copyright (C) 1995,2001 Compaq Computer Corporation
   5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   6 * Copyright (C) 2001 IBM Corp.
   7 *
   8 * All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  18 * NON INFRINGEMENT.  See the GNU General Public License for more
  19 * details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 *
  25 * Send feedback to <greg@kroah.com>
  26 *
  27 */
  28
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/types.h>
  32#include <linux/slab.h>
  33#include <linux/workqueue.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/wait.h>
  37#include <linux/pci.h>
  38#include <linux/pci_hotplug.h>
  39#include <linux/kthread.h>
  40#include "cpqphp.h"
  41
  42static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
  43                        u8 behind_bridge, struct resource_lists *resources);
  44static int configure_new_function(struct controller* ctrl, struct pci_func *func,
  45                        u8 behind_bridge, struct resource_lists *resources);
  46static void interrupt_event_handler(struct controller *ctrl);
  47
  48
  49static struct task_struct *cpqhp_event_thread;
  50static unsigned long pushbutton_pending;        /* = 0 */
  51
  52/* delay is in jiffies to wait for */
  53static void long_delay(int delay)
  54{
  55        /*
  56         * XXX(hch): if someone is bored please convert all callers
  57         * to call msleep_interruptible directly.  They really want
  58         * to specify timeouts in natural units and spend a lot of
  59         * effort converting them to jiffies..
  60         */
  61        msleep_interruptible(jiffies_to_msecs(delay));
  62}
  63
  64
  65/* FIXME: The following line needs to be somewhere else... */
  66#define WRONG_BUS_FREQUENCY 0x07
  67static u8 handle_switch_change(u8 change, struct controller * ctrl)
  68{
  69        int hp_slot;
  70        u8 rc = 0;
  71        u16 temp_word;
  72        struct pci_func *func;
  73        struct event_info *taskInfo;
  74
  75        if (!change)
  76                return 0;
  77
  78        /* Switch Change */
  79        dbg("cpqsbd:  Switch interrupt received.\n");
  80
  81        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  82                if (change & (0x1L << hp_slot)) {
  83                        /*
  84                         * this one changed.
  85                         */
  86                        func = cpqhp_slot_find(ctrl->bus,
  87                                (hp_slot + ctrl->slot_device_offset), 0);
  88
  89                        /* this is the structure that tells the worker thread
  90                         * what to do
  91                         */
  92                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  93                        ctrl->next_event = (ctrl->next_event + 1) % 10;
  94                        taskInfo->hp_slot = hp_slot;
  95
  96                        rc++;
  97
  98                        temp_word = ctrl->ctrl_int_comp >> 16;
  99                        func->presence_save = (temp_word >> hp_slot) & 0x01;
 100                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 101
 102                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
 103                                /*
 104                                 * Switch opened
 105                                 */
 106
 107                                func->switch_save = 0;
 108
 109                                taskInfo->event_type = INT_SWITCH_OPEN;
 110                        } else {
 111                                /*
 112                                 * Switch closed
 113                                 */
 114
 115                                func->switch_save = 0x10;
 116
 117                                taskInfo->event_type = INT_SWITCH_CLOSE;
 118                        }
 119                }
 120        }
 121
 122        return rc;
 123}
 124
 125/**
 126 * cpqhp_find_slot - find the struct slot of given device
 127 * @ctrl: scan lots of this controller
 128 * @device: the device id to find
 129 */
 130static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 131{
 132        struct slot *slot = ctrl->slot;
 133
 134        while (slot && (slot->device != device))
 135                slot = slot->next;
 136
 137        return slot;
 138}
 139
 140
 141static u8 handle_presence_change(u16 change, struct controller * ctrl)
 142{
 143        int hp_slot;
 144        u8 rc = 0;
 145        u8 temp_byte;
 146        u16 temp_word;
 147        struct pci_func *func;
 148        struct event_info *taskInfo;
 149        struct slot *p_slot;
 150
 151        if (!change)
 152                return 0;
 153
 154        /*
 155         * Presence Change
 156         */
 157        dbg("cpqsbd:  Presence/Notify input change.\n");
 158        dbg("         Changed bits are 0x%4.4x\n", change );
 159
 160        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 161                if (change & (0x0101 << hp_slot)) {
 162                        /*
 163                         * this one changed.
 164                         */
 165                        func = cpqhp_slot_find(ctrl->bus,
 166                                (hp_slot + ctrl->slot_device_offset), 0);
 167
 168                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 169                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 170                        taskInfo->hp_slot = hp_slot;
 171
 172                        rc++;
 173
 174                        p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 175                        if (!p_slot)
 176                                return 0;
 177
 178                        /* If the switch closed, must be a button
 179                         * If not in button mode, nevermind
 180                         */
 181                        if (func->switch_save && (ctrl->push_button == 1)) {
 182                                temp_word = ctrl->ctrl_int_comp >> 16;
 183                                temp_byte = (temp_word >> hp_slot) & 0x01;
 184                                temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 185
 186                                if (temp_byte != func->presence_save) {
 187                                        /*
 188                                         * button Pressed (doesn't do anything)
 189                                         */
 190                                        dbg("hp_slot %d button pressed\n", hp_slot);
 191                                        taskInfo->event_type = INT_BUTTON_PRESS;
 192                                } else {
 193                                        /*
 194                                         * button Released - TAKE ACTION!!!!
 195                                         */
 196                                        dbg("hp_slot %d button released\n", hp_slot);
 197                                        taskInfo->event_type = INT_BUTTON_RELEASE;
 198
 199                                        /* Cancel if we are still blinking */
 200                                        if ((p_slot->state == BLINKINGON_STATE)
 201                                            || (p_slot->state == BLINKINGOFF_STATE)) {
 202                                                taskInfo->event_type = INT_BUTTON_CANCEL;
 203                                                dbg("hp_slot %d button cancel\n", hp_slot);
 204                                        } else if ((p_slot->state == POWERON_STATE)
 205                                                   || (p_slot->state == POWEROFF_STATE)) {
 206                                                /* info(msg_button_ignore, p_slot->number); */
 207                                                taskInfo->event_type = INT_BUTTON_IGNORE;
 208                                                dbg("hp_slot %d button ignore\n", hp_slot);
 209                                        }
 210                                }
 211                        } else {
 212                                /* Switch is open, assume a presence change
 213                                 * Save the presence state
 214                                 */
 215                                temp_word = ctrl->ctrl_int_comp >> 16;
 216                                func->presence_save = (temp_word >> hp_slot) & 0x01;
 217                                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 218
 219                                if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 220                                    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 221                                        /* Present */
 222                                        taskInfo->event_type = INT_PRESENCE_ON;
 223                                } else {
 224                                        /* Not Present */
 225                                        taskInfo->event_type = INT_PRESENCE_OFF;
 226                                }
 227                        }
 228                }
 229        }
 230
 231        return rc;
 232}
 233
 234
 235static u8 handle_power_fault(u8 change, struct controller * ctrl)
 236{
 237        int hp_slot;
 238        u8 rc = 0;
 239        struct pci_func *func;
 240        struct event_info *taskInfo;
 241
 242        if (!change)
 243                return 0;
 244
 245        /*
 246         * power fault
 247         */
 248
 249        info("power fault interrupt\n");
 250
 251        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 252                if (change & (0x01 << hp_slot)) {
 253                        /*
 254                         * this one changed.
 255                         */
 256                        func = cpqhp_slot_find(ctrl->bus,
 257                                (hp_slot + ctrl->slot_device_offset), 0);
 258
 259                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 260                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 261                        taskInfo->hp_slot = hp_slot;
 262
 263                        rc++;
 264
 265                        if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 266                                /*
 267                                 * power fault Cleared
 268                                 */
 269                                func->status = 0x00;
 270
 271                                taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 272                        } else {
 273                                /*
 274                                 * power fault
 275                                 */
 276                                taskInfo->event_type = INT_POWER_FAULT;
 277
 278                                if (ctrl->rev < 4) {
 279                                        amber_LED_on (ctrl, hp_slot);
 280                                        green_LED_off (ctrl, hp_slot);
 281                                        set_SOGO (ctrl);
 282
 283                                        /* this is a fatal condition, we want
 284                                         * to crash the machine to protect from
 285                                         * data corruption. simulated_NMI
 286                                         * shouldn't ever return */
 287                                        /* FIXME
 288                                        simulated_NMI(hp_slot, ctrl); */
 289
 290                                        /* The following code causes a software
 291                                         * crash just in case simulated_NMI did
 292                                         * return */
 293                                        /*FIXME
 294                                        panic(msg_power_fault); */
 295                                } else {
 296                                        /* set power fault status for this board */
 297                                        func->status = 0xFF;
 298                                        info("power fault bit %x set\n", hp_slot);
 299                                }
 300                        }
 301                }
 302        }
 303
 304        return rc;
 305}
 306
 307
 308/**
 309 * sort_by_size - sort nodes on the list by their length, smallest first.
 310 * @head: list to sort
 311 */
 312static int sort_by_size(struct pci_resource **head)
 313{
 314        struct pci_resource *current_res;
 315        struct pci_resource *next_res;
 316        int out_of_order = 1;
 317
 318        if (!(*head))
 319                return 1;
 320
 321        if (!((*head)->next))
 322                return 0;
 323
 324        while (out_of_order) {
 325                out_of_order = 0;
 326
 327                /* Special case for swapping list head */
 328                if (((*head)->next) &&
 329                    ((*head)->length > (*head)->next->length)) {
 330                        out_of_order++;
 331                        current_res = *head;
 332                        *head = (*head)->next;
 333                        current_res->next = (*head)->next;
 334                        (*head)->next = current_res;
 335                }
 336
 337                current_res = *head;
 338
 339                while (current_res->next && current_res->next->next) {
 340                        if (current_res->next->length > current_res->next->next->length) {
 341                                out_of_order++;
 342                                next_res = current_res->next;
 343                                current_res->next = current_res->next->next;
 344                                current_res = current_res->next;
 345                                next_res->next = current_res->next;
 346                                current_res->next = next_res;
 347                        } else
 348                                current_res = current_res->next;
 349                }
 350        }  /* End of out_of_order loop */
 351
 352        return 0;
 353}
 354
 355
 356/**
 357 * sort_by_max_size - sort nodes on the list by their length, largest first.
 358 * @head: list to sort
 359 */
 360static int sort_by_max_size(struct pci_resource **head)
 361{
 362        struct pci_resource *current_res;
 363        struct pci_resource *next_res;
 364        int out_of_order = 1;
 365
 366        if (!(*head))
 367                return 1;
 368
 369        if (!((*head)->next))
 370                return 0;
 371
 372        while (out_of_order) {
 373                out_of_order = 0;
 374
 375                /* Special case for swapping list head */
 376                if (((*head)->next) &&
 377                    ((*head)->length < (*head)->next->length)) {
 378                        out_of_order++;
 379                        current_res = *head;
 380                        *head = (*head)->next;
 381                        current_res->next = (*head)->next;
 382                        (*head)->next = current_res;
 383                }
 384
 385                current_res = *head;
 386
 387                while (current_res->next && current_res->next->next) {
 388                        if (current_res->next->length < current_res->next->next->length) {
 389                                out_of_order++;
 390                                next_res = current_res->next;
 391                                current_res->next = current_res->next->next;
 392                                current_res = current_res->next;
 393                                next_res->next = current_res->next;
 394                                current_res->next = next_res;
 395                        } else
 396                                current_res = current_res->next;
 397                }
 398        }  /* End of out_of_order loop */
 399
 400        return 0;
 401}
 402
 403
 404/**
 405 * do_pre_bridge_resource_split - find node of resources that are unused
 406 * @head: new list head
 407 * @orig_head: original list head
 408 * @alignment: max node size (?)
 409 */
 410static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 411                                struct pci_resource **orig_head, u32 alignment)
 412{
 413        struct pci_resource *prevnode = NULL;
 414        struct pci_resource *node;
 415        struct pci_resource *split_node;
 416        u32 rc;
 417        u32 temp_dword;
 418        dbg("do_pre_bridge_resource_split\n");
 419
 420        if (!(*head) || !(*orig_head))
 421                return NULL;
 422
 423        rc = cpqhp_resource_sort_and_combine(head);
 424
 425        if (rc)
 426                return NULL;
 427
 428        if ((*head)->base != (*orig_head)->base)
 429                return NULL;
 430
 431        if ((*head)->length == (*orig_head)->length)
 432                return NULL;
 433
 434
 435        /* If we got here, there the bridge requires some of the resource, but
 436         * we may be able to split some off of the front
 437         */
 438
 439        node = *head;
 440
 441        if (node->length & (alignment -1)) {
 442                /* this one isn't an aligned length, so we'll make a new entry
 443                 * and split it up.
 444                 */
 445                split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 446
 447                if (!split_node)
 448                        return NULL;
 449
 450                temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 451
 452                split_node->base = node->base;
 453                split_node->length = temp_dword;
 454
 455                node->length -= temp_dword;
 456                node->base += split_node->length;
 457
 458                /* Put it in the list */
 459                *head = split_node;
 460                split_node->next = node;
 461        }
 462
 463        if (node->length < alignment)
 464                return NULL;
 465
 466        /* Now unlink it */
 467        if (*head == node) {
 468                *head = node->next;
 469        } else {
 470                prevnode = *head;
 471                while (prevnode->next != node)
 472                        prevnode = prevnode->next;
 473
 474                prevnode->next = node->next;
 475        }
 476        node->next = NULL;
 477
 478        return node;
 479}
 480
 481
 482/**
 483 * do_bridge_resource_split - find one node of resources that aren't in use
 484 * @head: list head
 485 * @alignment: max node size (?)
 486 */
 487static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 488{
 489        struct pci_resource *prevnode = NULL;
 490        struct pci_resource *node;
 491        u32 rc;
 492        u32 temp_dword;
 493
 494        rc = cpqhp_resource_sort_and_combine(head);
 495
 496        if (rc)
 497                return NULL;
 498
 499        node = *head;
 500
 501        while (node->next) {
 502                prevnode = node;
 503                node = node->next;
 504                kfree(prevnode);
 505        }
 506
 507        if (node->length < alignment)
 508                goto error;
 509
 510        if (node->base & (alignment - 1)) {
 511                /* Short circuit if adjusted size is too small */
 512                temp_dword = (node->base | (alignment-1)) + 1;
 513                if ((node->length - (temp_dword - node->base)) < alignment)
 514                        goto error;
 515
 516                node->length -= (temp_dword - node->base);
 517                node->base = temp_dword;
 518        }
 519
 520        if (node->length & (alignment - 1))
 521                /* There's stuff in use after this node */
 522                goto error;
 523
 524        return node;
 525error:
 526        kfree(node);
 527        return NULL;
 528}
 529
 530
 531/**
 532 * get_io_resource - find first node of given size not in ISA aliasing window.
 533 * @head: list to search
 534 * @size: size of node to find, must be a power of two.
 535 *
 536 * Description: This function sorts the resource list by size and then returns
 537 * returns the first node of "size" length that is not in the ISA aliasing
 538 * window.  If it finds a node larger than "size" it will split it up.
 539 */
 540static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 541{
 542        struct pci_resource *prevnode;
 543        struct pci_resource *node;
 544        struct pci_resource *split_node;
 545        u32 temp_dword;
 546
 547        if (!(*head))
 548                return NULL;
 549
 550        if (cpqhp_resource_sort_and_combine(head))
 551                return NULL;
 552
 553        if (sort_by_size(head))
 554                return NULL;
 555
 556        for (node = *head; node; node = node->next) {
 557                if (node->length < size)
 558                        continue;
 559
 560                if (node->base & (size - 1)) {
 561                        /* this one isn't base aligned properly
 562                         * so we'll make a new entry and split it up
 563                         */
 564                        temp_dword = (node->base | (size-1)) + 1;
 565
 566                        /* Short circuit if adjusted size is too small */
 567                        if ((node->length - (temp_dword - node->base)) < size)
 568                                continue;
 569
 570                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 571
 572                        if (!split_node)
 573                                return NULL;
 574
 575                        split_node->base = node->base;
 576                        split_node->length = temp_dword - node->base;
 577                        node->base = temp_dword;
 578                        node->length -= split_node->length;
 579
 580                        /* Put it in the list */
 581                        split_node->next = node->next;
 582                        node->next = split_node;
 583                } /* End of non-aligned base */
 584
 585                /* Don't need to check if too small since we already did */
 586                if (node->length > size) {
 587                        /* this one is longer than we need
 588                         * so we'll make a new entry and split it up
 589                         */
 590                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 591
 592                        if (!split_node)
 593                                return NULL;
 594
 595                        split_node->base = node->base + size;
 596                        split_node->length = node->length - size;
 597                        node->length = size;
 598
 599                        /* Put it in the list */
 600                        split_node->next = node->next;
 601                        node->next = split_node;
 602                }  /* End of too big on top end */
 603
 604                /* For IO make sure it's not in the ISA aliasing space */
 605                if (node->base & 0x300L)
 606                        continue;
 607
 608                /* If we got here, then it is the right size
 609                 * Now take it out of the list and break
 610                 */
 611                if (*head == node) {
 612                        *head = node->next;
 613                } else {
 614                        prevnode = *head;
 615                        while (prevnode->next != node)
 616                                prevnode = prevnode->next;
 617
 618                        prevnode->next = node->next;
 619                }
 620                node->next = NULL;
 621                break;
 622        }
 623
 624        return node;
 625}
 626
 627
 628/**
 629 * get_max_resource - get largest node which has at least the given size.
 630 * @head: the list to search the node in
 631 * @size: the minimum size of the node to find
 632 *
 633 * Description: Gets the largest node that is at least "size" big from the
 634 * list pointed to by head.  It aligns the node on top and bottom
 635 * to "size" alignment before returning it.
 636 */
 637static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 638{
 639        struct pci_resource *max;
 640        struct pci_resource *temp;
 641        struct pci_resource *split_node;
 642        u32 temp_dword;
 643
 644        if (cpqhp_resource_sort_and_combine(head))
 645                return NULL;
 646
 647        if (sort_by_max_size(head))
 648                return NULL;
 649
 650        for (max = *head; max; max = max->next) {
 651                /* If not big enough we could probably just bail,
 652                 * instead we'll continue to the next.
 653                 */
 654                if (max->length < size)
 655                        continue;
 656
 657                if (max->base & (size - 1)) {
 658                        /* this one isn't base aligned properly
 659                         * so we'll make a new entry and split it up
 660                         */
 661                        temp_dword = (max->base | (size-1)) + 1;
 662
 663                        /* Short circuit if adjusted size is too small */
 664                        if ((max->length - (temp_dword - max->base)) < size)
 665                                continue;
 666
 667                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 668
 669                        if (!split_node)
 670                                return NULL;
 671
 672                        split_node->base = max->base;
 673                        split_node->length = temp_dword - max->base;
 674                        max->base = temp_dword;
 675                        max->length -= split_node->length;
 676
 677                        split_node->next = max->next;
 678                        max->next = split_node;
 679                }
 680
 681                if ((max->base + max->length) & (size - 1)) {
 682                        /* this one isn't end aligned properly at the top
 683                         * so we'll make a new entry and split it up
 684                         */
 685                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 686
 687                        if (!split_node)
 688                                return NULL;
 689                        temp_dword = ((max->base + max->length) & ~(size - 1));
 690                        split_node->base = temp_dword;
 691                        split_node->length = max->length + max->base
 692                                             - split_node->base;
 693                        max->length -= split_node->length;
 694
 695                        split_node->next = max->next;
 696                        max->next = split_node;
 697                }
 698
 699                /* Make sure it didn't shrink too much when we aligned it */
 700                if (max->length < size)
 701                        continue;
 702
 703                /* Now take it out of the list */
 704                temp = *head;
 705                if (temp == max) {
 706                        *head = max->next;
 707                } else {
 708                        while (temp && temp->next != max) {
 709                                temp = temp->next;
 710                        }
 711
 712                        temp->next = max->next;
 713                }
 714
 715                max->next = NULL;
 716                break;
 717        }
 718
 719        return max;
 720}
 721
 722
 723/**
 724 * get_resource - find resource of given size and split up larger ones.
 725 * @head: the list to search for resources
 726 * @size: the size limit to use
 727 *
 728 * Description: This function sorts the resource list by size and then
 729 * returns the first node of "size" length.  If it finds a node
 730 * larger than "size" it will split it up.
 731 *
 732 * size must be a power of two.
 733 */
 734static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 735{
 736        struct pci_resource *prevnode;
 737        struct pci_resource *node;
 738        struct pci_resource *split_node;
 739        u32 temp_dword;
 740
 741        if (cpqhp_resource_sort_and_combine(head))
 742                return NULL;
 743
 744        if (sort_by_size(head))
 745                return NULL;
 746
 747        for (node = *head; node; node = node->next) {
 748                dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 749                    __func__, size, node, node->base, node->length);
 750                if (node->length < size)
 751                        continue;
 752
 753                if (node->base & (size - 1)) {
 754                        dbg("%s: not aligned\n", __func__);
 755                        /* this one isn't base aligned properly
 756                         * so we'll make a new entry and split it up
 757                         */
 758                        temp_dword = (node->base | (size-1)) + 1;
 759
 760                        /* Short circuit if adjusted size is too small */
 761                        if ((node->length - (temp_dword - node->base)) < size)
 762                                continue;
 763
 764                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 765
 766                        if (!split_node)
 767                                return NULL;
 768
 769                        split_node->base = node->base;
 770                        split_node->length = temp_dword - node->base;
 771                        node->base = temp_dword;
 772                        node->length -= split_node->length;
 773
 774                        split_node->next = node->next;
 775                        node->next = split_node;
 776                } /* End of non-aligned base */
 777
 778                /* Don't need to check if too small since we already did */
 779                if (node->length > size) {
 780                        dbg("%s: too big\n", __func__);
 781                        /* this one is longer than we need
 782                         * so we'll make a new entry and split it up
 783                         */
 784                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 785
 786                        if (!split_node)
 787                                return NULL;
 788
 789                        split_node->base = node->base + size;
 790                        split_node->length = node->length - size;
 791                        node->length = size;
 792
 793                        /* Put it in the list */
 794                        split_node->next = node->next;
 795                        node->next = split_node;
 796                }  /* End of too big on top end */
 797
 798                dbg("%s: got one!!!\n", __func__);
 799                /* If we got here, then it is the right size
 800                 * Now take it out of the list */
 801                if (*head == node) {
 802                        *head = node->next;
 803                } else {
 804                        prevnode = *head;
 805                        while (prevnode->next != node)
 806                                prevnode = prevnode->next;
 807
 808                        prevnode->next = node->next;
 809                }
 810                node->next = NULL;
 811                break;
 812        }
 813        return node;
 814}
 815
 816
 817/**
 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 819 * @head: the list to sort and clean up
 820 *
 821 * Description: Sorts all of the nodes in the list in ascending order by
 822 * their base addresses.  Also does garbage collection by
 823 * combining adjacent nodes.
 824 *
 825 * Returns %0 if success.
 826 */
 827int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 828{
 829        struct pci_resource *node1;
 830        struct pci_resource *node2;
 831        int out_of_order = 1;
 832
 833        dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 834
 835        if (!(*head))
 836                return 1;
 837
 838        dbg("*head->next = %p\n",(*head)->next);
 839
 840        if (!(*head)->next)
 841                return 0;       /* only one item on the list, already sorted! */
 842
 843        dbg("*head->base = 0x%x\n",(*head)->base);
 844        dbg("*head->next->base = 0x%x\n",(*head)->next->base);
 845        while (out_of_order) {
 846                out_of_order = 0;
 847
 848                /* Special case for swapping list head */
 849                if (((*head)->next) &&
 850                    ((*head)->base > (*head)->next->base)) {
 851                        node1 = *head;
 852                        (*head) = (*head)->next;
 853                        node1->next = (*head)->next;
 854                        (*head)->next = node1;
 855                        out_of_order++;
 856                }
 857
 858                node1 = (*head);
 859
 860                while (node1->next && node1->next->next) {
 861                        if (node1->next->base > node1->next->next->base) {
 862                                out_of_order++;
 863                                node2 = node1->next;
 864                                node1->next = node1->next->next;
 865                                node1 = node1->next;
 866                                node2->next = node1->next;
 867                                node1->next = node2;
 868                        } else
 869                                node1 = node1->next;
 870                }
 871        }  /* End of out_of_order loop */
 872
 873        node1 = *head;
 874
 875        while (node1 && node1->next) {
 876                if ((node1->base + node1->length) == node1->next->base) {
 877                        /* Combine */
 878                        dbg("8..\n");
 879                        node1->length += node1->next->length;
 880                        node2 = node1->next;
 881                        node1->next = node1->next->next;
 882                        kfree(node2);
 883                } else
 884                        node1 = node1->next;
 885        }
 886
 887        return 0;
 888}
 889
 890
 891irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 892{
 893        struct controller *ctrl = data;
 894        u8 schedule_flag = 0;
 895        u8 reset;
 896        u16 misc;
 897        u32 Diff;
 898        u32 temp_dword;
 899
 900
 901        misc = readw(ctrl->hpc_reg + MISC);
 902        /*
 903         * Check to see if it was our interrupt
 904         */
 905        if (!(misc & 0x000C)) {
 906                return IRQ_NONE;
 907        }
 908
 909        if (misc & 0x0004) {
 910                /*
 911                 * Serial Output interrupt Pending
 912                 */
 913
 914                /* Clear the interrupt */
 915                misc |= 0x0004;
 916                writew(misc, ctrl->hpc_reg + MISC);
 917
 918                /* Read to clear posted writes */
 919                misc = readw(ctrl->hpc_reg + MISC);
 920
 921                dbg ("%s - waking up\n", __func__);
 922                wake_up_interruptible(&ctrl->queue);
 923        }
 924
 925        if (misc & 0x0008) {
 926                /* General-interrupt-input interrupt Pending */
 927                Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 928
 929                ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 930
 931                /* Clear the interrupt */
 932                writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 933
 934                /* Read it back to clear any posted writes */
 935                temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 936
 937                if (!Diff)
 938                        /* Clear all interrupts */
 939                        writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 940
 941                schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 942                schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 943                schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 944        }
 945
 946        reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 947        if (reset & 0x40) {
 948                /* Bus reset has completed */
 949                reset &= 0xCF;
 950                writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 951                reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 952                wake_up_interruptible(&ctrl->queue);
 953        }
 954
 955        if (schedule_flag) {
 956                wake_up_process(cpqhp_event_thread);
 957                dbg("Waking even thread");
 958        }
 959        return IRQ_HANDLED;
 960}
 961
 962
 963/**
 964 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 965 * @busnumber: bus where new node is to be located
 966 *
 967 * Returns pointer to the new node or %NULL if unsuccessful.
 968 */
 969struct pci_func *cpqhp_slot_create(u8 busnumber)
 970{
 971        struct pci_func *new_slot;
 972        struct pci_func *next;
 973
 974        new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 975        if (new_slot == NULL)
 976                return new_slot;
 977
 978        new_slot->next = NULL;
 979        new_slot->configured = 1;
 980
 981        if (cpqhp_slot_list[busnumber] == NULL) {
 982                cpqhp_slot_list[busnumber] = new_slot;
 983        } else {
 984                next = cpqhp_slot_list[busnumber];
 985                while (next->next != NULL)
 986                        next = next->next;
 987                next->next = new_slot;
 988        }
 989        return new_slot;
 990}
 991
 992
 993/**
 994 * slot_remove - Removes a node from the linked list of slots.
 995 * @old_slot: slot to remove
 996 *
 997 * Returns %0 if successful, !0 otherwise.
 998 */
 999static int slot_remove(struct pci_func * old_slot)
1000{
1001        struct pci_func *next;
1002
1003        if (old_slot == NULL)
1004                return 1;
1005
1006        next = cpqhp_slot_list[old_slot->bus];
1007        if (next == NULL)
1008                return 1;
1009
1010        if (next == old_slot) {
1011                cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012                cpqhp_destroy_board_resources(old_slot);
1013                kfree(old_slot);
1014                return 0;
1015        }
1016
1017        while ((next->next != old_slot) && (next->next != NULL))
1018                next = next->next;
1019
1020        if (next->next == old_slot) {
1021                next->next = old_slot->next;
1022                cpqhp_destroy_board_resources(old_slot);
1023                kfree(old_slot);
1024                return 0;
1025        } else
1026                return 2;
1027}
1028
1029
1030/**
1031 * bridge_slot_remove - Removes a node from the linked list of slots.
1032 * @bridge: bridge to remove
1033 *
1034 * Returns %0 if successful, !0 otherwise.
1035 */
1036static int bridge_slot_remove(struct pci_func *bridge)
1037{
1038        u8 subordinateBus, secondaryBus;
1039        u8 tempBus;
1040        struct pci_func *next;
1041
1042        secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043        subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044
1045        for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046                next = cpqhp_slot_list[tempBus];
1047
1048                while (!slot_remove(next))
1049                        next = cpqhp_slot_list[tempBus];
1050        }
1051
1052        next = cpqhp_slot_list[bridge->bus];
1053
1054        if (next == NULL)
1055                return 1;
1056
1057        if (next == bridge) {
1058                cpqhp_slot_list[bridge->bus] = bridge->next;
1059                goto out;
1060        }
1061
1062        while ((next->next != bridge) && (next->next != NULL))
1063                next = next->next;
1064
1065        if (next->next != bridge)
1066                return 2;
1067        next->next = bridge->next;
1068out:
1069        kfree(bridge);
1070        return 0;
1071}
1072
1073
1074/**
1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @bus: bus to find
1077 * @device: device to find
1078 * @index: is %0 for first function found, %1 for the second...
1079 *
1080 * Returns pointer to the node if successful, %NULL otherwise.
1081 */
1082struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083{
1084        int found = -1;
1085        struct pci_func *func;
1086
1087        func = cpqhp_slot_list[bus];
1088
1089        if ((func == NULL) || ((func->device == device) && (index == 0)))
1090                return func;
1091
1092        if (func->device == device)
1093                found++;
1094
1095        while (func->next != NULL) {
1096                func = func->next;
1097
1098                if (func->device == device)
1099                        found++;
1100
1101                if (found == index)
1102                        return func;
1103        }
1104
1105        return NULL;
1106}
1107
1108
1109/* DJZ: I don't think is_bridge will work as is.
1110 * FIXME */
1111static int is_bridge(struct pci_func * func)
1112{
1113        /* Check the header type */
1114        if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115                return 1;
1116        else
1117                return 0;
1118}
1119
1120
1121/**
1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123 * @ctrl: controller to change frequency/mode for.
1124 * @adapter_speed: the speed of the adapter we want to match.
1125 * @hp_slot: the slot number where the adapter is installed.
1126 *
1127 * Returns %0 if we successfully change frequency and/or mode to match the
1128 * adapter speed.
1129 */
1130static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131{
1132        struct slot *slot;
1133        struct pci_bus *bus = ctrl->pci_bus;
1134        u8 reg;
1135        u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136        u16 reg16;
1137        u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1138
1139        if (bus->cur_bus_speed == adapter_speed)
1140                return 0;
1141
1142        /* We don't allow freq/mode changes if we find another adapter running
1143         * in another slot on this controller
1144         */
1145        for(slot = ctrl->slot; slot; slot = slot->next) {
1146                if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147                        continue;
1148                if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149                        continue;
1150                if (slot->hotplug_slot->info->adapter_status == 0)
1151                        continue;
1152                /* If another adapter is running on the same segment but at a
1153                 * lower speed/mode, we allow the new adapter to function at
1154                 * this rate if supported
1155                 */
1156                if (bus->cur_bus_speed < adapter_speed)
1157                        return 0;
1158
1159                return 1;
1160        }
1161
1162        /* If the controller doesn't support freq/mode changes and the
1163         * controller is running at a higher mode, we bail
1164         */
1165        if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166                return 1;
1167
1168        /* But we allow the adapter to run at a lower rate if possible */
1169        if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170                return 0;
1171
1172        /* We try to set the max speed supported by both the adapter and
1173         * controller
1174         */
1175        if (bus->max_bus_speed < adapter_speed) {
1176                if (bus->cur_bus_speed == bus->max_bus_speed)
1177                        return 0;
1178                adapter_speed = bus->max_bus_speed;
1179        }
1180
1181        writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182        writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1183
1184        set_SOGO(ctrl);
1185        wait_for_ctrl_irq(ctrl);
1186
1187        if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188                reg = 0xF5;
1189        else
1190                reg = 0xF4;
1191        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1192
1193        reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194        reg16 &= ~0x000F;
1195        switch(adapter_speed) {
1196                case(PCI_SPEED_133MHz_PCIX):
1197                        reg = 0x75;
1198                        reg16 |= 0xB;
1199                        break;
1200                case(PCI_SPEED_100MHz_PCIX):
1201                        reg = 0x74;
1202                        reg16 |= 0xA;
1203                        break;
1204                case(PCI_SPEED_66MHz_PCIX):
1205                        reg = 0x73;
1206                        reg16 |= 0x9;
1207                        break;
1208                case(PCI_SPEED_66MHz):
1209                        reg = 0x73;
1210                        reg16 |= 0x1;
1211                        break;
1212                default: /* 33MHz PCI 2.2 */
1213                        reg = 0x71;
1214                        break;
1215
1216        }
1217        reg16 |= 0xB << 12;
1218        writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1219
1220        mdelay(5);
1221
1222        /* Reenable interrupts */
1223        writel(0, ctrl->hpc_reg + INT_MASK);
1224
1225        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1226
1227        /* Restart state machine */
1228        reg = ~0xF;
1229        pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230        pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1231
1232        /* Only if mode change...*/
1233        if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234                ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
1235                        set_SOGO(ctrl);
1236
1237        wait_for_ctrl_irq(ctrl);
1238        mdelay(1100);
1239
1240        /* Restore LED/Slot state */
1241        writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242        writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1243
1244        set_SOGO(ctrl);
1245        wait_for_ctrl_irq(ctrl);
1246
1247        bus->cur_bus_speed = adapter_speed;
1248        slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1249
1250        info("Successfully changed frequency/mode for adapter in slot %d\n",
1251                        slot->number);
1252        return 0;
1253}
1254
1255/* the following routines constitute the bulk of the
1256 * hotplug controller logic
1257 */
1258
1259
1260/**
1261 * board_replaced - Called after a board has been replaced in the system.
1262 * @func: PCI device/function information
1263 * @ctrl: hotplug controller
1264 *
1265 * This is only used if we don't have resources for hot add.
1266 * Turns power on for the board.
1267 * Checks to see if board is the same.
1268 * If board is same, reconfigures it.
1269 * If board isn't same, turns it back off.
1270 */
1271static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1272{
1273        struct pci_bus *bus = ctrl->pci_bus;
1274        u8 hp_slot;
1275        u8 temp_byte;
1276        u8 adapter_speed;
1277        u32 rc = 0;
1278
1279        hp_slot = func->device - ctrl->slot_device_offset;
1280
1281        /*
1282         * The switch is open.
1283         */
1284        if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1285                rc = INTERLOCK_OPEN;
1286        /*
1287         * The board is already on
1288         */
1289        else if (is_slot_enabled (ctrl, hp_slot))
1290                rc = CARD_FUNCTIONING;
1291        else {
1292                mutex_lock(&ctrl->crit_sect);
1293
1294                /* turn on board without attaching to the bus */
1295                enable_slot_power (ctrl, hp_slot);
1296
1297                set_SOGO(ctrl);
1298
1299                /* Wait for SOBS to be unset */
1300                wait_for_ctrl_irq (ctrl);
1301
1302                /* Change bits in slot power register to force another shift out
1303                 * NOTE: this is to work around the timer bug */
1304                temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1305                writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1306                writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1307
1308                set_SOGO(ctrl);
1309
1310                /* Wait for SOBS to be unset */
1311                wait_for_ctrl_irq (ctrl);
1312
1313                adapter_speed = get_adapter_speed(ctrl, hp_slot);
1314                if (bus->cur_bus_speed != adapter_speed)
1315                        if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1316                                rc = WRONG_BUS_FREQUENCY;
1317
1318                /* turn off board without attaching to the bus */
1319                disable_slot_power (ctrl, hp_slot);
1320
1321                set_SOGO(ctrl);
1322
1323                /* Wait for SOBS to be unset */
1324                wait_for_ctrl_irq (ctrl);
1325
1326                mutex_unlock(&ctrl->crit_sect);
1327
1328                if (rc)
1329                        return rc;
1330
1331                mutex_lock(&ctrl->crit_sect);
1332
1333                slot_enable (ctrl, hp_slot);
1334                green_LED_blink (ctrl, hp_slot);
1335
1336                amber_LED_off (ctrl, hp_slot);
1337
1338                set_SOGO(ctrl);
1339
1340                /* Wait for SOBS to be unset */
1341                wait_for_ctrl_irq (ctrl);
1342
1343                mutex_unlock(&ctrl->crit_sect);
1344
1345                /* Wait for ~1 second because of hot plug spec */
1346                long_delay(1*HZ);
1347
1348                /* Check for a power fault */
1349                if (func->status == 0xFF) {
1350                        /* power fault occurred, but it was benign */
1351                        rc = POWER_FAILURE;
1352                        func->status = 0;
1353                } else
1354                        rc = cpqhp_valid_replace(ctrl, func);
1355
1356                if (!rc) {
1357                        /* It must be the same board */
1358
1359                        rc = cpqhp_configure_board(ctrl, func);
1360
1361                        /* If configuration fails, turn it off
1362                         * Get slot won't work for devices behind
1363                         * bridges, but in this case it will always be
1364                         * called for the "base" bus/dev/func of an
1365                         * adapter.
1366                         */
1367
1368                        mutex_lock(&ctrl->crit_sect);
1369
1370                        amber_LED_on (ctrl, hp_slot);
1371                        green_LED_off (ctrl, hp_slot);
1372                        slot_disable (ctrl, hp_slot);
1373
1374                        set_SOGO(ctrl);
1375
1376                        /* Wait for SOBS to be unset */
1377                        wait_for_ctrl_irq (ctrl);
1378
1379                        mutex_unlock(&ctrl->crit_sect);
1380
1381                        if (rc)
1382                                return rc;
1383                        else
1384                                return 1;
1385
1386                } else {
1387                        /* Something is wrong
1388
1389                         * Get slot won't work for devices behind bridges, but
1390                         * in this case it will always be called for the "base"
1391                         * bus/dev/func of an adapter.
1392                         */
1393
1394                        mutex_lock(&ctrl->crit_sect);
1395
1396                        amber_LED_on (ctrl, hp_slot);
1397                        green_LED_off (ctrl, hp_slot);
1398                        slot_disable (ctrl, hp_slot);
1399
1400                        set_SOGO(ctrl);
1401
1402                        /* Wait for SOBS to be unset */
1403                        wait_for_ctrl_irq (ctrl);
1404
1405                        mutex_unlock(&ctrl->crit_sect);
1406                }
1407
1408        }
1409        return rc;
1410
1411}
1412
1413
1414/**
1415 * board_added - Called after a board has been added to the system.
1416 * @func: PCI device/function info
1417 * @ctrl: hotplug controller
1418 *
1419 * Turns power on for the board.
1420 * Configures board.
1421 */
1422static u32 board_added(struct pci_func *func, struct controller *ctrl)
1423{
1424        u8 hp_slot;
1425        u8 temp_byte;
1426        u8 adapter_speed;
1427        int index;
1428        u32 temp_register = 0xFFFFFFFF;
1429        u32 rc = 0;
1430        struct pci_func *new_slot = NULL;
1431        struct pci_bus *bus = ctrl->pci_bus;
1432        struct slot *p_slot;
1433        struct resource_lists res_lists;
1434
1435        hp_slot = func->device - ctrl->slot_device_offset;
1436        dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1437            __func__, func->device, ctrl->slot_device_offset, hp_slot);
1438
1439        mutex_lock(&ctrl->crit_sect);
1440
1441        /* turn on board without attaching to the bus */
1442        enable_slot_power(ctrl, hp_slot);
1443
1444        set_SOGO(ctrl);
1445
1446        /* Wait for SOBS to be unset */
1447        wait_for_ctrl_irq (ctrl);
1448
1449        /* Change bits in slot power register to force another shift out
1450         * NOTE: this is to work around the timer bug
1451         */
1452        temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453        writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454        writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1455
1456        set_SOGO(ctrl);
1457
1458        /* Wait for SOBS to be unset */
1459        wait_for_ctrl_irq (ctrl);
1460
1461        adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462        if (bus->cur_bus_speed != adapter_speed)
1463                if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464                        rc = WRONG_BUS_FREQUENCY;
1465
1466        /* turn off board without attaching to the bus */
1467        disable_slot_power (ctrl, hp_slot);
1468
1469        set_SOGO(ctrl);
1470
1471        /* Wait for SOBS to be unset */
1472        wait_for_ctrl_irq(ctrl);
1473
1474        mutex_unlock(&ctrl->crit_sect);
1475
1476        if (rc)
1477                return rc;
1478
1479        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1480
1481        /* turn on board and blink green LED */
1482
1483        dbg("%s: before down\n", __func__);
1484        mutex_lock(&ctrl->crit_sect);
1485        dbg("%s: after down\n", __func__);
1486
1487        dbg("%s: before slot_enable\n", __func__);
1488        slot_enable (ctrl, hp_slot);
1489
1490        dbg("%s: before green_LED_blink\n", __func__);
1491        green_LED_blink (ctrl, hp_slot);
1492
1493        dbg("%s: before amber_LED_blink\n", __func__);
1494        amber_LED_off (ctrl, hp_slot);
1495
1496        dbg("%s: before set_SOGO\n", __func__);
1497        set_SOGO(ctrl);
1498
1499        /* Wait for SOBS to be unset */
1500        dbg("%s: before wait_for_ctrl_irq\n", __func__);
1501        wait_for_ctrl_irq (ctrl);
1502        dbg("%s: after wait_for_ctrl_irq\n", __func__);
1503
1504        dbg("%s: before up\n", __func__);
1505        mutex_unlock(&ctrl->crit_sect);
1506        dbg("%s: after up\n", __func__);
1507
1508        /* Wait for ~1 second because of hot plug spec */
1509        dbg("%s: before long_delay\n", __func__);
1510        long_delay(1*HZ);
1511        dbg("%s: after long_delay\n", __func__);
1512
1513        dbg("%s: func status = %x\n", __func__, func->status);
1514        /* Check for a power fault */
1515        if (func->status == 0xFF) {
1516                /* power fault occurred, but it was benign */
1517                temp_register = 0xFFFFFFFF;
1518                dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1519                rc = POWER_FAILURE;
1520                func->status = 0;
1521        } else {
1522                /* Get vendor/device ID u32 */
1523                ctrl->pci_bus->number = func->bus;
1524                rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525                dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1526                dbg("%s: temp_register is %x\n", __func__, temp_register);
1527
1528                if (rc != 0) {
1529                        /* Something's wrong here */
1530                        temp_register = 0xFFFFFFFF;
1531                        dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1532                }
1533                /* Preset return code.  It will be changed later if things go okay. */
1534                rc = NO_ADAPTER_PRESENT;
1535        }
1536
1537        /* All F's is an empty slot or an invalid board */
1538        if (temp_register != 0xFFFFFFFF) {
1539                res_lists.io_head = ctrl->io_head;
1540                res_lists.mem_head = ctrl->mem_head;
1541                res_lists.p_mem_head = ctrl->p_mem_head;
1542                res_lists.bus_head = ctrl->bus_head;
1543                res_lists.irqs = NULL;
1544
1545                rc = configure_new_device(ctrl, func, 0, &res_lists);
1546
1547                dbg("%s: back from configure_new_device\n", __func__);
1548                ctrl->io_head = res_lists.io_head;
1549                ctrl->mem_head = res_lists.mem_head;
1550                ctrl->p_mem_head = res_lists.p_mem_head;
1551                ctrl->bus_head = res_lists.bus_head;
1552
1553                cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554                cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555                cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556                cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1557
1558                if (rc) {
1559                        mutex_lock(&ctrl->crit_sect);
1560
1561                        amber_LED_on (ctrl, hp_slot);
1562                        green_LED_off (ctrl, hp_slot);
1563                        slot_disable (ctrl, hp_slot);
1564
1565                        set_SOGO(ctrl);
1566
1567                        /* Wait for SOBS to be unset */
1568                        wait_for_ctrl_irq (ctrl);
1569
1570                        mutex_unlock(&ctrl->crit_sect);
1571                        return rc;
1572                } else {
1573                        cpqhp_save_slot_config(ctrl, func);
1574                }
1575
1576
1577                func->status = 0;
1578                func->switch_save = 0x10;
1579                func->is_a_board = 0x01;
1580
1581                /* next, we will instantiate the linux pci_dev structures (with
1582                 * appropriate driver notification, if already present) */
1583                dbg("%s: configure linux pci_dev structure\n", __func__);
1584                index = 0;
1585                do {
1586                        new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587                        if (new_slot && !new_slot->pci_dev)
1588                                cpqhp_configure_device(ctrl, new_slot);
1589                } while (new_slot);
1590
1591                mutex_lock(&ctrl->crit_sect);
1592
1593                green_LED_on (ctrl, hp_slot);
1594
1595                set_SOGO(ctrl);
1596
1597                /* Wait for SOBS to be unset */
1598                wait_for_ctrl_irq (ctrl);
1599
1600                mutex_unlock(&ctrl->crit_sect);
1601        } else {
1602                mutex_lock(&ctrl->crit_sect);
1603
1604                amber_LED_on (ctrl, hp_slot);
1605                green_LED_off (ctrl, hp_slot);
1606                slot_disable (ctrl, hp_slot);
1607
1608                set_SOGO(ctrl);
1609
1610                /* Wait for SOBS to be unset */
1611                wait_for_ctrl_irq (ctrl);
1612
1613                mutex_unlock(&ctrl->crit_sect);
1614
1615                return rc;
1616        }
1617        return 0;
1618}
1619
1620
1621/**
1622 * remove_board - Turns off slot and LEDs
1623 * @func: PCI device/function info
1624 * @replace_flag: whether replacing or adding a new device
1625 * @ctrl: target controller
1626 */
1627static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1628{
1629        int index;
1630        u8 skip = 0;
1631        u8 device;
1632        u8 hp_slot;
1633        u8 temp_byte;
1634        u32 rc;
1635        struct resource_lists res_lists;
1636        struct pci_func *temp_func;
1637
1638        if (cpqhp_unconfigure_device(func))
1639                return 1;
1640
1641        device = func->device;
1642
1643        hp_slot = func->device - ctrl->slot_device_offset;
1644        dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1645
1646        /* When we get here, it is safe to change base address registers.
1647         * We will attempt to save the base address register lengths */
1648        if (replace_flag || !ctrl->add_support)
1649                rc = cpqhp_save_base_addr_length(ctrl, func);
1650        else if (!func->bus_head && !func->mem_head &&
1651                 !func->p_mem_head && !func->io_head) {
1652                /* Here we check to see if we've saved any of the board's
1653                 * resources already.  If so, we'll skip the attempt to
1654                 * determine what's being used. */
1655                index = 0;
1656                temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1657                while (temp_func) {
1658                        if (temp_func->bus_head || temp_func->mem_head
1659                            || temp_func->p_mem_head || temp_func->io_head) {
1660                                skip = 1;
1661                                break;
1662                        }
1663                        temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1664                }
1665
1666                if (!skip)
1667                        rc = cpqhp_save_used_resources(ctrl, func);
1668        }
1669        /* Change status to shutdown */
1670        if (func->is_a_board)
1671                func->status = 0x01;
1672        func->configured = 0;
1673
1674        mutex_lock(&ctrl->crit_sect);
1675
1676        green_LED_off (ctrl, hp_slot);
1677        slot_disable (ctrl, hp_slot);
1678
1679        set_SOGO(ctrl);
1680
1681        /* turn off SERR for slot */
1682        temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1683        temp_byte &= ~(0x01 << hp_slot);
1684        writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1685
1686        /* Wait for SOBS to be unset */
1687        wait_for_ctrl_irq (ctrl);
1688
1689        mutex_unlock(&ctrl->crit_sect);
1690
1691        if (!replace_flag && ctrl->add_support) {
1692                while (func) {
1693                        res_lists.io_head = ctrl->io_head;
1694                        res_lists.mem_head = ctrl->mem_head;
1695                        res_lists.p_mem_head = ctrl->p_mem_head;
1696                        res_lists.bus_head = ctrl->bus_head;
1697
1698                        cpqhp_return_board_resources(func, &res_lists);
1699
1700                        ctrl->io_head = res_lists.io_head;
1701                        ctrl->mem_head = res_lists.mem_head;
1702                        ctrl->p_mem_head = res_lists.p_mem_head;
1703                        ctrl->bus_head = res_lists.bus_head;
1704
1705                        cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1706                        cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1707                        cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1708                        cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1709
1710                        if (is_bridge(func)) {
1711                                bridge_slot_remove(func);
1712                        } else
1713                                slot_remove(func);
1714
1715                        func = cpqhp_slot_find(ctrl->bus, device, 0);
1716                }
1717
1718                /* Setup slot structure with entry for empty slot */
1719                func = cpqhp_slot_create(ctrl->bus);
1720
1721                if (func == NULL)
1722                        return 1;
1723
1724                func->bus = ctrl->bus;
1725                func->device = device;
1726                func->function = 0;
1727                func->configured = 0;
1728                func->switch_save = 0x10;
1729                func->is_a_board = 0;
1730                func->p_task_event = NULL;
1731        }
1732
1733        return 0;
1734}
1735
1736static void pushbutton_helper_thread(unsigned long data)
1737{
1738        pushbutton_pending = data;
1739        wake_up_process(cpqhp_event_thread);
1740}
1741
1742
1743/* this is the main worker thread */
1744static int event_thread(void* data)
1745{
1746        struct controller *ctrl;
1747
1748        while (1) {
1749                dbg("!!!!event_thread sleeping\n");
1750                set_current_state(TASK_INTERRUPTIBLE);
1751                schedule();
1752
1753                if (kthread_should_stop())
1754                        break;
1755                /* Do stuff here */
1756                if (pushbutton_pending)
1757                        cpqhp_pushbutton_thread(pushbutton_pending);
1758                else
1759                        for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1760                                interrupt_event_handler(ctrl);
1761        }
1762        dbg("event_thread signals exit\n");
1763        return 0;
1764}
1765
1766int cpqhp_event_start_thread(void)
1767{
1768        cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1769        if (IS_ERR(cpqhp_event_thread)) {
1770                err ("Can't start up our event thread\n");
1771                return PTR_ERR(cpqhp_event_thread);
1772        }
1773
1774        return 0;
1775}
1776
1777
1778void cpqhp_event_stop_thread(void)
1779{
1780        kthread_stop(cpqhp_event_thread);
1781}
1782
1783
1784static int update_slot_info(struct controller *ctrl, struct slot *slot)
1785{
1786        struct hotplug_slot_info *info;
1787        int result;
1788
1789        info = kmalloc(sizeof(*info), GFP_KERNEL);
1790        if (!info)
1791                return -ENOMEM;
1792
1793        info->power_status = get_slot_enabled(ctrl, slot);
1794        info->attention_status = cpq_get_attention_status(ctrl, slot);
1795        info->latch_status = cpq_get_latch_status(ctrl, slot);
1796        info->adapter_status = get_presence_status(ctrl, slot);
1797        result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1798        kfree (info);
1799        return result;
1800}
1801
1802static void interrupt_event_handler(struct controller *ctrl)
1803{
1804        int loop = 0;
1805        int change = 1;
1806        struct pci_func *func;
1807        u8 hp_slot;
1808        struct slot *p_slot;
1809
1810        while (change) {
1811                change = 0;
1812
1813                for (loop = 0; loop < 10; loop++) {
1814                        /* dbg("loop %d\n", loop); */
1815                        if (ctrl->event_queue[loop].event_type != 0) {
1816                                hp_slot = ctrl->event_queue[loop].hp_slot;
1817
1818                                func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1819                                if (!func)
1820                                        return;
1821
1822                                p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1823                                if (!p_slot)
1824                                        return;
1825
1826                                dbg("hp_slot %d, func %p, p_slot %p\n",
1827                                    hp_slot, func, p_slot);
1828
1829                                if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1830                                        dbg("button pressed\n");
1831                                } else if (ctrl->event_queue[loop].event_type == 
1832                                           INT_BUTTON_CANCEL) {
1833                                        dbg("button cancel\n");
1834                                        del_timer(&p_slot->task_event);
1835
1836                                        mutex_lock(&ctrl->crit_sect);
1837
1838                                        if (p_slot->state == BLINKINGOFF_STATE) {
1839                                                /* slot is on */
1840                                                dbg("turn on green LED\n");
1841                                                green_LED_on (ctrl, hp_slot);
1842                                        } else if (p_slot->state == BLINKINGON_STATE) {
1843                                                /* slot is off */
1844                                                dbg("turn off green LED\n");
1845                                                green_LED_off (ctrl, hp_slot);
1846                                        }
1847
1848                                        info(msg_button_cancel, p_slot->number);
1849
1850                                        p_slot->state = STATIC_STATE;
1851
1852                                        amber_LED_off (ctrl, hp_slot);
1853
1854                                        set_SOGO(ctrl);
1855
1856                                        /* Wait for SOBS to be unset */
1857                                        wait_for_ctrl_irq (ctrl);
1858
1859                                        mutex_unlock(&ctrl->crit_sect);
1860                                }
1861                                /*** button Released (No action on press...) */
1862                                else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1863                                        dbg("button release\n");
1864
1865                                        if (is_slot_enabled (ctrl, hp_slot)) {
1866                                                dbg("slot is on\n");
1867                                                p_slot->state = BLINKINGOFF_STATE;
1868                                                info(msg_button_off, p_slot->number);
1869                                        } else {
1870                                                dbg("slot is off\n");
1871                                                p_slot->state = BLINKINGON_STATE;
1872                                                info(msg_button_on, p_slot->number);
1873                                        }
1874                                        mutex_lock(&ctrl->crit_sect);
1875
1876                                        dbg("blink green LED and turn off amber\n");
1877
1878                                        amber_LED_off (ctrl, hp_slot);
1879                                        green_LED_blink (ctrl, hp_slot);
1880
1881                                        set_SOGO(ctrl);
1882
1883                                        /* Wait for SOBS to be unset */
1884                                        wait_for_ctrl_irq (ctrl);
1885
1886                                        mutex_unlock(&ctrl->crit_sect);
1887                                        init_timer(&p_slot->task_event);
1888                                        p_slot->hp_slot = hp_slot;
1889                                        p_slot->ctrl = ctrl;
1890/*                                      p_slot->physical_slot = physical_slot; */
1891                                        p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1892                                        p_slot->task_event.function = pushbutton_helper_thread;
1893                                        p_slot->task_event.data = (u32) p_slot;
1894
1895                                        dbg("add_timer p_slot = %p\n", p_slot);
1896                                        add_timer(&p_slot->task_event);
1897                                }
1898                                /***********POWER FAULT */
1899                                else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1900                                        dbg("power fault\n");
1901                                } else {
1902                                        /* refresh notification */
1903                                        update_slot_info(ctrl, p_slot);
1904                                }
1905
1906                                ctrl->event_queue[loop].event_type = 0;
1907
1908                                change = 1;
1909                        }
1910                }               /* End of FOR loop */
1911        }
1912
1913        return;
1914}
1915
1916
1917/**
1918 * cpqhp_pushbutton_thread - handle pushbutton events
1919 * @slot: target slot (struct)
1920 *
1921 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1922 * Handles all pending events and exits.
1923 */
1924void cpqhp_pushbutton_thread(unsigned long slot)
1925{
1926        u8 hp_slot;
1927        u8 device;
1928        struct pci_func *func;
1929        struct slot *p_slot = (struct slot *) slot;
1930        struct controller *ctrl = (struct controller *) p_slot->ctrl;
1931
1932        pushbutton_pending = 0;
1933        hp_slot = p_slot->hp_slot;
1934
1935        device = p_slot->device;
1936
1937        if (is_slot_enabled(ctrl, hp_slot)) {
1938                p_slot->state = POWEROFF_STATE;
1939                /* power Down board */
1940                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1941                dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1942                if (!func) {
1943                        dbg("Error! func NULL in %s\n", __func__);
1944                        return ;
1945                }
1946
1947                if (cpqhp_process_SS(ctrl, func) != 0) {
1948                        amber_LED_on(ctrl, hp_slot);
1949                        green_LED_on(ctrl, hp_slot);
1950
1951                        set_SOGO(ctrl);
1952
1953                        /* Wait for SOBS to be unset */
1954                        wait_for_ctrl_irq(ctrl);
1955                }
1956
1957                p_slot->state = STATIC_STATE;
1958        } else {
1959                p_slot->state = POWERON_STATE;
1960                /* slot is off */
1961
1962                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1963                dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1964                if (!func) {
1965                        dbg("Error! func NULL in %s\n", __func__);
1966                        return ;
1967                }
1968
1969                if (ctrl != NULL) {
1970                        if (cpqhp_process_SI(ctrl, func) != 0) {
1971                                amber_LED_on(ctrl, hp_slot);
1972                                green_LED_off(ctrl, hp_slot);
1973
1974                                set_SOGO(ctrl);
1975
1976                                /* Wait for SOBS to be unset */
1977                                wait_for_ctrl_irq (ctrl);
1978                        }
1979                }
1980
1981                p_slot->state = STATIC_STATE;
1982        }
1983
1984        return;
1985}
1986
1987
1988int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1989{
1990        u8 device, hp_slot;
1991        u16 temp_word;
1992        u32 tempdword;
1993        int rc;
1994        struct slot* p_slot;
1995        int physical_slot = 0;
1996
1997        tempdword = 0;
1998
1999        device = func->device;
2000        hp_slot = device - ctrl->slot_device_offset;
2001        p_slot = cpqhp_find_slot(ctrl, device);
2002        if (p_slot)
2003                physical_slot = p_slot->number;
2004
2005        /* Check to see if the interlock is closed */
2006        tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2007
2008        if (tempdword & (0x01 << hp_slot)) {
2009                return 1;
2010        }
2011
2012        if (func->is_a_board) {
2013                rc = board_replaced(func, ctrl);
2014        } else {
2015                /* add board */
2016                slot_remove(func);
2017
2018                func = cpqhp_slot_create(ctrl->bus);
2019                if (func == NULL)
2020                        return 1;
2021
2022                func->bus = ctrl->bus;
2023                func->device = device;
2024                func->function = 0;
2025                func->configured = 0;
2026                func->is_a_board = 1;
2027
2028                /* We have to save the presence info for these slots */
2029                temp_word = ctrl->ctrl_int_comp >> 16;
2030                func->presence_save = (temp_word >> hp_slot) & 0x01;
2031                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2032
2033                if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2034                        func->switch_save = 0;
2035                } else {
2036                        func->switch_save = 0x10;
2037                }
2038
2039                rc = board_added(func, ctrl);
2040                if (rc) {
2041                        if (is_bridge(func)) {
2042                                bridge_slot_remove(func);
2043                        } else
2044                                slot_remove(func);
2045
2046                        /* Setup slot structure with entry for empty slot */
2047                        func = cpqhp_slot_create(ctrl->bus);
2048
2049                        if (func == NULL)
2050                                return 1;
2051
2052                        func->bus = ctrl->bus;
2053                        func->device = device;
2054                        func->function = 0;
2055                        func->configured = 0;
2056                        func->is_a_board = 0;
2057
2058                        /* We have to save the presence info for these slots */
2059                        temp_word = ctrl->ctrl_int_comp >> 16;
2060                        func->presence_save = (temp_word >> hp_slot) & 0x01;
2061                        func->presence_save |=
2062                        (temp_word >> (hp_slot + 7)) & 0x02;
2063
2064                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2065                                func->switch_save = 0;
2066                        } else {
2067                                func->switch_save = 0x10;
2068                        }
2069                }
2070        }
2071
2072        if (rc) {
2073                dbg("%s: rc = %d\n", __func__, rc);
2074        }
2075
2076        if (p_slot)
2077                update_slot_info(ctrl, p_slot);
2078
2079        return rc;
2080}
2081
2082
2083int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2084{
2085        u8 device, class_code, header_type, BCR;
2086        u8 index = 0;
2087        u8 replace_flag;
2088        u32 rc = 0;
2089        unsigned int devfn;
2090        struct slot* p_slot;
2091        struct pci_bus *pci_bus = ctrl->pci_bus;
2092        int physical_slot=0;
2093
2094        device = func->device;
2095        func = cpqhp_slot_find(ctrl->bus, device, index++);
2096        p_slot = cpqhp_find_slot(ctrl, device);
2097        if (p_slot) {
2098                physical_slot = p_slot->number;
2099        }
2100
2101        /* Make sure there are no video controllers here */
2102        while (func && !rc) {
2103                pci_bus->number = func->bus;
2104                devfn = PCI_DEVFN(func->device, func->function);
2105
2106                /* Check the Class Code */
2107                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2108                if (rc)
2109                        return rc;
2110
2111                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2112                        /* Display/Video adapter (not supported) */
2113                        rc = REMOVE_NOT_SUPPORTED;
2114                } else {
2115                        /* See if it's a bridge */
2116                        rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2117                        if (rc)
2118                                return rc;
2119
2120                        /* If it's a bridge, check the VGA Enable bit */
2121                        if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2122                                rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2123                                if (rc)
2124                                        return rc;
2125
2126                                /* If the VGA Enable bit is set, remove isn't
2127                                 * supported */
2128                                if (BCR & PCI_BRIDGE_CTL_VGA)
2129                                        rc = REMOVE_NOT_SUPPORTED;
2130                        }
2131                }
2132
2133                func = cpqhp_slot_find(ctrl->bus, device, index++);
2134        }
2135
2136        func = cpqhp_slot_find(ctrl->bus, device, 0);
2137        if ((func != NULL) && !rc) {
2138                /* FIXME: Replace flag should be passed into process_SS */
2139                replace_flag = !(ctrl->add_support);
2140                rc = remove_board(func, replace_flag, ctrl);
2141        } else if (!rc) {
2142                rc = 1;
2143        }
2144
2145        if (p_slot)
2146                update_slot_info(ctrl, p_slot);
2147
2148        return rc;
2149}
2150
2151/**
2152 * switch_leds - switch the leds, go from one site to the other.
2153 * @ctrl: controller to use
2154 * @num_of_slots: number of slots to use
2155 * @work_LED: LED control value
2156 * @direction: 1 to start from the left side, 0 to start right.
2157 */
2158static void switch_leds(struct controller *ctrl, const int num_of_slots,
2159                        u32 *work_LED, const int direction)
2160{
2161        int loop;
2162
2163        for (loop = 0; loop < num_of_slots; loop++) {
2164                if (direction)
2165                        *work_LED = *work_LED >> 1;
2166                else
2167                        *work_LED = *work_LED << 1;
2168                writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2169
2170                set_SOGO(ctrl);
2171
2172                /* Wait for SOGO interrupt */
2173                wait_for_ctrl_irq(ctrl);
2174
2175                /* Get ready for next iteration */
2176                long_delay((2*HZ)/10);
2177        }
2178}
2179
2180/**
2181 * cpqhp_hardware_test - runs hardware tests
2182 * @ctrl: target controller
2183 * @test_num: the number written to the "test" file in sysfs.
2184 *
2185 * For hot plug ctrl folks to play with.
2186 */
2187int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2188{
2189        u32 save_LED;
2190        u32 work_LED;
2191        int loop;
2192        int num_of_slots;
2193
2194        num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2195
2196        switch (test_num) {
2197        case 1:
2198                /* Do stuff here! */
2199
2200                /* Do that funky LED thing */
2201                /* so we can restore them later */
2202                save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2203                work_LED = 0x01010101;
2204                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2205                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2206                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2207                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2208
2209                work_LED = 0x01010000;
2210                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2211                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2212                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2213                work_LED = 0x00000101;
2214                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2215                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2216                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2217
2218                work_LED = 0x01010000;
2219                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2220                for (loop = 0; loop < num_of_slots; loop++) {
2221                        set_SOGO(ctrl);
2222
2223                        /* Wait for SOGO interrupt */
2224                        wait_for_ctrl_irq (ctrl);
2225
2226                        /* Get ready for next iteration */
2227                        long_delay((3*HZ)/10);
2228                        work_LED = work_LED >> 16;
2229                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2230
2231                        set_SOGO(ctrl);
2232
2233                        /* Wait for SOGO interrupt */
2234                        wait_for_ctrl_irq (ctrl);
2235
2236                        /* Get ready for next iteration */
2237                        long_delay((3*HZ)/10);
2238                        work_LED = work_LED << 16;
2239                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2240                        work_LED = work_LED << 1;
2241                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2242                }
2243
2244                /* put it back the way it was */
2245                writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2246
2247                set_SOGO(ctrl);
2248
2249                /* Wait for SOBS to be unset */
2250                wait_for_ctrl_irq (ctrl);
2251                break;
2252        case 2:
2253                /* Do other stuff here! */
2254                break;
2255        case 3:
2256                /* and more... */
2257                break;
2258        }
2259        return 0;
2260}
2261
2262
2263/**
2264 * configure_new_device - Configures the PCI header information of one board.
2265 * @ctrl: pointer to controller structure
2266 * @func: pointer to function structure
2267 * @behind_bridge: 1 if this is a recursive call, 0 if not
2268 * @resources: pointer to set of resource lists
2269 *
2270 * Returns 0 if success.
2271 */
2272static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2273                                 u8 behind_bridge, struct resource_lists * resources)
2274{
2275        u8 temp_byte, function, max_functions, stop_it;
2276        int rc;
2277        u32 ID;
2278        struct pci_func *new_slot;
2279        int index;
2280
2281        new_slot = func;
2282
2283        dbg("%s\n", __func__);
2284        /* Check for Multi-function device */
2285        ctrl->pci_bus->number = func->bus;
2286        rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2287        if (rc) {
2288                dbg("%s: rc = %d\n", __func__, rc);
2289                return rc;
2290        }
2291
2292        if (temp_byte & 0x80)   /* Multi-function device */
2293                max_functions = 8;
2294        else
2295                max_functions = 1;
2296
2297        function = 0;
2298
2299        do {
2300                rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2301
2302                if (rc) {
2303                        dbg("configure_new_function failed %d\n",rc);
2304                        index = 0;
2305
2306                        while (new_slot) {
2307                                new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2308
2309                                if (new_slot)
2310                                        cpqhp_return_board_resources(new_slot, resources);
2311                        }
2312
2313                        return rc;
2314                }
2315
2316                function++;
2317
2318                stop_it = 0;
2319
2320                /* The following loop skips to the next present function
2321                 * and creates a board structure */
2322
2323                while ((function < max_functions) && (!stop_it)) {
2324                        pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2325
2326                        if (ID == 0xFFFFFFFF) {
2327                                function++;
2328                        } else {
2329                                /* Setup slot structure. */
2330                                new_slot = cpqhp_slot_create(func->bus);
2331
2332                                if (new_slot == NULL)
2333                                        return 1;
2334
2335                                new_slot->bus = func->bus;
2336                                new_slot->device = func->device;
2337                                new_slot->function = function;
2338                                new_slot->is_a_board = 1;
2339                                new_slot->status = 0;
2340
2341                                stop_it++;
2342                        }
2343                }
2344
2345        } while (function < max_functions);
2346        dbg("returning from configure_new_device\n");
2347
2348        return 0;
2349}
2350
2351
2352/*
2353 * Configuration logic that involves the hotplug data structures and
2354 * their bookkeeping
2355 */
2356
2357
2358/**
2359 * configure_new_function - Configures the PCI header information of one device
2360 * @ctrl: pointer to controller structure
2361 * @func: pointer to function structure
2362 * @behind_bridge: 1 if this is a recursive call, 0 if not
2363 * @resources: pointer to set of resource lists
2364 *
2365 * Calls itself recursively for bridged devices.
2366 * Returns 0 if success.
2367 */
2368static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2369                                   u8 behind_bridge,
2370                                   struct resource_lists *resources)
2371{
2372        int cloop;
2373        u8 IRQ = 0;
2374        u8 temp_byte;
2375        u8 device;
2376        u8 class_code;
2377        u16 command;
2378        u16 temp_word;
2379        u32 temp_dword;
2380        u32 rc;
2381        u32 temp_register;
2382        u32 base;
2383        u32 ID;
2384        unsigned int devfn;
2385        struct pci_resource *mem_node;
2386        struct pci_resource *p_mem_node;
2387        struct pci_resource *io_node;
2388        struct pci_resource *bus_node;
2389        struct pci_resource *hold_mem_node;
2390        struct pci_resource *hold_p_mem_node;
2391        struct pci_resource *hold_IO_node;
2392        struct pci_resource *hold_bus_node;
2393        struct irq_mapping irqs;
2394        struct pci_func *new_slot;
2395        struct pci_bus *pci_bus;
2396        struct resource_lists temp_resources;
2397
2398        pci_bus = ctrl->pci_bus;
2399        pci_bus->number = func->bus;
2400        devfn = PCI_DEVFN(func->device, func->function);
2401
2402        /* Check for Bridge */
2403        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2404        if (rc)
2405                return rc;
2406
2407        if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2408                /* set Primary bus */
2409                dbg("set Primary bus = %d\n", func->bus);
2410                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2411                if (rc)
2412                        return rc;
2413
2414                /* find range of busses to use */
2415                dbg("find ranges of buses to use\n");
2416                bus_node = get_max_resource(&(resources->bus_head), 1);
2417
2418                /* If we don't have any busses to allocate, we can't continue */
2419                if (!bus_node)
2420                        return -ENOMEM;
2421
2422                /* set Secondary bus */
2423                temp_byte = bus_node->base;
2424                dbg("set Secondary bus = %d\n", bus_node->base);
2425                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2426                if (rc)
2427                        return rc;
2428
2429                /* set subordinate bus */
2430                temp_byte = bus_node->base + bus_node->length - 1;
2431                dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2432                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2433                if (rc)
2434                        return rc;
2435
2436                /* set subordinate Latency Timer and base Latency Timer */
2437                temp_byte = 0x40;
2438                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2439                if (rc)
2440                        return rc;
2441                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2442                if (rc)
2443                        return rc;
2444
2445                /* set Cache Line size */
2446                temp_byte = 0x08;
2447                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2448                if (rc)
2449                        return rc;
2450
2451                /* Setup the IO, memory, and prefetchable windows */
2452                io_node = get_max_resource(&(resources->io_head), 0x1000);
2453                if (!io_node)
2454                        return -ENOMEM;
2455                mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2456                if (!mem_node)
2457                        return -ENOMEM;
2458                p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2459                if (!p_mem_node)
2460                        return -ENOMEM;
2461                dbg("Setup the IO, memory, and prefetchable windows\n");
2462                dbg("io_node\n");
2463                dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2464                                        io_node->length, io_node->next);
2465                dbg("mem_node\n");
2466                dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2467                                        mem_node->length, mem_node->next);
2468                dbg("p_mem_node\n");
2469                dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2470                                        p_mem_node->length, p_mem_node->next);
2471
2472                /* set up the IRQ info */
2473                if (!resources->irqs) {
2474                        irqs.barber_pole = 0;
2475                        irqs.interrupt[0] = 0;
2476                        irqs.interrupt[1] = 0;
2477                        irqs.interrupt[2] = 0;
2478                        irqs.interrupt[3] = 0;
2479                        irqs.valid_INT = 0;
2480                } else {
2481                        irqs.barber_pole = resources->irqs->barber_pole;
2482                        irqs.interrupt[0] = resources->irqs->interrupt[0];
2483                        irqs.interrupt[1] = resources->irqs->interrupt[1];
2484                        irqs.interrupt[2] = resources->irqs->interrupt[2];
2485                        irqs.interrupt[3] = resources->irqs->interrupt[3];
2486                        irqs.valid_INT = resources->irqs->valid_INT;
2487                }
2488
2489                /* set up resource lists that are now aligned on top and bottom
2490                 * for anything behind the bridge. */
2491                temp_resources.bus_head = bus_node;
2492                temp_resources.io_head = io_node;
2493                temp_resources.mem_head = mem_node;
2494                temp_resources.p_mem_head = p_mem_node;
2495                temp_resources.irqs = &irqs;
2496
2497                /* Make copies of the nodes we are going to pass down so that
2498                 * if there is a problem,we can just use these to free resources
2499                 */
2500                hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2501                hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2502                hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2503                hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2504
2505                if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2506                        kfree(hold_bus_node);
2507                        kfree(hold_IO_node);
2508                        kfree(hold_mem_node);
2509                        kfree(hold_p_mem_node);
2510
2511                        return 1;
2512                }
2513
2514                memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2515
2516                bus_node->base += 1;
2517                bus_node->length -= 1;
2518                bus_node->next = NULL;
2519
2520                /* If we have IO resources copy them and fill in the bridge's
2521                 * IO range registers */
2522                memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2523                io_node->next = NULL;
2524
2525                /* set IO base and Limit registers */
2526                temp_byte = io_node->base >> 8;
2527                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2528
2529                temp_byte = (io_node->base + io_node->length - 1) >> 8;
2530                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2531
2532                /* Copy the memory resources and fill in the bridge's memory
2533                 * range registers.
2534                 */
2535                memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2536                mem_node->next = NULL;
2537
2538                /* set Mem base and Limit registers */
2539                temp_word = mem_node->base >> 16;
2540                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2541
2542                temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2543                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2544
2545                memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2546                p_mem_node->next = NULL;
2547
2548                /* set Pre Mem base and Limit registers */
2549                temp_word = p_mem_node->base >> 16;
2550                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2551
2552                temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2553                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2554
2555                /* Adjust this to compensate for extra adjustment in first loop
2556                 */
2557                irqs.barber_pole--;
2558
2559                rc = 0;
2560
2561                /* Here we actually find the devices and configure them */
2562                for (device = 0; (device <= 0x1F) && !rc; device++) {
2563                        irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2564
2565                        ID = 0xFFFFFFFF;
2566                        pci_bus->number = hold_bus_node->base;
2567                        pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2568                        pci_bus->number = func->bus;
2569
2570                        if (ID != 0xFFFFFFFF) {   /*  device present */
2571                                /* Setup slot structure. */
2572                                new_slot = cpqhp_slot_create(hold_bus_node->base);
2573
2574                                if (new_slot == NULL) {
2575                                        rc = -ENOMEM;
2576                                        continue;
2577                                }
2578
2579                                new_slot->bus = hold_bus_node->base;
2580                                new_slot->device = device;
2581                                new_slot->function = 0;
2582                                new_slot->is_a_board = 1;
2583                                new_slot->status = 0;
2584
2585                                rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2586                                dbg("configure_new_device rc=0x%x\n",rc);
2587                        }       /* End of IF (device in slot?) */
2588                }               /* End of FOR loop */
2589
2590                if (rc)
2591                        goto free_and_out;
2592                /* save the interrupt routing information */
2593                if (resources->irqs) {
2594                        resources->irqs->interrupt[0] = irqs.interrupt[0];
2595                        resources->irqs->interrupt[1] = irqs.interrupt[1];
2596                        resources->irqs->interrupt[2] = irqs.interrupt[2];
2597                        resources->irqs->interrupt[3] = irqs.interrupt[3];
2598                        resources->irqs->valid_INT = irqs.valid_INT;
2599                } else if (!behind_bridge) {
2600                        /* We need to hook up the interrupts here */
2601                        for (cloop = 0; cloop < 4; cloop++) {
2602                                if (irqs.valid_INT & (0x01 << cloop)) {
2603                                        rc = cpqhp_set_irq(func->bus, func->device,
2604                                                           cloop + 1, irqs.interrupt[cloop]);
2605                                        if (rc)
2606                                                goto free_and_out;
2607                                }
2608                        }       /* end of for loop */
2609                }
2610                /* Return unused bus resources
2611                 * First use the temporary node to store information for
2612                 * the board */
2613                if (bus_node && temp_resources.bus_head) {
2614                        hold_bus_node->length = bus_node->base - hold_bus_node->base;
2615
2616                        hold_bus_node->next = func->bus_head;
2617                        func->bus_head = hold_bus_node;
2618
2619                        temp_byte = temp_resources.bus_head->base - 1;
2620
2621                        /* set subordinate bus */
2622                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2623
2624                        if (temp_resources.bus_head->length == 0) {
2625                                kfree(temp_resources.bus_head);
2626                                temp_resources.bus_head = NULL;
2627                        } else {
2628                                return_resource(&(resources->bus_head), temp_resources.bus_head);
2629                        }
2630                }
2631
2632                /* If we have IO space available and there is some left,
2633                 * return the unused portion */
2634                if (hold_IO_node && temp_resources.io_head) {
2635                        io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2636                                                               &hold_IO_node, 0x1000);
2637
2638                        /* Check if we were able to split something off */
2639                        if (io_node) {
2640                                hold_IO_node->base = io_node->base + io_node->length;
2641
2642                                temp_byte = (hold_IO_node->base) >> 8;
2643                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2644
2645                                return_resource(&(resources->io_head), io_node);
2646                        }
2647
2648                        io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2649
2650                        /* Check if we were able to split something off */
2651                        if (io_node) {
2652                                /* First use the temporary node to store
2653                                 * information for the board */
2654                                hold_IO_node->length = io_node->base - hold_IO_node->base;
2655
2656                                /* If we used any, add it to the board's list */
2657                                if (hold_IO_node->length) {
2658                                        hold_IO_node->next = func->io_head;
2659                                        func->io_head = hold_IO_node;
2660
2661                                        temp_byte = (io_node->base - 1) >> 8;
2662                                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2663
2664                                        return_resource(&(resources->io_head), io_node);
2665                                } else {
2666                                        /* it doesn't need any IO */
2667                                        temp_word = 0x0000;
2668                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2669
2670                                        return_resource(&(resources->io_head), io_node);
2671                                        kfree(hold_IO_node);
2672                                }
2673                        } else {
2674                                /* it used most of the range */
2675                                hold_IO_node->next = func->io_head;
2676                                func->io_head = hold_IO_node;
2677                        }
2678                } else if (hold_IO_node) {
2679                        /* it used the whole range */
2680                        hold_IO_node->next = func->io_head;
2681                        func->io_head = hold_IO_node;
2682                }
2683                /* If we have memory space available and there is some left,
2684                 * return the unused portion */
2685                if (hold_mem_node && temp_resources.mem_head) {
2686                        mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2687                                                                &hold_mem_node, 0x100000);
2688
2689                        /* Check if we were able to split something off */
2690                        if (mem_node) {
2691                                hold_mem_node->base = mem_node->base + mem_node->length;
2692
2693                                temp_word = (hold_mem_node->base) >> 16;
2694                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2695
2696                                return_resource(&(resources->mem_head), mem_node);
2697                        }
2698
2699                        mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2700
2701                        /* Check if we were able to split something off */
2702                        if (mem_node) {
2703                                /* First use the temporary node to store
2704                                 * information for the board */
2705                                hold_mem_node->length = mem_node->base - hold_mem_node->base;
2706
2707                                if (hold_mem_node->length) {
2708                                        hold_mem_node->next = func->mem_head;
2709                                        func->mem_head = hold_mem_node;
2710
2711                                        /* configure end address */
2712                                        temp_word = (mem_node->base - 1) >> 16;
2713                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2714
2715                                        /* Return unused resources to the pool */
2716                                        return_resource(&(resources->mem_head), mem_node);
2717                                } else {
2718                                        /* it doesn't need any Mem */
2719                                        temp_word = 0x0000;
2720                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2721
2722                                        return_resource(&(resources->mem_head), mem_node);
2723                                        kfree(hold_mem_node);
2724                                }
2725                        } else {
2726                                /* it used most of the range */
2727                                hold_mem_node->next = func->mem_head;
2728                                func->mem_head = hold_mem_node;
2729                        }
2730                } else if (hold_mem_node) {
2731                        /* it used the whole range */
2732                        hold_mem_node->next = func->mem_head;
2733                        func->mem_head = hold_mem_node;
2734                }
2735                /* If we have prefetchable memory space available and there
2736                 * is some left at the end, return the unused portion */
2737                if (temp_resources.p_mem_head) {
2738                        p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2739                                                                  &hold_p_mem_node, 0x100000);
2740
2741                        /* Check if we were able to split something off */
2742                        if (p_mem_node) {
2743                                hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2744
2745                                temp_word = (hold_p_mem_node->base) >> 16;
2746                                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2747
2748                                return_resource(&(resources->p_mem_head), p_mem_node);
2749                        }
2750
2751                        p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2752
2753                        /* Check if we were able to split something off */
2754                        if (p_mem_node) {
2755                                /* First use the temporary node to store
2756                                 * information for the board */
2757                                hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2758
2759                                /* If we used any, add it to the board's list */
2760                                if (hold_p_mem_node->length) {
2761                                        hold_p_mem_node->next = func->p_mem_head;
2762                                        func->p_mem_head = hold_p_mem_node;
2763
2764                                        temp_word = (p_mem_node->base - 1) >> 16;
2765                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2766
2767                                        return_resource(&(resources->p_mem_head), p_mem_node);
2768                                } else {
2769                                        /* it doesn't need any PMem */
2770                                        temp_word = 0x0000;
2771                                        rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2772
2773                                        return_resource(&(resources->p_mem_head), p_mem_node);
2774                                        kfree(hold_p_mem_node);
2775                                }
2776                        } else {
2777                                /* it used the most of the range */
2778                                hold_p_mem_node->next = func->p_mem_head;
2779                                func->p_mem_head = hold_p_mem_node;
2780                        }
2781                } else if (hold_p_mem_node) {
2782                        /* it used the whole range */
2783                        hold_p_mem_node->next = func->p_mem_head;
2784                        func->p_mem_head = hold_p_mem_node;
2785                }
2786                /* We should be configuring an IRQ and the bridge's base address
2787                 * registers if it needs them.  Although we have never seen such
2788                 * a device */
2789
2790                /* enable card */
2791                command = 0x0157;       /* = PCI_COMMAND_IO |
2792                                         *   PCI_COMMAND_MEMORY |
2793                                         *   PCI_COMMAND_MASTER |
2794                                         *   PCI_COMMAND_INVALIDATE |
2795                                         *   PCI_COMMAND_PARITY |
2796                                         *   PCI_COMMAND_SERR */
2797                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2798
2799                /* set Bridge Control Register */
2800                command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2801                                         *   PCI_BRIDGE_CTL_SERR |
2802                                         *   PCI_BRIDGE_CTL_NO_ISA */
2803                rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2804        } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2805                /* Standard device */
2806                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2807
2808                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2809                        /* Display (video) adapter (not supported) */
2810                        return DEVICE_TYPE_NOT_SUPPORTED;
2811                }
2812                /* Figure out IO and memory needs */
2813                for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2814                        temp_register = 0xFFFFFFFF;
2815
2816                        dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2817                        rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2818
2819                        rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2820                        dbg("CND: base = 0x%x\n", temp_register);
2821
2822                        if (temp_register) {      /* If this register is implemented */
2823                                if ((temp_register & 0x03L) == 0x01) {
2824                                        /* Map IO */
2825
2826                                        /* set base = amount of IO space */
2827                                        base = temp_register & 0xFFFFFFFC;
2828                                        base = ~base + 1;
2829
2830                                        dbg("CND:      length = 0x%x\n", base);
2831                                        io_node = get_io_resource(&(resources->io_head), base);
2832                                        dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2833                                            io_node->base, io_node->length, io_node->next);
2834                                        dbg("func (%p) io_head (%p)\n", func, func->io_head);
2835
2836                                        /* allocate the resource to the board */
2837                                        if (io_node) {
2838                                                base = io_node->base;
2839
2840                                                io_node->next = func->io_head;
2841                                                func->io_head = io_node;
2842                                        } else
2843                                                return -ENOMEM;
2844                                } else if ((temp_register & 0x0BL) == 0x08) {
2845                                        /* Map prefetchable memory */
2846                                        base = temp_register & 0xFFFFFFF0;
2847                                        base = ~base + 1;
2848
2849                                        dbg("CND:      length = 0x%x\n", base);
2850                                        p_mem_node = get_resource(&(resources->p_mem_head), base);
2851
2852                                        /* allocate the resource to the board */
2853                                        if (p_mem_node) {
2854                                                base = p_mem_node->base;
2855
2856                                                p_mem_node->next = func->p_mem_head;
2857                                                func->p_mem_head = p_mem_node;
2858                                        } else
2859                                                return -ENOMEM;
2860                                } else if ((temp_register & 0x0BL) == 0x00) {
2861                                        /* Map memory */
2862                                        base = temp_register & 0xFFFFFFF0;
2863                                        base = ~base + 1;
2864
2865                                        dbg("CND:      length = 0x%x\n", base);
2866                                        mem_node = get_resource(&(resources->mem_head), base);
2867
2868                                        /* allocate the resource to the board */
2869                                        if (mem_node) {
2870                                                base = mem_node->base;
2871
2872                                                mem_node->next = func->mem_head;
2873                                                func->mem_head = mem_node;
2874                                        } else
2875                                                return -ENOMEM;
2876                                } else {
2877                                        /* Reserved bits or requesting space below 1M */
2878                                        return NOT_ENOUGH_RESOURCES;
2879                                }
2880
2881                                rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2882
2883                                /* Check for 64-bit base */
2884                                if ((temp_register & 0x07L) == 0x04) {
2885                                        cloop += 4;
2886
2887                                        /* Upper 32 bits of address always zero
2888                                         * on today's systems */
2889                                        /* FIXME this is probably not true on
2890                                         * Alpha and ia64??? */
2891                                        base = 0;
2892                                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2893                                }
2894                        }
2895                }               /* End of base register loop */
2896                if (cpqhp_legacy_mode) {
2897                        /* Figure out which interrupt pin this function uses */
2898                        rc = pci_bus_read_config_byte (pci_bus, devfn,
2899                                PCI_INTERRUPT_PIN, &temp_byte);
2900
2901                        /* If this function needs an interrupt and we are behind
2902                         * a bridge and the pin is tied to something that's
2903                         * alread mapped, set this one the same */
2904                        if (temp_byte && resources->irqs &&
2905                            (resources->irqs->valid_INT &
2906                             (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2907                                /* We have to share with something already set up */
2908                                IRQ = resources->irqs->interrupt[(temp_byte +
2909                                        resources->irqs->barber_pole - 1) & 0x03];
2910                        } else {
2911                                /* Program IRQ based on card type */
2912                                rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2913
2914                                if (class_code == PCI_BASE_CLASS_STORAGE)
2915                                        IRQ = cpqhp_disk_irq;
2916                                else
2917                                        IRQ = cpqhp_nic_irq;
2918                        }
2919
2920                        /* IRQ Line */
2921                        rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2922                }
2923
2924                if (!behind_bridge) {
2925                        rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2926                        if (rc)
2927                                return 1;
2928                } else {
2929                        /* TBD - this code may also belong in the other clause
2930                         * of this If statement */
2931                        resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2932                        resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2933                }
2934
2935                /* Latency Timer */
2936                temp_byte = 0x40;
2937                rc = pci_bus_write_config_byte(pci_bus, devfn,
2938                                        PCI_LATENCY_TIMER, temp_byte);
2939
2940                /* Cache Line size */
2941                temp_byte = 0x08;
2942                rc = pci_bus_write_config_byte(pci_bus, devfn,
2943                                        PCI_CACHE_LINE_SIZE, temp_byte);
2944
2945                /* disable ROM base Address */
2946                temp_dword = 0x00L;
2947                rc = pci_bus_write_config_word(pci_bus, devfn,
2948                                        PCI_ROM_ADDRESS, temp_dword);
2949
2950                /* enable card */
2951                temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2952                                         *   PCI_COMMAND_MEMORY |
2953                                         *   PCI_COMMAND_MASTER |
2954                                         *   PCI_COMMAND_INVALIDATE |
2955                                         *   PCI_COMMAND_PARITY |
2956                                         *   PCI_COMMAND_SERR */
2957                rc = pci_bus_write_config_word (pci_bus, devfn,
2958                                        PCI_COMMAND, temp_word);
2959        } else {                /* End of Not-A-Bridge else */
2960                /* It's some strange type of PCI adapter (Cardbus?) */
2961                return DEVICE_TYPE_NOT_SUPPORTED;
2962        }
2963
2964        func->configured = 1;
2965
2966        return 0;
2967free_and_out:
2968        cpqhp_destroy_resource_list (&temp_resources);
2969
2970        return_resource(&(resources-> bus_head), hold_bus_node);
2971        return_resource(&(resources-> io_head), hold_IO_node);
2972        return_resource(&(resources-> mem_head), hold_mem_node);
2973        return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2974        return rc;
2975}
2976