linux/drivers/pci/pci.c
<<
>>
Prefs
   1/*
   2 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   3 *
   4 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   5 *      David Mosberger-Tang
   6 *
   7 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/pci.h>
  14#include <linux/pm.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/spinlock.h>
  18#include <linux/string.h>
  19#include <linux/log2.h>
  20#include <linux/pci-aspm.h>
  21#include <linux/pm_wakeup.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/pm_runtime.h>
  25#include <asm-generic/pci-bridge.h>
  26#include <asm/setup.h>
  27#include "pci.h"
  28
  29const char *pci_power_names[] = {
  30        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  31};
  32EXPORT_SYMBOL_GPL(pci_power_names);
  33
  34int isa_dma_bridge_buggy;
  35EXPORT_SYMBOL(isa_dma_bridge_buggy);
  36
  37int pci_pci_problems;
  38EXPORT_SYMBOL(pci_pci_problems);
  39
  40unsigned int pci_pm_d3_delay;
  41
  42static void pci_pme_list_scan(struct work_struct *work);
  43
  44static LIST_HEAD(pci_pme_list);
  45static DEFINE_MUTEX(pci_pme_list_mutex);
  46static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  47
  48struct pci_pme_device {
  49        struct list_head list;
  50        struct pci_dev *dev;
  51};
  52
  53#define PME_TIMEOUT 1000 /* How long between PME checks */
  54
  55static void pci_dev_d3_sleep(struct pci_dev *dev)
  56{
  57        unsigned int delay = dev->d3_delay;
  58
  59        if (delay < pci_pm_d3_delay)
  60                delay = pci_pm_d3_delay;
  61
  62        msleep(delay);
  63}
  64
  65#ifdef CONFIG_PCI_DOMAINS
  66int pci_domains_supported = 1;
  67#endif
  68
  69#define DEFAULT_CARDBUS_IO_SIZE         (256)
  70#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  71/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  72unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  73unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  74
  75#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  76#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  77/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  78unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  79unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  80
  81enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
  82
  83/*
  84 * The default CLS is used if arch didn't set CLS explicitly and not
  85 * all pci devices agree on the same value.  Arch can override either
  86 * the dfl or actual value as it sees fit.  Don't forget this is
  87 * measured in 32-bit words, not bytes.
  88 */
  89u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
  90u8 pci_cache_line_size;
  91
  92/*
  93 * If we set up a device for bus mastering, we need to check the latency
  94 * timer as certain BIOSes forget to set it properly.
  95 */
  96unsigned int pcibios_max_latency = 255;
  97
  98/* If set, the PCIe ARI capability will not be used. */
  99static bool pcie_ari_disabled;
 100
 101/**
 102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 103 * @bus: pointer to PCI bus structure to search
 104 *
 105 * Given a PCI bus, returns the highest PCI bus number present in the set
 106 * including the given PCI bus and its list of child PCI buses.
 107 */
 108unsigned char pci_bus_max_busnr(struct pci_bus* bus)
 109{
 110        struct list_head *tmp;
 111        unsigned char max, n;
 112
 113        max = bus->busn_res.end;
 114        list_for_each(tmp, &bus->children) {
 115                n = pci_bus_max_busnr(pci_bus_b(tmp));
 116                if(n > max)
 117                        max = n;
 118        }
 119        return max;
 120}
 121EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 122
 123#ifdef CONFIG_HAS_IOMEM
 124void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 125{
 126        /*
 127         * Make sure the BAR is actually a memory resource, not an IO resource
 128         */
 129        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 130                WARN_ON(1);
 131                return NULL;
 132        }
 133        return ioremap_nocache(pci_resource_start(pdev, bar),
 134                                     pci_resource_len(pdev, bar));
 135}
 136EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 137#endif
 138
 139#define PCI_FIND_CAP_TTL        48
 140
 141static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 142                                   u8 pos, int cap, int *ttl)
 143{
 144        u8 id;
 145
 146        while ((*ttl)--) {
 147                pci_bus_read_config_byte(bus, devfn, pos, &pos);
 148                if (pos < 0x40)
 149                        break;
 150                pos &= ~3;
 151                pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
 152                                         &id);
 153                if (id == 0xff)
 154                        break;
 155                if (id == cap)
 156                        return pos;
 157                pos += PCI_CAP_LIST_NEXT;
 158        }
 159        return 0;
 160}
 161
 162static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 163                               u8 pos, int cap)
 164{
 165        int ttl = PCI_FIND_CAP_TTL;
 166
 167        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 168}
 169
 170int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 171{
 172        return __pci_find_next_cap(dev->bus, dev->devfn,
 173                                   pos + PCI_CAP_LIST_NEXT, cap);
 174}
 175EXPORT_SYMBOL_GPL(pci_find_next_capability);
 176
 177static int __pci_bus_find_cap_start(struct pci_bus *bus,
 178                                    unsigned int devfn, u8 hdr_type)
 179{
 180        u16 status;
 181
 182        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 183        if (!(status & PCI_STATUS_CAP_LIST))
 184                return 0;
 185
 186        switch (hdr_type) {
 187        case PCI_HEADER_TYPE_NORMAL:
 188        case PCI_HEADER_TYPE_BRIDGE:
 189                return PCI_CAPABILITY_LIST;
 190        case PCI_HEADER_TYPE_CARDBUS:
 191                return PCI_CB_CAPABILITY_LIST;
 192        default:
 193                return 0;
 194        }
 195
 196        return 0;
 197}
 198
 199/**
 200 * pci_find_capability - query for devices' capabilities 
 201 * @dev: PCI device to query
 202 * @cap: capability code
 203 *
 204 * Tell if a device supports a given PCI capability.
 205 * Returns the address of the requested capability structure within the
 206 * device's PCI configuration space or 0 in case the device does not
 207 * support it.  Possible values for @cap:
 208 *
 209 *  %PCI_CAP_ID_PM           Power Management 
 210 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port 
 211 *  %PCI_CAP_ID_VPD          Vital Product Data 
 212 *  %PCI_CAP_ID_SLOTID       Slot Identification 
 213 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 214 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap 
 215 *  %PCI_CAP_ID_PCIX         PCI-X
 216 *  %PCI_CAP_ID_EXP          PCI Express
 217 */
 218int pci_find_capability(struct pci_dev *dev, int cap)
 219{
 220        int pos;
 221
 222        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 223        if (pos)
 224                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 225
 226        return pos;
 227}
 228
 229/**
 230 * pci_bus_find_capability - query for devices' capabilities 
 231 * @bus:   the PCI bus to query
 232 * @devfn: PCI device to query
 233 * @cap:   capability code
 234 *
 235 * Like pci_find_capability() but works for pci devices that do not have a
 236 * pci_dev structure set up yet. 
 237 *
 238 * Returns the address of the requested capability structure within the
 239 * device's PCI configuration space or 0 in case the device does not
 240 * support it.
 241 */
 242int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 243{
 244        int pos;
 245        u8 hdr_type;
 246
 247        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 248
 249        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 250        if (pos)
 251                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 252
 253        return pos;
 254}
 255
 256/**
 257 * pci_find_next_ext_capability - Find an extended capability
 258 * @dev: PCI device to query
 259 * @start: address at which to start looking (0 to start at beginning of list)
 260 * @cap: capability code
 261 *
 262 * Returns the address of the next matching extended capability structure
 263 * within the device's PCI configuration space or 0 if the device does
 264 * not support it.  Some capabilities can occur several times, e.g., the
 265 * vendor-specific capability, and this provides a way to find them all.
 266 */
 267int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 268{
 269        u32 header;
 270        int ttl;
 271        int pos = PCI_CFG_SPACE_SIZE;
 272
 273        /* minimum 8 bytes per capability */
 274        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 275
 276        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 277                return 0;
 278
 279        if (start)
 280                pos = start;
 281
 282        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 283                return 0;
 284
 285        /*
 286         * If we have no capabilities, this is indicated by cap ID,
 287         * cap version and next pointer all being 0.
 288         */
 289        if (header == 0)
 290                return 0;
 291
 292        while (ttl-- > 0) {
 293                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 294                        return pos;
 295
 296                pos = PCI_EXT_CAP_NEXT(header);
 297                if (pos < PCI_CFG_SPACE_SIZE)
 298                        break;
 299
 300                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 301                        break;
 302        }
 303
 304        return 0;
 305}
 306EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 307
 308/**
 309 * pci_find_ext_capability - Find an extended capability
 310 * @dev: PCI device to query
 311 * @cap: capability code
 312 *
 313 * Returns the address of the requested extended capability structure
 314 * within the device's PCI configuration space or 0 if the device does
 315 * not support it.  Possible values for @cap:
 316 *
 317 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 318 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 319 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 320 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 321 */
 322int pci_find_ext_capability(struct pci_dev *dev, int cap)
 323{
 324        return pci_find_next_ext_capability(dev, 0, cap);
 325}
 326EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 327
 328static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 329{
 330        int rc, ttl = PCI_FIND_CAP_TTL;
 331        u8 cap, mask;
 332
 333        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 334                mask = HT_3BIT_CAP_MASK;
 335        else
 336                mask = HT_5BIT_CAP_MASK;
 337
 338        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 339                                      PCI_CAP_ID_HT, &ttl);
 340        while (pos) {
 341                rc = pci_read_config_byte(dev, pos + 3, &cap);
 342                if (rc != PCIBIOS_SUCCESSFUL)
 343                        return 0;
 344
 345                if ((cap & mask) == ht_cap)
 346                        return pos;
 347
 348                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 349                                              pos + PCI_CAP_LIST_NEXT,
 350                                              PCI_CAP_ID_HT, &ttl);
 351        }
 352
 353        return 0;
 354}
 355/**
 356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 357 * @dev: PCI device to query
 358 * @pos: Position from which to continue searching
 359 * @ht_cap: Hypertransport capability code
 360 *
 361 * To be used in conjunction with pci_find_ht_capability() to search for
 362 * all capabilities matching @ht_cap. @pos should always be a value returned
 363 * from pci_find_ht_capability().
 364 *
 365 * NB. To be 100% safe against broken PCI devices, the caller should take
 366 * steps to avoid an infinite loop.
 367 */
 368int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 369{
 370        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 371}
 372EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 373
 374/**
 375 * pci_find_ht_capability - query a device's Hypertransport capabilities
 376 * @dev: PCI device to query
 377 * @ht_cap: Hypertransport capability code
 378 *
 379 * Tell if a device supports a given Hypertransport capability.
 380 * Returns an address within the device's PCI configuration space
 381 * or 0 in case the device does not support the request capability.
 382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 383 * which has a Hypertransport capability matching @ht_cap.
 384 */
 385int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 386{
 387        int pos;
 388
 389        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 390        if (pos)
 391                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 392
 393        return pos;
 394}
 395EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 396
 397/**
 398 * pci_find_parent_resource - return resource region of parent bus of given region
 399 * @dev: PCI device structure contains resources to be searched
 400 * @res: child resource record for which parent is sought
 401 *
 402 *  For given resource region of given device, return the resource
 403 *  region of parent bus the given region is contained in or where
 404 *  it should be allocated from.
 405 */
 406struct resource *
 407pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
 408{
 409        const struct pci_bus *bus = dev->bus;
 410        int i;
 411        struct resource *best = NULL, *r;
 412
 413        pci_bus_for_each_resource(bus, r, i) {
 414                if (!r)
 415                        continue;
 416                if (res->start && !(res->start >= r->start && res->end <= r->end))
 417                        continue;       /* Not contained */
 418                if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
 419                        continue;       /* Wrong type */
 420                if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
 421                        return r;       /* Exact match */
 422                /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
 423                if (r->flags & IORESOURCE_PREFETCH)
 424                        continue;
 425                /* .. but we can put a prefetchable resource inside a non-prefetchable one */
 426                if (!best)
 427                        best = r;
 428        }
 429        return best;
 430}
 431
 432/**
 433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
 434 * @dev: PCI device to have its BARs restored
 435 *
 436 * Restore the BAR values for a given device, so as to make it
 437 * accessible by its driver.
 438 */
 439static void
 440pci_restore_bars(struct pci_dev *dev)
 441{
 442        int i;
 443
 444        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 445                pci_update_resource(dev, i);
 446}
 447
 448static struct pci_platform_pm_ops *pci_platform_pm;
 449
 450int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
 451{
 452        if (!ops->is_manageable || !ops->set_state || !ops->choose_state
 453            || !ops->sleep_wake)
 454                return -EINVAL;
 455        pci_platform_pm = ops;
 456        return 0;
 457}
 458
 459static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 460{
 461        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 462}
 463
 464static inline int platform_pci_set_power_state(struct pci_dev *dev,
 465                                                pci_power_t t)
 466{
 467        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 468}
 469
 470static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 471{
 472        return pci_platform_pm ?
 473                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 474}
 475
 476static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
 477{
 478        return pci_platform_pm ?
 479                        pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
 480}
 481
 482static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
 483{
 484        return pci_platform_pm ?
 485                        pci_platform_pm->run_wake(dev, enable) : -ENODEV;
 486}
 487
 488/**
 489 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 490 *                           given PCI device
 491 * @dev: PCI device to handle.
 492 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 493 *
 494 * RETURN VALUE:
 495 * -EINVAL if the requested state is invalid.
 496 * -EIO if device does not support PCI PM or its PM capabilities register has a
 497 * wrong version, or device doesn't support the requested state.
 498 * 0 if device already is in the requested state.
 499 * 0 if device's power state has been successfully changed.
 500 */
 501static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 502{
 503        u16 pmcsr;
 504        bool need_restore = false;
 505
 506        /* Check if we're already there */
 507        if (dev->current_state == state)
 508                return 0;
 509
 510        if (!dev->pm_cap)
 511                return -EIO;
 512
 513        if (state < PCI_D0 || state > PCI_D3hot)
 514                return -EINVAL;
 515
 516        /* Validate current state:
 517         * Can enter D0 from any state, but if we can only go deeper 
 518         * to sleep if we're already in a low power state
 519         */
 520        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 521            && dev->current_state > state) {
 522                dev_err(&dev->dev, "invalid power transition "
 523                        "(from state %d to %d)\n", dev->current_state, state);
 524                return -EINVAL;
 525        }
 526
 527        /* check if this device supports the desired state */
 528        if ((state == PCI_D1 && !dev->d1_support)
 529           || (state == PCI_D2 && !dev->d2_support))
 530                return -EIO;
 531
 532        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 533
 534        /* If we're (effectively) in D3, force entire word to 0.
 535         * This doesn't affect PME_Status, disables PME_En, and
 536         * sets PowerState to 0.
 537         */
 538        switch (dev->current_state) {
 539        case PCI_D0:
 540        case PCI_D1:
 541        case PCI_D2:
 542                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 543                pmcsr |= state;
 544                break;
 545        case PCI_D3hot:
 546        case PCI_D3cold:
 547        case PCI_UNKNOWN: /* Boot-up */
 548                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 549                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 550                        need_restore = true;
 551                /* Fall-through: force to D0 */
 552        default:
 553                pmcsr = 0;
 554                break;
 555        }
 556
 557        /* enter specified state */
 558        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 559
 560        /* Mandatory power management transition delays */
 561        /* see PCI PM 1.1 5.6.1 table 18 */
 562        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 563                pci_dev_d3_sleep(dev);
 564        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 565                udelay(PCI_PM_D2_DELAY);
 566
 567        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 568        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 569        if (dev->current_state != state && printk_ratelimit())
 570                dev_info(&dev->dev, "Refused to change power state, "
 571                        "currently in D%d\n", dev->current_state);
 572
 573        /*
 574         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 575         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 576         * from D3hot to D0 _may_ perform an internal reset, thereby
 577         * going to "D0 Uninitialized" rather than "D0 Initialized".
 578         * For example, at least some versions of the 3c905B and the
 579         * 3c556B exhibit this behaviour.
 580         *
 581         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 582         * devices in a D3hot state at boot.  Consequently, we need to
 583         * restore at least the BARs so that the device will be
 584         * accessible to its driver.
 585         */
 586        if (need_restore)
 587                pci_restore_bars(dev);
 588
 589        if (dev->bus->self)
 590                pcie_aspm_pm_state_change(dev->bus->self);
 591
 592        return 0;
 593}
 594
 595/**
 596 * pci_update_current_state - Read PCI power state of given device from its
 597 *                            PCI PM registers and cache it
 598 * @dev: PCI device to handle.
 599 * @state: State to cache in case the device doesn't have the PM capability
 600 */
 601void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 602{
 603        if (dev->pm_cap) {
 604                u16 pmcsr;
 605
 606                /*
 607                 * Configuration space is not accessible for device in
 608                 * D3cold, so just keep or set D3cold for safety
 609                 */
 610                if (dev->current_state == PCI_D3cold)
 611                        return;
 612                if (state == PCI_D3cold) {
 613                        dev->current_state = PCI_D3cold;
 614                        return;
 615                }
 616                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 617                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 618        } else {
 619                dev->current_state = state;
 620        }
 621}
 622
 623/**
 624 * pci_power_up - Put the given device into D0 forcibly
 625 * @dev: PCI device to power up
 626 */
 627void pci_power_up(struct pci_dev *dev)
 628{
 629        if (platform_pci_power_manageable(dev))
 630                platform_pci_set_power_state(dev, PCI_D0);
 631
 632        pci_raw_set_power_state(dev, PCI_D0);
 633        pci_update_current_state(dev, PCI_D0);
 634}
 635
 636/**
 637 * pci_platform_power_transition - Use platform to change device power state
 638 * @dev: PCI device to handle.
 639 * @state: State to put the device into.
 640 */
 641static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 642{
 643        int error;
 644
 645        if (platform_pci_power_manageable(dev)) {
 646                error = platform_pci_set_power_state(dev, state);
 647                if (!error)
 648                        pci_update_current_state(dev, state);
 649        } else
 650                error = -ENODEV;
 651
 652        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 653                dev->current_state = PCI_D0;
 654
 655        return error;
 656}
 657
 658/**
 659 * __pci_start_power_transition - Start power transition of a PCI device
 660 * @dev: PCI device to handle.
 661 * @state: State to put the device into.
 662 */
 663static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 664{
 665        if (state == PCI_D0) {
 666                pci_platform_power_transition(dev, PCI_D0);
 667                /*
 668                 * Mandatory power management transition delays, see
 669                 * PCI Express Base Specification Revision 2.0 Section
 670                 * 6.6.1: Conventional Reset.  Do not delay for
 671                 * devices powered on/off by corresponding bridge,
 672                 * because have already delayed for the bridge.
 673                 */
 674                if (dev->runtime_d3cold) {
 675                        msleep(dev->d3cold_delay);
 676                        /*
 677                         * When powering on a bridge from D3cold, the
 678                         * whole hierarchy may be powered on into
 679                         * D0uninitialized state, resume them to give
 680                         * them a chance to suspend again
 681                         */
 682                        pci_wakeup_bus(dev->subordinate);
 683                }
 684        }
 685}
 686
 687/**
 688 * __pci_dev_set_current_state - Set current state of a PCI device
 689 * @dev: Device to handle
 690 * @data: pointer to state to be set
 691 */
 692static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 693{
 694        pci_power_t state = *(pci_power_t *)data;
 695
 696        dev->current_state = state;
 697        return 0;
 698}
 699
 700/**
 701 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 702 * @bus: Top bus of the subtree to walk.
 703 * @state: state to be set
 704 */
 705static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 706{
 707        if (bus)
 708                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 709}
 710
 711/**
 712 * __pci_complete_power_transition - Complete power transition of a PCI device
 713 * @dev: PCI device to handle.
 714 * @state: State to put the device into.
 715 *
 716 * This function should not be called directly by device drivers.
 717 */
 718int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 719{
 720        int ret;
 721
 722        if (state <= PCI_D0)
 723                return -EINVAL;
 724        ret = pci_platform_power_transition(dev, state);
 725        /* Power off the bridge may power off the whole hierarchy */
 726        if (!ret && state == PCI_D3cold)
 727                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 728        return ret;
 729}
 730EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 731
 732/**
 733 * pci_set_power_state - Set the power state of a PCI device
 734 * @dev: PCI device to handle.
 735 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 736 *
 737 * Transition a device to a new power state, using the platform firmware and/or
 738 * the device's PCI PM registers.
 739 *
 740 * RETURN VALUE:
 741 * -EINVAL if the requested state is invalid.
 742 * -EIO if device does not support PCI PM or its PM capabilities register has a
 743 * wrong version, or device doesn't support the requested state.
 744 * 0 if device already is in the requested state.
 745 * 0 if device's power state has been successfully changed.
 746 */
 747int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 748{
 749        int error;
 750
 751        /* bound the state we're entering */
 752        if (state > PCI_D3cold)
 753                state = PCI_D3cold;
 754        else if (state < PCI_D0)
 755                state = PCI_D0;
 756        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 757                /*
 758                 * If the device or the parent bridge do not support PCI PM,
 759                 * ignore the request if we're doing anything other than putting
 760                 * it into D0 (which would only happen on boot).
 761                 */
 762                return 0;
 763
 764        /* Check if we're already there */
 765        if (dev->current_state == state)
 766                return 0;
 767
 768        __pci_start_power_transition(dev, state);
 769
 770        /* This device is quirked not to be put into D3, so
 771           don't put it in D3 */
 772        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 773                return 0;
 774
 775        /*
 776         * To put device in D3cold, we put device into D3hot in native
 777         * way, then put device into D3cold with platform ops
 778         */
 779        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 780                                        PCI_D3hot : state);
 781
 782        if (!__pci_complete_power_transition(dev, state))
 783                error = 0;
 784        /*
 785         * When aspm_policy is "powersave" this call ensures
 786         * that ASPM is configured.
 787         */
 788        if (!error && dev->bus->self)
 789                pcie_aspm_powersave_config_link(dev->bus->self);
 790
 791        return error;
 792}
 793
 794/**
 795 * pci_choose_state - Choose the power state of a PCI device
 796 * @dev: PCI device to be suspended
 797 * @state: target sleep state for the whole system. This is the value
 798 *      that is passed to suspend() function.
 799 *
 800 * Returns PCI power state suitable for given device and given system
 801 * message.
 802 */
 803
 804pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 805{
 806        pci_power_t ret;
 807
 808        if (!dev->pm_cap)
 809                return PCI_D0;
 810
 811        ret = platform_pci_choose_state(dev);
 812        if (ret != PCI_POWER_ERROR)
 813                return ret;
 814
 815        switch (state.event) {
 816        case PM_EVENT_ON:
 817                return PCI_D0;
 818        case PM_EVENT_FREEZE:
 819        case PM_EVENT_PRETHAW:
 820                /* REVISIT both freeze and pre-thaw "should" use D0 */
 821        case PM_EVENT_SUSPEND:
 822        case PM_EVENT_HIBERNATE:
 823                return PCI_D3hot;
 824        default:
 825                dev_info(&dev->dev, "unrecognized suspend event %d\n",
 826                         state.event);
 827                BUG();
 828        }
 829        return PCI_D0;
 830}
 831
 832EXPORT_SYMBOL(pci_choose_state);
 833
 834#define PCI_EXP_SAVE_REGS       7
 835
 836
 837static struct pci_cap_saved_state *pci_find_saved_cap(
 838        struct pci_dev *pci_dev, char cap)
 839{
 840        struct pci_cap_saved_state *tmp;
 841
 842        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 843                if (tmp->cap.cap_nr == cap)
 844                        return tmp;
 845        }
 846        return NULL;
 847}
 848
 849static int pci_save_pcie_state(struct pci_dev *dev)
 850{
 851        int i = 0;
 852        struct pci_cap_saved_state *save_state;
 853        u16 *cap;
 854
 855        if (!pci_is_pcie(dev))
 856                return 0;
 857
 858        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 859        if (!save_state) {
 860                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 861                return -ENOMEM;
 862        }
 863
 864        cap = (u16 *)&save_state->cap.data[0];
 865        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
 866        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
 867        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
 868        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
 869        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
 870        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
 871        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
 872
 873        return 0;
 874}
 875
 876static void pci_restore_pcie_state(struct pci_dev *dev)
 877{
 878        int i = 0;
 879        struct pci_cap_saved_state *save_state;
 880        u16 *cap;
 881
 882        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
 883        if (!save_state)
 884                return;
 885
 886        cap = (u16 *)&save_state->cap.data[0];
 887        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
 888        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
 889        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
 890        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
 891        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
 892        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
 893        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
 894}
 895
 896
 897static int pci_save_pcix_state(struct pci_dev *dev)
 898{
 899        int pos;
 900        struct pci_cap_saved_state *save_state;
 901
 902        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 903        if (pos <= 0)
 904                return 0;
 905
 906        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 907        if (!save_state) {
 908                dev_err(&dev->dev, "buffer not found in %s\n", __func__);
 909                return -ENOMEM;
 910        }
 911
 912        pci_read_config_word(dev, pos + PCI_X_CMD,
 913                             (u16 *)save_state->cap.data);
 914
 915        return 0;
 916}
 917
 918static void pci_restore_pcix_state(struct pci_dev *dev)
 919{
 920        int i = 0, pos;
 921        struct pci_cap_saved_state *save_state;
 922        u16 *cap;
 923
 924        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
 925        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
 926        if (!save_state || pos <= 0)
 927                return;
 928        cap = (u16 *)&save_state->cap.data[0];
 929
 930        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
 931}
 932
 933
 934/**
 935 * pci_save_state - save the PCI configuration space of a device before suspending
 936 * @dev: - PCI device that we're dealing with
 937 */
 938int
 939pci_save_state(struct pci_dev *dev)
 940{
 941        int i;
 942        /* XXX: 100% dword access ok here? */
 943        for (i = 0; i < 16; i++)
 944                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
 945        dev->state_saved = true;
 946        if ((i = pci_save_pcie_state(dev)) != 0)
 947                return i;
 948        if ((i = pci_save_pcix_state(dev)) != 0)
 949                return i;
 950        return 0;
 951}
 952
 953static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
 954                                     u32 saved_val, int retry)
 955{
 956        u32 val;
 957
 958        pci_read_config_dword(pdev, offset, &val);
 959        if (val == saved_val)
 960                return;
 961
 962        for (;;) {
 963                dev_dbg(&pdev->dev, "restoring config space at offset "
 964                        "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
 965                pci_write_config_dword(pdev, offset, saved_val);
 966                if (retry-- <= 0)
 967                        return;
 968
 969                pci_read_config_dword(pdev, offset, &val);
 970                if (val == saved_val)
 971                        return;
 972
 973                mdelay(1);
 974        }
 975}
 976
 977static void pci_restore_config_space_range(struct pci_dev *pdev,
 978                                           int start, int end, int retry)
 979{
 980        int index;
 981
 982        for (index = end; index >= start; index--)
 983                pci_restore_config_dword(pdev, 4 * index,
 984                                         pdev->saved_config_space[index],
 985                                         retry);
 986}
 987
 988static void pci_restore_config_space(struct pci_dev *pdev)
 989{
 990        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
 991                pci_restore_config_space_range(pdev, 10, 15, 0);
 992                /* Restore BARs before the command register. */
 993                pci_restore_config_space_range(pdev, 4, 9, 10);
 994                pci_restore_config_space_range(pdev, 0, 3, 0);
 995        } else {
 996                pci_restore_config_space_range(pdev, 0, 15, 0);
 997        }
 998}
 999
1000/** 
1001 * pci_restore_state - Restore the saved state of a PCI device
1002 * @dev: - PCI device that we're dealing with
1003 */
1004void pci_restore_state(struct pci_dev *dev)
1005{
1006        if (!dev->state_saved)
1007                return;
1008
1009        /* PCI Express register must be restored first */
1010        pci_restore_pcie_state(dev);
1011        pci_restore_ats_state(dev);
1012
1013        pci_restore_config_space(dev);
1014
1015        pci_restore_pcix_state(dev);
1016        pci_restore_msi_state(dev);
1017        pci_restore_iov_state(dev);
1018
1019        dev->state_saved = false;
1020}
1021
1022struct pci_saved_state {
1023        u32 config_space[16];
1024        struct pci_cap_saved_data cap[0];
1025};
1026
1027/**
1028 * pci_store_saved_state - Allocate and return an opaque struct containing
1029 *                         the device saved state.
1030 * @dev: PCI device that we're dealing with
1031 *
1032 * Rerturn NULL if no state or error.
1033 */
1034struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1035{
1036        struct pci_saved_state *state;
1037        struct pci_cap_saved_state *tmp;
1038        struct pci_cap_saved_data *cap;
1039        size_t size;
1040
1041        if (!dev->state_saved)
1042                return NULL;
1043
1044        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1045
1046        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1047                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1048
1049        state = kzalloc(size, GFP_KERNEL);
1050        if (!state)
1051                return NULL;
1052
1053        memcpy(state->config_space, dev->saved_config_space,
1054               sizeof(state->config_space));
1055
1056        cap = state->cap;
1057        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1058                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059                memcpy(cap, &tmp->cap, len);
1060                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1061        }
1062        /* Empty cap_save terminates list */
1063
1064        return state;
1065}
1066EXPORT_SYMBOL_GPL(pci_store_saved_state);
1067
1068/**
1069 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070 * @dev: PCI device that we're dealing with
1071 * @state: Saved state returned from pci_store_saved_state()
1072 */
1073int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1074{
1075        struct pci_cap_saved_data *cap;
1076
1077        dev->state_saved = false;
1078
1079        if (!state)
1080                return 0;
1081
1082        memcpy(dev->saved_config_space, state->config_space,
1083               sizeof(state->config_space));
1084
1085        cap = state->cap;
1086        while (cap->size) {
1087                struct pci_cap_saved_state *tmp;
1088
1089                tmp = pci_find_saved_cap(dev, cap->cap_nr);
1090                if (!tmp || tmp->cap.size != cap->size)
1091                        return -EINVAL;
1092
1093                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1094                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1095                       sizeof(struct pci_cap_saved_data) + cap->size);
1096        }
1097
1098        dev->state_saved = true;
1099        return 0;
1100}
1101EXPORT_SYMBOL_GPL(pci_load_saved_state);
1102
1103/**
1104 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105 *                                 and free the memory allocated for it.
1106 * @dev: PCI device that we're dealing with
1107 * @state: Pointer to saved state returned from pci_store_saved_state()
1108 */
1109int pci_load_and_free_saved_state(struct pci_dev *dev,
1110                                  struct pci_saved_state **state)
1111{
1112        int ret = pci_load_saved_state(dev, *state);
1113        kfree(*state);
1114        *state = NULL;
1115        return ret;
1116}
1117EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1118
1119static int do_pci_enable_device(struct pci_dev *dev, int bars)
1120{
1121        int err;
1122
1123        err = pci_set_power_state(dev, PCI_D0);
1124        if (err < 0 && err != -EIO)
1125                return err;
1126        err = pcibios_enable_device(dev, bars);
1127        if (err < 0)
1128                return err;
1129        pci_fixup_device(pci_fixup_enable, dev);
1130
1131        return 0;
1132}
1133
1134/**
1135 * pci_reenable_device - Resume abandoned device
1136 * @dev: PCI device to be resumed
1137 *
1138 *  Note this function is a backend of pci_default_resume and is not supposed
1139 *  to be called by normal code, write proper resume handler and use it instead.
1140 */
1141int pci_reenable_device(struct pci_dev *dev)
1142{
1143        if (pci_is_enabled(dev))
1144                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1145        return 0;
1146}
1147
1148static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1149{
1150        int err;
1151        int i, bars = 0;
1152
1153        /*
1154         * Power state could be unknown at this point, either due to a fresh
1155         * boot or a device removal call.  So get the current power state
1156         * so that things like MSI message writing will behave as expected
1157         * (e.g. if the device really is in D0 at enable time).
1158         */
1159        if (dev->pm_cap) {
1160                u16 pmcsr;
1161                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163        }
1164
1165        if (atomic_inc_return(&dev->enable_cnt) > 1)
1166                return 0;               /* already enabled */
1167
1168        /* only skip sriov related */
1169        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1170                if (dev->resource[i].flags & flags)
1171                        bars |= (1 << i);
1172        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1173                if (dev->resource[i].flags & flags)
1174                        bars |= (1 << i);
1175
1176        err = do_pci_enable_device(dev, bars);
1177        if (err < 0)
1178                atomic_dec(&dev->enable_cnt);
1179        return err;
1180}
1181
1182/**
1183 * pci_enable_device_io - Initialize a device for use with IO space
1184 * @dev: PCI device to be initialized
1185 *
1186 *  Initialize device before it's used by a driver. Ask low-level code
1187 *  to enable I/O resources. Wake up the device if it was suspended.
1188 *  Beware, this function can fail.
1189 */
1190int pci_enable_device_io(struct pci_dev *dev)
1191{
1192        return pci_enable_device_flags(dev, IORESOURCE_IO);
1193}
1194
1195/**
1196 * pci_enable_device_mem - Initialize a device for use with Memory space
1197 * @dev: PCI device to be initialized
1198 *
1199 *  Initialize device before it's used by a driver. Ask low-level code
1200 *  to enable Memory resources. Wake up the device if it was suspended.
1201 *  Beware, this function can fail.
1202 */
1203int pci_enable_device_mem(struct pci_dev *dev)
1204{
1205        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1206}
1207
1208/**
1209 * pci_enable_device - Initialize device before it's used by a driver.
1210 * @dev: PCI device to be initialized
1211 *
1212 *  Initialize device before it's used by a driver. Ask low-level code
1213 *  to enable I/O and memory. Wake up the device if it was suspended.
1214 *  Beware, this function can fail.
1215 *
1216 *  Note we don't actually enable the device many times if we call
1217 *  this function repeatedly (we just increment the count).
1218 */
1219int pci_enable_device(struct pci_dev *dev)
1220{
1221        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1222}
1223
1224/*
1225 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1226 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1227 * there's no need to track it separately.  pci_devres is initialized
1228 * when a device is enabled using managed PCI device enable interface.
1229 */
1230struct pci_devres {
1231        unsigned int enabled:1;
1232        unsigned int pinned:1;
1233        unsigned int orig_intx:1;
1234        unsigned int restore_intx:1;
1235        u32 region_mask;
1236};
1237
1238static void pcim_release(struct device *gendev, void *res)
1239{
1240        struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1241        struct pci_devres *this = res;
1242        int i;
1243
1244        if (dev->msi_enabled)
1245                pci_disable_msi(dev);
1246        if (dev->msix_enabled)
1247                pci_disable_msix(dev);
1248
1249        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1250                if (this->region_mask & (1 << i))
1251                        pci_release_region(dev, i);
1252
1253        if (this->restore_intx)
1254                pci_intx(dev, this->orig_intx);
1255
1256        if (this->enabled && !this->pinned)
1257                pci_disable_device(dev);
1258}
1259
1260static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1261{
1262        struct pci_devres *dr, *new_dr;
1263
1264        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1265        if (dr)
1266                return dr;
1267
1268        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1269        if (!new_dr)
1270                return NULL;
1271        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1272}
1273
1274static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1275{
1276        if (pci_is_managed(pdev))
1277                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1278        return NULL;
1279}
1280
1281/**
1282 * pcim_enable_device - Managed pci_enable_device()
1283 * @pdev: PCI device to be initialized
1284 *
1285 * Managed pci_enable_device().
1286 */
1287int pcim_enable_device(struct pci_dev *pdev)
1288{
1289        struct pci_devres *dr;
1290        int rc;
1291
1292        dr = get_pci_dr(pdev);
1293        if (unlikely(!dr))
1294                return -ENOMEM;
1295        if (dr->enabled)
1296                return 0;
1297
1298        rc = pci_enable_device(pdev);
1299        if (!rc) {
1300                pdev->is_managed = 1;
1301                dr->enabled = 1;
1302        }
1303        return rc;
1304}
1305
1306/**
1307 * pcim_pin_device - Pin managed PCI device
1308 * @pdev: PCI device to pin
1309 *
1310 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1311 * driver detach.  @pdev must have been enabled with
1312 * pcim_enable_device().
1313 */
1314void pcim_pin_device(struct pci_dev *pdev)
1315{
1316        struct pci_devres *dr;
1317
1318        dr = find_pci_dr(pdev);
1319        WARN_ON(!dr || !dr->enabled);
1320        if (dr)
1321                dr->pinned = 1;
1322}
1323
1324/*
1325 * pcibios_add_device - provide arch specific hooks when adding device dev
1326 * @dev: the PCI device being added
1327 *
1328 * Permits the platform to provide architecture specific functionality when
1329 * devices are added. This is the default implementation. Architecture
1330 * implementations can override this.
1331 */
1332int __weak pcibios_add_device (struct pci_dev *dev)
1333{
1334        return 0;
1335}
1336
1337/**
1338 * pcibios_release_device - provide arch specific hooks when releasing device dev
1339 * @dev: the PCI device being released
1340 *
1341 * Permits the platform to provide architecture specific functionality when
1342 * devices are released. This is the default implementation. Architecture
1343 * implementations can override this.
1344 */
1345void __weak pcibios_release_device(struct pci_dev *dev) {}
1346
1347/**
1348 * pcibios_disable_device - disable arch specific PCI resources for device dev
1349 * @dev: the PCI device to disable
1350 *
1351 * Disables architecture specific PCI resources for the device. This
1352 * is the default implementation. Architecture implementations can
1353 * override this.
1354 */
1355void __weak pcibios_disable_device (struct pci_dev *dev) {}
1356
1357static void do_pci_disable_device(struct pci_dev *dev)
1358{
1359        u16 pci_command;
1360
1361        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1362        if (pci_command & PCI_COMMAND_MASTER) {
1363                pci_command &= ~PCI_COMMAND_MASTER;
1364                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1365        }
1366
1367        pcibios_disable_device(dev);
1368}
1369
1370/**
1371 * pci_disable_enabled_device - Disable device without updating enable_cnt
1372 * @dev: PCI device to disable
1373 *
1374 * NOTE: This function is a backend of PCI power management routines and is
1375 * not supposed to be called drivers.
1376 */
1377void pci_disable_enabled_device(struct pci_dev *dev)
1378{
1379        if (pci_is_enabled(dev))
1380                do_pci_disable_device(dev);
1381}
1382
1383/**
1384 * pci_disable_device - Disable PCI device after use
1385 * @dev: PCI device to be disabled
1386 *
1387 * Signal to the system that the PCI device is not in use by the system
1388 * anymore.  This only involves disabling PCI bus-mastering, if active.
1389 *
1390 * Note we don't actually disable the device until all callers of
1391 * pci_enable_device() have called pci_disable_device().
1392 */
1393void
1394pci_disable_device(struct pci_dev *dev)
1395{
1396        struct pci_devres *dr;
1397
1398        dr = find_pci_dr(dev);
1399        if (dr)
1400                dr->enabled = 0;
1401
1402        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1403                      "disabling already-disabled device");
1404
1405        if (atomic_dec_return(&dev->enable_cnt) != 0)
1406                return;
1407
1408        do_pci_disable_device(dev);
1409
1410        dev->is_busmaster = 0;
1411}
1412
1413/**
1414 * pcibios_set_pcie_reset_state - set reset state for device dev
1415 * @dev: the PCIe device reset
1416 * @state: Reset state to enter into
1417 *
1418 *
1419 * Sets the PCIe reset state for the device. This is the default
1420 * implementation. Architecture implementations can override this.
1421 */
1422int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1423                                        enum pcie_reset_state state)
1424{
1425        return -EINVAL;
1426}
1427
1428/**
1429 * pci_set_pcie_reset_state - set reset state for device dev
1430 * @dev: the PCIe device reset
1431 * @state: Reset state to enter into
1432 *
1433 *
1434 * Sets the PCI reset state for the device.
1435 */
1436int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1437{
1438        return pcibios_set_pcie_reset_state(dev, state);
1439}
1440
1441/**
1442 * pci_check_pme_status - Check if given device has generated PME.
1443 * @dev: Device to check.
1444 *
1445 * Check the PME status of the device and if set, clear it and clear PME enable
1446 * (if set).  Return 'true' if PME status and PME enable were both set or
1447 * 'false' otherwise.
1448 */
1449bool pci_check_pme_status(struct pci_dev *dev)
1450{
1451        int pmcsr_pos;
1452        u16 pmcsr;
1453        bool ret = false;
1454
1455        if (!dev->pm_cap)
1456                return false;
1457
1458        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1459        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1460        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1461                return false;
1462
1463        /* Clear PME status. */
1464        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1465        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1466                /* Disable PME to avoid interrupt flood. */
1467                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1468                ret = true;
1469        }
1470
1471        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1472
1473        return ret;
1474}
1475
1476/**
1477 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1478 * @dev: Device to handle.
1479 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1480 *
1481 * Check if @dev has generated PME and queue a resume request for it in that
1482 * case.
1483 */
1484static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1485{
1486        if (pme_poll_reset && dev->pme_poll)
1487                dev->pme_poll = false;
1488
1489        if (pci_check_pme_status(dev)) {
1490                pci_wakeup_event(dev);
1491                pm_request_resume(&dev->dev);
1492        }
1493        return 0;
1494}
1495
1496/**
1497 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1498 * @bus: Top bus of the subtree to walk.
1499 */
1500void pci_pme_wakeup_bus(struct pci_bus *bus)
1501{
1502        if (bus)
1503                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1504}
1505
1506/**
1507 * pci_wakeup - Wake up a PCI device
1508 * @pci_dev: Device to handle.
1509 * @ign: ignored parameter
1510 */
1511static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1512{
1513        pci_wakeup_event(pci_dev);
1514        pm_request_resume(&pci_dev->dev);
1515        return 0;
1516}
1517
1518/**
1519 * pci_wakeup_bus - Walk given bus and wake up devices on it
1520 * @bus: Top bus of the subtree to walk.
1521 */
1522void pci_wakeup_bus(struct pci_bus *bus)
1523{
1524        if (bus)
1525                pci_walk_bus(bus, pci_wakeup, NULL);
1526}
1527
1528/**
1529 * pci_pme_capable - check the capability of PCI device to generate PME#
1530 * @dev: PCI device to handle.
1531 * @state: PCI state from which device will issue PME#.
1532 */
1533bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1534{
1535        if (!dev->pm_cap)
1536                return false;
1537
1538        return !!(dev->pme_support & (1 << state));
1539}
1540
1541static void pci_pme_list_scan(struct work_struct *work)
1542{
1543        struct pci_pme_device *pme_dev, *n;
1544
1545        mutex_lock(&pci_pme_list_mutex);
1546        if (!list_empty(&pci_pme_list)) {
1547                list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1548                        if (pme_dev->dev->pme_poll) {
1549                                struct pci_dev *bridge;
1550
1551                                bridge = pme_dev->dev->bus->self;
1552                                /*
1553                                 * If bridge is in low power state, the
1554                                 * configuration space of subordinate devices
1555                                 * may be not accessible
1556                                 */
1557                                if (bridge && bridge->current_state != PCI_D0)
1558                                        continue;
1559                                pci_pme_wakeup(pme_dev->dev, NULL);
1560                        } else {
1561                                list_del(&pme_dev->list);
1562                                kfree(pme_dev);
1563                        }
1564                }
1565                if (!list_empty(&pci_pme_list))
1566                        schedule_delayed_work(&pci_pme_work,
1567                                              msecs_to_jiffies(PME_TIMEOUT));
1568        }
1569        mutex_unlock(&pci_pme_list_mutex);
1570}
1571
1572/**
1573 * pci_pme_active - enable or disable PCI device's PME# function
1574 * @dev: PCI device to handle.
1575 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1576 *
1577 * The caller must verify that the device is capable of generating PME# before
1578 * calling this function with @enable equal to 'true'.
1579 */
1580void pci_pme_active(struct pci_dev *dev, bool enable)
1581{
1582        u16 pmcsr;
1583
1584        if (!dev->pme_support)
1585                return;
1586
1587        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1588        /* Clear PME_Status by writing 1 to it and enable PME# */
1589        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1590        if (!enable)
1591                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1592
1593        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1594
1595        /*
1596         * PCI (as opposed to PCIe) PME requires that the device have
1597         * its PME# line hooked up correctly. Not all hardware vendors
1598         * do this, so the PME never gets delivered and the device
1599         * remains asleep. The easiest way around this is to
1600         * periodically walk the list of suspended devices and check
1601         * whether any have their PME flag set. The assumption is that
1602         * we'll wake up often enough anyway that this won't be a huge
1603         * hit, and the power savings from the devices will still be a
1604         * win.
1605         *
1606         * Although PCIe uses in-band PME message instead of PME# line
1607         * to report PME, PME does not work for some PCIe devices in
1608         * reality.  For example, there are devices that set their PME
1609         * status bits, but don't really bother to send a PME message;
1610         * there are PCI Express Root Ports that don't bother to
1611         * trigger interrupts when they receive PME messages from the
1612         * devices below.  So PME poll is used for PCIe devices too.
1613         */
1614
1615        if (dev->pme_poll) {
1616                struct pci_pme_device *pme_dev;
1617                if (enable) {
1618                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1619                                          GFP_KERNEL);
1620                        if (!pme_dev)
1621                                goto out;
1622                        pme_dev->dev = dev;
1623                        mutex_lock(&pci_pme_list_mutex);
1624                        list_add(&pme_dev->list, &pci_pme_list);
1625                        if (list_is_singular(&pci_pme_list))
1626                                schedule_delayed_work(&pci_pme_work,
1627                                                      msecs_to_jiffies(PME_TIMEOUT));
1628                        mutex_unlock(&pci_pme_list_mutex);
1629                } else {
1630                        mutex_lock(&pci_pme_list_mutex);
1631                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1632                                if (pme_dev->dev == dev) {
1633                                        list_del(&pme_dev->list);
1634                                        kfree(pme_dev);
1635                                        break;
1636                                }
1637                        }
1638                        mutex_unlock(&pci_pme_list_mutex);
1639                }
1640        }
1641
1642out:
1643        dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1644}
1645
1646/**
1647 * __pci_enable_wake - enable PCI device as wakeup event source
1648 * @dev: PCI device affected
1649 * @state: PCI state from which device will issue wakeup events
1650 * @runtime: True if the events are to be generated at run time
1651 * @enable: True to enable event generation; false to disable
1652 *
1653 * This enables the device as a wakeup event source, or disables it.
1654 * When such events involves platform-specific hooks, those hooks are
1655 * called automatically by this routine.
1656 *
1657 * Devices with legacy power management (no standard PCI PM capabilities)
1658 * always require such platform hooks.
1659 *
1660 * RETURN VALUE:
1661 * 0 is returned on success
1662 * -EINVAL is returned if device is not supposed to wake up the system
1663 * Error code depending on the platform is returned if both the platform and
1664 * the native mechanism fail to enable the generation of wake-up events
1665 */
1666int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1667                      bool runtime, bool enable)
1668{
1669        int ret = 0;
1670
1671        if (enable && !runtime && !device_may_wakeup(&dev->dev))
1672                return -EINVAL;
1673
1674        /* Don't do the same thing twice in a row for one device. */
1675        if (!!enable == !!dev->wakeup_prepared)
1676                return 0;
1677
1678        /*
1679         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1680         * Anderson we should be doing PME# wake enable followed by ACPI wake
1681         * enable.  To disable wake-up we call the platform first, for symmetry.
1682         */
1683
1684        if (enable) {
1685                int error;
1686
1687                if (pci_pme_capable(dev, state))
1688                        pci_pme_active(dev, true);
1689                else
1690                        ret = 1;
1691                error = runtime ? platform_pci_run_wake(dev, true) :
1692                                        platform_pci_sleep_wake(dev, true);
1693                if (ret)
1694                        ret = error;
1695                if (!ret)
1696                        dev->wakeup_prepared = true;
1697        } else {
1698                if (runtime)
1699                        platform_pci_run_wake(dev, false);
1700                else
1701                        platform_pci_sleep_wake(dev, false);
1702                pci_pme_active(dev, false);
1703                dev->wakeup_prepared = false;
1704        }
1705
1706        return ret;
1707}
1708EXPORT_SYMBOL(__pci_enable_wake);
1709
1710/**
1711 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1712 * @dev: PCI device to prepare
1713 * @enable: True to enable wake-up event generation; false to disable
1714 *
1715 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1716 * and this function allows them to set that up cleanly - pci_enable_wake()
1717 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1718 * ordering constraints.
1719 *
1720 * This function only returns error code if the device is not capable of
1721 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1722 * enable wake-up power for it.
1723 */
1724int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1725{
1726        return pci_pme_capable(dev, PCI_D3cold) ?
1727                        pci_enable_wake(dev, PCI_D3cold, enable) :
1728                        pci_enable_wake(dev, PCI_D3hot, enable);
1729}
1730
1731/**
1732 * pci_target_state - find an appropriate low power state for a given PCI dev
1733 * @dev: PCI device
1734 *
1735 * Use underlying platform code to find a supported low power state for @dev.
1736 * If the platform can't manage @dev, return the deepest state from which it
1737 * can generate wake events, based on any available PME info.
1738 */
1739pci_power_t pci_target_state(struct pci_dev *dev)
1740{
1741        pci_power_t target_state = PCI_D3hot;
1742
1743        if (platform_pci_power_manageable(dev)) {
1744                /*
1745                 * Call the platform to choose the target state of the device
1746                 * and enable wake-up from this state if supported.
1747                 */
1748                pci_power_t state = platform_pci_choose_state(dev);
1749
1750                switch (state) {
1751                case PCI_POWER_ERROR:
1752                case PCI_UNKNOWN:
1753                        break;
1754                case PCI_D1:
1755                case PCI_D2:
1756                        if (pci_no_d1d2(dev))
1757                                break;
1758                default:
1759                        target_state = state;
1760                }
1761        } else if (!dev->pm_cap) {
1762                target_state = PCI_D0;
1763        } else if (device_may_wakeup(&dev->dev)) {
1764                /*
1765                 * Find the deepest state from which the device can generate
1766                 * wake-up events, make it the target state and enable device
1767                 * to generate PME#.
1768                 */
1769                if (dev->pme_support) {
1770                        while (target_state
1771                              && !(dev->pme_support & (1 << target_state)))
1772                                target_state--;
1773                }
1774        }
1775
1776        return target_state;
1777}
1778
1779/**
1780 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1781 * @dev: Device to handle.
1782 *
1783 * Choose the power state appropriate for the device depending on whether
1784 * it can wake up the system and/or is power manageable by the platform
1785 * (PCI_D3hot is the default) and put the device into that state.
1786 */
1787int pci_prepare_to_sleep(struct pci_dev *dev)
1788{
1789        pci_power_t target_state = pci_target_state(dev);
1790        int error;
1791
1792        if (target_state == PCI_POWER_ERROR)
1793                return -EIO;
1794
1795        /* D3cold during system suspend/hibernate is not supported */
1796        if (target_state > PCI_D3hot)
1797                target_state = PCI_D3hot;
1798
1799        pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1800
1801        error = pci_set_power_state(dev, target_state);
1802
1803        if (error)
1804                pci_enable_wake(dev, target_state, false);
1805
1806        return error;
1807}
1808
1809/**
1810 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1811 * @dev: Device to handle.
1812 *
1813 * Disable device's system wake-up capability and put it into D0.
1814 */
1815int pci_back_from_sleep(struct pci_dev *dev)
1816{
1817        pci_enable_wake(dev, PCI_D0, false);
1818        return pci_set_power_state(dev, PCI_D0);
1819}
1820
1821/**
1822 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1823 * @dev: PCI device being suspended.
1824 *
1825 * Prepare @dev to generate wake-up events at run time and put it into a low
1826 * power state.
1827 */
1828int pci_finish_runtime_suspend(struct pci_dev *dev)
1829{
1830        pci_power_t target_state = pci_target_state(dev);
1831        int error;
1832
1833        if (target_state == PCI_POWER_ERROR)
1834                return -EIO;
1835
1836        dev->runtime_d3cold = target_state == PCI_D3cold;
1837
1838        __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1839
1840        error = pci_set_power_state(dev, target_state);
1841
1842        if (error) {
1843                __pci_enable_wake(dev, target_state, true, false);
1844                dev->runtime_d3cold = false;
1845        }
1846
1847        return error;
1848}
1849
1850/**
1851 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1852 * @dev: Device to check.
1853 *
1854 * Return true if the device itself is cabable of generating wake-up events
1855 * (through the platform or using the native PCIe PME) or if the device supports
1856 * PME and one of its upstream bridges can generate wake-up events.
1857 */
1858bool pci_dev_run_wake(struct pci_dev *dev)
1859{
1860        struct pci_bus *bus = dev->bus;
1861
1862        if (device_run_wake(&dev->dev))
1863                return true;
1864
1865        if (!dev->pme_support)
1866                return false;
1867
1868        while (bus->parent) {
1869                struct pci_dev *bridge = bus->self;
1870
1871                if (device_run_wake(&bridge->dev))
1872                        return true;
1873
1874                bus = bus->parent;
1875        }
1876
1877        /* We have reached the root bus. */
1878        if (bus->bridge)
1879                return device_run_wake(bus->bridge);
1880
1881        return false;
1882}
1883EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1884
1885void pci_config_pm_runtime_get(struct pci_dev *pdev)
1886{
1887        struct device *dev = &pdev->dev;
1888        struct device *parent = dev->parent;
1889
1890        if (parent)
1891                pm_runtime_get_sync(parent);
1892        pm_runtime_get_noresume(dev);
1893        /*
1894         * pdev->current_state is set to PCI_D3cold during suspending,
1895         * so wait until suspending completes
1896         */
1897        pm_runtime_barrier(dev);
1898        /*
1899         * Only need to resume devices in D3cold, because config
1900         * registers are still accessible for devices suspended but
1901         * not in D3cold.
1902         */
1903        if (pdev->current_state == PCI_D3cold)
1904                pm_runtime_resume(dev);
1905}
1906
1907void pci_config_pm_runtime_put(struct pci_dev *pdev)
1908{
1909        struct device *dev = &pdev->dev;
1910        struct device *parent = dev->parent;
1911
1912        pm_runtime_put(dev);
1913        if (parent)
1914                pm_runtime_put_sync(parent);
1915}
1916
1917/**
1918 * pci_pm_init - Initialize PM functions of given PCI device
1919 * @dev: PCI device to handle.
1920 */
1921void pci_pm_init(struct pci_dev *dev)
1922{
1923        int pm;
1924        u16 pmc;
1925
1926        pm_runtime_forbid(&dev->dev);
1927        pm_runtime_set_active(&dev->dev);
1928        pm_runtime_enable(&dev->dev);
1929        device_enable_async_suspend(&dev->dev);
1930        dev->wakeup_prepared = false;
1931
1932        dev->pm_cap = 0;
1933        dev->pme_support = 0;
1934
1935        /* find PCI PM capability in list */
1936        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1937        if (!pm)
1938                return;
1939        /* Check device's ability to generate PME# */
1940        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1941
1942        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1943                dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1944                        pmc & PCI_PM_CAP_VER_MASK);
1945                return;
1946        }
1947
1948        dev->pm_cap = pm;
1949        dev->d3_delay = PCI_PM_D3_WAIT;
1950        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1951        dev->d3cold_allowed = true;
1952
1953        dev->d1_support = false;
1954        dev->d2_support = false;
1955        if (!pci_no_d1d2(dev)) {
1956                if (pmc & PCI_PM_CAP_D1)
1957                        dev->d1_support = true;
1958                if (pmc & PCI_PM_CAP_D2)
1959                        dev->d2_support = true;
1960
1961                if (dev->d1_support || dev->d2_support)
1962                        dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1963                                   dev->d1_support ? " D1" : "",
1964                                   dev->d2_support ? " D2" : "");
1965        }
1966
1967        pmc &= PCI_PM_CAP_PME_MASK;
1968        if (pmc) {
1969                dev_printk(KERN_DEBUG, &dev->dev,
1970                         "PME# supported from%s%s%s%s%s\n",
1971                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1972                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1973                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1974                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1975                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1976                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1977                dev->pme_poll = true;
1978                /*
1979                 * Make device's PM flags reflect the wake-up capability, but
1980                 * let the user space enable it to wake up the system as needed.
1981                 */
1982                device_set_wakeup_capable(&dev->dev, true);
1983                /* Disable the PME# generation functionality */
1984                pci_pme_active(dev, false);
1985        }
1986}
1987
1988static void pci_add_saved_cap(struct pci_dev *pci_dev,
1989        struct pci_cap_saved_state *new_cap)
1990{
1991        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1992}
1993
1994/**
1995 * pci_add_save_buffer - allocate buffer for saving given capability registers
1996 * @dev: the PCI device
1997 * @cap: the capability to allocate the buffer for
1998 * @size: requested size of the buffer
1999 */
2000static int pci_add_cap_save_buffer(
2001        struct pci_dev *dev, char cap, unsigned int size)
2002{
2003        int pos;
2004        struct pci_cap_saved_state *save_state;
2005
2006        pos = pci_find_capability(dev, cap);
2007        if (pos <= 0)
2008                return 0;
2009
2010        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2011        if (!save_state)
2012                return -ENOMEM;
2013
2014        save_state->cap.cap_nr = cap;
2015        save_state->cap.size = size;
2016        pci_add_saved_cap(dev, save_state);
2017
2018        return 0;
2019}
2020
2021/**
2022 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2023 * @dev: the PCI device
2024 */
2025void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2026{
2027        int error;
2028
2029        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2030                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2031        if (error)
2032                dev_err(&dev->dev,
2033                        "unable to preallocate PCI Express save buffer\n");
2034
2035        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2036        if (error)
2037                dev_err(&dev->dev,
2038                        "unable to preallocate PCI-X save buffer\n");
2039}
2040
2041void pci_free_cap_save_buffers(struct pci_dev *dev)
2042{
2043        struct pci_cap_saved_state *tmp;
2044        struct hlist_node *n;
2045
2046        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2047                kfree(tmp);
2048}
2049
2050/**
2051 * pci_configure_ari - enable or disable ARI forwarding
2052 * @dev: the PCI device
2053 *
2054 * If @dev and its upstream bridge both support ARI, enable ARI in the
2055 * bridge.  Otherwise, disable ARI in the bridge.
2056 */
2057void pci_configure_ari(struct pci_dev *dev)
2058{
2059        u32 cap;
2060        struct pci_dev *bridge;
2061
2062        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2063                return;
2064
2065        bridge = dev->bus->self;
2066        if (!bridge)
2067                return;
2068
2069        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2070        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2071                return;
2072
2073        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2074                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2075                                         PCI_EXP_DEVCTL2_ARI);
2076                bridge->ari_enabled = 1;
2077        } else {
2078                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2079                                           PCI_EXP_DEVCTL2_ARI);
2080                bridge->ari_enabled = 0;
2081        }
2082}
2083
2084/**
2085 * pci_enable_ido - enable ID-based Ordering on a device
2086 * @dev: the PCI device
2087 * @type: which types of IDO to enable
2088 *
2089 * Enable ID-based ordering on @dev.  @type can contain the bits
2090 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2091 * which types of transactions are allowed to be re-ordered.
2092 */
2093void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2094{
2095        u16 ctrl = 0;
2096
2097        if (type & PCI_EXP_IDO_REQUEST)
2098                ctrl |= PCI_EXP_IDO_REQ_EN;
2099        if (type & PCI_EXP_IDO_COMPLETION)
2100                ctrl |= PCI_EXP_IDO_CMP_EN;
2101        if (ctrl)
2102                pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2103}
2104EXPORT_SYMBOL(pci_enable_ido);
2105
2106/**
2107 * pci_disable_ido - disable ID-based ordering on a device
2108 * @dev: the PCI device
2109 * @type: which types of IDO to disable
2110 */
2111void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2112{
2113        u16 ctrl = 0;
2114
2115        if (type & PCI_EXP_IDO_REQUEST)
2116                ctrl |= PCI_EXP_IDO_REQ_EN;
2117        if (type & PCI_EXP_IDO_COMPLETION)
2118                ctrl |= PCI_EXP_IDO_CMP_EN;
2119        if (ctrl)
2120                pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2121}
2122EXPORT_SYMBOL(pci_disable_ido);
2123
2124/**
2125 * pci_enable_obff - enable optimized buffer flush/fill
2126 * @dev: PCI device
2127 * @type: type of signaling to use
2128 *
2129 * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2130 * signaling if possible, falling back to message signaling only if
2131 * WAKE# isn't supported.  @type should indicate whether the PCIe link
2132 * be brought out of L0s or L1 to send the message.  It should be either
2133 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2134 *
2135 * If your device can benefit from receiving all messages, even at the
2136 * power cost of bringing the link back up from a low power state, use
2137 * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2138 * preferred type).
2139 *
2140 * RETURNS:
2141 * Zero on success, appropriate error number on failure.
2142 */
2143int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2144{
2145        u32 cap;
2146        u16 ctrl;
2147        int ret;
2148
2149        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2150        if (!(cap & PCI_EXP_OBFF_MASK))
2151                return -ENOTSUPP; /* no OBFF support at all */
2152
2153        /* Make sure the topology supports OBFF as well */
2154        if (dev->bus->self) {
2155                ret = pci_enable_obff(dev->bus->self, type);
2156                if (ret)
2157                        return ret;
2158        }
2159
2160        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2161        if (cap & PCI_EXP_OBFF_WAKE)
2162                ctrl |= PCI_EXP_OBFF_WAKE_EN;
2163        else {
2164                switch (type) {
2165                case PCI_EXP_OBFF_SIGNAL_L0:
2166                        if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2167                                ctrl |= PCI_EXP_OBFF_MSGA_EN;
2168                        break;
2169                case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2170                        ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2171                        ctrl |= PCI_EXP_OBFF_MSGB_EN;
2172                        break;
2173                default:
2174                        WARN(1, "bad OBFF signal type\n");
2175                        return -ENOTSUPP;
2176                }
2177        }
2178        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2179
2180        return 0;
2181}
2182EXPORT_SYMBOL(pci_enable_obff);
2183
2184/**
2185 * pci_disable_obff - disable optimized buffer flush/fill
2186 * @dev: PCI device
2187 *
2188 * Disable OBFF on @dev.
2189 */
2190void pci_disable_obff(struct pci_dev *dev)
2191{
2192        pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2193}
2194EXPORT_SYMBOL(pci_disable_obff);
2195
2196/**
2197 * pci_ltr_supported - check whether a device supports LTR
2198 * @dev: PCI device
2199 *
2200 * RETURNS:
2201 * True if @dev supports latency tolerance reporting, false otherwise.
2202 */
2203static bool pci_ltr_supported(struct pci_dev *dev)
2204{
2205        u32 cap;
2206
2207        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2208
2209        return cap & PCI_EXP_DEVCAP2_LTR;
2210}
2211
2212/**
2213 * pci_enable_ltr - enable latency tolerance reporting
2214 * @dev: PCI device
2215 *
2216 * Enable LTR on @dev if possible, which means enabling it first on
2217 * upstream ports.
2218 *
2219 * RETURNS:
2220 * Zero on success, errno on failure.
2221 */
2222int pci_enable_ltr(struct pci_dev *dev)
2223{
2224        int ret;
2225
2226        /* Only primary function can enable/disable LTR */
2227        if (PCI_FUNC(dev->devfn) != 0)
2228                return -EINVAL;
2229
2230        if (!pci_ltr_supported(dev))
2231                return -ENOTSUPP;
2232
2233        /* Enable upstream ports first */
2234        if (dev->bus->self) {
2235                ret = pci_enable_ltr(dev->bus->self);
2236                if (ret)
2237                        return ret;
2238        }
2239
2240        return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2241}
2242EXPORT_SYMBOL(pci_enable_ltr);
2243
2244/**
2245 * pci_disable_ltr - disable latency tolerance reporting
2246 * @dev: PCI device
2247 */
2248void pci_disable_ltr(struct pci_dev *dev)
2249{
2250        /* Only primary function can enable/disable LTR */
2251        if (PCI_FUNC(dev->devfn) != 0)
2252                return;
2253
2254        if (!pci_ltr_supported(dev))
2255                return;
2256
2257        pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2258}
2259EXPORT_SYMBOL(pci_disable_ltr);
2260
2261static int __pci_ltr_scale(int *val)
2262{
2263        int scale = 0;
2264
2265        while (*val > 1023) {
2266                *val = (*val + 31) / 32;
2267                scale++;
2268        }
2269        return scale;
2270}
2271
2272/**
2273 * pci_set_ltr - set LTR latency values
2274 * @dev: PCI device
2275 * @snoop_lat_ns: snoop latency in nanoseconds
2276 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2277 *
2278 * Figure out the scale and set the LTR values accordingly.
2279 */
2280int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2281{
2282        int pos, ret, snoop_scale, nosnoop_scale;
2283        u16 val;
2284
2285        if (!pci_ltr_supported(dev))
2286                return -ENOTSUPP;
2287
2288        snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2289        nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2290
2291        if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2292            nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2293                return -EINVAL;
2294
2295        if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2296            (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2297                return -EINVAL;
2298
2299        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2300        if (!pos)
2301                return -ENOTSUPP;
2302
2303        val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2304        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2305        if (ret != 4)
2306                return -EIO;
2307
2308        val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2309        ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2310        if (ret != 4)
2311                return -EIO;
2312
2313        return 0;
2314}
2315EXPORT_SYMBOL(pci_set_ltr);
2316
2317static int pci_acs_enable;
2318
2319/**
2320 * pci_request_acs - ask for ACS to be enabled if supported
2321 */
2322void pci_request_acs(void)
2323{
2324        pci_acs_enable = 1;
2325}
2326
2327/**
2328 * pci_enable_acs - enable ACS if hardware support it
2329 * @dev: the PCI device
2330 */
2331void pci_enable_acs(struct pci_dev *dev)
2332{
2333        int pos;
2334        u16 cap;
2335        u16 ctrl;
2336
2337        if (!pci_acs_enable)
2338                return;
2339
2340        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341        if (!pos)
2342                return;
2343
2344        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2346
2347        /* Source Validation */
2348        ctrl |= (cap & PCI_ACS_SV);
2349
2350        /* P2P Request Redirect */
2351        ctrl |= (cap & PCI_ACS_RR);
2352
2353        /* P2P Completion Redirect */
2354        ctrl |= (cap & PCI_ACS_CR);
2355
2356        /* Upstream Forwarding */
2357        ctrl |= (cap & PCI_ACS_UF);
2358
2359        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2360}
2361
2362/**
2363 * pci_acs_enabled - test ACS against required flags for a given device
2364 * @pdev: device to test
2365 * @acs_flags: required PCI ACS flags
2366 *
2367 * Return true if the device supports the provided flags.  Automatically
2368 * filters out flags that are not implemented on multifunction devices.
2369 */
2370bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2371{
2372        int pos, ret;
2373        u16 ctrl;
2374
2375        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2376        if (ret >= 0)
2377                return ret > 0;
2378
2379        if (!pci_is_pcie(pdev))
2380                return false;
2381
2382        /* Filter out flags not applicable to multifunction */
2383        if (pdev->multifunction)
2384                acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2385                              PCI_ACS_EC | PCI_ACS_DT);
2386
2387        if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2388            pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2389            pdev->multifunction) {
2390                pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2391                if (!pos)
2392                        return false;
2393
2394                pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2395                if ((ctrl & acs_flags) != acs_flags)
2396                        return false;
2397        }
2398
2399        return true;
2400}
2401
2402/**
2403 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2404 * @start: starting downstream device
2405 * @end: ending upstream device or NULL to search to the root bus
2406 * @acs_flags: required flags
2407 *
2408 * Walk up a device tree from start to end testing PCI ACS support.  If
2409 * any step along the way does not support the required flags, return false.
2410 */
2411bool pci_acs_path_enabled(struct pci_dev *start,
2412                          struct pci_dev *end, u16 acs_flags)
2413{
2414        struct pci_dev *pdev, *parent = start;
2415
2416        do {
2417                pdev = parent;
2418
2419                if (!pci_acs_enabled(pdev, acs_flags))
2420                        return false;
2421
2422                if (pci_is_root_bus(pdev->bus))
2423                        return (end == NULL);
2424
2425                parent = pdev->bus->self;
2426        } while (pdev != end);
2427
2428        return true;
2429}
2430
2431/**
2432 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2433 * @dev: the PCI device
2434 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2435 *
2436 * Perform INTx swizzling for a device behind one level of bridge.  This is
2437 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2438 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2439 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2440 * the PCI Express Base Specification, Revision 2.1)
2441 */
2442u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2443{
2444        int slot;
2445
2446        if (pci_ari_enabled(dev->bus))
2447                slot = 0;
2448        else
2449                slot = PCI_SLOT(dev->devfn);
2450
2451        return (((pin - 1) + slot) % 4) + 1;
2452}
2453
2454int
2455pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2456{
2457        u8 pin;
2458
2459        pin = dev->pin;
2460        if (!pin)
2461                return -1;
2462
2463        while (!pci_is_root_bus(dev->bus)) {
2464                pin = pci_swizzle_interrupt_pin(dev, pin);
2465                dev = dev->bus->self;
2466        }
2467        *bridge = dev;
2468        return pin;
2469}
2470
2471/**
2472 * pci_common_swizzle - swizzle INTx all the way to root bridge
2473 * @dev: the PCI device
2474 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2475 *
2476 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2477 * bridges all the way up to a PCI root bus.
2478 */
2479u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2480{
2481        u8 pin = *pinp;
2482
2483        while (!pci_is_root_bus(dev->bus)) {
2484                pin = pci_swizzle_interrupt_pin(dev, pin);
2485                dev = dev->bus->self;
2486        }
2487        *pinp = pin;
2488        return PCI_SLOT(dev->devfn);
2489}
2490
2491/**
2492 *      pci_release_region - Release a PCI bar
2493 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
2494 *      @bar: BAR to release
2495 *
2496 *      Releases the PCI I/O and memory resources previously reserved by a
2497 *      successful call to pci_request_region.  Call this function only
2498 *      after all use of the PCI regions has ceased.
2499 */
2500void pci_release_region(struct pci_dev *pdev, int bar)
2501{
2502        struct pci_devres *dr;
2503
2504        if (pci_resource_len(pdev, bar) == 0)
2505                return;
2506        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2507                release_region(pci_resource_start(pdev, bar),
2508                                pci_resource_len(pdev, bar));
2509        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2510                release_mem_region(pci_resource_start(pdev, bar),
2511                                pci_resource_len(pdev, bar));
2512
2513        dr = find_pci_dr(pdev);
2514        if (dr)
2515                dr->region_mask &= ~(1 << bar);
2516}
2517
2518/**
2519 *      __pci_request_region - Reserved PCI I/O and memory resource
2520 *      @pdev: PCI device whose resources are to be reserved
2521 *      @bar: BAR to be reserved
2522 *      @res_name: Name to be associated with resource.
2523 *      @exclusive: whether the region access is exclusive or not
2524 *
2525 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2526 *      being reserved by owner @res_name.  Do not access any
2527 *      address inside the PCI regions unless this call returns
2528 *      successfully.
2529 *
2530 *      If @exclusive is set, then the region is marked so that userspace
2531 *      is explicitly not allowed to map the resource via /dev/mem or
2532 *      sysfs MMIO access.
2533 *
2534 *      Returns 0 on success, or %EBUSY on error.  A warning
2535 *      message is also printed on failure.
2536 */
2537static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2538                                                                        int exclusive)
2539{
2540        struct pci_devres *dr;
2541
2542        if (pci_resource_len(pdev, bar) == 0)
2543                return 0;
2544                
2545        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2546                if (!request_region(pci_resource_start(pdev, bar),
2547                            pci_resource_len(pdev, bar), res_name))
2548                        goto err_out;
2549        }
2550        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2551                if (!__request_mem_region(pci_resource_start(pdev, bar),
2552                                        pci_resource_len(pdev, bar), res_name,
2553                                        exclusive))
2554                        goto err_out;
2555        }
2556
2557        dr = find_pci_dr(pdev);
2558        if (dr)
2559                dr->region_mask |= 1 << bar;
2560
2561        return 0;
2562
2563err_out:
2564        dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2565                 &pdev->resource[bar]);
2566        return -EBUSY;
2567}
2568
2569/**
2570 *      pci_request_region - Reserve PCI I/O and memory resource
2571 *      @pdev: PCI device whose resources are to be reserved
2572 *      @bar: BAR to be reserved
2573 *      @res_name: Name to be associated with resource
2574 *
2575 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
2576 *      being reserved by owner @res_name.  Do not access any
2577 *      address inside the PCI regions unless this call returns
2578 *      successfully.
2579 *
2580 *      Returns 0 on success, or %EBUSY on error.  A warning
2581 *      message is also printed on failure.
2582 */
2583int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2584{
2585        return __pci_request_region(pdev, bar, res_name, 0);
2586}
2587
2588/**
2589 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
2590 *      @pdev: PCI device whose resources are to be reserved
2591 *      @bar: BAR to be reserved
2592 *      @res_name: Name to be associated with resource.
2593 *
2594 *      Mark the PCI region associated with PCI device @pdev BR @bar as
2595 *      being reserved by owner @res_name.  Do not access any
2596 *      address inside the PCI regions unless this call returns
2597 *      successfully.
2598 *
2599 *      Returns 0 on success, or %EBUSY on error.  A warning
2600 *      message is also printed on failure.
2601 *
2602 *      The key difference that _exclusive makes it that userspace is
2603 *      explicitly not allowed to map the resource via /dev/mem or
2604 *      sysfs.
2605 */
2606int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2607{
2608        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2609}
2610/**
2611 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2612 * @pdev: PCI device whose resources were previously reserved
2613 * @bars: Bitmask of BARs to be released
2614 *
2615 * Release selected PCI I/O and memory resources previously reserved.
2616 * Call this function only after all use of the PCI regions has ceased.
2617 */
2618void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2619{
2620        int i;
2621
2622        for (i = 0; i < 6; i++)
2623                if (bars & (1 << i))
2624                        pci_release_region(pdev, i);
2625}
2626
2627static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2628                                 const char *res_name, int excl)
2629{
2630        int i;
2631
2632        for (i = 0; i < 6; i++)
2633                if (bars & (1 << i))
2634                        if (__pci_request_region(pdev, i, res_name, excl))
2635                                goto err_out;
2636        return 0;
2637
2638err_out:
2639        while(--i >= 0)
2640                if (bars & (1 << i))
2641                        pci_release_region(pdev, i);
2642
2643        return -EBUSY;
2644}
2645
2646
2647/**
2648 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2649 * @pdev: PCI device whose resources are to be reserved
2650 * @bars: Bitmask of BARs to be requested
2651 * @res_name: Name to be associated with resource
2652 */
2653int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2654                                 const char *res_name)
2655{
2656        return __pci_request_selected_regions(pdev, bars, res_name, 0);
2657}
2658
2659int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2660                                 int bars, const char *res_name)
2661{
2662        return __pci_request_selected_regions(pdev, bars, res_name,
2663                        IORESOURCE_EXCLUSIVE);
2664}
2665
2666/**
2667 *      pci_release_regions - Release reserved PCI I/O and memory resources
2668 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
2669 *
2670 *      Releases all PCI I/O and memory resources previously reserved by a
2671 *      successful call to pci_request_regions.  Call this function only
2672 *      after all use of the PCI regions has ceased.
2673 */
2674
2675void pci_release_regions(struct pci_dev *pdev)
2676{
2677        pci_release_selected_regions(pdev, (1 << 6) - 1);
2678}
2679
2680/**
2681 *      pci_request_regions - Reserved PCI I/O and memory resources
2682 *      @pdev: PCI device whose resources are to be reserved
2683 *      @res_name: Name to be associated with resource.
2684 *
2685 *      Mark all PCI regions associated with PCI device @pdev as
2686 *      being reserved by owner @res_name.  Do not access any
2687 *      address inside the PCI regions unless this call returns
2688 *      successfully.
2689 *
2690 *      Returns 0 on success, or %EBUSY on error.  A warning
2691 *      message is also printed on failure.
2692 */
2693int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2694{
2695        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2696}
2697
2698/**
2699 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2700 *      @pdev: PCI device whose resources are to be reserved
2701 *      @res_name: Name to be associated with resource.
2702 *
2703 *      Mark all PCI regions associated with PCI device @pdev as
2704 *      being reserved by owner @res_name.  Do not access any
2705 *      address inside the PCI regions unless this call returns
2706 *      successfully.
2707 *
2708 *      pci_request_regions_exclusive() will mark the region so that
2709 *      /dev/mem and the sysfs MMIO access will not be allowed.
2710 *
2711 *      Returns 0 on success, or %EBUSY on error.  A warning
2712 *      message is also printed on failure.
2713 */
2714int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2715{
2716        return pci_request_selected_regions_exclusive(pdev,
2717                                        ((1 << 6) - 1), res_name);
2718}
2719
2720static void __pci_set_master(struct pci_dev *dev, bool enable)
2721{
2722        u16 old_cmd, cmd;
2723
2724        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2725        if (enable)
2726                cmd = old_cmd | PCI_COMMAND_MASTER;
2727        else
2728                cmd = old_cmd & ~PCI_COMMAND_MASTER;
2729        if (cmd != old_cmd) {
2730                dev_dbg(&dev->dev, "%s bus mastering\n",
2731                        enable ? "enabling" : "disabling");
2732                pci_write_config_word(dev, PCI_COMMAND, cmd);
2733        }
2734        dev->is_busmaster = enable;
2735}
2736
2737/**
2738 * pcibios_setup - process "pci=" kernel boot arguments
2739 * @str: string used to pass in "pci=" kernel boot arguments
2740 *
2741 * Process kernel boot arguments.  This is the default implementation.
2742 * Architecture specific implementations can override this as necessary.
2743 */
2744char * __weak __init pcibios_setup(char *str)
2745{
2746        return str;
2747}
2748
2749/**
2750 * pcibios_set_master - enable PCI bus-mastering for device dev
2751 * @dev: the PCI device to enable
2752 *
2753 * Enables PCI bus-mastering for the device.  This is the default
2754 * implementation.  Architecture specific implementations can override
2755 * this if necessary.
2756 */
2757void __weak pcibios_set_master(struct pci_dev *dev)
2758{
2759        u8 lat;
2760
2761        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2762        if (pci_is_pcie(dev))
2763                return;
2764
2765        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2766        if (lat < 16)
2767                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2768        else if (lat > pcibios_max_latency)
2769                lat = pcibios_max_latency;
2770        else
2771                return;
2772        dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2773        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2774}
2775
2776/**
2777 * pci_set_master - enables bus-mastering for device dev
2778 * @dev: the PCI device to enable
2779 *
2780 * Enables bus-mastering on the device and calls pcibios_set_master()
2781 * to do the needed arch specific settings.
2782 */
2783void pci_set_master(struct pci_dev *dev)
2784{
2785        __pci_set_master(dev, true);
2786        pcibios_set_master(dev);
2787}
2788
2789/**
2790 * pci_clear_master - disables bus-mastering for device dev
2791 * @dev: the PCI device to disable
2792 */
2793void pci_clear_master(struct pci_dev *dev)
2794{
2795        __pci_set_master(dev, false);
2796}
2797
2798/**
2799 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2800 * @dev: the PCI device for which MWI is to be enabled
2801 *
2802 * Helper function for pci_set_mwi.
2803 * Originally copied from drivers/net/acenic.c.
2804 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2805 *
2806 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2807 */
2808int pci_set_cacheline_size(struct pci_dev *dev)
2809{
2810        u8 cacheline_size;
2811
2812        if (!pci_cache_line_size)
2813                return -EINVAL;
2814
2815        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2816           equal to or multiple of the right value. */
2817        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2818        if (cacheline_size >= pci_cache_line_size &&
2819            (cacheline_size % pci_cache_line_size) == 0)
2820                return 0;
2821
2822        /* Write the correct value. */
2823        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2824        /* Read it back. */
2825        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2826        if (cacheline_size == pci_cache_line_size)
2827                return 0;
2828
2829        dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2830                   "supported\n", pci_cache_line_size << 2);
2831
2832        return -EINVAL;
2833}
2834EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2835
2836#ifdef PCI_DISABLE_MWI
2837int pci_set_mwi(struct pci_dev *dev)
2838{
2839        return 0;
2840}
2841
2842int pci_try_set_mwi(struct pci_dev *dev)
2843{
2844        return 0;
2845}
2846
2847void pci_clear_mwi(struct pci_dev *dev)
2848{
2849}
2850
2851#else
2852
2853/**
2854 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2855 * @dev: the PCI device for which MWI is enabled
2856 *
2857 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2858 *
2859 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2860 */
2861int
2862pci_set_mwi(struct pci_dev *dev)
2863{
2864        int rc;
2865        u16 cmd;
2866
2867        rc = pci_set_cacheline_size(dev);
2868        if (rc)
2869                return rc;
2870
2871        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2872        if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2873                dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2874                cmd |= PCI_COMMAND_INVALIDATE;
2875                pci_write_config_word(dev, PCI_COMMAND, cmd);
2876        }
2877        
2878        return 0;
2879}
2880
2881/**
2882 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2883 * @dev: the PCI device for which MWI is enabled
2884 *
2885 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2886 * Callers are not required to check the return value.
2887 *
2888 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2889 */
2890int pci_try_set_mwi(struct pci_dev *dev)
2891{
2892        int rc = pci_set_mwi(dev);
2893        return rc;
2894}
2895
2896/**
2897 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2898 * @dev: the PCI device to disable
2899 *
2900 * Disables PCI Memory-Write-Invalidate transaction on the device
2901 */
2902void
2903pci_clear_mwi(struct pci_dev *dev)
2904{
2905        u16 cmd;
2906
2907        pci_read_config_word(dev, PCI_COMMAND, &cmd);
2908        if (cmd & PCI_COMMAND_INVALIDATE) {
2909                cmd &= ~PCI_COMMAND_INVALIDATE;
2910                pci_write_config_word(dev, PCI_COMMAND, cmd);
2911        }
2912}
2913#endif /* ! PCI_DISABLE_MWI */
2914
2915/**
2916 * pci_intx - enables/disables PCI INTx for device dev
2917 * @pdev: the PCI device to operate on
2918 * @enable: boolean: whether to enable or disable PCI INTx
2919 *
2920 * Enables/disables PCI INTx for device dev
2921 */
2922void
2923pci_intx(struct pci_dev *pdev, int enable)
2924{
2925        u16 pci_command, new;
2926
2927        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2928
2929        if (enable) {
2930                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2931        } else {
2932                new = pci_command | PCI_COMMAND_INTX_DISABLE;
2933        }
2934
2935        if (new != pci_command) {
2936                struct pci_devres *dr;
2937
2938                pci_write_config_word(pdev, PCI_COMMAND, new);
2939
2940                dr = find_pci_dr(pdev);
2941                if (dr && !dr->restore_intx) {
2942                        dr->restore_intx = 1;
2943                        dr->orig_intx = !enable;
2944                }
2945        }
2946}
2947
2948/**
2949 * pci_intx_mask_supported - probe for INTx masking support
2950 * @dev: the PCI device to operate on
2951 *
2952 * Check if the device dev support INTx masking via the config space
2953 * command word.
2954 */
2955bool pci_intx_mask_supported(struct pci_dev *dev)
2956{
2957        bool mask_supported = false;
2958        u16 orig, new;
2959
2960        if (dev->broken_intx_masking)
2961                return false;
2962
2963        pci_cfg_access_lock(dev);
2964
2965        pci_read_config_word(dev, PCI_COMMAND, &orig);
2966        pci_write_config_word(dev, PCI_COMMAND,
2967                              orig ^ PCI_COMMAND_INTX_DISABLE);
2968        pci_read_config_word(dev, PCI_COMMAND, &new);
2969
2970        /*
2971         * There's no way to protect against hardware bugs or detect them
2972         * reliably, but as long as we know what the value should be, let's
2973         * go ahead and check it.
2974         */
2975        if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2976                dev_err(&dev->dev, "Command register changed from "
2977                        "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2978        } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2979                mask_supported = true;
2980                pci_write_config_word(dev, PCI_COMMAND, orig);
2981        }
2982
2983        pci_cfg_access_unlock(dev);
2984        return mask_supported;
2985}
2986EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2987
2988static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2989{
2990        struct pci_bus *bus = dev->bus;
2991        bool mask_updated = true;
2992        u32 cmd_status_dword;
2993        u16 origcmd, newcmd;
2994        unsigned long flags;
2995        bool irq_pending;
2996
2997        /*
2998         * We do a single dword read to retrieve both command and status.
2999         * Document assumptions that make this possible.
3000         */
3001        BUILD_BUG_ON(PCI_COMMAND % 4);
3002        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3003
3004        raw_spin_lock_irqsave(&pci_lock, flags);
3005
3006        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3007
3008        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3009
3010        /*
3011         * Check interrupt status register to see whether our device
3012         * triggered the interrupt (when masking) or the next IRQ is
3013         * already pending (when unmasking).
3014         */
3015        if (mask != irq_pending) {
3016                mask_updated = false;
3017                goto done;
3018        }
3019
3020        origcmd = cmd_status_dword;
3021        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3022        if (mask)
3023                newcmd |= PCI_COMMAND_INTX_DISABLE;
3024        if (newcmd != origcmd)
3025                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3026
3027done:
3028        raw_spin_unlock_irqrestore(&pci_lock, flags);
3029
3030        return mask_updated;
3031}
3032
3033/**
3034 * pci_check_and_mask_intx - mask INTx on pending interrupt
3035 * @dev: the PCI device to operate on
3036 *
3037 * Check if the device dev has its INTx line asserted, mask it and
3038 * return true in that case. False is returned if not interrupt was
3039 * pending.
3040 */
3041bool pci_check_and_mask_intx(struct pci_dev *dev)
3042{
3043        return pci_check_and_set_intx_mask(dev, true);
3044}
3045EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3046
3047/**
3048 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3049 * @dev: the PCI device to operate on
3050 *
3051 * Check if the device dev has its INTx line asserted, unmask it if not
3052 * and return true. False is returned and the mask remains active if
3053 * there was still an interrupt pending.
3054 */
3055bool pci_check_and_unmask_intx(struct pci_dev *dev)
3056{
3057        return pci_check_and_set_intx_mask(dev, false);
3058}
3059EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3060
3061/**
3062 * pci_msi_off - disables any msi or msix capabilities
3063 * @dev: the PCI device to operate on
3064 *
3065 * If you want to use msi see pci_enable_msi and friends.
3066 * This is a lower level primitive that allows us to disable
3067 * msi operation at the device level.
3068 */
3069void pci_msi_off(struct pci_dev *dev)
3070{
3071        int pos;
3072        u16 control;
3073
3074        pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3075        if (pos) {
3076                pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3077                control &= ~PCI_MSI_FLAGS_ENABLE;
3078                pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3079        }
3080        pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3081        if (pos) {
3082                pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3083                control &= ~PCI_MSIX_FLAGS_ENABLE;
3084                pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3085        }
3086}
3087EXPORT_SYMBOL_GPL(pci_msi_off);
3088
3089int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3090{
3091        return dma_set_max_seg_size(&dev->dev, size);
3092}
3093EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3094
3095int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3096{
3097        return dma_set_seg_boundary(&dev->dev, mask);
3098}
3099EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3100
3101static int pcie_flr(struct pci_dev *dev, int probe)
3102{
3103        int i;
3104        u32 cap;
3105        u16 status;
3106
3107        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3108        if (!(cap & PCI_EXP_DEVCAP_FLR))
3109                return -ENOTTY;
3110
3111        if (probe)
3112                return 0;
3113
3114        /* Wait for Transaction Pending bit clean */
3115        for (i = 0; i < 4; i++) {
3116                if (i)
3117                        msleep((1 << (i - 1)) * 100);
3118
3119                pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3120                if (!(status & PCI_EXP_DEVSTA_TRPND))
3121                        goto clear;
3122        }
3123
3124        dev_err(&dev->dev, "transaction is not cleared; "
3125                        "proceeding with reset anyway\n");
3126
3127clear:
3128        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3129
3130        msleep(100);
3131
3132        return 0;
3133}
3134
3135static int pci_af_flr(struct pci_dev *dev, int probe)
3136{
3137        int i;
3138        int pos;
3139        u8 cap;
3140        u8 status;
3141
3142        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3143        if (!pos)
3144                return -ENOTTY;
3145
3146        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3147        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3148                return -ENOTTY;
3149
3150        if (probe)
3151                return 0;
3152
3153        /* Wait for Transaction Pending bit clean */
3154        for (i = 0; i < 4; i++) {
3155                if (i)
3156                        msleep((1 << (i - 1)) * 100);
3157
3158                pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3159                if (!(status & PCI_AF_STATUS_TP))
3160                        goto clear;
3161        }
3162
3163        dev_err(&dev->dev, "transaction is not cleared; "
3164                        "proceeding with reset anyway\n");
3165
3166clear:
3167        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3168        msleep(100);
3169
3170        return 0;
3171}
3172
3173/**
3174 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3175 * @dev: Device to reset.
3176 * @probe: If set, only check if the device can be reset this way.
3177 *
3178 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3179 * unset, it will be reinitialized internally when going from PCI_D3hot to
3180 * PCI_D0.  If that's the case and the device is not in a low-power state
3181 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3182 *
3183 * NOTE: This causes the caller to sleep for twice the device power transition
3184 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3185 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3186 * Moreover, only devices in D0 can be reset by this function.
3187 */
3188static int pci_pm_reset(struct pci_dev *dev, int probe)
3189{
3190        u16 csr;
3191
3192        if (!dev->pm_cap)
3193                return -ENOTTY;
3194
3195        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3196        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3197                return -ENOTTY;
3198
3199        if (probe)
3200                return 0;
3201
3202        if (dev->current_state != PCI_D0)
3203                return -EINVAL;
3204
3205        csr &= ~PCI_PM_CTRL_STATE_MASK;
3206        csr |= PCI_D3hot;
3207        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3208        pci_dev_d3_sleep(dev);
3209
3210        csr &= ~PCI_PM_CTRL_STATE_MASK;
3211        csr |= PCI_D0;
3212        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3213        pci_dev_d3_sleep(dev);
3214
3215        return 0;
3216}
3217
3218static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3219{
3220        u16 ctrl;
3221        struct pci_dev *pdev;
3222
3223        if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3224                return -ENOTTY;
3225
3226        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3227                if (pdev != dev)
3228                        return -ENOTTY;
3229
3230        if (probe)
3231                return 0;
3232
3233        pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3234        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3235        pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3236        msleep(100);
3237
3238        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3239        pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3240        msleep(100);
3241
3242        return 0;
3243}
3244
3245static int __pci_dev_reset(struct pci_dev *dev, int probe)
3246{
3247        int rc;
3248
3249        might_sleep();
3250
3251        rc = pci_dev_specific_reset(dev, probe);
3252        if (rc != -ENOTTY)
3253                goto done;
3254
3255        rc = pcie_flr(dev, probe);
3256        if (rc != -ENOTTY)
3257                goto done;
3258
3259        rc = pci_af_flr(dev, probe);
3260        if (rc != -ENOTTY)
3261                goto done;
3262
3263        rc = pci_pm_reset(dev, probe);
3264        if (rc != -ENOTTY)
3265                goto done;
3266
3267        rc = pci_parent_bus_reset(dev, probe);
3268done:
3269        return rc;
3270}
3271
3272static int pci_dev_reset(struct pci_dev *dev, int probe)
3273{
3274        int rc;
3275
3276        if (!probe) {
3277                pci_cfg_access_lock(dev);
3278                /* block PM suspend, driver probe, etc. */
3279                device_lock(&dev->dev);
3280        }
3281
3282        rc = __pci_dev_reset(dev, probe);
3283
3284        if (!probe) {
3285                device_unlock(&dev->dev);
3286                pci_cfg_access_unlock(dev);
3287        }
3288        return rc;
3289}
3290/**
3291 * __pci_reset_function - reset a PCI device function
3292 * @dev: PCI device to reset
3293 *
3294 * Some devices allow an individual function to be reset without affecting
3295 * other functions in the same device.  The PCI device must be responsive
3296 * to PCI config space in order to use this function.
3297 *
3298 * The device function is presumed to be unused when this function is called.
3299 * Resetting the device will make the contents of PCI configuration space
3300 * random, so any caller of this must be prepared to reinitialise the
3301 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3302 * etc.
3303 *
3304 * Returns 0 if the device function was successfully reset or negative if the
3305 * device doesn't support resetting a single function.
3306 */
3307int __pci_reset_function(struct pci_dev *dev)
3308{
3309        return pci_dev_reset(dev, 0);
3310}
3311EXPORT_SYMBOL_GPL(__pci_reset_function);
3312
3313/**
3314 * __pci_reset_function_locked - reset a PCI device function while holding
3315 * the @dev mutex lock.
3316 * @dev: PCI device to reset
3317 *
3318 * Some devices allow an individual function to be reset without affecting
3319 * other functions in the same device.  The PCI device must be responsive
3320 * to PCI config space in order to use this function.
3321 *
3322 * The device function is presumed to be unused and the caller is holding
3323 * the device mutex lock when this function is called.
3324 * Resetting the device will make the contents of PCI configuration space
3325 * random, so any caller of this must be prepared to reinitialise the
3326 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3327 * etc.
3328 *
3329 * Returns 0 if the device function was successfully reset or negative if the
3330 * device doesn't support resetting a single function.
3331 */
3332int __pci_reset_function_locked(struct pci_dev *dev)
3333{
3334        return __pci_dev_reset(dev, 0);
3335}
3336EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3337
3338/**
3339 * pci_probe_reset_function - check whether the device can be safely reset
3340 * @dev: PCI device to reset
3341 *
3342 * Some devices allow an individual function to be reset without affecting
3343 * other functions in the same device.  The PCI device must be responsive
3344 * to PCI config space in order to use this function.
3345 *
3346 * Returns 0 if the device function can be reset or negative if the
3347 * device doesn't support resetting a single function.
3348 */
3349int pci_probe_reset_function(struct pci_dev *dev)
3350{
3351        return pci_dev_reset(dev, 1);
3352}
3353
3354/**
3355 * pci_reset_function - quiesce and reset a PCI device function
3356 * @dev: PCI device to reset
3357 *
3358 * Some devices allow an individual function to be reset without affecting
3359 * other functions in the same device.  The PCI device must be responsive
3360 * to PCI config space in order to use this function.
3361 *
3362 * This function does not just reset the PCI portion of a device, but
3363 * clears all the state associated with the device.  This function differs
3364 * from __pci_reset_function in that it saves and restores device state
3365 * over the reset.
3366 *
3367 * Returns 0 if the device function was successfully reset or negative if the
3368 * device doesn't support resetting a single function.
3369 */
3370int pci_reset_function(struct pci_dev *dev)
3371{
3372        int rc;
3373
3374        rc = pci_dev_reset(dev, 1);
3375        if (rc)
3376                return rc;
3377
3378        pci_save_state(dev);
3379
3380        /*
3381         * both INTx and MSI are disabled after the Interrupt Disable bit
3382         * is set and the Bus Master bit is cleared.
3383         */
3384        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3385
3386        rc = pci_dev_reset(dev, 0);
3387
3388        pci_restore_state(dev);
3389
3390        return rc;
3391}
3392EXPORT_SYMBOL_GPL(pci_reset_function);
3393
3394/**
3395 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3396 * @dev: PCI device to query
3397 *
3398 * Returns mmrbc: maximum designed memory read count in bytes
3399 *    or appropriate error value.
3400 */
3401int pcix_get_max_mmrbc(struct pci_dev *dev)
3402{
3403        int cap;
3404        u32 stat;
3405
3406        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3407        if (!cap)
3408                return -EINVAL;
3409
3410        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3411                return -EINVAL;
3412
3413        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3414}
3415EXPORT_SYMBOL(pcix_get_max_mmrbc);
3416
3417/**
3418 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3419 * @dev: PCI device to query
3420 *
3421 * Returns mmrbc: maximum memory read count in bytes
3422 *    or appropriate error value.
3423 */
3424int pcix_get_mmrbc(struct pci_dev *dev)
3425{
3426        int cap;
3427        u16 cmd;
3428
3429        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3430        if (!cap)
3431                return -EINVAL;
3432
3433        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3434                return -EINVAL;
3435
3436        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3437}
3438EXPORT_SYMBOL(pcix_get_mmrbc);
3439
3440/**
3441 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3442 * @dev: PCI device to query
3443 * @mmrbc: maximum memory read count in bytes
3444 *    valid values are 512, 1024, 2048, 4096
3445 *
3446 * If possible sets maximum memory read byte count, some bridges have erratas
3447 * that prevent this.
3448 */
3449int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3450{
3451        int cap;
3452        u32 stat, v, o;
3453        u16 cmd;
3454
3455        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3456                return -EINVAL;
3457
3458        v = ffs(mmrbc) - 10;
3459
3460        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3461        if (!cap)
3462                return -EINVAL;
3463
3464        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3465                return -EINVAL;
3466
3467        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3468                return -E2BIG;
3469
3470        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3471                return -EINVAL;
3472
3473        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3474        if (o != v) {
3475                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3476                        return -EIO;
3477
3478                cmd &= ~PCI_X_CMD_MAX_READ;
3479                cmd |= v << 2;
3480                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3481                        return -EIO;
3482        }
3483        return 0;
3484}
3485EXPORT_SYMBOL(pcix_set_mmrbc);
3486
3487/**
3488 * pcie_get_readrq - get PCI Express read request size
3489 * @dev: PCI device to query
3490 *
3491 * Returns maximum memory read request in bytes
3492 *    or appropriate error value.
3493 */
3494int pcie_get_readrq(struct pci_dev *dev)
3495{
3496        u16 ctl;
3497
3498        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3499
3500        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3501}
3502EXPORT_SYMBOL(pcie_get_readrq);
3503
3504/**
3505 * pcie_set_readrq - set PCI Express maximum memory read request
3506 * @dev: PCI device to query
3507 * @rq: maximum memory read count in bytes
3508 *    valid values are 128, 256, 512, 1024, 2048, 4096
3509 *
3510 * If possible sets maximum memory read request in bytes
3511 */
3512int pcie_set_readrq(struct pci_dev *dev, int rq)
3513{
3514        u16 v;
3515
3516        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3517                return -EINVAL;
3518
3519        /*
3520         * If using the "performance" PCIe config, we clamp the
3521         * read rq size to the max packet size to prevent the
3522         * host bridge generating requests larger than we can
3523         * cope with
3524         */
3525        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3526                int mps = pcie_get_mps(dev);
3527
3528                if (mps < 0)
3529                        return mps;
3530                if (mps < rq)
3531                        rq = mps;
3532        }
3533
3534        v = (ffs(rq) - 8) << 12;
3535
3536        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3537                                                  PCI_EXP_DEVCTL_READRQ, v);
3538}
3539EXPORT_SYMBOL(pcie_set_readrq);
3540
3541/**
3542 * pcie_get_mps - get PCI Express maximum payload size
3543 * @dev: PCI device to query
3544 *
3545 * Returns maximum payload size in bytes
3546 *    or appropriate error value.
3547 */
3548int pcie_get_mps(struct pci_dev *dev)
3549{
3550        u16 ctl;
3551
3552        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3553
3554        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3555}
3556
3557/**
3558 * pcie_set_mps - set PCI Express maximum payload size
3559 * @dev: PCI device to query
3560 * @mps: maximum payload size in bytes
3561 *    valid values are 128, 256, 512, 1024, 2048, 4096
3562 *
3563 * If possible sets maximum payload size
3564 */
3565int pcie_set_mps(struct pci_dev *dev, int mps)
3566{
3567        u16 v;
3568
3569        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3570                return -EINVAL;
3571
3572        v = ffs(mps) - 8;
3573        if (v > dev->pcie_mpss) 
3574                return -EINVAL;
3575        v <<= 5;
3576
3577        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3578                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
3579}
3580
3581/**
3582 * pci_select_bars - Make BAR mask from the type of resource
3583 * @dev: the PCI device for which BAR mask is made
3584 * @flags: resource type mask to be selected
3585 *
3586 * This helper routine makes bar mask from the type of resource.
3587 */
3588int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3589{
3590        int i, bars = 0;
3591        for (i = 0; i < PCI_NUM_RESOURCES; i++)
3592                if (pci_resource_flags(dev, i) & flags)
3593                        bars |= (1 << i);
3594        return bars;
3595}
3596
3597/**
3598 * pci_resource_bar - get position of the BAR associated with a resource
3599 * @dev: the PCI device
3600 * @resno: the resource number
3601 * @type: the BAR type to be filled in
3602 *
3603 * Returns BAR position in config space, or 0 if the BAR is invalid.
3604 */
3605int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3606{
3607        int reg;
3608
3609        if (resno < PCI_ROM_RESOURCE) {
3610                *type = pci_bar_unknown;
3611                return PCI_BASE_ADDRESS_0 + 4 * resno;
3612        } else if (resno == PCI_ROM_RESOURCE) {
3613                *type = pci_bar_mem32;
3614                return dev->rom_base_reg;
3615        } else if (resno < PCI_BRIDGE_RESOURCES) {
3616                /* device specific resource */
3617                reg = pci_iov_resource_bar(dev, resno, type);
3618                if (reg)
3619                        return reg;
3620        }
3621
3622        dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3623        return 0;
3624}
3625
3626/* Some architectures require additional programming to enable VGA */
3627static arch_set_vga_state_t arch_set_vga_state;
3628
3629void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3630{
3631        arch_set_vga_state = func;      /* NULL disables */
3632}
3633
3634static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3635                      unsigned int command_bits, u32 flags)
3636{
3637        if (arch_set_vga_state)
3638                return arch_set_vga_state(dev, decode, command_bits,
3639                                                flags);
3640        return 0;
3641}
3642
3643/**
3644 * pci_set_vga_state - set VGA decode state on device and parents if requested
3645 * @dev: the PCI device
3646 * @decode: true = enable decoding, false = disable decoding
3647 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3648 * @flags: traverse ancestors and change bridges
3649 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3650 */
3651int pci_set_vga_state(struct pci_dev *dev, bool decode,
3652                      unsigned int command_bits, u32 flags)
3653{
3654        struct pci_bus *bus;
3655        struct pci_dev *bridge;
3656        u16 cmd;
3657        int rc;
3658
3659        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3660
3661        /* ARCH specific VGA enables */
3662        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3663        if (rc)
3664                return rc;
3665
3666        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3667                pci_read_config_word(dev, PCI_COMMAND, &cmd);
3668                if (decode == true)
3669                        cmd |= command_bits;
3670                else
3671                        cmd &= ~command_bits;
3672                pci_write_config_word(dev, PCI_COMMAND, cmd);
3673        }
3674
3675        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3676                return 0;
3677
3678        bus = dev->bus;
3679        while (bus) {
3680                bridge = bus->self;
3681                if (bridge) {
3682                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3683                                             &cmd);
3684                        if (decode == true)
3685                                cmd |= PCI_BRIDGE_CTL_VGA;
3686                        else
3687                                cmd &= ~PCI_BRIDGE_CTL_VGA;
3688                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3689                                              cmd);
3690                }
3691                bus = bus->parent;
3692        }
3693        return 0;
3694}
3695
3696#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3697static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3698static DEFINE_SPINLOCK(resource_alignment_lock);
3699
3700/**
3701 * pci_specified_resource_alignment - get resource alignment specified by user.
3702 * @dev: the PCI device to get
3703 *
3704 * RETURNS: Resource alignment if it is specified.
3705 *          Zero if it is not specified.
3706 */
3707static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3708{
3709        int seg, bus, slot, func, align_order, count;
3710        resource_size_t align = 0;
3711        char *p;
3712
3713        spin_lock(&resource_alignment_lock);
3714        p = resource_alignment_param;
3715        while (*p) {
3716                count = 0;
3717                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3718                                                        p[count] == '@') {
3719                        p += count + 1;
3720                } else {
3721                        align_order = -1;
3722                }
3723                if (sscanf(p, "%x:%x:%x.%x%n",
3724                        &seg, &bus, &slot, &func, &count) != 4) {
3725                        seg = 0;
3726                        if (sscanf(p, "%x:%x.%x%n",
3727                                        &bus, &slot, &func, &count) != 3) {
3728                                /* Invalid format */
3729                                printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3730                                        p);
3731                                break;
3732                        }
3733                }
3734                p += count;
3735                if (seg == pci_domain_nr(dev->bus) &&
3736                        bus == dev->bus->number &&
3737                        slot == PCI_SLOT(dev->devfn) &&
3738                        func == PCI_FUNC(dev->devfn)) {
3739                        if (align_order == -1) {
3740                                align = PAGE_SIZE;
3741                        } else {
3742                                align = 1 << align_order;
3743                        }
3744                        /* Found */
3745                        break;
3746                }
3747                if (*p != ';' && *p != ',') {
3748                        /* End of param or invalid format */
3749                        break;
3750                }
3751                p++;
3752        }
3753        spin_unlock(&resource_alignment_lock);
3754        return align;
3755}
3756
3757/*
3758 * This function disables memory decoding and releases memory resources
3759 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3760 * It also rounds up size to specified alignment.
3761 * Later on, the kernel will assign page-aligned memory resource back
3762 * to the device.
3763 */
3764void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3765{
3766        int i;
3767        struct resource *r;
3768        resource_size_t align, size;
3769        u16 command;
3770
3771        /* check if specified PCI is target device to reassign */
3772        align = pci_specified_resource_alignment(dev);
3773        if (!align)
3774                return;
3775
3776        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3777            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3778                dev_warn(&dev->dev,
3779                        "Can't reassign resources to host bridge.\n");
3780                return;
3781        }
3782
3783        dev_info(&dev->dev,
3784                "Disabling memory decoding and releasing memory resources.\n");
3785        pci_read_config_word(dev, PCI_COMMAND, &command);
3786        command &= ~PCI_COMMAND_MEMORY;
3787        pci_write_config_word(dev, PCI_COMMAND, command);
3788
3789        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3790                r = &dev->resource[i];
3791                if (!(r->flags & IORESOURCE_MEM))
3792                        continue;
3793                size = resource_size(r);
3794                if (size < align) {
3795                        size = align;
3796                        dev_info(&dev->dev,
3797                                "Rounding up size of resource #%d to %#llx.\n",
3798                                i, (unsigned long long)size);
3799                }
3800                r->end = size - 1;
3801                r->start = 0;
3802        }
3803        /* Need to disable bridge's resource window,
3804         * to enable the kernel to reassign new resource
3805         * window later on.
3806         */
3807        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3808            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3809                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3810                        r = &dev->resource[i];
3811                        if (!(r->flags & IORESOURCE_MEM))
3812                                continue;
3813                        r->end = resource_size(r) - 1;
3814                        r->start = 0;
3815                }
3816                pci_disable_bridge_window(dev);
3817        }
3818}
3819
3820static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3821{
3822        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3823                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3824        spin_lock(&resource_alignment_lock);
3825        strncpy(resource_alignment_param, buf, count);
3826        resource_alignment_param[count] = '\0';
3827        spin_unlock(&resource_alignment_lock);
3828        return count;
3829}
3830
3831static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3832{
3833        size_t count;
3834        spin_lock(&resource_alignment_lock);
3835        count = snprintf(buf, size, "%s", resource_alignment_param);
3836        spin_unlock(&resource_alignment_lock);
3837        return count;
3838}
3839
3840static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3841{
3842        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3843}
3844
3845static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3846                                        const char *buf, size_t count)
3847{
3848        return pci_set_resource_alignment_param(buf, count);
3849}
3850
3851BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3852                                        pci_resource_alignment_store);
3853
3854static int __init pci_resource_alignment_sysfs_init(void)
3855{
3856        return bus_create_file(&pci_bus_type,
3857                                        &bus_attr_resource_alignment);
3858}
3859
3860late_initcall(pci_resource_alignment_sysfs_init);
3861
3862static void pci_no_domains(void)
3863{
3864#ifdef CONFIG_PCI_DOMAINS
3865        pci_domains_supported = 0;
3866#endif
3867}
3868
3869/**
3870 * pci_ext_cfg_avail - can we access extended PCI config space?
3871 *
3872 * Returns 1 if we can access PCI extended config space (offsets
3873 * greater than 0xff). This is the default implementation. Architecture
3874 * implementations can override this.
3875 */
3876int __weak pci_ext_cfg_avail(void)
3877{
3878        return 1;
3879}
3880
3881void __weak pci_fixup_cardbus(struct pci_bus *bus)
3882{
3883}
3884EXPORT_SYMBOL(pci_fixup_cardbus);
3885
3886static int __init pci_setup(char *str)
3887{
3888        while (str) {
3889                char *k = strchr(str, ',');
3890                if (k)
3891                        *k++ = 0;
3892                if (*str && (str = pcibios_setup(str)) && *str) {
3893                        if (!strcmp(str, "nomsi")) {
3894                                pci_no_msi();
3895                        } else if (!strcmp(str, "noaer")) {
3896                                pci_no_aer();
3897                        } else if (!strncmp(str, "realloc=", 8)) {
3898                                pci_realloc_get_opt(str + 8);
3899                        } else if (!strncmp(str, "realloc", 7)) {
3900                                pci_realloc_get_opt("on");
3901                        } else if (!strcmp(str, "nodomains")) {
3902                                pci_no_domains();
3903                        } else if (!strncmp(str, "noari", 5)) {
3904                                pcie_ari_disabled = true;
3905                        } else if (!strncmp(str, "cbiosize=", 9)) {
3906                                pci_cardbus_io_size = memparse(str + 9, &str);
3907                        } else if (!strncmp(str, "cbmemsize=", 10)) {
3908                                pci_cardbus_mem_size = memparse(str + 10, &str);
3909                        } else if (!strncmp(str, "resource_alignment=", 19)) {
3910                                pci_set_resource_alignment_param(str + 19,
3911                                                        strlen(str + 19));
3912                        } else if (!strncmp(str, "ecrc=", 5)) {
3913                                pcie_ecrc_get_policy(str + 5);
3914                        } else if (!strncmp(str, "hpiosize=", 9)) {
3915                                pci_hotplug_io_size = memparse(str + 9, &str);
3916                        } else if (!strncmp(str, "hpmemsize=", 10)) {
3917                                pci_hotplug_mem_size = memparse(str + 10, &str);
3918                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3919                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
3920                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3921                                pcie_bus_config = PCIE_BUS_SAFE;
3922                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3923                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
3924                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3925                                pcie_bus_config = PCIE_BUS_PEER2PEER;
3926                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
3927                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3928                        } else {
3929                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
3930                                                str);
3931                        }
3932                }
3933                str = k;
3934        }
3935        return 0;
3936}
3937early_param("pci", pci_setup);
3938
3939EXPORT_SYMBOL(pci_reenable_device);
3940EXPORT_SYMBOL(pci_enable_device_io);
3941EXPORT_SYMBOL(pci_enable_device_mem);
3942EXPORT_SYMBOL(pci_enable_device);
3943EXPORT_SYMBOL(pcim_enable_device);
3944EXPORT_SYMBOL(pcim_pin_device);
3945EXPORT_SYMBOL(pci_disable_device);
3946EXPORT_SYMBOL(pci_find_capability);
3947EXPORT_SYMBOL(pci_bus_find_capability);
3948EXPORT_SYMBOL(pci_release_regions);
3949EXPORT_SYMBOL(pci_request_regions);
3950EXPORT_SYMBOL(pci_request_regions_exclusive);
3951EXPORT_SYMBOL(pci_release_region);
3952EXPORT_SYMBOL(pci_request_region);
3953EXPORT_SYMBOL(pci_request_region_exclusive);
3954EXPORT_SYMBOL(pci_release_selected_regions);
3955EXPORT_SYMBOL(pci_request_selected_regions);
3956EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3957EXPORT_SYMBOL(pci_set_master);
3958EXPORT_SYMBOL(pci_clear_master);
3959EXPORT_SYMBOL(pci_set_mwi);
3960EXPORT_SYMBOL(pci_try_set_mwi);
3961EXPORT_SYMBOL(pci_clear_mwi);
3962EXPORT_SYMBOL_GPL(pci_intx);
3963EXPORT_SYMBOL(pci_assign_resource);
3964EXPORT_SYMBOL(pci_find_parent_resource);
3965EXPORT_SYMBOL(pci_select_bars);
3966
3967EXPORT_SYMBOL(pci_set_power_state);
3968EXPORT_SYMBOL(pci_save_state);
3969EXPORT_SYMBOL(pci_restore_state);
3970EXPORT_SYMBOL(pci_pme_capable);
3971EXPORT_SYMBOL(pci_pme_active);
3972EXPORT_SYMBOL(pci_wake_from_d3);
3973EXPORT_SYMBOL(pci_target_state);
3974EXPORT_SYMBOL(pci_prepare_to_sleep);
3975EXPORT_SYMBOL(pci_back_from_sleep);
3976EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3977