linux/drivers/staging/lustre/lustre/include/lu_object.h
<<
>>
Prefs
   1/*
   2 * GPL HEADER START
   3 *
   4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 only,
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 for more details (a copy is included
  14 * in the LICENSE file that accompanied this code).
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * version 2 along with this program; If not, see
  18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
  19 *
  20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  21 * CA 95054 USA or visit www.sun.com if you need additional information or
  22 * have any questions.
  23 *
  24 * GPL HEADER END
  25 */
  26/*
  27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  28 * Use is subject to license terms.
  29 *
  30 * Copyright (c) 2011, 2012, Intel Corporation.
  31 */
  32/*
  33 * This file is part of Lustre, http://www.lustre.org/
  34 * Lustre is a trademark of Sun Microsystems, Inc.
  35 */
  36
  37#ifndef __LUSTRE_LU_OBJECT_H
  38#define __LUSTRE_LU_OBJECT_H
  39
  40#include <stdarg.h>
  41#include <linux/libcfs/libcfs.h>
  42#include <lustre/lustre_idl.h>
  43#include <lu_ref.h>
  44
  45struct seq_file;
  46struct proc_dir_entry;
  47struct lustre_cfg;
  48struct lprocfs_stats;
  49
  50/** \defgroup lu lu
  51 * lu_* data-types represent server-side entities shared by data and meta-data
  52 * stacks.
  53 *
  54 * Design goals:
  55 *
  56 * -# support for layering.
  57 *
  58 *     Server side object is split into layers, one per device in the
  59 *     corresponding device stack. Individual layer is represented by struct
  60 *     lu_object. Compound layered object --- by struct lu_object_header. Most
  61 *     interface functions take lu_object as an argument and operate on the
  62 *     whole compound object. This decision was made due to the following
  63 *     reasons:
  64 *
  65 *      - it's envisaged that lu_object will be used much more often than
  66 *      lu_object_header;
  67 *
  68 *      - we want lower (non-top) layers to be able to initiate operations
  69 *      on the whole object.
  70 *
  71 *     Generic code supports layering more complex than simple stacking, e.g.,
  72 *     it is possible that at some layer object "spawns" multiple sub-objects
  73 *     on the lower layer.
  74 *
  75 * -# fid-based identification.
  76 *
  77 *     Compound object is uniquely identified by its fid. Objects are indexed
  78 *     by their fids (hash table is used for index).
  79 *
  80 * -# caching and life-cycle management.
  81 *
  82 *     Object's life-time is controlled by reference counting. When reference
  83 *     count drops to 0, object is returned to cache. Cached objects still
  84 *     retain their identity (i.e., fid), and can be recovered from cache.
  85 *
  86 *     Objects are kept in the global LRU list, and lu_site_purge() function
  87 *     can be used to reclaim given number of unused objects from the tail of
  88 *     the LRU.
  89 *
  90 * -# avoiding recursion.
  91 *
  92 *     Generic code tries to replace recursion through layers by iterations
  93 *     where possible. Additionally to the end of reducing stack consumption,
  94 *     data, when practically possible, are allocated through lu_context_key
  95 *     interface rather than on stack.
  96 * @{
  97 */
  98
  99struct lu_site;
 100struct lu_object;
 101struct lu_device;
 102struct lu_object_header;
 103struct lu_context;
 104struct lu_env;
 105
 106/**
 107 * Operations common for data and meta-data devices.
 108 */
 109struct lu_device_operations {
 110        /**
 111         * Allocate object for the given device (without lower-layer
 112         * parts). This is called by lu_object_operations::loo_object_init()
 113         * from the parent layer, and should setup at least lu_object::lo_dev
 114         * and lu_object::lo_ops fields of resulting lu_object.
 115         *
 116         * Object creation protocol.
 117         *
 118         * Due to design goal of avoiding recursion, object creation (see
 119         * lu_object_alloc()) is somewhat involved:
 120         *
 121         *  - first, lu_device_operations::ldo_object_alloc() method of the
 122         *  top-level device in the stack is called. It should allocate top
 123         *  level object (including lu_object_header), but without any
 124         *  lower-layer sub-object(s).
 125         *
 126         *  - then lu_object_alloc() sets fid in the header of newly created
 127         *  object.
 128         *
 129         *  - then lu_object_operations::loo_object_init() is called. It has
 130         *  to allocate lower-layer object(s). To do this,
 131         *  lu_object_operations::loo_object_init() calls ldo_object_alloc()
 132         *  of the lower-layer device(s).
 133         *
 134         *  - for all new objects allocated by
 135         *  lu_object_operations::loo_object_init() (and inserted into object
 136         *  stack), lu_object_operations::loo_object_init() is called again
 137         *  repeatedly, until no new objects are created.
 138         *
 139         * \post ergo(!IS_ERR(result), result->lo_dev == d &&
 140         *                           result->lo_ops != NULL);
 141         */
 142        struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
 143                                              const struct lu_object_header *h,
 144                                              struct lu_device *d);
 145        /**
 146         * process config specific for device.
 147         */
 148        int (*ldo_process_config)(const struct lu_env *env,
 149                                  struct lu_device *, struct lustre_cfg *);
 150        int (*ldo_recovery_complete)(const struct lu_env *,
 151                                     struct lu_device *);
 152
 153        /**
 154         * initialize local objects for device. this method called after layer has
 155         * been initialized (after LCFG_SETUP stage) and before it starts serving
 156         * user requests.
 157         */
 158
 159        int (*ldo_prepare)(const struct lu_env *,
 160                           struct lu_device *parent,
 161                           struct lu_device *dev);
 162
 163};
 164
 165/**
 166 * For lu_object_conf flags
 167 */
 168typedef enum {
 169        /* This is a new object to be allocated, or the file
 170         * corresponding to the object does not exists. */
 171        LOC_F_NEW       = 0x00000001,
 172} loc_flags_t;
 173
 174/**
 175 * Object configuration, describing particulars of object being created. On
 176 * server this is not used, as server objects are full identified by fid. On
 177 * client configuration contains struct lustre_md.
 178 */
 179struct lu_object_conf {
 180        /**
 181         * Some hints for obj find and alloc.
 182         */
 183        loc_flags_t     loc_flags;
 184};
 185
 186/**
 187 * Type of "printer" function used by lu_object_operations::loo_object_print()
 188 * method.
 189 *
 190 * Printer function is needed to provide some flexibility in (semi-)debugging
 191 * output: possible implementations: printk, CDEBUG, sysfs/seq_file
 192 */
 193typedef int (*lu_printer_t)(const struct lu_env *env,
 194                            void *cookie, const char *format, ...)
 195        __attribute__ ((format (printf, 3, 4)));
 196
 197/**
 198 * Operations specific for particular lu_object.
 199 */
 200struct lu_object_operations {
 201
 202        /**
 203         * Allocate lower-layer parts of the object by calling
 204         * lu_device_operations::ldo_object_alloc() of the corresponding
 205         * underlying device.
 206         *
 207         * This method is called once for each object inserted into object
 208         * stack. It's responsibility of this method to insert lower-layer
 209         * object(s) it create into appropriate places of object stack.
 210         */
 211        int (*loo_object_init)(const struct lu_env *env,
 212                               struct lu_object *o,
 213                               const struct lu_object_conf *conf);
 214        /**
 215         * Called (in top-to-bottom order) during object allocation after all
 216         * layers were allocated and initialized. Can be used to perform
 217         * initialization depending on lower layers.
 218         */
 219        int (*loo_object_start)(const struct lu_env *env,
 220                                struct lu_object *o);
 221        /**
 222         * Called before lu_object_operations::loo_object_free() to signal
 223         * that object is being destroyed. Dual to
 224         * lu_object_operations::loo_object_init().
 225         */
 226        void (*loo_object_delete)(const struct lu_env *env,
 227                                  struct lu_object *o);
 228        /**
 229         * Dual to lu_device_operations::ldo_object_alloc(). Called when
 230         * object is removed from memory.
 231         */
 232        void (*loo_object_free)(const struct lu_env *env,
 233                                struct lu_object *o);
 234        /**
 235         * Called when last active reference to the object is released (and
 236         * object returns to the cache). This method is optional.
 237         */
 238        void (*loo_object_release)(const struct lu_env *env,
 239                                   struct lu_object *o);
 240        /**
 241         * Optional debugging helper. Print given object.
 242         */
 243        int (*loo_object_print)(const struct lu_env *env, void *cookie,
 244                                lu_printer_t p, const struct lu_object *o);
 245        /**
 246         * Optional debugging method. Returns true iff method is internally
 247         * consistent.
 248         */
 249        int (*loo_object_invariant)(const struct lu_object *o);
 250};
 251
 252/**
 253 * Type of lu_device.
 254 */
 255struct lu_device_type;
 256
 257/**
 258 * Device: a layer in the server side abstraction stacking.
 259 */
 260struct lu_device {
 261        /**
 262         * reference count. This is incremented, in particular, on each object
 263         * created at this layer.
 264         *
 265         * \todo XXX which means that atomic_t is probably too small.
 266         */
 267        atomic_t                       ld_ref;
 268        /**
 269         * Pointer to device type. Never modified once set.
 270         */
 271        struct lu_device_type       *ld_type;
 272        /**
 273         * Operation vector for this device.
 274         */
 275        const struct lu_device_operations *ld_ops;
 276        /**
 277         * Stack this device belongs to.
 278         */
 279        struct lu_site              *ld_site;
 280        struct proc_dir_entry        *ld_proc_entry;
 281
 282        /** \todo XXX: temporary back pointer into obd. */
 283        struct obd_device                *ld_obd;
 284        /**
 285         * A list of references to this object, for debugging.
 286         */
 287        struct lu_ref                 ld_reference;
 288        /**
 289         * Link the device to the site.
 290         **/
 291        struct list_head                         ld_linkage;
 292};
 293
 294struct lu_device_type_operations;
 295
 296/**
 297 * Tag bits for device type. They are used to distinguish certain groups of
 298 * device types.
 299 */
 300enum lu_device_tag {
 301        /** this is meta-data device */
 302        LU_DEVICE_MD = (1 << 0),
 303        /** this is data device */
 304        LU_DEVICE_DT = (1 << 1),
 305        /** data device in the client stack */
 306        LU_DEVICE_CL = (1 << 2)
 307};
 308
 309/**
 310 * Type of device.
 311 */
 312struct lu_device_type {
 313        /**
 314         * Tag bits. Taken from enum lu_device_tag. Never modified once set.
 315         */
 316        __u32                              ldt_tags;
 317        /**
 318         * Name of this class. Unique system-wide. Never modified once set.
 319         */
 320        char                               *ldt_name;
 321        /**
 322         * Operations for this type.
 323         */
 324        const struct lu_device_type_operations *ldt_ops;
 325        /**
 326         * \todo XXX: temporary pointer to associated obd_type.
 327         */
 328        struct obd_type                 *ldt_obd_type;
 329        /**
 330         * \todo XXX: temporary: context tags used by obd_*() calls.
 331         */
 332        __u32                              ldt_ctx_tags;
 333        /**
 334         * Number of existing device type instances.
 335         */
 336        unsigned                                ldt_device_nr;
 337        /**
 338         * Linkage into a global list of all device types.
 339         *
 340         * \see lu_device_types.
 341         */
 342        struct list_head                              ldt_linkage;
 343};
 344
 345/**
 346 * Operations on a device type.
 347 */
 348struct lu_device_type_operations {
 349        /**
 350         * Allocate new device.
 351         */
 352        struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
 353                                               struct lu_device_type *t,
 354                                               struct lustre_cfg *lcfg);
 355        /**
 356         * Free device. Dual to
 357         * lu_device_type_operations::ldto_device_alloc(). Returns pointer to
 358         * the next device in the stack.
 359         */
 360        struct lu_device *(*ldto_device_free)(const struct lu_env *,
 361                                              struct lu_device *);
 362
 363        /**
 364         * Initialize the devices after allocation
 365         */
 366        int  (*ldto_device_init)(const struct lu_env *env,
 367                                 struct lu_device *, const char *,
 368                                 struct lu_device *);
 369        /**
 370         * Finalize device. Dual to
 371         * lu_device_type_operations::ldto_device_init(). Returns pointer to
 372         * the next device in the stack.
 373         */
 374        struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
 375                                              struct lu_device *);
 376        /**
 377         * Initialize device type. This is called on module load.
 378         */
 379        int  (*ldto_init)(struct lu_device_type *t);
 380        /**
 381         * Finalize device type. Dual to
 382         * lu_device_type_operations::ldto_init(). Called on module unload.
 383         */
 384        void (*ldto_fini)(struct lu_device_type *t);
 385        /**
 386         * Called when the first device is created.
 387         */
 388        void (*ldto_start)(struct lu_device_type *t);
 389        /**
 390         * Called when number of devices drops to 0.
 391         */
 392        void (*ldto_stop)(struct lu_device_type *t);
 393};
 394
 395static inline int lu_device_is_md(const struct lu_device *d)
 396{
 397        return ergo(d != NULL, d->ld_type->ldt_tags & LU_DEVICE_MD);
 398}
 399
 400/**
 401 * Flags for the object layers.
 402 */
 403enum lu_object_flags {
 404        /**
 405         * this flags is set if lu_object_operations::loo_object_init() has
 406         * been called for this layer. Used by lu_object_alloc().
 407         */
 408        LU_OBJECT_ALLOCATED = (1 << 0)
 409};
 410
 411/**
 412 * Common object attributes.
 413 */
 414struct lu_attr {
 415        /** size in bytes */
 416        __u64     la_size;
 417        /** modification time in seconds since Epoch */
 418        obd_time       la_mtime;
 419        /** access time in seconds since Epoch */
 420        obd_time       la_atime;
 421        /** change time in seconds since Epoch */
 422        obd_time       la_ctime;
 423        /** 512-byte blocks allocated to object */
 424        __u64     la_blocks;
 425        /** permission bits and file type */
 426        __u32     la_mode;
 427        /** owner id */
 428        __u32     la_uid;
 429        /** group id */
 430        __u32     la_gid;
 431        /** object flags */
 432        __u32     la_flags;
 433        /** number of persistent references to this object */
 434        __u32     la_nlink;
 435        /** blk bits of the object*/
 436        __u32     la_blkbits;
 437        /** blk size of the object*/
 438        __u32     la_blksize;
 439        /** real device */
 440        __u32     la_rdev;
 441        /**
 442         * valid bits
 443         *
 444         * \see enum la_valid
 445         */
 446        __u64     la_valid;
 447};
 448
 449/** Bit-mask of valid attributes */
 450enum la_valid {
 451        LA_ATIME = 1 << 0,
 452        LA_MTIME = 1 << 1,
 453        LA_CTIME = 1 << 2,
 454        LA_SIZE  = 1 << 3,
 455        LA_MODE  = 1 << 4,
 456        LA_UID   = 1 << 5,
 457        LA_GID   = 1 << 6,
 458        LA_BLOCKS = 1 << 7,
 459        LA_TYPE   = 1 << 8,
 460        LA_FLAGS  = 1 << 9,
 461        LA_NLINK  = 1 << 10,
 462        LA_RDEV   = 1 << 11,
 463        LA_BLKSIZE = 1 << 12,
 464        LA_KILL_SUID = 1 << 13,
 465        LA_KILL_SGID = 1 << 14,
 466};
 467
 468/**
 469 * Layer in the layered object.
 470 */
 471struct lu_object {
 472        /**
 473         * Header for this object.
 474         */
 475        struct lu_object_header    *lo_header;
 476        /**
 477         * Device for this layer.
 478         */
 479        struct lu_device                  *lo_dev;
 480        /**
 481         * Operations for this object.
 482         */
 483        const struct lu_object_operations *lo_ops;
 484        /**
 485         * Linkage into list of all layers.
 486         */
 487        struct list_head                         lo_linkage;
 488        /**
 489         * Depth. Top level layer depth is 0.
 490         */
 491        int                             lo_depth;
 492        /**
 493         * Flags from enum lu_object_flags.
 494         */
 495        __u32                                   lo_flags;
 496        /**
 497         * Link to the device, for debugging.
 498         */
 499        struct lu_ref_link              *lo_dev_ref;
 500};
 501
 502enum lu_object_header_flags {
 503        /**
 504         * Don't keep this object in cache. Object will be destroyed as soon
 505         * as last reference to it is released. This flag cannot be cleared
 506         * once set.
 507         */
 508        LU_OBJECT_HEARD_BANSHEE = 0,
 509        /**
 510         * Mark this object has already been taken out of cache.
 511         */
 512        LU_OBJECT_UNHASHED = 1
 513};
 514
 515enum lu_object_header_attr {
 516        LOHA_EXISTS   = 1 << 0,
 517        LOHA_REMOTE   = 1 << 1,
 518        /**
 519         * UNIX file type is stored in S_IFMT bits.
 520         */
 521        LOHA_FT_START = 001 << 12, /**< S_IFIFO */
 522        LOHA_FT_END   = 017 << 12, /**< S_IFMT */
 523};
 524
 525/**
 526 * "Compound" object, consisting of multiple layers.
 527 *
 528 * Compound object with given fid is unique with given lu_site.
 529 *
 530 * Note, that object does *not* necessary correspond to the real object in the
 531 * persistent storage: object is an anchor for locking and method calling, so
 532 * it is created for things like not-yet-existing child created by mkdir or
 533 * create calls. lu_object_operations::loo_exists() can be used to check
 534 * whether object is backed by persistent storage entity.
 535 */
 536struct lu_object_header {
 537        /**
 538         * Object flags from enum lu_object_header_flags. Set and checked
 539         * atomically.
 540         */
 541        unsigned long     loh_flags;
 542        /**
 543         * Object reference count. Protected by lu_site::ls_guard.
 544         */
 545        atomic_t           loh_ref;
 546        /**
 547         * Fid, uniquely identifying this object.
 548         */
 549        struct lu_fid     loh_fid;
 550        /**
 551         * Common object attributes, cached for efficiency. From enum
 552         * lu_object_header_attr.
 553         */
 554        __u32             loh_attr;
 555        /**
 556         * Linkage into per-site hash table. Protected by lu_site::ls_guard.
 557         */
 558        struct hlist_node       loh_hash;
 559        /**
 560         * Linkage into per-site LRU list. Protected by lu_site::ls_guard.
 561         */
 562        struct list_head             loh_lru;
 563        /**
 564         * Linkage into list of layers. Never modified once set (except lately
 565         * during object destruction). No locking is necessary.
 566         */
 567        struct list_head             loh_layers;
 568        /**
 569         * A list of references to this object, for debugging.
 570         */
 571        struct lu_ref     loh_reference;
 572};
 573
 574struct fld;
 575
 576struct lu_site_bkt_data {
 577        /**
 578         * number of busy object on this bucket
 579         */
 580        long                  lsb_busy;
 581        /**
 582         * LRU list, updated on each access to object. Protected by
 583         * bucket lock of lu_site::ls_obj_hash.
 584         *
 585         * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
 586         * moved to the lu_site::ls_lru.prev (this is due to the non-existence
 587         * of list_for_each_entry_safe_reverse()).
 588         */
 589        struct list_head                lsb_lru;
 590        /**
 591         * Wait-queue signaled when an object in this site is ultimately
 592         * destroyed (lu_object_free()). It is used by lu_object_find() to
 593         * wait before re-trying when object in the process of destruction is
 594         * found in the hash table.
 595         *
 596         * \see htable_lookup().
 597         */
 598        wait_queue_head_t              lsb_marche_funebre;
 599};
 600
 601enum {
 602        LU_SS_CREATED    = 0,
 603        LU_SS_CACHE_HIT,
 604        LU_SS_CACHE_MISS,
 605        LU_SS_CACHE_RACE,
 606        LU_SS_CACHE_DEATH_RACE,
 607        LU_SS_LRU_PURGED,
 608        LU_SS_LAST_STAT
 609};
 610
 611/**
 612 * lu_site is a "compartment" within which objects are unique, and LRU
 613 * discipline is maintained.
 614 *
 615 * lu_site exists so that multiple layered stacks can co-exist in the same
 616 * address space.
 617 *
 618 * lu_site has the same relation to lu_device as lu_object_header to
 619 * lu_object.
 620 */
 621struct lu_site {
 622        /**
 623         * objects hash table
 624         */
 625        cfs_hash_t             *ls_obj_hash;
 626        /**
 627         * index of bucket on hash table while purging
 628         */
 629        int                    ls_purge_start;
 630        /**
 631         * Top-level device for this stack.
 632         */
 633        struct lu_device         *ls_top_dev;
 634        /**
 635         * Bottom-level device for this stack
 636         */
 637        struct lu_device        *ls_bottom_dev;
 638        /**
 639         * Linkage into global list of sites.
 640         */
 641        struct list_head                ls_linkage;
 642        /**
 643         * List for lu device for this site, protected
 644         * by ls_ld_lock.
 645         **/
 646        struct list_head                ls_ld_linkage;
 647        spinlock_t              ls_ld_lock;
 648
 649        /**
 650         * lu_site stats
 651         */
 652        struct lprocfs_stats    *ls_stats;
 653        /**
 654         * XXX: a hack! fld has to find md_site via site, remove when possible
 655         */
 656        struct seq_server_site  *ld_seq_site;
 657};
 658
 659static inline struct lu_site_bkt_data *
 660lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
 661{
 662        cfs_hash_bd_t bd;
 663
 664        cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
 665        return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
 666}
 667
 668/** \name ctors
 669 * Constructors/destructors.
 670 * @{
 671 */
 672
 673int  lu_site_init        (struct lu_site *s, struct lu_device *d);
 674void lu_site_fini        (struct lu_site *s);
 675int  lu_site_init_finish  (struct lu_site *s);
 676void lu_stack_fini      (const struct lu_env *env, struct lu_device *top);
 677void lu_device_get      (struct lu_device *d);
 678void lu_device_put      (struct lu_device *d);
 679int  lu_device_init       (struct lu_device *d, struct lu_device_type *t);
 680void lu_device_fini       (struct lu_device *d);
 681int  lu_object_header_init(struct lu_object_header *h);
 682void lu_object_header_fini(struct lu_object_header *h);
 683int  lu_object_init       (struct lu_object *o,
 684                           struct lu_object_header *h, struct lu_device *d);
 685void lu_object_fini       (struct lu_object *o);
 686void lu_object_add_top    (struct lu_object_header *h, struct lu_object *o);
 687void lu_object_add      (struct lu_object *before, struct lu_object *o);
 688
 689void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d);
 690void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d);
 691
 692/**
 693 * Helpers to initialize and finalize device types.
 694 */
 695
 696int  lu_device_type_init(struct lu_device_type *ldt);
 697void lu_device_type_fini(struct lu_device_type *ldt);
 698void lu_types_stop(void);
 699
 700/** @} ctors */
 701
 702/** \name caching
 703 * Caching and reference counting.
 704 * @{
 705 */
 706
 707/**
 708 * Acquire additional reference to the given object. This function is used to
 709 * attain additional reference. To acquire initial reference use
 710 * lu_object_find().
 711 */
 712static inline void lu_object_get(struct lu_object *o)
 713{
 714        LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
 715        atomic_inc(&o->lo_header->loh_ref);
 716}
 717
 718/**
 719 * Return true of object will not be cached after last reference to it is
 720 * released.
 721 */
 722static inline int lu_object_is_dying(const struct lu_object_header *h)
 723{
 724        return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
 725}
 726
 727void lu_object_put(const struct lu_env *env, struct lu_object *o);
 728void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o);
 729void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
 730
 731int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr);
 732
 733void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
 734                   lu_printer_t printer);
 735struct lu_object *lu_object_find(const struct lu_env *env,
 736                                 struct lu_device *dev, const struct lu_fid *f,
 737                                 const struct lu_object_conf *conf);
 738struct lu_object *lu_object_find_at(const struct lu_env *env,
 739                                    struct lu_device *dev,
 740                                    const struct lu_fid *f,
 741                                    const struct lu_object_conf *conf);
 742struct lu_object *lu_object_find_slice(const struct lu_env *env,
 743                                       struct lu_device *dev,
 744                                       const struct lu_fid *f,
 745                                       const struct lu_object_conf *conf);
 746/** @} caching */
 747
 748/** \name helpers
 749 * Helpers.
 750 * @{
 751 */
 752
 753/**
 754 * First (topmost) sub-object of given compound object
 755 */
 756static inline struct lu_object *lu_object_top(struct lu_object_header *h)
 757{
 758        LASSERT(!list_empty(&h->loh_layers));
 759        return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
 760}
 761
 762/**
 763 * Next sub-object in the layering
 764 */
 765static inline struct lu_object *lu_object_next(const struct lu_object *o)
 766{
 767        return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
 768}
 769
 770/**
 771 * Pointer to the fid of this object.
 772 */
 773static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
 774{
 775        return &o->lo_header->loh_fid;
 776}
 777
 778/**
 779 * return device operations vector for this object
 780 */
 781static const inline struct lu_device_operations *
 782lu_object_ops(const struct lu_object *o)
 783{
 784        return o->lo_dev->ld_ops;
 785}
 786
 787/**
 788 * Given a compound object, find its slice, corresponding to the device type
 789 * \a dtype.
 790 */
 791struct lu_object *lu_object_locate(struct lu_object_header *h,
 792                                   const struct lu_device_type *dtype);
 793
 794/**
 795 * Printer function emitting messages through libcfs_debug_msg().
 796 */
 797int lu_cdebug_printer(const struct lu_env *env,
 798                      void *cookie, const char *format, ...);
 799
 800/**
 801 * Print object description followed by a user-supplied message.
 802 */
 803#define LU_OBJECT_DEBUG(mask, env, object, format, ...)            \
 804do {                                                                  \
 805        LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);                  \
 806                                                                          \
 807        if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {                \
 808                lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
 809                CDEBUG(mask, format , ## __VA_ARGS__);              \
 810        }                                                                \
 811} while (0)
 812
 813/**
 814 * Print short object description followed by a user-supplied message.
 815 */
 816#define LU_OBJECT_HEADER(mask, env, object, format, ...)                \
 817do {                                                                \
 818        LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);                \
 819                                                                        \
 820        if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {              \
 821                lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
 822                                       (object)->lo_header);        \
 823                lu_cdebug_printer(env, &msgdata, "\n");          \
 824                CDEBUG(mask, format , ## __VA_ARGS__);            \
 825        }                                                              \
 826} while (0)
 827
 828void lu_object_print       (const struct lu_env *env, void *cookie,
 829                            lu_printer_t printer, const struct lu_object *o);
 830void lu_object_header_print(const struct lu_env *env, void *cookie,
 831                            lu_printer_t printer,
 832                            const struct lu_object_header *hdr);
 833
 834/**
 835 * Check object consistency.
 836 */
 837int lu_object_invariant(const struct lu_object *o);
 838
 839
 840/**
 841 * Check whether object exists, no matter on local or remote storage.
 842 * Note: LOHA_EXISTS will be set once some one created the object,
 843 * and it does not needs to be committed to storage.
 844 */
 845#define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
 846
 847/**
 848 * Check whether object on the remote storage.
 849 */
 850#define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
 851
 852static inline int lu_object_assert_exists(const struct lu_object *o)
 853{
 854        return lu_object_exists(o);
 855}
 856
 857static inline int lu_object_assert_not_exists(const struct lu_object *o)
 858{
 859        return !lu_object_exists(o);
 860}
 861
 862/**
 863 * Attr of this object.
 864 */
 865static inline __u32 lu_object_attr(const struct lu_object *o)
 866{
 867        LASSERT(lu_object_exists(o) != 0);
 868        return o->lo_header->loh_attr;
 869}
 870
 871static inline struct lu_ref_link *lu_object_ref_add(struct lu_object *o,
 872                                                    const char *scope,
 873                                                    const void *source)
 874{
 875        return lu_ref_add(&o->lo_header->loh_reference, scope, source);
 876}
 877
 878static inline void lu_object_ref_del(struct lu_object *o,
 879                                     const char *scope, const void *source)
 880{
 881        lu_ref_del(&o->lo_header->loh_reference, scope, source);
 882}
 883
 884static inline void lu_object_ref_del_at(struct lu_object *o,
 885                                        struct lu_ref_link *link,
 886                                        const char *scope, const void *source)
 887{
 888        lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
 889}
 890
 891/** input params, should be filled out by mdt */
 892struct lu_rdpg {
 893        /** hash */
 894        __u64              rp_hash;
 895        /** count in bytes */
 896        unsigned int        rp_count;
 897        /** number of pages */
 898        unsigned int        rp_npages;
 899        /** requested attr */
 900        __u32              rp_attrs;
 901        /** pointers to pages */
 902        struct page        **rp_pages;
 903};
 904
 905enum lu_xattr_flags {
 906        LU_XATTR_REPLACE = (1 << 0),
 907        LU_XATTR_CREATE  = (1 << 1)
 908};
 909
 910/** @} helpers */
 911
 912/** \name lu_context
 913 * @{ */
 914
 915/** For lu_context health-checks */
 916enum lu_context_state {
 917        LCS_INITIALIZED = 1,
 918        LCS_ENTERED,
 919        LCS_LEFT,
 920        LCS_FINALIZED
 921};
 922
 923/**
 924 * lu_context. Execution context for lu_object methods. Currently associated
 925 * with thread.
 926 *
 927 * All lu_object methods, except device and device type methods (called during
 928 * system initialization and shutdown) are executed "within" some
 929 * lu_context. This means, that pointer to some "current" lu_context is passed
 930 * as an argument to all methods.
 931 *
 932 * All service ptlrpc threads create lu_context as part of their
 933 * initialization. It is possible to create "stand-alone" context for other
 934 * execution environments (like system calls).
 935 *
 936 * lu_object methods mainly use lu_context through lu_context_key interface
 937 * that allows each layer to associate arbitrary pieces of data with each
 938 * context (see pthread_key_create(3) for similar interface).
 939 *
 940 * On a client, lu_context is bound to a thread, see cl_env_get().
 941 *
 942 * \see lu_context_key
 943 */
 944struct lu_context {
 945        /**
 946         * lu_context is used on the client side too. Yet we don't want to
 947         * allocate values of server-side keys for the client contexts and
 948         * vice versa.
 949         *
 950         * To achieve this, set of tags in introduced. Contexts and keys are
 951         * marked with tags. Key value are created only for context whose set
 952         * of tags has non-empty intersection with one for key. Tags are taken
 953         * from enum lu_context_tag.
 954         */
 955        __u32             lc_tags;
 956        enum lu_context_state  lc_state;
 957        /**
 958         * Pointer to the home service thread. NULL for other execution
 959         * contexts.
 960         */
 961        struct ptlrpc_thread  *lc_thread;
 962        /**
 963         * Pointer to an array with key values. Internal implementation
 964         * detail.
 965         */
 966        void             **lc_value;
 967        /**
 968         * Linkage into a list of all remembered contexts. Only
 969         * `non-transient' contexts, i.e., ones created for service threads
 970         * are placed here.
 971         */
 972        struct list_head             lc_remember;
 973        /**
 974         * Version counter used to skip calls to lu_context_refill() when no
 975         * keys were registered.
 976         */
 977        unsigned               lc_version;
 978        /**
 979         * Debugging cookie.
 980         */
 981        unsigned               lc_cookie;
 982};
 983
 984/**
 985 * lu_context_key interface. Similar to pthread_key.
 986 */
 987
 988enum lu_context_tag {
 989        /**
 990         * Thread on md server
 991         */
 992        LCT_MD_THREAD = 1 << 0,
 993        /**
 994         * Thread on dt server
 995         */
 996        LCT_DT_THREAD = 1 << 1,
 997        /**
 998         * Context for transaction handle
 999         */
1000        LCT_TX_HANDLE = 1 << 2,
1001        /**
1002         * Thread on client
1003         */
1004        LCT_CL_THREAD = 1 << 3,
1005        /**
1006         * A per-request session on a server, and a per-system-call session on
1007         * a client.
1008         */
1009        LCT_SESSION   = 1 << 4,
1010        /**
1011         * A per-request data on OSP device
1012         */
1013        LCT_OSP_THREAD = 1 << 5,
1014        /**
1015         * MGS device thread
1016         */
1017        LCT_MG_THREAD = 1 << 6,
1018        /**
1019         * Context for local operations
1020         */
1021        LCT_LOCAL = 1 << 7,
1022        /**
1023         * Set when at least one of keys, having values in this context has
1024         * non-NULL lu_context_key::lct_exit() method. This is used to
1025         * optimize lu_context_exit() call.
1026         */
1027        LCT_HAS_EXIT  = 1 << 28,
1028        /**
1029         * Don't add references for modules creating key values in that context.
1030         * This is only for contexts used internally by lu_object framework.
1031         */
1032        LCT_NOREF     = 1 << 29,
1033        /**
1034         * Key is being prepared for retiring, don't create new values for it.
1035         */
1036        LCT_QUIESCENT = 1 << 30,
1037        /**
1038         * Context should be remembered.
1039         */
1040        LCT_REMEMBER  = 1 << 31,
1041        /**
1042         * Contexts usable in cache shrinker thread.
1043         */
1044        LCT_SHRINKER  = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD|LCT_NOREF
1045};
1046
1047/**
1048 * Key. Represents per-context value slot.
1049 *
1050 * Keys are usually registered when module owning the key is initialized, and
1051 * de-registered when module is unloaded. Once key is registered, all new
1052 * contexts with matching tags, will get key value. "Old" contexts, already
1053 * initialized at the time of key registration, can be forced to get key value
1054 * by calling lu_context_refill().
1055 *
1056 * Every key value is counted in lu_context_key::lct_used and acquires a
1057 * reference on an owning module. This means, that all key values have to be
1058 * destroyed before module can be unloaded. This is usually achieved by
1059 * stopping threads started by the module, that created contexts in their
1060 * entry functions. Situation is complicated by the threads shared by multiple
1061 * modules, like ptlrpcd daemon on a client. To work around this problem,
1062 * contexts, created in such threads, are `remembered' (see
1063 * LCT_REMEMBER)---i.e., added into a global list. When module is preparing
1064 * for unloading it does the following:
1065 *
1066 *     - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
1067 *       preventing new key values from being allocated in the new contexts,
1068 *       and
1069 *
1070 *     - scans a list of remembered contexts, destroying values of module
1071 *       keys, thus releasing references to the module.
1072 *
1073 * This is done by lu_context_key_quiesce(). If module is re-activated
1074 * before key has been de-registered, lu_context_key_revive() call clears
1075 * `quiescent' marker.
1076 *
1077 * lu_context code doesn't provide any internal synchronization for these
1078 * activities---it's assumed that startup (including threads start-up) and
1079 * shutdown are serialized by some external means.
1080 *
1081 * \see lu_context
1082 */
1083struct lu_context_key {
1084        /**
1085         * Set of tags for which values of this key are to be instantiated.
1086         */
1087        __u32 lct_tags;
1088        /**
1089         * Value constructor. This is called when new value is created for a
1090         * context. Returns pointer to new value of error pointer.
1091         */
1092        void  *(*lct_init)(const struct lu_context *ctx,
1093                           struct lu_context_key *key);
1094        /**
1095         * Value destructor. Called when context with previously allocated
1096         * value of this slot is destroyed. \a data is a value that was returned
1097         * by a matching call to lu_context_key::lct_init().
1098         */
1099        void   (*lct_fini)(const struct lu_context *ctx,
1100                           struct lu_context_key *key, void *data);
1101        /**
1102         * Optional method called on lu_context_exit() for all allocated
1103         * keys. Can be used by debugging code checking that locks are
1104         * released, etc.
1105         */
1106        void   (*lct_exit)(const struct lu_context *ctx,
1107                           struct lu_context_key *key, void *data);
1108        /**
1109         * Internal implementation detail: index within lu_context::lc_value[]
1110         * reserved for this key.
1111         */
1112        int      lct_index;
1113        /**
1114         * Internal implementation detail: number of values created for this
1115         * key.
1116         */
1117        atomic_t lct_used;
1118        /**
1119         * Internal implementation detail: module for this key.
1120         */
1121        module_t *lct_owner;
1122        /**
1123         * References to this key. For debugging.
1124         */
1125        struct lu_ref  lct_reference;
1126};
1127
1128#define LU_KEY_INIT(mod, type)                              \
1129        static void* mod##_key_init(const struct lu_context *ctx, \
1130                                    struct lu_context_key *key)   \
1131        {                                                        \
1132                type *value;                                  \
1133                                                                  \
1134                CLASSERT(PAGE_CACHE_SIZE >= sizeof (*value));       \
1135                                                                  \
1136                OBD_ALLOC_PTR(value);                        \
1137                if (value == NULL)                              \
1138                        value = ERR_PTR(-ENOMEM);                \
1139                                                                  \
1140                return value;                                \
1141        }                                                        \
1142        struct __##mod##__dummy_init {;} /* semicolon catcher */
1143
1144#define LU_KEY_FINI(mod, type)                                        \
1145        static void mod##_key_fini(const struct lu_context *ctx,            \
1146                                    struct lu_context_key *key, void* data) \
1147        {                                                                  \
1148                type *info = data;                                        \
1149                                                                            \
1150                OBD_FREE_PTR(info);                                      \
1151        }                                                                  \
1152        struct __##mod##__dummy_fini {;} /* semicolon catcher */
1153
1154#define LU_KEY_INIT_FINI(mod, type)   \
1155        LU_KEY_INIT(mod,type);  \
1156        LU_KEY_FINI(mod,type)
1157
1158#define LU_CONTEXT_KEY_DEFINE(mod, tags)                \
1159        struct lu_context_key mod##_thread_key = {      \
1160                .lct_tags = tags,                      \
1161                .lct_init = mod##_key_init,          \
1162                .lct_fini = mod##_key_fini            \
1163        }
1164
1165#define LU_CONTEXT_KEY_INIT(key)                        \
1166do {                                                \
1167        (key)->lct_owner = THIS_MODULE;          \
1168} while (0)
1169
1170int   lu_context_key_register(struct lu_context_key *key);
1171void  lu_context_key_degister(struct lu_context_key *key);
1172void *lu_context_key_get     (const struct lu_context *ctx,
1173                               const struct lu_context_key *key);
1174void  lu_context_key_quiesce (struct lu_context_key *key);
1175void  lu_context_key_revive  (struct lu_context_key *key);
1176
1177
1178/*
1179 * LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
1180 * owning module.
1181 */
1182
1183#define LU_KEY_INIT_GENERIC(mod)                                        \
1184        static void mod##_key_init_generic(struct lu_context_key *k, ...) \
1185        {                                                              \
1186                struct lu_context_key *key = k;                  \
1187                va_list args;                                      \
1188                                                                        \
1189                va_start(args, k);                                    \
1190                do {                                                \
1191                        LU_CONTEXT_KEY_INIT(key);                      \
1192                        key = va_arg(args, struct lu_context_key *);    \
1193                } while (key != NULL);                            \
1194                va_end(args);                                      \
1195        }
1196
1197#define LU_TYPE_INIT(mod, ...)                                    \
1198        LU_KEY_INIT_GENERIC(mod)                                        \
1199        static int mod##_type_init(struct lu_device_type *t)        \
1200        {                                                              \
1201                mod##_key_init_generic(__VA_ARGS__, NULL);            \
1202                return lu_context_key_register_many(__VA_ARGS__, NULL); \
1203        }                                                              \
1204        struct __##mod##_dummy_type_init {;}
1205
1206#define LU_TYPE_FINI(mod, ...)                                    \
1207        static void mod##_type_fini(struct lu_device_type *t)      \
1208        {                                                              \
1209                lu_context_key_degister_many(__VA_ARGS__, NULL);        \
1210        }                                                              \
1211        struct __##mod##_dummy_type_fini {;}
1212
1213#define LU_TYPE_START(mod, ...)                          \
1214        static void mod##_type_start(struct lu_device_type *t)  \
1215        {                                                      \
1216                lu_context_key_revive_many(__VA_ARGS__, NULL);  \
1217        }                                                      \
1218        struct __##mod##_dummy_type_start {;}
1219
1220#define LU_TYPE_STOP(mod, ...)                            \
1221        static void mod##_type_stop(struct lu_device_type *t)   \
1222        {                                                      \
1223                lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
1224        }                                                      \
1225        struct __##mod##_dummy_type_stop {;}
1226
1227
1228
1229#define LU_TYPE_INIT_FINI(mod, ...)          \
1230        LU_TYPE_INIT(mod, __VA_ARGS__);  \
1231        LU_TYPE_FINI(mod, __VA_ARGS__);  \
1232        LU_TYPE_START(mod, __VA_ARGS__);        \
1233        LU_TYPE_STOP(mod, __VA_ARGS__)
1234
1235int   lu_context_init  (struct lu_context *ctx, __u32 tags);
1236void  lu_context_fini  (struct lu_context *ctx);
1237void  lu_context_enter (struct lu_context *ctx);
1238void  lu_context_exit  (struct lu_context *ctx);
1239int   lu_context_refill(struct lu_context *ctx);
1240
1241/*
1242 * Helper functions to operate on multiple keys. These are used by the default
1243 * device type operations, defined by LU_TYPE_INIT_FINI().
1244 */
1245
1246int  lu_context_key_register_many(struct lu_context_key *k, ...);
1247void lu_context_key_degister_many(struct lu_context_key *k, ...);
1248void lu_context_key_revive_many  (struct lu_context_key *k, ...);
1249void lu_context_key_quiesce_many (struct lu_context_key *k, ...);
1250
1251/*
1252 * update/clear ctx/ses tags.
1253 */
1254void lu_context_tags_update(__u32 tags);
1255void lu_context_tags_clear(__u32 tags);
1256void lu_session_tags_update(__u32 tags);
1257void lu_session_tags_clear(__u32 tags);
1258
1259/**
1260 * Environment.
1261 */
1262struct lu_env {
1263        /**
1264         * "Local" context, used to store data instead of stack.
1265         */
1266        struct lu_context  le_ctx;
1267        /**
1268         * "Session" context for per-request data.
1269         */
1270        struct lu_context *le_ses;
1271};
1272
1273int  lu_env_init  (struct lu_env *env, __u32 tags);
1274void lu_env_fini  (struct lu_env *env);
1275int  lu_env_refill(struct lu_env *env);
1276int  lu_env_refill_by_tags(struct lu_env *env, __u32 ctags, __u32 stags);
1277
1278/** @} lu_context */
1279
1280/**
1281 * Output site statistical counters into a buffer. Suitable for
1282 * ll_rd_*()-style functions.
1283 */
1284int lu_site_stats_print(const struct lu_site *s, struct seq_file *m);
1285
1286/**
1287 * Common name structure to be passed around for various name related methods.
1288 */
1289struct lu_name {
1290        const char    *ln_name;
1291        int         ln_namelen;
1292};
1293
1294/**
1295 * Common buffer structure to be passed around for various xattr_{s,g}et()
1296 * methods.
1297 */
1298struct lu_buf {
1299        void   *lb_buf;
1300        ssize_t lb_len;
1301};
1302
1303#define DLUBUF "(%p %zu)"
1304#define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
1305/**
1306 * One-time initializers, called at obdclass module initialization, not
1307 * exported.
1308 */
1309
1310/**
1311 * Initialization of global lu_* data.
1312 */
1313int lu_global_init(void);
1314
1315/**
1316 * Dual to lu_global_init().
1317 */
1318void lu_global_fini(void);
1319
1320struct lu_kmem_descr {
1321        struct kmem_cache **ckd_cache;
1322        const char       *ckd_name;
1323        const size_t      ckd_size;
1324};
1325
1326int  lu_kmem_init(struct lu_kmem_descr *caches);
1327void lu_kmem_fini(struct lu_kmem_descr *caches);
1328
1329void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
1330                          const struct lu_fid *fid);
1331struct lu_object *lu_object_anon(const struct lu_env *env,
1332                                 struct lu_device *dev,
1333                                 const struct lu_object_conf *conf);
1334
1335/** null buffer */
1336extern struct lu_buf LU_BUF_NULL;
1337
1338void lu_buf_free(struct lu_buf *buf);
1339void lu_buf_alloc(struct lu_buf *buf, int size);
1340void lu_buf_realloc(struct lu_buf *buf, int size);
1341
1342int lu_buf_check_and_grow(struct lu_buf *buf, int len);
1343struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len);
1344
1345/** @} lu */
1346#endif /* __LUSTRE_LU_OBJECT_H */
1347