linux/drivers/staging/lustre/lustre/include/lustre_net.h
<<
>>
Prefs
   1/*
   2 * GPL HEADER START
   3 *
   4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 only,
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 for more details (a copy is included
  14 * in the LICENSE file that accompanied this code).
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * version 2 along with this program; If not, see
  18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
  19 *
  20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  21 * CA 95054 USA or visit www.sun.com if you need additional information or
  22 * have any questions.
  23 *
  24 * GPL HEADER END
  25 */
  26/*
  27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  28 * Use is subject to license terms.
  29 *
  30 * Copyright (c) 2010, 2012, Intel Corporation.
  31 */
  32/*
  33 * This file is part of Lustre, http://www.lustre.org/
  34 * Lustre is a trademark of Sun Microsystems, Inc.
  35 */
  36/** \defgroup PtlRPC Portal RPC and networking module.
  37 *
  38 * PortalRPC is the layer used by rest of lustre code to achieve network
  39 * communications: establish connections with corresponding export and import
  40 * states, listen for a service, send and receive RPCs.
  41 * PortalRPC also includes base recovery framework: packet resending and
  42 * replaying, reconnections, pinger.
  43 *
  44 * PortalRPC utilizes LNet as its transport layer.
  45 *
  46 * @{
  47 */
  48
  49
  50#ifndef _LUSTRE_NET_H
  51#define _LUSTRE_NET_H
  52
  53/** \defgroup net net
  54 *
  55 * @{
  56 */
  57
  58#include <linux/lustre_net.h>
  59
  60#include <linux/libcfs/libcfs.h>
  61// #include <obd.h>
  62#include <linux/lnet/lnet.h>
  63#include <lustre/lustre_idl.h>
  64#include <lustre_ha.h>
  65#include <lustre_sec.h>
  66#include <lustre_import.h>
  67#include <lprocfs_status.h>
  68#include <lu_object.h>
  69#include <lustre_req_layout.h>
  70
  71#include <obd_support.h>
  72#include <lustre_ver.h>
  73
  74/* MD flags we _always_ use */
  75#define PTLRPC_MD_OPTIONS  0
  76
  77/**
  78 * Max # of bulk operations in one request.
  79 * In order for the client and server to properly negotiate the maximum
  80 * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
  81 * value.  The client is free to limit the actual RPC size for any bulk
  82 * transfer via cl_max_pages_per_rpc to some non-power-of-two value. */
  83#define PTLRPC_BULK_OPS_BITS    2
  84#define PTLRPC_BULK_OPS_COUNT   (1U << PTLRPC_BULK_OPS_BITS)
  85/**
  86 * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
  87 * should not be used on the server at all.  Otherwise, it imposes a
  88 * protocol limitation on the maximum RPC size that can be used by any
  89 * RPC sent to that server in the future.  Instead, the server should
  90 * use the negotiated per-client ocd_brw_size to determine the bulk
  91 * RPC count. */
  92#define PTLRPC_BULK_OPS_MASK    (~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
  93
  94/**
  95 * Define maxima for bulk I/O.
  96 *
  97 * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
  98 * of LNET_MTU sized RDMA transfers.  Clients and servers negotiate the
  99 * currently supported maximum between peers at connect via ocd_brw_size.
 100 */
 101#define PTLRPC_MAX_BRW_BITS     (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
 102#define PTLRPC_MAX_BRW_SIZE     (1 << PTLRPC_MAX_BRW_BITS)
 103#define PTLRPC_MAX_BRW_PAGES    (PTLRPC_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
 104
 105#define ONE_MB_BRW_SIZE         (1 << LNET_MTU_BITS)
 106#define MD_MAX_BRW_SIZE         (1 << LNET_MTU_BITS)
 107#define MD_MAX_BRW_PAGES        (MD_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
 108#define DT_MAX_BRW_SIZE         PTLRPC_MAX_BRW_SIZE
 109#define DT_MAX_BRW_PAGES        (DT_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
 110#define OFD_MAX_BRW_SIZE        (1 << LNET_MTU_BITS)
 111
 112/* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
 113# if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
 114#  error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
 115# endif
 116# if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE))
 117#  error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE"
 118# endif
 119# if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
 120#  error "PTLRPC_MAX_BRW_SIZE too big"
 121# endif
 122# if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
 123#  error "PTLRPC_MAX_BRW_PAGES too big"
 124# endif
 125
 126#define PTLRPC_NTHRS_INIT       2
 127
 128/**
 129 * Buffer Constants
 130 *
 131 * Constants determine how memory is used to buffer incoming service requests.
 132 *
 133 * ?_NBUFS            # buffers to allocate when growing the pool
 134 * ?_BUFSIZE        # bytes in a single request buffer
 135 * ?_MAXREQSIZE  # maximum request service will receive
 136 *
 137 * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
 138 * of ?_NBUFS is added to the pool.
 139 *
 140 * Messages larger than ?_MAXREQSIZE are dropped.  Request buffers are
 141 * considered full when less than ?_MAXREQSIZE is left in them.
 142 */
 143/**
 144 * Thread Constants
 145 *
 146 * Constants determine how threads are created for ptlrpc service.
 147 *
 148 * ?_NTHRS_INIT         # threads to create for each service partition on
 149 *                        initializing. If it's non-affinity service and
 150 *                        there is only one partition, it's the overall #
 151 *                        threads for the service while initializing.
 152 * ?_NTHRS_BASE         # threads should be created at least for each
 153 *                        ptlrpc partition to keep the service healthy.
 154 *                        It's the low-water mark of threads upper-limit
 155 *                        for each partition.
 156 * ?_THR_FACTOR  # threads can be added on threads upper-limit for
 157 *                        each CPU core. This factor is only for reference,
 158 *                        we might decrease value of factor if number of cores
 159 *                        per CPT is above a limit.
 160 * ?_NTHRS_MAX          # overall threads can be created for a service,
 161 *                        it's a soft limit because if service is running
 162 *                        on machine with hundreds of cores and tens of
 163 *                        CPU partitions, we need to guarantee each partition
 164 *                        has ?_NTHRS_BASE threads, which means total threads
 165 *                        will be ?_NTHRS_BASE * number_of_cpts which can
 166 *                        exceed ?_NTHRS_MAX.
 167 *
 168 * Examples
 169 *
 170 * #define MDS_NTHRS_INIT       2
 171 * #define MDS_NTHRS_BASE       64
 172 * #define MDS_NTHRS_FACTOR     8
 173 * #define MDS_NTHRS_MAX        1024
 174 *
 175 * Example 1):
 176 * ---------------------------------------------------------------------
 177 * Server(A) has 16 cores, user configured it to 4 partitions so each
 178 * partition has 4 cores, then actual number of service threads on each
 179 * partition is:
 180 *     MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
 181 *
 182 * Total number of threads for the service is:
 183 *     96 * partitions(4) = 384
 184 *
 185 * Example 2):
 186 * ---------------------------------------------------------------------
 187 * Server(B) has 32 cores, user configured it to 4 partitions so each
 188 * partition has 8 cores, then actual number of service threads on each
 189 * partition is:
 190 *     MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
 191 *
 192 * Total number of threads for the service is:
 193 *     128 * partitions(4) = 512
 194 *
 195 * Example 3):
 196 * ---------------------------------------------------------------------
 197 * Server(B) has 96 cores, user configured it to 8 partitions so each
 198 * partition has 12 cores, then actual number of service threads on each
 199 * partition is:
 200 *     MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
 201 *
 202 * Total number of threads for the service is:
 203 *     160 * partitions(8) = 1280
 204 *
 205 * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
 206 * as upper limit of threads number for each partition:
 207 *     MDS_NTHRS_MAX(1024) / partitions(8) = 128
 208 *
 209 * Example 4):
 210 * ---------------------------------------------------------------------
 211 * Server(C) have a thousand of cores and user configured it to 32 partitions
 212 *     MDS_NTHRS_BASE(64) * 32 = 2048
 213 *
 214 * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
 215 * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
 216 * to keep service healthy, so total number of threads will just be 2048.
 217 *
 218 * NB: we don't suggest to choose server with that many cores because backend
 219 *     filesystem itself, buffer cache, or underlying network stack might
 220 *     have some SMP scalability issues at that large scale.
 221 *
 222 *     If user already has a fat machine with hundreds or thousands of cores,
 223 *     there are two choices for configuration:
 224 *     a) create CPU table from subset of all CPUs and run Lustre on
 225 *      top of this subset
 226 *     b) bind service threads on a few partitions, see modparameters of
 227 *      MDS and OSS for details
 228*
 229 * NB: these calculations (and examples below) are simplified to help
 230 *     understanding, the real implementation is a little more complex,
 231 *     please see ptlrpc_server_nthreads_check() for details.
 232 *
 233 */
 234
 235 /*
 236  * LDLM threads constants:
 237  *
 238  * Given 8 as factor and 24 as base threads number
 239  *
 240  * example 1)
 241  * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
 242  *
 243  * example 2)
 244  * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
 245  * threads for each partition and total threads number will be 112.
 246  *
 247  * example 3)
 248  * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
 249  * threads for each partition to keep service healthy, so total threads
 250  * number should be 24 * 8 = 192.
 251  *
 252  * So with these constants, threads number will be at the similar level
 253  * of old versions, unless target machine has over a hundred cores
 254  */
 255#define LDLM_THR_FACTOR         8
 256#define LDLM_NTHRS_INIT         PTLRPC_NTHRS_INIT
 257#define LDLM_NTHRS_BASE         24
 258#define LDLM_NTHRS_MAX          (num_online_cpus() == 1 ? 64 : 128)
 259
 260#define LDLM_BL_THREADS   LDLM_NTHRS_AUTO_INIT
 261#define LDLM_CLIENT_NBUFS 1
 262#define LDLM_SERVER_NBUFS 64
 263#define LDLM_BUFSIZE      (8 * 1024)
 264#define LDLM_MAXREQSIZE   (5 * 1024)
 265#define LDLM_MAXREPSIZE   (1024)
 266
 267 /*
 268  * MDS threads constants:
 269  *
 270  * Please see examples in "Thread Constants", MDS threads number will be at
 271  * the comparable level of old versions, unless the server has many cores.
 272  */
 273#ifndef MDS_MAX_THREADS
 274#define MDS_MAX_THREADS         1024
 275#define MDS_MAX_OTHR_THREADS    256
 276
 277#else /* MDS_MAX_THREADS */
 278#if MDS_MAX_THREADS < PTLRPC_NTHRS_INIT
 279#undef MDS_MAX_THREADS
 280#define MDS_MAX_THREADS PTLRPC_NTHRS_INIT
 281#endif
 282#define MDS_MAX_OTHR_THREADS    max(PTLRPC_NTHRS_INIT, MDS_MAX_THREADS / 2)
 283#endif
 284
 285/* default service */
 286#define MDS_THR_FACTOR          8
 287#define MDS_NTHRS_INIT          PTLRPC_NTHRS_INIT
 288#define MDS_NTHRS_MAX           MDS_MAX_THREADS
 289#define MDS_NTHRS_BASE          min(64, MDS_NTHRS_MAX)
 290
 291/* read-page service */
 292#define MDS_RDPG_THR_FACTOR     4
 293#define MDS_RDPG_NTHRS_INIT     PTLRPC_NTHRS_INIT
 294#define MDS_RDPG_NTHRS_MAX      MDS_MAX_OTHR_THREADS
 295#define MDS_RDPG_NTHRS_BASE     min(48, MDS_RDPG_NTHRS_MAX)
 296
 297/* these should be removed when we remove setattr service in the future */
 298#define MDS_SETA_THR_FACTOR     4
 299#define MDS_SETA_NTHRS_INIT     PTLRPC_NTHRS_INIT
 300#define MDS_SETA_NTHRS_MAX      MDS_MAX_OTHR_THREADS
 301#define MDS_SETA_NTHRS_BASE     min(48, MDS_SETA_NTHRS_MAX)
 302
 303/* non-affinity threads */
 304#define MDS_OTHR_NTHRS_INIT     PTLRPC_NTHRS_INIT
 305#define MDS_OTHR_NTHRS_MAX      MDS_MAX_OTHR_THREADS
 306
 307#define MDS_NBUFS               64
 308
 309/**
 310 * Assume file name length = FNAME_MAX = 256 (true for ext3).
 311 *        path name length = PATH_MAX = 4096
 312 *        LOV MD size max  = EA_MAX = 24 * 2000
 313 *              (NB: 24 is size of lov_ost_data)
 314 *        LOV LOGCOOKIE size max = 32 * 2000
 315 *              (NB: 32 is size of llog_cookie)
 316 * symlink:  FNAME_MAX + PATH_MAX  <- largest
 317 * link:     FNAME_MAX + PATH_MAX  (mds_rec_link < mds_rec_create)
 318 * rename:   FNAME_MAX + FNAME_MAX
 319 * open:     FNAME_MAX + EA_MAX
 320 *
 321 * MDS_MAXREQSIZE ~= 4736 bytes =
 322 * lustre_msg + ldlm_request + mdt_body + mds_rec_create + FNAME_MAX + PATH_MAX
 323 * MDS_MAXREPSIZE ~= 8300 bytes = lustre_msg + llog_header
 324 *
 325 * Realistic size is about 512 bytes (20 character name + 128 char symlink),
 326 * except in the open case where there are a large number of OSTs in a LOV.
 327 */
 328#define MDS_MAXREQSIZE          (5 * 1024)      /* >= 4736 */
 329#define MDS_MAXREPSIZE          (9 * 1024)      /* >= 8300 */
 330
 331/**
 332 * MDS incoming request with LOV EA
 333 * 24 = sizeof(struct lov_ost_data), i.e: replay of opencreate
 334 */
 335#define MDS_LOV_MAXREQSIZE      max(MDS_MAXREQSIZE, \
 336                                    362 + LOV_MAX_STRIPE_COUNT * 24)
 337/**
 338 * MDS outgoing reply with LOV EA
 339 *
 340 * NB: max reply size Lustre 2.4+ client can get from old MDS is:
 341 * LOV_MAX_STRIPE_COUNT * (llog_cookie + lov_ost_data) + extra bytes
 342 *
 343 * but 2.4 or later MDS will never send reply with llog_cookie to any
 344 * version client. This macro is defined for server side reply buffer size.
 345 */
 346#define MDS_LOV_MAXREPSIZE      MDS_LOV_MAXREQSIZE
 347
 348/**
 349 * This is the size of a maximum REINT_SETXATTR request:
 350 *
 351 *   lustre_msg          56 (32 + 4 x 5 + 4)
 352 *   ptlrpc_body        184
 353 *   mdt_rec_setxattr   136
 354 *   lustre_capa        120
 355 *   name               256 (XATTR_NAME_MAX)
 356 *   value            65536 (XATTR_SIZE_MAX)
 357 */
 358#define MDS_EA_MAXREQSIZE       66288
 359
 360/**
 361 * These are the maximum request and reply sizes (rounded up to 1 KB
 362 * boundaries) for the "regular" MDS_REQUEST_PORTAL and MDS_REPLY_PORTAL.
 363 */
 364#define MDS_REG_MAXREQSIZE      (((max(MDS_EA_MAXREQSIZE, \
 365                                       MDS_LOV_MAXREQSIZE) + 1023) >> 10) << 10)
 366#define MDS_REG_MAXREPSIZE      MDS_REG_MAXREQSIZE
 367
 368/**
 369 * The update request includes all of updates from the create, which might
 370 * include linkea (4K maxim), together with other updates, we set it to 9K:
 371 * lustre_msg + ptlrpc_body + UPDATE_BUF_SIZE (8K)
 372 */
 373#define MDS_OUT_MAXREQSIZE      (9 * 1024)
 374#define MDS_OUT_MAXREPSIZE      MDS_MAXREPSIZE
 375
 376/** MDS_BUFSIZE = max_reqsize (w/o LOV EA) + max sptlrpc payload size */
 377#define MDS_BUFSIZE             max(MDS_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
 378                                    8 * 1024)
 379
 380/**
 381 * MDS_REG_BUFSIZE should at least be MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD.
 382 * However, we need to allocate a much larger buffer for it because LNet
 383 * requires each MD(rqbd) has at least MDS_REQ_MAXREQSIZE bytes left to avoid
 384 * dropping of maximum-sized incoming request.  So if MDS_REG_BUFSIZE is only a
 385 * little larger than MDS_REG_MAXREQSIZE, then it can only fit in one request
 386 * even there are about MDS_REG_MAX_REQSIZE bytes left in a rqbd, and memory
 387 * utilization is very low.
 388 *
 389 * In the meanwhile, size of rqbd can't be too large, because rqbd can't be
 390 * reused until all requests fit in it have been processed and released,
 391 * which means one long blocked request can prevent the rqbd be reused.
 392 * Now we set request buffer size to 160 KB, so even each rqbd is unlinked
 393 * from LNet with unused 65 KB, buffer utilization will be about 59%.
 394 * Please check LU-2432 for details.
 395 */
 396#define MDS_REG_BUFSIZE         max(MDS_REG_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
 397                                    160 * 1024)
 398
 399/**
 400 * MDS_OUT_BUFSIZE = max_out_reqsize + max sptlrpc payload (~1K) which is
 401 * about 10K, for the same reason as MDS_REG_BUFSIZE, we also give some
 402 * extra bytes to each request buffer to improve buffer utilization rate.
 403  */
 404#define MDS_OUT_BUFSIZE         max(MDS_OUT_MAXREQSIZE + SPTLRPC_MAX_PAYLOAD, \
 405                                    24 * 1024)
 406
 407/** FLD_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc */
 408#define FLD_MAXREQSIZE  (160)
 409
 410/** FLD_MAXREPSIZE == lustre_msg + ptlrpc_body */
 411#define FLD_MAXREPSIZE  (152)
 412#define FLD_BUFSIZE     (1 << 12)
 413
 414/**
 415 * SEQ_MAXREQSIZE == lustre_msg + __u32 padding + ptlrpc_body + opc + lu_range +
 416 * __u32 padding */
 417#define SEQ_MAXREQSIZE  (160)
 418
 419/** SEQ_MAXREPSIZE == lustre_msg + ptlrpc_body + lu_range */
 420#define SEQ_MAXREPSIZE  (152)
 421#define SEQ_BUFSIZE     (1 << 12)
 422
 423/** MGS threads must be >= 3, see bug 22458 comment #28 */
 424#define MGS_NTHRS_INIT  (PTLRPC_NTHRS_INIT + 1)
 425#define MGS_NTHRS_MAX   32
 426
 427#define MGS_NBUFS       64
 428#define MGS_BUFSIZE     (8 * 1024)
 429#define MGS_MAXREQSIZE  (7 * 1024)
 430#define MGS_MAXREPSIZE  (9 * 1024)
 431
 432 /*
 433  * OSS threads constants:
 434  *
 435  * Given 8 as factor and 64 as base threads number
 436  *
 437  * example 1):
 438  * On 8-core server configured to 2 partitions, we will have
 439  * 64 + 8 * 4 = 96 threads for each partition, 192 total threads.
 440  *
 441  * example 2):
 442  * On 32-core machine configured to 4 partitions, we will have
 443  * 64 + 8 * 8 = 112 threads for each partition, so total threads number
 444  * will be 112 * 4 = 448.
 445  *
 446  * example 3):
 447  * On 64-core machine configured to 4 partitions, we will have
 448  * 64 + 16 * 8 = 192 threads for each partition, so total threads number
 449  * will be 192 * 4 = 768 which is above limit OSS_NTHRS_MAX(512), so we
 450  * cut off the value to OSS_NTHRS_MAX(512) / 4 which is 128 threads
 451  * for each partition.
 452  *
 453  * So we can see that with these constants, threads number wil be at the
 454  * similar level of old versions, unless the server has many cores.
 455  */
 456 /* depress threads factor for VM with small memory size */
 457#define OSS_THR_FACTOR          min_t(int, 8, \
 458                                NUM_CACHEPAGES >> (28 - PAGE_CACHE_SHIFT))
 459#define OSS_NTHRS_INIT          (PTLRPC_NTHRS_INIT + 1)
 460#define OSS_NTHRS_BASE          64
 461#define OSS_NTHRS_MAX           512
 462
 463/* threads for handling "create" request */
 464#define OSS_CR_THR_FACTOR       1
 465#define OSS_CR_NTHRS_INIT       PTLRPC_NTHRS_INIT
 466#define OSS_CR_NTHRS_BASE       8
 467#define OSS_CR_NTHRS_MAX        64
 468
 469/**
 470 * OST_IO_MAXREQSIZE ~=
 471 *      lustre_msg + ptlrpc_body + obdo + obd_ioobj +
 472 *      DT_MAX_BRW_PAGES * niobuf_remote
 473 *
 474 * - single object with 16 pages is 512 bytes
 475 * - OST_IO_MAXREQSIZE must be at least 1 page of cookies plus some spillover
 476 * - Must be a multiple of 1024
 477 * - actual size is about 18K
 478 */
 479#define _OST_MAXREQSIZE_SUM (sizeof(struct lustre_msg) + \
 480                             sizeof(struct ptlrpc_body) + \
 481                             sizeof(struct obdo) + \
 482                             sizeof(struct obd_ioobj) + \
 483                             sizeof(struct niobuf_remote) * DT_MAX_BRW_PAGES)
 484/**
 485 * FIEMAP request can be 4K+ for now
 486 */
 487#define OST_MAXREQSIZE          (5 * 1024)
 488#define OST_IO_MAXREQSIZE       max_t(int, OST_MAXREQSIZE, \
 489                                (((_OST_MAXREQSIZE_SUM - 1) | (1024 - 1)) + 1))
 490
 491#define OST_MAXREPSIZE          (9 * 1024)
 492#define OST_IO_MAXREPSIZE       OST_MAXREPSIZE
 493
 494#define OST_NBUFS               64
 495/** OST_BUFSIZE = max_reqsize + max sptlrpc payload size */
 496#define OST_BUFSIZE             max_t(int, OST_MAXREQSIZE + 1024, 16 * 1024)
 497/**
 498 * OST_IO_MAXREQSIZE is 18K, giving extra 46K can increase buffer utilization
 499 * rate of request buffer, please check comment of MDS_LOV_BUFSIZE for details.
 500 */
 501#define OST_IO_BUFSIZE          max_t(int, OST_IO_MAXREQSIZE + 1024, 64 * 1024)
 502
 503/* Macro to hide a typecast. */
 504#define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
 505
 506/**
 507 * Structure to single define portal connection.
 508 */
 509struct ptlrpc_connection {
 510        /** linkage for connections hash table */
 511        struct hlist_node       c_hash;
 512        /** Our own lnet nid for this connection */
 513        lnet_nid_t            c_self;
 514        /** Remote side nid for this connection */
 515        lnet_process_id_t       c_peer;
 516        /** UUID of the other side */
 517        struct obd_uuid  c_remote_uuid;
 518        /** reference counter for this connection */
 519        atomic_t            c_refcount;
 520};
 521
 522/** Client definition for PortalRPC */
 523struct ptlrpc_client {
 524        /** What lnet portal does this client send messages to by default */
 525        __u32              cli_request_portal;
 526        /** What portal do we expect replies on */
 527        __u32              cli_reply_portal;
 528        /** Name of the client */
 529        char               *cli_name;
 530};
 531
 532/** state flags of requests */
 533/* XXX only ones left are those used by the bulk descs as well! */
 534#define PTL_RPC_FL_INTR      (1 << 0)  /* reply wait was interrupted by user */
 535#define PTL_RPC_FL_TIMEOUT   (1 << 7)  /* request timed out waiting for reply */
 536
 537#define REQ_MAX_ACK_LOCKS 8
 538
 539union ptlrpc_async_args {
 540        /**
 541         * Scratchpad for passing args to completion interpreter. Users
 542         * cast to the struct of their choosing, and CLASSERT that this is
 543         * big enough.  For _tons_ of context, OBD_ALLOC a struct and store
 544         * a pointer to it here.  The pointer_arg ensures this struct is at
 545         * least big enough for that.
 546         */
 547        void      *pointer_arg[11];
 548        __u64      space[7];
 549};
 550
 551struct ptlrpc_request_set;
 552typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
 553typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
 554
 555/**
 556 * Definition of request set structure.
 557 * Request set is a list of requests (not necessary to the same target) that
 558 * once populated with RPCs could be sent in parallel.
 559 * There are two kinds of request sets. General purpose and with dedicated
 560 * serving thread. Example of the latter is ptlrpcd set.
 561 * For general purpose sets once request set started sending it is impossible
 562 * to add new requests to such set.
 563 * Provides a way to call "completion callbacks" when all requests in the set
 564 * returned.
 565 */
 566struct ptlrpc_request_set {
 567        atomic_t          set_refcount;
 568        /** number of in queue requests */
 569        atomic_t          set_new_count;
 570        /** number of uncompleted requests */
 571        atomic_t          set_remaining;
 572        /** wait queue to wait on for request events */
 573        wait_queue_head_t          set_waitq;
 574        wait_queue_head_t         *set_wakeup_ptr;
 575        /** List of requests in the set */
 576        struct list_head            set_requests;
 577        /**
 578         * List of completion callbacks to be called when the set is completed
 579         * This is only used if \a set_interpret is NULL.
 580         * Links struct ptlrpc_set_cbdata.
 581         */
 582        struct list_head            set_cblist;
 583        /** Completion callback, if only one. */
 584        set_interpreter_func  set_interpret;
 585        /** opaq argument passed to completion \a set_interpret callback. */
 586        void             *set_arg;
 587        /**
 588         * Lock for \a set_new_requests manipulations
 589         * locked so that any old caller can communicate requests to
 590         * the set holder who can then fold them into the lock-free set
 591         */
 592        spinlock_t              set_new_req_lock;
 593        /** List of new yet unsent requests. Only used with ptlrpcd now. */
 594        struct list_head            set_new_requests;
 595
 596        /** rq_status of requests that have been freed already */
 597        int                set_rc;
 598        /** Additional fields used by the flow control extension */
 599        /** Maximum number of RPCs in flight */
 600        int                set_max_inflight;
 601        /** Callback function used to generate RPCs */
 602        set_producer_func     set_producer;
 603        /** opaq argument passed to the producer callback */
 604        void             *set_producer_arg;
 605};
 606
 607/**
 608 * Description of a single ptrlrpc_set callback
 609 */
 610struct ptlrpc_set_cbdata {
 611        /** List linkage item */
 612        struct list_head              psc_item;
 613        /** Pointer to interpreting function */
 614        set_interpreter_func    psc_interpret;
 615        /** Opaq argument to pass to the callback */
 616        void               *psc_data;
 617};
 618
 619struct ptlrpc_bulk_desc;
 620struct ptlrpc_service_part;
 621struct ptlrpc_service;
 622
 623/**
 624 * ptlrpc callback & work item stuff
 625 */
 626struct ptlrpc_cb_id {
 627        void   (*cbid_fn)(lnet_event_t *ev);     /* specific callback fn */
 628        void    *cbid_arg;                    /* additional arg */
 629};
 630
 631/** Maximum number of locks to fit into reply state */
 632#define RS_MAX_LOCKS 8
 633#define RS_DEBUG     0
 634
 635/**
 636 * Structure to define reply state on the server
 637 * Reply state holds various reply message information. Also for "difficult"
 638 * replies (rep-ack case) we store the state after sending reply and wait
 639 * for the client to acknowledge the reception. In these cases locks could be
 640 * added to the state for replay/failover consistency guarantees.
 641 */
 642struct ptlrpc_reply_state {
 643        /** Callback description */
 644        struct ptlrpc_cb_id    rs_cb_id;
 645        /** Linkage for list of all reply states in a system */
 646        struct list_head             rs_list;
 647        /** Linkage for list of all reply states on same export */
 648        struct list_head             rs_exp_list;
 649        /** Linkage for list of all reply states for same obd */
 650        struct list_head             rs_obd_list;
 651#if RS_DEBUG
 652        struct list_head             rs_debug_list;
 653#endif
 654        /** A spinlock to protect the reply state flags */
 655        spinlock_t              rs_lock;
 656        /** Reply state flags */
 657        unsigned long     rs_difficult:1;     /* ACK/commit stuff */
 658        unsigned long     rs_no_ack:1;    /* no ACK, even for
 659                                                  difficult requests */
 660        unsigned long     rs_scheduled:1;     /* being handled? */
 661        unsigned long     rs_scheduled_ever:1;/* any schedule attempts? */
 662        unsigned long     rs_handled:1;  /* been handled yet? */
 663        unsigned long     rs_on_net:1;   /* reply_out_callback pending? */
 664        unsigned long     rs_prealloc:1; /* rs from prealloc list */
 665        unsigned long     rs_committed:1;/* the transaction was committed
 666                                                 and the rs was dispatched
 667                                                 by ptlrpc_commit_replies */
 668        /** Size of the state */
 669        int                 rs_size;
 670        /** opcode */
 671        __u32             rs_opc;
 672        /** Transaction number */
 673        __u64             rs_transno;
 674        /** xid */
 675        __u64             rs_xid;
 676        struct obd_export     *rs_export;
 677        struct ptlrpc_service_part *rs_svcpt;
 678        /** Lnet metadata handle for the reply */
 679        lnet_handle_md_t       rs_md_h;
 680        atomic_t           rs_refcount;
 681
 682        /** Context for the sevice thread */
 683        struct ptlrpc_svc_ctx *rs_svc_ctx;
 684        /** Reply buffer (actually sent to the client), encoded if needed */
 685        struct lustre_msg     *rs_repbuf;       /* wrapper */
 686        /** Size of the reply buffer */
 687        int                 rs_repbuf_len;   /* wrapper buf length */
 688        /** Size of the reply message */
 689        int                 rs_repdata_len;  /* wrapper msg length */
 690        /**
 691         * Actual reply message. Its content is encrupted (if needed) to
 692         * produce reply buffer for actual sending. In simple case
 693         * of no network encryption we jus set \a rs_repbuf to \a rs_msg
 694         */
 695        struct lustre_msg     *rs_msg;    /* reply message */
 696
 697        /** Number of locks awaiting client ACK */
 698        int                 rs_nlocks;
 699        /** Handles of locks awaiting client reply ACK */
 700        struct lustre_handle   rs_locks[RS_MAX_LOCKS];
 701        /** Lock modes of locks in \a rs_locks */
 702        ldlm_mode_t         rs_modes[RS_MAX_LOCKS];
 703};
 704
 705struct ptlrpc_thread;
 706
 707/** RPC stages */
 708enum rq_phase {
 709        RQ_PHASE_NEW        = 0xebc0de00,
 710        RQ_PHASE_RPC        = 0xebc0de01,
 711        RQ_PHASE_BULK      = 0xebc0de02,
 712        RQ_PHASE_INTERPRET      = 0xebc0de03,
 713        RQ_PHASE_COMPLETE       = 0xebc0de04,
 714        RQ_PHASE_UNREGISTERING  = 0xebc0de05,
 715        RQ_PHASE_UNDEFINED      = 0xebc0de06
 716};
 717
 718/** Type of request interpreter call-back */
 719typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
 720                                    struct ptlrpc_request *req,
 721                                    void *arg, int rc);
 722
 723/**
 724 * Definition of request pool structure.
 725 * The pool is used to store empty preallocated requests for the case
 726 * when we would actually need to send something without performing
 727 * any allocations (to avoid e.g. OOM).
 728 */
 729struct ptlrpc_request_pool {
 730        /** Locks the list */
 731        spinlock_t prp_lock;
 732        /** list of ptlrpc_request structs */
 733        struct list_head prp_req_list;
 734        /** Maximum message size that would fit into a rquest from this pool */
 735        int prp_rq_size;
 736        /** Function to allocate more requests for this pool */
 737        void (*prp_populate)(struct ptlrpc_request_pool *, int);
 738};
 739
 740struct lu_context;
 741struct lu_env;
 742
 743struct ldlm_lock;
 744
 745/**
 746 * \defgroup nrs Network Request Scheduler
 747 * @{
 748 */
 749struct ptlrpc_nrs_policy;
 750struct ptlrpc_nrs_resource;
 751struct ptlrpc_nrs_request;
 752
 753/**
 754 * NRS control operations.
 755 *
 756 * These are common for all policies.
 757 */
 758enum ptlrpc_nrs_ctl {
 759        /**
 760         * Not a valid opcode.
 761         */
 762        PTLRPC_NRS_CTL_INVALID,
 763        /**
 764         * Activate the policy.
 765         */
 766        PTLRPC_NRS_CTL_START,
 767        /**
 768         * Reserved for multiple primary policies, which may be a possibility
 769         * in the future.
 770         */
 771        PTLRPC_NRS_CTL_STOP,
 772        /**
 773         * Policies can start using opcodes from this value and onwards for
 774         * their own purposes; the assigned value itself is arbitrary.
 775         */
 776        PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20,
 777};
 778
 779/**
 780 * ORR policy operations
 781 */
 782enum nrs_ctl_orr {
 783        NRS_CTL_ORR_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
 784        NRS_CTL_ORR_WR_QUANTUM,
 785        NRS_CTL_ORR_RD_OFF_TYPE,
 786        NRS_CTL_ORR_WR_OFF_TYPE,
 787        NRS_CTL_ORR_RD_SUPP_REQ,
 788        NRS_CTL_ORR_WR_SUPP_REQ,
 789};
 790
 791/**
 792 * NRS policy operations.
 793 *
 794 * These determine the behaviour of a policy, and are called in response to
 795 * NRS core events.
 796 */
 797struct ptlrpc_nrs_pol_ops {
 798        /**
 799         * Called during policy registration; this operation is optional.
 800         *
 801         * \param[in,out] policy The policy being initialized
 802         */
 803        int     (*op_policy_init) (struct ptlrpc_nrs_policy *policy);
 804        /**
 805         * Called during policy unregistration; this operation is optional.
 806         *
 807         * \param[in,out] policy The policy being unregistered/finalized
 808         */
 809        void    (*op_policy_fini) (struct ptlrpc_nrs_policy *policy);
 810        /**
 811         * Called when activating a policy via lprocfs; policies allocate and
 812         * initialize their resources here; this operation is optional.
 813         *
 814         * \param[in,out] policy The policy being started
 815         *
 816         * \see nrs_policy_start_locked()
 817         */
 818        int     (*op_policy_start) (struct ptlrpc_nrs_policy *policy);
 819        /**
 820         * Called when deactivating a policy via lprocfs; policies deallocate
 821         * their resources here; this operation is optional
 822         *
 823         * \param[in,out] policy The policy being stopped
 824         *
 825         * \see nrs_policy_stop0()
 826         */
 827        void    (*op_policy_stop) (struct ptlrpc_nrs_policy *policy);
 828        /**
 829         * Used for policy-specific operations; i.e. not generic ones like
 830         * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous
 831         * to an ioctl; this operation is optional.
 832         *
 833         * \param[in,out]        policy The policy carrying out operation \a opc
 834         * \param[in]     opc    The command operation being carried out
 835         * \param[in,out] arg    An generic buffer for communication between the
 836         *                       user and the control operation
 837         *
 838         * \retval -ve error
 839         * \retval   0 success
 840         *
 841         * \see ptlrpc_nrs_policy_control()
 842         */
 843        int     (*op_policy_ctl) (struct ptlrpc_nrs_policy *policy,
 844                                  enum ptlrpc_nrs_ctl opc, void *arg);
 845
 846        /**
 847         * Called when obtaining references to the resources of the resource
 848         * hierarchy for a request that has arrived for handling at the PTLRPC
 849         * service. Policies should return -ve for requests they do not wish
 850         * to handle. This operation is mandatory.
 851         *
 852         * \param[in,out] policy  The policy we're getting resources for.
 853         * \param[in,out] nrq     The request we are getting resources for.
 854         * \param[in]     parent  The parent resource of the resource being
 855         *                        requested; set to NULL if none.
 856         * \param[out]    resp    The resource is to be returned here; the
 857         *                        fallback policy in an NRS head should
 858         *                        \e always return a non-NULL pointer value.
 859         * \param[in]  moving_req When set, signifies that this is an attempt
 860         *                        to obtain resources for a request being moved
 861         *                        to the high-priority NRS head by
 862         *                        ldlm_lock_reorder_req().
 863         *                        This implies two things:
 864         *                        1. We are under obd_export::exp_rpc_lock and
 865         *                        so should not sleep.
 866         *                        2. We should not perform non-idempotent or can
 867         *                        skip performing idempotent operations that
 868         *                        were carried out when resources were first
 869         *                        taken for the request when it was initialized
 870         *                        in ptlrpc_nrs_req_initialize().
 871         *
 872         * \retval 0, +ve The level of the returned resource in the resource
 873         *                hierarchy; currently only 0 (for a non-leaf resource)
 874         *                and 1 (for a leaf resource) are supported by the
 875         *                framework.
 876         * \retval -ve    error
 877         *
 878         * \see ptlrpc_nrs_req_initialize()
 879         * \see ptlrpc_nrs_hpreq_add_nolock()
 880         * \see ptlrpc_nrs_req_hp_move()
 881         */
 882        int     (*op_res_get) (struct ptlrpc_nrs_policy *policy,
 883                               struct ptlrpc_nrs_request *nrq,
 884                               const struct ptlrpc_nrs_resource *parent,
 885                               struct ptlrpc_nrs_resource **resp,
 886                               bool moving_req);
 887        /**
 888         * Called when releasing references taken for resources in the resource
 889         * hierarchy for the request; this operation is optional.
 890         *
 891         * \param[in,out] policy The policy the resource belongs to
 892         * \param[in] res        The resource to be freed
 893         *
 894         * \see ptlrpc_nrs_req_finalize()
 895         * \see ptlrpc_nrs_hpreq_add_nolock()
 896         * \see ptlrpc_nrs_req_hp_move()
 897         */
 898        void    (*op_res_put) (struct ptlrpc_nrs_policy *policy,
 899                               const struct ptlrpc_nrs_resource *res);
 900
 901        /**
 902         * Obtains a request for handling from the policy, and optionally
 903         * removes the request from the policy; this operation is mandatory.
 904         *
 905         * \param[in,out] policy The policy to poll
 906         * \param[in]     peek   When set, signifies that we just want to
 907         *                       examine the request, and not handle it, so the
 908         *                       request is not removed from the policy.
 909         * \param[in]     force  When set, it will force a policy to return a
 910         *                       request if it has one queued.
 911         *
 912         * \retval NULL No request available for handling
 913         * \retval valid-pointer The request polled for handling
 914         *
 915         * \see ptlrpc_nrs_req_get_nolock()
 916         */
 917        struct ptlrpc_nrs_request *
 918                (*op_req_get) (struct ptlrpc_nrs_policy *policy, bool peek,
 919                               bool force);
 920        /**
 921         * Called when attempting to add a request to a policy for later
 922         * handling; this operation is mandatory.
 923         *
 924         * \param[in,out] policy  The policy on which to enqueue \a nrq
 925         * \param[in,out] nrq The request to enqueue
 926         *
 927         * \retval 0    success
 928         * \retval != 0 error
 929         *
 930         * \see ptlrpc_nrs_req_add_nolock()
 931         */
 932        int     (*op_req_enqueue) (struct ptlrpc_nrs_policy *policy,
 933                                   struct ptlrpc_nrs_request *nrq);
 934        /**
 935         * Removes a request from the policy's set of pending requests. Normally
 936         * called after a request has been polled successfully from the policy
 937         * for handling; this operation is mandatory.
 938         *
 939         * \param[in,out] policy The policy the request \a nrq belongs to
 940         * \param[in,out] nrq    The request to dequeue
 941         *
 942         * \see ptlrpc_nrs_req_del_nolock()
 943         */
 944        void    (*op_req_dequeue) (struct ptlrpc_nrs_policy *policy,
 945                                   struct ptlrpc_nrs_request *nrq);
 946        /**
 947         * Called after the request being carried out. Could be used for
 948         * job/resource control; this operation is optional.
 949         *
 950         * \param[in,out] policy The policy which is stopping to handle request
 951         *                       \a nrq
 952         * \param[in,out] nrq    The request
 953         *
 954         * \pre spin_is_locked(&svcpt->scp_req_lock)
 955         *
 956         * \see ptlrpc_nrs_req_stop_nolock()
 957         */
 958        void    (*op_req_stop) (struct ptlrpc_nrs_policy *policy,
 959                                struct ptlrpc_nrs_request *nrq);
 960        /**
 961         * Registers the policy's lprocfs interface with a PTLRPC service.
 962         *
 963         * \param[in] svc The service
 964         *
 965         * \retval 0    success
 966         * \retval != 0 error
 967         */
 968        int     (*op_lprocfs_init) (struct ptlrpc_service *svc);
 969        /**
 970         * Unegisters the policy's lprocfs interface with a PTLRPC service.
 971         *
 972         * In cases of failed policy registration in
 973         * \e ptlrpc_nrs_policy_register(), this function may be called for a
 974         * service which has not registered the policy successfully, so
 975         * implementations of this method should make sure their operations are
 976         * safe in such cases.
 977         *
 978         * \param[in] svc The service
 979         */
 980        void    (*op_lprocfs_fini) (struct ptlrpc_service *svc);
 981};
 982
 983/**
 984 * Policy flags
 985 */
 986enum nrs_policy_flags {
 987        /**
 988         * Fallback policy, use this flag only on a single supported policy per
 989         * service. The flag cannot be used on policies that use
 990         * \e PTLRPC_NRS_FL_REG_EXTERN
 991         */
 992        PTLRPC_NRS_FL_FALLBACK          = (1 << 0),
 993        /**
 994         * Start policy immediately after registering.
 995         */
 996        PTLRPC_NRS_FL_REG_START         = (1 << 1),
 997        /**
 998         * This is a policy registering from a module different to the one NRS
 999         * core ships in (currently ptlrpc).
1000         */
1001        PTLRPC_NRS_FL_REG_EXTERN        = (1 << 2),
1002};
1003
1004/**
1005 * NRS queue type.
1006 *
1007 * Denotes whether an NRS instance is for handling normal or high-priority
1008 * RPCs, or whether an operation pertains to one or both of the NRS instances
1009 * in a service.
1010 */
1011enum ptlrpc_nrs_queue_type {
1012        PTLRPC_NRS_QUEUE_REG    = (1 << 0),
1013        PTLRPC_NRS_QUEUE_HP     = (1 << 1),
1014        PTLRPC_NRS_QUEUE_BOTH   = (PTLRPC_NRS_QUEUE_REG | PTLRPC_NRS_QUEUE_HP)
1015};
1016
1017/**
1018 * NRS head
1019 *
1020 * A PTLRPC service has at least one NRS head instance for handling normal
1021 * priority RPCs, and may optionally have a second NRS head instance for
1022 * handling high-priority RPCs. Each NRS head maintains a list of available
1023 * policies, of which one and only one policy is acting as the fallback policy,
1024 * and optionally a different policy may be acting as the primary policy. For
1025 * all RPCs handled by this NRS head instance, NRS core will first attempt to
1026 * enqueue the RPC using the primary policy (if any). The fallback policy is
1027 * used in the following cases:
1028 * - when there was no primary policy in the
1029 *   ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request
1030 *   was initialized.
1031 * - when the primary policy that was at the
1032 *   ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
1033 *   RPC was initialized, denoted it did not wish, or for some other reason was
1034 *   not able to handle the request, by returning a non-valid NRS resource
1035 *   reference.
1036 * - when the primary policy that was at the
1037 *   ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
1038 *   RPC was initialized, fails later during the request enqueueing stage.
1039 *
1040 * \see nrs_resource_get_safe()
1041 * \see nrs_request_enqueue()
1042 */
1043struct ptlrpc_nrs {
1044        spinlock_t                      nrs_lock;
1045        /** XXX Possibly replace svcpt->scp_req_lock with another lock here. */
1046        /**
1047         * List of registered policies
1048         */
1049        struct list_head                        nrs_policy_list;
1050        /**
1051         * List of policies with queued requests. Policies that have any
1052         * outstanding requests are queued here, and this list is queried
1053         * in a round-robin manner from NRS core when obtaining a request
1054         * for handling. This ensures that requests from policies that at some
1055         * point transition away from the
1056         * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained.
1057         */
1058        struct list_head                        nrs_policy_queued;
1059        /**
1060         * Service partition for this NRS head
1061         */
1062        struct ptlrpc_service_part     *nrs_svcpt;
1063        /**
1064         * Primary policy, which is the preferred policy for handling RPCs
1065         */
1066        struct ptlrpc_nrs_policy       *nrs_policy_primary;
1067        /**
1068         * Fallback policy, which is the backup policy for handling RPCs
1069         */
1070        struct ptlrpc_nrs_policy       *nrs_policy_fallback;
1071        /**
1072         * This NRS head handles either HP or regular requests
1073         */
1074        enum ptlrpc_nrs_queue_type      nrs_queue_type;
1075        /**
1076         * # queued requests from all policies in this NRS head
1077         */
1078        unsigned long                   nrs_req_queued;
1079        /**
1080         * # scheduled requests from all policies in this NRS head
1081         */
1082        unsigned long                   nrs_req_started;
1083        /**
1084         * # policies on this NRS
1085         */
1086        unsigned                        nrs_num_pols;
1087        /**
1088         * This NRS head is in progress of starting a policy
1089         */
1090        unsigned                        nrs_policy_starting:1;
1091        /**
1092         * In progress of shutting down the whole NRS head; used during
1093         * unregistration
1094         */
1095        unsigned                        nrs_stopping:1;
1096};
1097
1098#define NRS_POL_NAME_MAX                16
1099
1100struct ptlrpc_nrs_pol_desc;
1101
1102/**
1103 * Service compatibility predicate; this determines whether a policy is adequate
1104 * for handling RPCs of a particular PTLRPC service.
1105 *
1106 * XXX:This should give the same result during policy registration and
1107 * unregistration, and for all partitions of a service; so the result should not
1108 * depend on temporal service or other properties, that may influence the
1109 * result.
1110 */
1111typedef bool (*nrs_pol_desc_compat_t) (const struct ptlrpc_service *svc,
1112                                       const struct ptlrpc_nrs_pol_desc *desc);
1113
1114struct ptlrpc_nrs_pol_conf {
1115        /**
1116         * Human-readable policy name
1117         */
1118        char                               nc_name[NRS_POL_NAME_MAX];
1119        /**
1120         * NRS operations for this policy
1121         */
1122        const struct ptlrpc_nrs_pol_ops   *nc_ops;
1123        /**
1124         * Service compatibility predicate
1125         */
1126        nrs_pol_desc_compat_t              nc_compat;
1127        /**
1128         * Set for policies that support a single ptlrpc service, i.e. ones that
1129         * have \a pd_compat set to nrs_policy_compat_one(). The variable value
1130         * depicts the name of the single service that such policies are
1131         * compatible with.
1132         */
1133        const char                        *nc_compat_svc_name;
1134        /**
1135         * Owner module for this policy descriptor; policies registering from a
1136         * different module to the one the NRS framework is held within
1137         * (currently ptlrpc), should set this field to THIS_MODULE.
1138         */
1139        module_t                          *nc_owner;
1140        /**
1141         * Policy registration flags; a bitmast of \e nrs_policy_flags
1142         */
1143        unsigned                           nc_flags;
1144};
1145
1146/**
1147 * NRS policy registering descriptor
1148 *
1149 * Is used to hold a description of a policy that can be passed to NRS core in
1150 * order to register the policy with NRS heads in different PTLRPC services.
1151 */
1152struct ptlrpc_nrs_pol_desc {
1153        /**
1154         * Human-readable policy name
1155         */
1156        char                                    pd_name[NRS_POL_NAME_MAX];
1157        /**
1158         * Link into nrs_core::nrs_policies
1159         */
1160        struct list_head                                pd_list;
1161        /**
1162         * NRS operations for this policy
1163         */
1164        const struct ptlrpc_nrs_pol_ops        *pd_ops;
1165        /**
1166         * Service compatibility predicate
1167         */
1168        nrs_pol_desc_compat_t                   pd_compat;
1169        /**
1170         * Set for policies that are compatible with only one PTLRPC service.
1171         *
1172         * \see ptlrpc_nrs_pol_conf::nc_compat_svc_name
1173         */
1174        const char                             *pd_compat_svc_name;
1175        /**
1176         * Owner module for this policy descriptor.
1177         *
1178         * We need to hold a reference to the module whenever we might make use
1179         * of any of the module's contents, i.e.
1180         * - If one or more instances of the policy are at a state where they
1181         *   might be handling a request, i.e.
1182         *   ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED or
1183         *   ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING as we will have to
1184         *   call into the policy's ptlrpc_nrs_pol_ops() handlers. A reference
1185         *   is taken on the module when
1186         *   \e ptlrpc_nrs_pol_desc::pd_refs becomes 1, and released when it
1187         *   becomes 0, so that we hold only one reference to the module maximum
1188         *   at any time.
1189         *
1190         *   We do not need to hold a reference to the module, even though we
1191         *   might use code and data from the module, in the following cases:
1192         * - During external policy registration, because this should happen in
1193         *   the module's init() function, in which case the module is safe from
1194         *   removal because a reference is being held on the module by the
1195         *   kernel, and iirc kmod (and I guess module-init-tools also) will
1196         *   serialize any racing processes properly anyway.
1197         * - During external policy unregistration, because this should happen
1198         *   in a module's exit() function, and any attempts to start a policy
1199         *   instance would need to take a reference on the module, and this is
1200         *   not possible once we have reached the point where the exit()
1201         *   handler is called.
1202         * - During service registration and unregistration, as service setup
1203         *   and cleanup, and policy registration, unregistration and policy
1204         *   instance starting, are serialized by \e nrs_core::nrs_mutex, so
1205         *   as long as users adhere to the convention of registering policies
1206         *   in init() and unregistering them in module exit() functions, there
1207         *   should not be a race between these operations.
1208         * - During any policy-specific lprocfs operations, because a reference
1209         *   is held by the kernel on a proc entry that has been entered by a
1210         *   syscall, so as long as proc entries are removed during unregistration time,
1211         *   then unregistration and lprocfs operations will be properly
1212         *   serialized.
1213         */
1214        module_t                               *pd_owner;
1215        /**
1216         * Bitmask of \e nrs_policy_flags
1217         */
1218        unsigned                                pd_flags;
1219        /**
1220         * # of references on this descriptor
1221         */
1222        atomic_t                                pd_refs;
1223};
1224
1225/**
1226 * NRS policy state
1227 *
1228 * Policies transition from one state to the other during their lifetime
1229 */
1230enum ptlrpc_nrs_pol_state {
1231        /**
1232         * Not a valid policy state.
1233         */
1234        NRS_POL_STATE_INVALID,
1235        /**
1236         * Policies are at this state either at the start of their life, or
1237         * transition here when the user selects a different policy to act
1238         * as the primary one.
1239         */
1240        NRS_POL_STATE_STOPPED,
1241        /**
1242         * Policy is progress of stopping
1243         */
1244        NRS_POL_STATE_STOPPING,
1245        /**
1246         * Policy is in progress of starting
1247         */
1248        NRS_POL_STATE_STARTING,
1249        /**
1250         * A policy is in this state in two cases:
1251         * - it is the fallback policy, which is always in this state.
1252         * - it has been activated by the user; i.e. it is the primary policy,
1253         */
1254        NRS_POL_STATE_STARTED,
1255};
1256
1257/**
1258 * NRS policy information
1259 *
1260 * Used for obtaining information for the status of a policy via lprocfs
1261 */
1262struct ptlrpc_nrs_pol_info {
1263        /**
1264         * Policy name
1265         */
1266        char                            pi_name[NRS_POL_NAME_MAX];
1267        /**
1268         * Current policy state
1269         */
1270        enum ptlrpc_nrs_pol_state       pi_state;
1271        /**
1272         * # RPCs enqueued for later dispatching by the policy
1273         */
1274        long                            pi_req_queued;
1275        /**
1276         * # RPCs started for dispatch by the policy
1277         */
1278        long                            pi_req_started;
1279        /**
1280         * Is this a fallback policy?
1281         */
1282        unsigned                        pi_fallback:1;
1283};
1284
1285/**
1286 * NRS policy
1287 *
1288 * There is one instance of this for each policy in each NRS head of each
1289 * PTLRPC service partition.
1290 */
1291struct ptlrpc_nrs_policy {
1292        /**
1293         * Linkage into the NRS head's list of policies,
1294         * ptlrpc_nrs:nrs_policy_list
1295         */
1296        struct list_head                        pol_list;
1297        /**
1298         * Linkage into the NRS head's list of policies with enqueued
1299         * requests ptlrpc_nrs:nrs_policy_queued
1300         */
1301        struct list_head                        pol_list_queued;
1302        /**
1303         * Current state of this policy
1304         */
1305        enum ptlrpc_nrs_pol_state       pol_state;
1306        /**
1307         * Bitmask of nrs_policy_flags
1308         */
1309        unsigned                        pol_flags;
1310        /**
1311         * # RPCs enqueued for later dispatching by the policy
1312         */
1313        long                            pol_req_queued;
1314        /**
1315         * # RPCs started for dispatch by the policy
1316         */
1317        long                            pol_req_started;
1318        /**
1319         * Usage Reference count taken on the policy instance
1320         */
1321        long                            pol_ref;
1322        /**
1323         * The NRS head this policy has been created at
1324         */
1325        struct ptlrpc_nrs              *pol_nrs;
1326        /**
1327         * Private policy data; varies by policy type
1328         */
1329        void                           *pol_private;
1330        /**
1331         * Policy descriptor for this policy instance.
1332         */
1333        struct ptlrpc_nrs_pol_desc     *pol_desc;
1334};
1335
1336/**
1337 * NRS resource
1338 *
1339 * Resources are embedded into two types of NRS entities:
1340 * - Inside NRS policies, in the policy's private data in
1341 *   ptlrpc_nrs_policy::pol_private
1342 * - In objects that act as prime-level scheduling entities in different NRS
1343 *   policies; e.g. on a policy that performs round robin or similar order
1344 *   scheduling across client NIDs, there would be one NRS resource per unique
1345 *   client NID. On a policy which performs round robin scheduling across
1346 *   backend filesystem objects, there would be one resource associated with
1347 *   each of the backend filesystem objects partaking in the scheduling
1348 *   performed by the policy.
1349 *
1350 * NRS resources share a parent-child relationship, in which resources embedded
1351 * in policy instances are the parent entities, with all scheduling entities
1352 * a policy schedules across being the children, thus forming a simple resource
1353 * hierarchy. This hierarchy may be extended with one or more levels in the
1354 * future if the ability to have more than one primary policy is added.
1355 *
1356 * Upon request initialization, references to the then active NRS policies are
1357 * taken and used to later handle the dispatching of the request with one of
1358 * these policies.
1359 *
1360 * \see nrs_resource_get_safe()
1361 * \see ptlrpc_nrs_req_add()
1362 */
1363struct ptlrpc_nrs_resource {
1364        /**
1365         * This NRS resource's parent; is NULL for resources embedded in NRS
1366         * policy instances; i.e. those are top-level ones.
1367         */
1368        struct ptlrpc_nrs_resource     *res_parent;
1369        /**
1370         * The policy associated with this resource.
1371         */
1372        struct ptlrpc_nrs_policy       *res_policy;
1373};
1374
1375enum {
1376        NRS_RES_FALLBACK,
1377        NRS_RES_PRIMARY,
1378        NRS_RES_MAX
1379};
1380
1381/* \name fifo
1382 *
1383 * FIFO policy
1384 *
1385 * This policy is a logical wrapper around previous, non-NRS functionality.
1386 * It dispatches RPCs in the same order as they arrive from the network. This
1387 * policy is currently used as the fallback policy, and the only enabled policy
1388 * on all NRS heads of all PTLRPC service partitions.
1389 * @{
1390 */
1391
1392/**
1393 * Private data structure for the FIFO policy
1394 */
1395struct nrs_fifo_head {
1396        /**
1397         * Resource object for policy instance.
1398         */
1399        struct ptlrpc_nrs_resource      fh_res;
1400        /**
1401         * List of queued requests.
1402         */
1403        struct list_head                        fh_list;
1404        /**
1405         * For debugging purposes.
1406         */
1407        __u64                           fh_sequence;
1408};
1409
1410struct nrs_fifo_req {
1411        struct list_head                fr_list;
1412        __u64                   fr_sequence;
1413};
1414
1415/** @} fifo */
1416
1417/**
1418 * \name CRR-N
1419 *
1420 * CRR-N, Client Round Robin over NIDs
1421 * @{
1422 */
1423
1424/**
1425 * private data structure for CRR-N NRS
1426 */
1427struct nrs_crrn_net {
1428        struct ptlrpc_nrs_resource      cn_res;
1429        cfs_binheap_t                  *cn_binheap;
1430        cfs_hash_t                     *cn_cli_hash;
1431        /**
1432         * Used when a new scheduling round commences, in order to synchronize
1433         * all clients with the new round number.
1434         */
1435        __u64                           cn_round;
1436        /**
1437         * Determines the relevant ordering amongst request batches within a
1438         * scheduling round.
1439         */
1440        __u64                           cn_sequence;
1441        /**
1442         * Round Robin quantum; the maximum number of RPCs that each request
1443         * batch for each client can have in a scheduling round.
1444         */
1445        __u16                           cn_quantum;
1446};
1447
1448/**
1449 * Object representing a client in CRR-N, as identified by its NID
1450 */
1451struct nrs_crrn_client {
1452        struct ptlrpc_nrs_resource      cc_res;
1453        struct hlist_node               cc_hnode;
1454        lnet_nid_t                      cc_nid;
1455        /**
1456         * The round number against which this client is currently scheduling
1457         * requests.
1458         */
1459        __u64                           cc_round;
1460        /**
1461         * The sequence number used for requests scheduled by this client during
1462         * the current round number.
1463         */
1464        __u64                           cc_sequence;
1465        atomic_t                        cc_ref;
1466        /**
1467         * Round Robin quantum; the maximum number of RPCs the client is allowed
1468         * to schedule in a single batch of each round.
1469         */
1470        __u16                           cc_quantum;
1471        /**
1472         * # of pending requests for this client, on all existing rounds
1473         */
1474        __u16                           cc_active;
1475};
1476
1477/**
1478 * CRR-N NRS request definition
1479 */
1480struct nrs_crrn_req {
1481        /**
1482         * Round number for this request; shared with all other requests in the
1483         * same batch.
1484         */
1485        __u64                   cr_round;
1486        /**
1487         * Sequence number for this request; shared with all other requests in
1488         * the same batch.
1489         */
1490        __u64                   cr_sequence;
1491};
1492
1493/**
1494 * CRR-N policy operations.
1495 */
1496enum nrs_ctl_crr {
1497        /**
1498         * Read the RR quantum size of a CRR-N policy.
1499         */
1500        NRS_CTL_CRRN_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
1501        /**
1502         * Write the RR quantum size of a CRR-N policy.
1503         */
1504        NRS_CTL_CRRN_WR_QUANTUM,
1505};
1506
1507/** @} CRR-N */
1508
1509/**
1510 * \name ORR/TRR
1511 *
1512 * ORR/TRR (Object-based Round Robin/Target-based Round Robin) NRS policies
1513 * @{
1514 */
1515
1516/**
1517 * Lower and upper byte offsets of a brw RPC
1518 */
1519struct nrs_orr_req_range {
1520        __u64           or_start;
1521        __u64           or_end;
1522};
1523
1524/**
1525 * RPC types supported by the ORR/TRR policies
1526 */
1527enum nrs_orr_supp {
1528        NOS_OST_READ  = (1 << 0),
1529        NOS_OST_WRITE = (1 << 1),
1530        NOS_OST_RW    = (NOS_OST_READ | NOS_OST_WRITE),
1531        /**
1532         * Default value for policies.
1533         */
1534        NOS_DFLT      = NOS_OST_READ
1535};
1536
1537/**
1538 * As unique keys for grouping RPCs together, we use the object's OST FID for
1539 * the ORR policy, and the OST index for the TRR policy.
1540 *
1541 * XXX: We waste some space for TRR policy instances by using a union, but it
1542 *      allows to consolidate some of the code between ORR and TRR, and these
1543 *      policies will probably eventually merge into one anyway.
1544 */
1545struct nrs_orr_key {
1546        union {
1547                /** object FID for ORR */
1548                struct lu_fid   ok_fid;
1549                /** OST index for TRR */
1550                __u32           ok_idx;
1551        };
1552};
1553
1554/**
1555 * The largest base string for unique hash/slab object names is
1556 * "nrs_orr_reg_", so 13 characters. We add 3 to this to be used for the CPT
1557 * id number, so this _should_ be more than enough for the maximum number of
1558 * CPTs on any system. If it does happen that this statement is incorrect,
1559 * nrs_orr_genobjname() will inevitably yield a non-unique name and cause
1560 * kmem_cache_create() to complain (on Linux), so the erroneous situation
1561 * will hopefully not go unnoticed.
1562 */
1563#define NRS_ORR_OBJ_NAME_MAX    (sizeof("nrs_orr_reg_") + 3)
1564
1565/**
1566 * private data structure for ORR and TRR NRS
1567 */
1568struct nrs_orr_data {
1569        struct ptlrpc_nrs_resource      od_res;
1570        cfs_binheap_t                  *od_binheap;
1571        cfs_hash_t                     *od_obj_hash;
1572        struct kmem_cache                      *od_cache;
1573        /**
1574         * Used when a new scheduling round commences, in order to synchronize
1575         * all object or OST batches with the new round number.
1576         */
1577        __u64                           od_round;
1578        /**
1579         * Determines the relevant ordering amongst request batches within a
1580         * scheduling round.
1581         */
1582        __u64                           od_sequence;
1583        /**
1584         * RPC types that are currently supported.
1585         */
1586        enum nrs_orr_supp               od_supp;
1587        /**
1588         * Round Robin quantum; the maxium number of RPCs that each request
1589         * batch for each object or OST can have in a scheduling round.
1590         */
1591        __u16                           od_quantum;
1592        /**
1593         * Whether to use physical disk offsets or logical file offsets.
1594         */
1595        bool                            od_physical;
1596        /**
1597         * XXX: We need to provide a persistently allocated string to hold
1598         * unique object names for this policy, since in currently supported
1599         * versions of Linux by Lustre, kmem_cache_create() just sets a pointer
1600         * to the name string provided. kstrdup() is used in the version of
1601         * kmeme_cache_create() in current Linux mainline, so we may be able to
1602         * remove this in the future.
1603         */
1604        char                            od_objname[NRS_ORR_OBJ_NAME_MAX];
1605};
1606
1607/**
1608 * Represents a backend-fs object or OST in the ORR and TRR policies
1609 * respectively
1610 */
1611struct nrs_orr_object {
1612        struct ptlrpc_nrs_resource      oo_res;
1613        struct hlist_node               oo_hnode;
1614        /**
1615         * The round number against which requests are being scheduled for this
1616         * object or OST
1617         */
1618        __u64                           oo_round;
1619        /**
1620         * The sequence number used for requests scheduled for this object or
1621         * OST during the current round number.
1622         */
1623        __u64                           oo_sequence;
1624        /**
1625         * The key of the object or OST for which this structure instance is
1626         * scheduling RPCs
1627         */
1628        struct nrs_orr_key              oo_key;
1629        atomic_t                        oo_ref;
1630        /**
1631         * Round Robin quantum; the maximum number of RPCs that are allowed to
1632         * be scheduled for the object or OST in a single batch of each round.
1633         */
1634        __u16                           oo_quantum;
1635        /**
1636         * # of pending requests for this object or OST, on all existing rounds
1637         */
1638        __u16                           oo_active;
1639};
1640
1641/**
1642 * ORR/TRR NRS request definition
1643 */
1644struct nrs_orr_req {
1645        /**
1646         * The offset range this request covers
1647         */
1648        struct nrs_orr_req_range        or_range;
1649        /**
1650         * Round number for this request; shared with all other requests in the
1651         * same batch.
1652         */
1653        __u64                           or_round;
1654        /**
1655         * Sequence number for this request; shared with all other requests in
1656         * the same batch.
1657         */
1658        __u64                           or_sequence;
1659        /**
1660         * For debugging purposes.
1661         */
1662        struct nrs_orr_key              or_key;
1663        /**
1664         * An ORR policy instance has filled in request information while
1665         * enqueueing the request on the service partition's regular NRS head.
1666         */
1667        unsigned int                    or_orr_set:1;
1668        /**
1669         * A TRR policy instance has filled in request information while
1670         * enqueueing the request on the service partition's regular NRS head.
1671         */
1672        unsigned int                    or_trr_set:1;
1673        /**
1674         * Request offset ranges have been filled in with logical offset
1675         * values.
1676         */
1677        unsigned int                    or_logical_set:1;
1678        /**
1679         * Request offset ranges have been filled in with physical offset
1680         * values.
1681         */
1682        unsigned int                    or_physical_set:1;
1683};
1684
1685/** @} ORR/TRR */
1686
1687/**
1688 * NRS request
1689 *
1690 * Instances of this object exist embedded within ptlrpc_request; the main
1691 * purpose of this object is to hold references to the request's resources
1692 * for the lifetime of the request, and to hold properties that policies use
1693 * use for determining the request's scheduling priority.
1694 * */
1695struct ptlrpc_nrs_request {
1696        /**
1697         * The request's resource hierarchy.
1698         */
1699        struct ptlrpc_nrs_resource     *nr_res_ptrs[NRS_RES_MAX];
1700        /**
1701         * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the
1702         * policy that was used to enqueue the request.
1703         *
1704         * \see nrs_request_enqueue()
1705         */
1706        unsigned                        nr_res_idx;
1707        unsigned                        nr_initialized:1;
1708        unsigned                        nr_enqueued:1;
1709        unsigned                        nr_started:1;
1710        unsigned                        nr_finalized:1;
1711        cfs_binheap_node_t              nr_node;
1712
1713        /**
1714         * Policy-specific fields, used for determining a request's scheduling
1715         * priority, and other supporting functionality.
1716         */
1717        union {
1718                /**
1719                 * Fields for the FIFO policy
1720                 */
1721                struct nrs_fifo_req     fifo;
1722                /**
1723                 * CRR-N request defintion
1724                 */
1725                struct nrs_crrn_req     crr;
1726                /** ORR and TRR share the same request definition */
1727                struct nrs_orr_req      orr;
1728        } nr_u;
1729        /**
1730         * Externally-registering policies may want to use this to allocate
1731         * their own request properties.
1732         */
1733        void                           *ext;
1734};
1735
1736/** @} nrs */
1737
1738/**
1739 * Basic request prioritization operations structure.
1740 * The whole idea is centered around locks and RPCs that might affect locks.
1741 * When a lock is contended we try to give priority to RPCs that might lead
1742 * to fastest release of that lock.
1743 * Currently only implemented for OSTs only in a way that makes all
1744 * IO and truncate RPCs that are coming from a locked region where a lock is
1745 * contended a priority over other requests.
1746 */
1747struct ptlrpc_hpreq_ops {
1748        /**
1749         * Check if the lock handle of the given lock is the same as
1750         * taken from the request.
1751         */
1752        int  (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
1753        /**
1754         * Check if the request is a high priority one.
1755         */
1756        int  (*hpreq_check)(struct ptlrpc_request *);
1757        /**
1758         * Called after the request has been handled.
1759         */
1760        void (*hpreq_fini)(struct ptlrpc_request *);
1761};
1762
1763/**
1764 * Represents remote procedure call.
1765 *
1766 * This is a staple structure used by everybody wanting to send a request
1767 * in Lustre.
1768 */
1769struct ptlrpc_request {
1770        /* Request type: one of PTL_RPC_MSG_* */
1771        int rq_type;
1772        /** Result of request processing */
1773        int rq_status;
1774        /**
1775         * Linkage item through which this request is included into
1776         * sending/delayed lists on client and into rqbd list on server
1777         */
1778        struct list_head rq_list;
1779        /**
1780         * Server side list of incoming unserved requests sorted by arrival
1781         * time.  Traversed from time to time to notice about to expire
1782         * requests and sent back "early replies" to clients to let them
1783         * know server is alive and well, just very busy to service their
1784         * requests in time
1785         */
1786        struct list_head rq_timed_list;
1787        /** server-side history, used for debuging purposes. */
1788        struct list_head rq_history_list;
1789        /** server-side per-export list */
1790        struct list_head rq_exp_list;
1791        /** server-side hp handlers */
1792        struct ptlrpc_hpreq_ops *rq_ops;
1793
1794        /** initial thread servicing this request */
1795        struct ptlrpc_thread *rq_svc_thread;
1796
1797        /** history sequence # */
1798        __u64 rq_history_seq;
1799        /** \addtogroup  nrs
1800         * @{
1801         */
1802        /** stub for NRS request */
1803        struct ptlrpc_nrs_request rq_nrq;
1804        /** @} nrs */
1805        /** the index of service's srv_at_array into which request is linked */
1806        time_t rq_at_index;
1807        /** Lock to protect request flags and some other important bits, like
1808         * rq_list
1809         */
1810        spinlock_t rq_lock;
1811        /** client-side flags are serialized by rq_lock */
1812        unsigned int rq_intr:1, rq_replied:1, rq_err:1,
1813                rq_timedout:1, rq_resend:1, rq_restart:1,
1814                /**
1815                 * when ->rq_replay is set, request is kept by the client even
1816                 * after server commits corresponding transaction. This is
1817                 * used for operations that require sequence of multiple
1818                 * requests to be replayed. The only example currently is file
1819                 * open/close. When last request in such a sequence is
1820                 * committed, ->rq_replay is cleared on all requests in the
1821                 * sequence.
1822                 */
1823                rq_replay:1,
1824                rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
1825                rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
1826                rq_early:1, rq_must_unlink:1,
1827                rq_memalloc:1,      /* req originated from "kswapd" */
1828                /* server-side flags */
1829                rq_packed_final:1,  /* packed final reply */
1830                rq_hp:1,            /* high priority RPC */
1831                rq_at_linked:1,     /* link into service's srv_at_array */
1832                rq_reply_truncate:1,
1833                rq_committed:1,
1834                /* whether the "rq_set" is a valid one */
1835                rq_invalid_rqset:1,
1836                rq_generation_set:1,
1837                /* do not resend request on -EINPROGRESS */
1838                rq_no_retry_einprogress:1,
1839                /* allow the req to be sent if the import is in recovery
1840                 * status */
1841                rq_allow_replay:1;
1842
1843        unsigned int rq_nr_resend;
1844
1845        enum rq_phase rq_phase; /* one of RQ_PHASE_* */
1846        enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */
1847        atomic_t rq_refcount;/* client-side refcount for SENT race,
1848                                    server-side refcounf for multiple replies */
1849
1850        /** Portal to which this request would be sent */
1851        short rq_request_portal;  /* XXX FIXME bug 249 */
1852        /** Portal where to wait for reply and where reply would be sent */
1853        short rq_reply_portal;    /* XXX FIXME bug 249 */
1854
1855        /**
1856         * client-side:
1857         * !rq_truncate : # reply bytes actually received,
1858         *  rq_truncate : required repbuf_len for resend
1859         */
1860        int rq_nob_received;
1861        /** Request length */
1862        int rq_reqlen;
1863        /** Reply length */
1864        int rq_replen;
1865        /** Request message - what client sent */
1866        struct lustre_msg *rq_reqmsg;
1867        /** Reply message - server response */
1868        struct lustre_msg *rq_repmsg;
1869        /** Transaction number */
1870        __u64 rq_transno;
1871        /** xid */
1872        __u64 rq_xid;
1873        /**
1874         * List item to for replay list. Not yet commited requests get linked
1875         * there.
1876         * Also see \a rq_replay comment above.
1877         */
1878        struct list_head rq_replay_list;
1879
1880        /**
1881         * security and encryption data
1882         * @{ */
1883        struct ptlrpc_cli_ctx   *rq_cli_ctx;     /**< client's half ctx */
1884        struct ptlrpc_svc_ctx   *rq_svc_ctx;     /**< server's half ctx */
1885        struct list_head               rq_ctx_chain;   /**< link to waited ctx */
1886
1887        struct sptlrpc_flavor    rq_flvr;       /**< for client & server */
1888        enum lustre_sec_part     rq_sp_from;
1889
1890        /* client/server security flags */
1891        unsigned int
1892                                 rq_ctx_init:1,      /* context initiation */
1893                                 rq_ctx_fini:1,      /* context destroy */
1894                                 rq_bulk_read:1,     /* request bulk read */
1895                                 rq_bulk_write:1,    /* request bulk write */
1896                                 /* server authentication flags */
1897                                 rq_auth_gss:1,      /* authenticated by gss */
1898                                 rq_auth_remote:1,   /* authed as remote user */
1899                                 rq_auth_usr_root:1, /* authed as root */
1900                                 rq_auth_usr_mdt:1,  /* authed as mdt */
1901                                 rq_auth_usr_ost:1,  /* authed as ost */
1902                                 /* security tfm flags */
1903                                 rq_pack_udesc:1,
1904                                 rq_pack_bulk:1,
1905                                 /* doesn't expect reply FIXME */
1906                                 rq_no_reply:1,
1907                                 rq_pill_init:1;     /* pill initialized */
1908
1909        uid_t               rq_auth_uid;        /* authed uid */
1910        uid_t               rq_auth_mapped_uid; /* authed uid mapped to */
1911
1912        /* (server side), pointed directly into req buffer */
1913        struct ptlrpc_user_desc *rq_user_desc;
1914
1915        /* various buffer pointers */
1916        struct lustre_msg       *rq_reqbuf;      /* req wrapper */
1917        char                *rq_repbuf;      /* rep buffer */
1918        struct lustre_msg       *rq_repdata;     /* rep wrapper msg */
1919        struct lustre_msg       *rq_clrbuf;      /* only in priv mode */
1920        int                   rq_reqbuf_len;  /* req wrapper buf len */
1921        int                   rq_reqdata_len; /* req wrapper msg len */
1922        int                   rq_repbuf_len;  /* rep buffer len */
1923        int                   rq_repdata_len; /* rep wrapper msg len */
1924        int                   rq_clrbuf_len;  /* only in priv mode */
1925        int                   rq_clrdata_len; /* only in priv mode */
1926
1927        /** early replies go to offset 0, regular replies go after that */
1928        unsigned int         rq_reply_off;
1929
1930        /** @} */
1931
1932        /** Fields that help to see if request and reply were swabbed or not */
1933        __u32 rq_req_swab_mask;
1934        __u32 rq_rep_swab_mask;
1935
1936        /** What was import generation when this request was sent */
1937        int rq_import_generation;
1938        enum lustre_imp_state rq_send_state;
1939
1940        /** how many early replies (for stats) */
1941        int rq_early_count;
1942
1943        /** client+server request */
1944        lnet_handle_md_t     rq_req_md_h;
1945        struct ptlrpc_cb_id  rq_req_cbid;
1946        /** optional time limit for send attempts */
1947        cfs_duration_t       rq_delay_limit;
1948        /** time request was first queued */
1949        cfs_time_t         rq_queued_time;
1950
1951        /* server-side... */
1952        /** request arrival time */
1953        struct timeval       rq_arrival_time;
1954        /** separated reply state */
1955        struct ptlrpc_reply_state *rq_reply_state;
1956        /** incoming request buffer */
1957        struct ptlrpc_request_buffer_desc *rq_rqbd;
1958
1959        /** client-only incoming reply */
1960        lnet_handle_md_t     rq_reply_md_h;
1961        wait_queue_head_t         rq_reply_waitq;
1962        struct ptlrpc_cb_id  rq_reply_cbid;
1963
1964        /** our LNet NID */
1965        lnet_nid_t         rq_self;
1966        /** Peer description (the other side) */
1967        lnet_process_id_t    rq_peer;
1968        /** Server-side, export on which request was received */
1969        struct obd_export   *rq_export;
1970        /** Client side, import where request is being sent */
1971        struct obd_import   *rq_import;
1972
1973        /** Replay callback, called after request is replayed at recovery */
1974        void (*rq_replay_cb)(struct ptlrpc_request *);
1975        /**
1976         * Commit callback, called when request is committed and about to be
1977         * freed.
1978         */
1979        void (*rq_commit_cb)(struct ptlrpc_request *);
1980        /** Opaq data for replay and commit callbacks. */
1981        void  *rq_cb_data;
1982
1983        /** For bulk requests on client only: bulk descriptor */
1984        struct ptlrpc_bulk_desc *rq_bulk;
1985
1986        /** client outgoing req */
1987        /**
1988         * when request/reply sent (secs), or time when request should be sent
1989         */
1990        time_t rq_sent;
1991        /** time for request really sent out */
1992        time_t rq_real_sent;
1993
1994        /** when request must finish. volatile
1995         * so that servers' early reply updates to the deadline aren't
1996         * kept in per-cpu cache */
1997        volatile time_t rq_deadline;
1998        /** when req reply unlink must finish. */
1999        time_t rq_reply_deadline;
2000        /** when req bulk unlink must finish. */
2001        time_t rq_bulk_deadline;
2002        /**
2003         * service time estimate (secs)
2004         * If the requestsis not served by this time, it is marked as timed out.
2005         */
2006        int    rq_timeout;
2007
2008        /** Multi-rpc bits */
2009        /** Per-request waitq introduced by bug 21938 for recovery waiting */
2010        wait_queue_head_t rq_set_waitq;
2011        /** Link item for request set lists */
2012        struct list_head  rq_set_chain;
2013        /** Link back to the request set */
2014        struct ptlrpc_request_set *rq_set;
2015        /** Async completion handler, called when reply is received */
2016        ptlrpc_interpterer_t rq_interpret_reply;
2017        /** Async completion context */
2018        union ptlrpc_async_args rq_async_args;
2019
2020        /** Pool if request is from preallocated list */
2021        struct ptlrpc_request_pool *rq_pool;
2022
2023        struct lu_context          rq_session;
2024        struct lu_context          rq_recov_session;
2025
2026        /** request format description */
2027        struct req_capsule        rq_pill;
2028};
2029
2030/**
2031 * Call completion handler for rpc if any, return it's status or original
2032 * rc if there was no handler defined for this request.
2033 */
2034static inline int ptlrpc_req_interpret(const struct lu_env *env,
2035                                       struct ptlrpc_request *req, int rc)
2036{
2037        if (req->rq_interpret_reply != NULL) {
2038                req->rq_status = req->rq_interpret_reply(env, req,
2039                                                         &req->rq_async_args,
2040                                                         rc);
2041                return req->rq_status;
2042        }
2043        return rc;
2044}
2045
2046/** \addtogroup  nrs
2047 * @{
2048 */
2049int ptlrpc_nrs_policy_register(struct ptlrpc_nrs_pol_conf *conf);
2050int ptlrpc_nrs_policy_unregister(struct ptlrpc_nrs_pol_conf *conf);
2051void ptlrpc_nrs_req_hp_move(struct ptlrpc_request *req);
2052void nrs_policy_get_info_locked(struct ptlrpc_nrs_policy *policy,
2053                                struct ptlrpc_nrs_pol_info *info);
2054
2055/*
2056 * Can the request be moved from the regular NRS head to the high-priority NRS
2057 * head (of the same PTLRPC service partition), if any?
2058 *
2059 * For a reliable result, this should be checked under svcpt->scp_req lock.
2060 */
2061static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
2062{
2063        struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
2064
2065        /**
2066         * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
2067         * request has been enqueued first, and ptlrpc_nrs_request::nr_started
2068         * to make sure it has not been scheduled yet (analogous to previous
2069         * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
2070         */
2071        return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
2072}
2073/** @} nrs */
2074
2075/**
2076 * Returns 1 if request buffer at offset \a index was already swabbed
2077 */
2078static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index)
2079{
2080        LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
2081        return req->rq_req_swab_mask & (1 << index);
2082}
2083
2084/**
2085 * Returns 1 if request reply buffer at offset \a index was already swabbed
2086 */
2087static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index)
2088{
2089        LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
2090        return req->rq_rep_swab_mask & (1 << index);
2091}
2092
2093/**
2094 * Returns 1 if request needs to be swabbed into local cpu byteorder
2095 */
2096static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
2097{
2098        return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
2099}
2100
2101/**
2102 * Returns 1 if request reply needs to be swabbed into local cpu byteorder
2103 */
2104static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
2105{
2106        return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
2107}
2108
2109/**
2110 * Mark request buffer at offset \a index that it was already swabbed
2111 */
2112static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index)
2113{
2114        LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
2115        LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
2116        req->rq_req_swab_mask |= 1 << index;
2117}
2118
2119/**
2120 * Mark request reply buffer at offset \a index that it was already swabbed
2121 */
2122static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index)
2123{
2124        LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
2125        LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
2126        req->rq_rep_swab_mask |= 1 << index;
2127}
2128
2129/**
2130 * Convert numerical request phase value \a phase into text string description
2131 */
2132static inline const char *
2133ptlrpc_phase2str(enum rq_phase phase)
2134{
2135        switch (phase) {
2136        case RQ_PHASE_NEW:
2137                return "New";
2138        case RQ_PHASE_RPC:
2139                return "Rpc";
2140        case RQ_PHASE_BULK:
2141                return "Bulk";
2142        case RQ_PHASE_INTERPRET:
2143                return "Interpret";
2144        case RQ_PHASE_COMPLETE:
2145                return "Complete";
2146        case RQ_PHASE_UNREGISTERING:
2147                return "Unregistering";
2148        default:
2149                return "?Phase?";
2150        }
2151}
2152
2153/**
2154 * Convert numerical request phase of the request \a req into text stringi
2155 * description
2156 */
2157static inline const char *
2158ptlrpc_rqphase2str(struct ptlrpc_request *req)
2159{
2160        return ptlrpc_phase2str(req->rq_phase);
2161}
2162
2163/**
2164 * Debugging functions and helpers to print request structure into debug log
2165 * @{
2166 */
2167/* Spare the preprocessor, spoil the bugs. */
2168#define FLAG(field, str) (field ? str : "")
2169
2170/** Convert bit flags into a string */
2171#define DEBUG_REQ_FLAGS(req)                                                \
2172        ptlrpc_rqphase2str(req),                                                \
2173        FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"),                \
2174        FLAG(req->rq_err, "E"),                                          \
2175        FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"),   \
2176        FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"),            \
2177        FLAG(req->rq_no_resend, "N"),                                      \
2178        FLAG(req->rq_waiting, "W"),                                          \
2179        FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"),                  \
2180        FLAG(req->rq_committed, "M")
2181
2182#define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s"
2183
2184void _debug_req(struct ptlrpc_request *req,
2185                struct libcfs_debug_msg_data *data, const char *fmt, ...)
2186        __attribute__ ((format (printf, 3, 4)));
2187
2188/**
2189 * Helper that decides if we need to print request accordig to current debug
2190 * level settings
2191 */
2192#define debug_req(msgdata, mask, cdls, req, fmt, a...)                  \
2193do {                                                                      \
2194        CFS_CHECK_STACK(msgdata, mask, cdls);                            \
2195                                                                              \
2196        if (((mask) & D_CANTMASK) != 0 ||                                    \
2197            ((libcfs_debug & (mask)) != 0 &&                              \
2198             (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0))          \
2199                _debug_req((req), msgdata, fmt, ##a);                    \
2200} while(0)
2201
2202/**
2203 * This is the debug print function you need to use to print request sturucture
2204 * content into lustre debug log.
2205 * for most callers (level is a constant) this is resolved at compile time */
2206#define DEBUG_REQ(level, req, fmt, args...)                                \
2207do {                                                                      \
2208        if ((level) & (D_ERROR | D_WARNING)) {                          \
2209                static cfs_debug_limit_state_t cdls;                      \
2210                LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls);          \
2211                debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
2212        } else {                                                              \
2213                LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL);            \
2214                debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
2215        }                                                                    \
2216} while (0)
2217/** @} */
2218
2219/**
2220 * Structure that defines a single page of a bulk transfer
2221 */
2222struct ptlrpc_bulk_page {
2223        /** Linkage to list of pages in a bulk */
2224        struct list_head       bp_link;
2225        /**
2226         * Number of bytes in a page to transfer starting from \a bp_pageoffset
2227         */
2228        int           bp_buflen;
2229        /** offset within a page */
2230        int           bp_pageoffset;
2231        /** The page itself */
2232        struct page     *bp_page;
2233};
2234
2235#define BULK_GET_SOURCE   0
2236#define BULK_PUT_SINK     1
2237#define BULK_GET_SINK     2
2238#define BULK_PUT_SOURCE   3
2239
2240/**
2241 * Definition of bulk descriptor.
2242 * Bulks are special "Two phase" RPCs where initial request message
2243 * is sent first and it is followed bt a transfer (o receiving) of a large
2244 * amount of data to be settled into pages referenced from the bulk descriptors.
2245 * Bulks transfers (the actual data following the small requests) are done
2246 * on separate LNet portals.
2247 * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
2248 *  Another user is readpage for MDT.
2249 */
2250struct ptlrpc_bulk_desc {
2251        /** completed with failure */
2252        unsigned long bd_failure:1;
2253        /** {put,get}{source,sink} */
2254        unsigned long bd_type:2;
2255        /** client side */
2256        unsigned long bd_registered:1;
2257        /** For serialization with callback */
2258        spinlock_t bd_lock;
2259        /** Import generation when request for this bulk was sent */
2260        int bd_import_generation;
2261        /** LNet portal for this bulk */
2262        __u32 bd_portal;
2263        /** Server side - export this bulk created for */
2264        struct obd_export *bd_export;
2265        /** Client side - import this bulk was sent on */
2266        struct obd_import *bd_import;
2267        /** Back pointer to the request */
2268        struct ptlrpc_request *bd_req;
2269        wait_queue_head_t           bd_waitq;   /* server side only WQ */
2270        int                 bd_iov_count;    /* # entries in bd_iov */
2271        int                 bd_max_iov;      /* allocated size of bd_iov */
2272        int                 bd_nob;       /* # bytes covered */
2273        int                 bd_nob_transferred; /* # bytes GOT/PUT */
2274
2275        __u64             bd_last_xid;
2276
2277        struct ptlrpc_cb_id    bd_cbid;  /* network callback info */
2278        lnet_nid_t           bd_sender;       /* stash event::sender */
2279        int                     bd_md_count;    /* # valid entries in bd_mds */
2280        int                     bd_md_max_brw;  /* max entries in bd_mds */
2281        /** array of associated MDs */
2282        lnet_handle_md_t        bd_mds[PTLRPC_BULK_OPS_COUNT];
2283
2284        /*
2285         * encrypt iov, size is either 0 or bd_iov_count.
2286         */
2287        lnet_kiov_t        *bd_enc_iov;
2288
2289        lnet_kiov_t         bd_iov[0];
2290};
2291
2292enum {
2293        SVC_STOPPED     = 1 << 0,
2294        SVC_STOPPING    = 1 << 1,
2295        SVC_STARTING    = 1 << 2,
2296        SVC_RUNNING     = 1 << 3,
2297        SVC_EVENT       = 1 << 4,
2298        SVC_SIGNAL      = 1 << 5,
2299};
2300
2301#define PTLRPC_THR_NAME_LEN             32
2302/**
2303 * Definition of server service thread structure
2304 */
2305struct ptlrpc_thread {
2306        /**
2307         * List of active threads in svc->srv_threads
2308         */
2309        struct list_head t_link;
2310        /**
2311         * thread-private data (preallocated memory)
2312         */
2313        void *t_data;
2314        __u32 t_flags;
2315        /**
2316         * service thread index, from ptlrpc_start_threads
2317         */
2318        unsigned int t_id;
2319        /**
2320         * service thread pid
2321         */
2322        pid_t t_pid;
2323        /**
2324         * put watchdog in the structure per thread b=14840
2325         */
2326        struct lc_watchdog *t_watchdog;
2327        /**
2328         * the svc this thread belonged to b=18582
2329         */
2330        struct ptlrpc_service_part      *t_svcpt;
2331        wait_queue_head_t                       t_ctl_waitq;
2332        struct lu_env                   *t_env;
2333        char                            t_name[PTLRPC_THR_NAME_LEN];
2334};
2335
2336static inline int thread_is_init(struct ptlrpc_thread *thread)
2337{
2338        return thread->t_flags == 0;
2339}
2340
2341static inline int thread_is_stopped(struct ptlrpc_thread *thread)
2342{
2343        return !!(thread->t_flags & SVC_STOPPED);
2344}
2345
2346static inline int thread_is_stopping(struct ptlrpc_thread *thread)
2347{
2348        return !!(thread->t_flags & SVC_STOPPING);
2349}
2350
2351static inline int thread_is_starting(struct ptlrpc_thread *thread)
2352{
2353        return !!(thread->t_flags & SVC_STARTING);
2354}
2355
2356static inline int thread_is_running(struct ptlrpc_thread *thread)
2357{
2358        return !!(thread->t_flags & SVC_RUNNING);
2359}
2360
2361static inline int thread_is_event(struct ptlrpc_thread *thread)
2362{
2363        return !!(thread->t_flags & SVC_EVENT);
2364}
2365
2366static inline int thread_is_signal(struct ptlrpc_thread *thread)
2367{
2368        return !!(thread->t_flags & SVC_SIGNAL);
2369}
2370
2371static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
2372{
2373        thread->t_flags &= ~flags;
2374}
2375
2376static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
2377{
2378        thread->t_flags = flags;
2379}
2380
2381static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
2382{
2383        thread->t_flags |= flags;
2384}
2385
2386static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
2387                                              __u32 flags)
2388{
2389        if (thread->t_flags & flags) {
2390                thread->t_flags &= ~flags;
2391                return 1;
2392        }
2393        return 0;
2394}
2395
2396/**
2397 * Request buffer descriptor structure.
2398 * This is a structure that contains one posted request buffer for service.
2399 * Once data land into a buffer, event callback creates actual request and
2400 * notifies wakes one of the service threads to process new incoming request.
2401 * More than one request can fit into the buffer.
2402 */
2403struct ptlrpc_request_buffer_desc {
2404        /** Link item for rqbds on a service */
2405        struct list_head             rqbd_list;
2406        /** History of requests for this buffer */
2407        struct list_head             rqbd_reqs;
2408        /** Back pointer to service for which this buffer is registered */
2409        struct ptlrpc_service_part *rqbd_svcpt;
2410        /** LNet descriptor */
2411        lnet_handle_md_t       rqbd_md_h;
2412        int                 rqbd_refcount;
2413        /** The buffer itself */
2414        char              *rqbd_buffer;
2415        struct ptlrpc_cb_id    rqbd_cbid;
2416        /**
2417         * This "embedded" request structure is only used for the
2418         * last request to fit into the buffer
2419         */
2420        struct ptlrpc_request  rqbd_req;
2421};
2422
2423typedef int  (*svc_handler_t)(struct ptlrpc_request *req);
2424
2425struct ptlrpc_service_ops {
2426        /**
2427         * if non-NULL called during thread creation (ptlrpc_start_thread())
2428         * to initialize service specific per-thread state.
2429         */
2430        int             (*so_thr_init)(struct ptlrpc_thread *thr);
2431        /**
2432         * if non-NULL called during thread shutdown (ptlrpc_main()) to
2433         * destruct state created by ->srv_init().
2434         */
2435        void            (*so_thr_done)(struct ptlrpc_thread *thr);
2436        /**
2437         * Handler function for incoming requests for this service
2438         */
2439        int             (*so_req_handler)(struct ptlrpc_request *req);
2440        /**
2441         * function to determine priority of the request, it's called
2442         * on every new request
2443         */
2444        int             (*so_hpreq_handler)(struct ptlrpc_request *);
2445        /**
2446         * service-specific print fn
2447         */
2448        void            (*so_req_printer)(void *, struct ptlrpc_request *);
2449};
2450
2451#ifndef __cfs_cacheline_aligned
2452/* NB: put it here for reducing patche dependence */
2453# define __cfs_cacheline_aligned
2454#endif
2455
2456/**
2457 * How many high priority requests to serve before serving one normal
2458 * priority request
2459 */
2460#define PTLRPC_SVC_HP_RATIO 10
2461
2462/**
2463 * Definition of PortalRPC service.
2464 * The service is listening on a particular portal (like tcp port)
2465 * and perform actions for a specific server like IO service for OST
2466 * or general metadata service for MDS.
2467 */
2468struct ptlrpc_service {
2469        /** serialize /proc operations */
2470        spinlock_t                      srv_lock;
2471        /** most often accessed fields */
2472        /** chain thru all services */
2473        struct list_head                      srv_list;
2474        /** service operations table */
2475        struct ptlrpc_service_ops       srv_ops;
2476        /** only statically allocated strings here; we don't clean them */
2477        char                       *srv_name;
2478        /** only statically allocated strings here; we don't clean them */
2479        char                       *srv_thread_name;
2480        /** service thread list */
2481        struct list_head                      srv_threads;
2482        /** threads # should be created for each partition on initializing */
2483        int                             srv_nthrs_cpt_init;
2484        /** limit of threads number for each partition */
2485        int                             srv_nthrs_cpt_limit;
2486        /** Root of /proc dir tree for this service */
2487        proc_dir_entry_t           *srv_procroot;
2488        /** Pointer to statistic data for this service */
2489        struct lprocfs_stats       *srv_stats;
2490        /** # hp per lp reqs to handle */
2491        int                          srv_hpreq_ratio;
2492        /** biggest request to receive */
2493        int                          srv_max_req_size;
2494        /** biggest reply to send */
2495        int                          srv_max_reply_size;
2496        /** size of individual buffers */
2497        int                          srv_buf_size;
2498        /** # buffers to allocate in 1 group */
2499        int                          srv_nbuf_per_group;
2500        /** Local portal on which to receive requests */
2501        __u32                      srv_req_portal;
2502        /** Portal on the client to send replies to */
2503        __u32                      srv_rep_portal;
2504        /**
2505         * Tags for lu_context associated with this thread, see struct
2506         * lu_context.
2507         */
2508        __u32                      srv_ctx_tags;
2509        /** soft watchdog timeout multiplier */
2510        int                          srv_watchdog_factor;
2511        /** under unregister_service */
2512        unsigned                        srv_is_stopping:1;
2513
2514        /** max # request buffers in history per partition */
2515        int                             srv_hist_nrqbds_cpt_max;
2516        /** number of CPTs this service bound on */
2517        int                             srv_ncpts;
2518        /** CPTs array this service bound on */
2519        __u32                           *srv_cpts;
2520        /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
2521        int                             srv_cpt_bits;
2522        /** CPT table this service is running over */
2523        struct cfs_cpt_table            *srv_cptable;
2524        /**
2525         * partition data for ptlrpc service
2526         */
2527        struct ptlrpc_service_part      *srv_parts[0];
2528};
2529
2530/**
2531 * Definition of PortalRPC service partition data.
2532 * Although a service only has one instance of it right now, but we
2533 * will have multiple instances very soon (instance per CPT).
2534 *
2535 * it has four locks:
2536 * \a scp_lock
2537 *    serialize operations on rqbd and requests waiting for preprocess
2538 * \a scp_req_lock
2539 *    serialize operations active requests sent to this portal
2540 * \a scp_at_lock
2541 *    serialize adaptive timeout stuff
2542 * \a scp_rep_lock
2543 *    serialize operations on RS list (reply states)
2544 *
2545 * We don't have any use-case to take two or more locks at the same time
2546 * for now, so there is no lock order issue.
2547 */
2548struct ptlrpc_service_part {
2549        /** back reference to owner */
2550        struct ptlrpc_service           *scp_service __cfs_cacheline_aligned;
2551        /* CPT id, reserved */
2552        int                             scp_cpt;
2553        /** always increasing number */
2554        int                             scp_thr_nextid;
2555        /** # of starting threads */
2556        int                             scp_nthrs_starting;
2557        /** # of stopping threads, reserved for shrinking threads */
2558        int                             scp_nthrs_stopping;
2559        /** # running threads */
2560        int                             scp_nthrs_running;
2561        /** service threads list */
2562        struct list_head                        scp_threads;
2563
2564        /**
2565         * serialize the following fields, used for protecting
2566         * rqbd list and incoming requests waiting for preprocess,
2567         * threads starting & stopping are also protected by this lock.
2568         */
2569        spinlock_t                      scp_lock  __cfs_cacheline_aligned;
2570        /** total # req buffer descs allocated */
2571        int                             scp_nrqbds_total;
2572        /** # posted request buffers for receiving */
2573        int                             scp_nrqbds_posted;
2574        /** in progress of allocating rqbd */
2575        int                             scp_rqbd_allocating;
2576        /** # incoming reqs */
2577        int                             scp_nreqs_incoming;
2578        /** request buffers to be reposted */
2579        struct list_head                        scp_rqbd_idle;
2580        /** req buffers receiving */
2581        struct list_head                        scp_rqbd_posted;
2582        /** incoming reqs */
2583        struct list_head                        scp_req_incoming;
2584        /** timeout before re-posting reqs, in tick */
2585        cfs_duration_t                  scp_rqbd_timeout;
2586        /**
2587         * all threads sleep on this. This wait-queue is signalled when new
2588         * incoming request arrives and when difficult reply has to be handled.
2589         */
2590        wait_queue_head_t                       scp_waitq;
2591
2592        /** request history */
2593        struct list_head                        scp_hist_reqs;
2594        /** request buffer history */
2595        struct list_head                        scp_hist_rqbds;
2596        /** # request buffers in history */
2597        int                             scp_hist_nrqbds;
2598        /** sequence number for request */
2599        __u64                           scp_hist_seq;
2600        /** highest seq culled from history */
2601        __u64                           scp_hist_seq_culled;
2602
2603        /**
2604         * serialize the following fields, used for processing requests
2605         * sent to this portal
2606         */
2607        spinlock_t                      scp_req_lock __cfs_cacheline_aligned;
2608        /** # reqs in either of the NRS heads below */
2609        /** # reqs being served */
2610        int                             scp_nreqs_active;
2611        /** # HPreqs being served */
2612        int                             scp_nhreqs_active;
2613        /** # hp requests handled */
2614        int                             scp_hreq_count;
2615
2616        /** NRS head for regular requests */
2617        struct ptlrpc_nrs               scp_nrs_reg;
2618        /** NRS head for HP requests; this is only valid for services that can
2619         *  handle HP requests */
2620        struct ptlrpc_nrs              *scp_nrs_hp;
2621
2622        /** AT stuff */
2623        /** @{ */
2624        /**
2625         * serialize the following fields, used for changes on
2626         * adaptive timeout
2627         */
2628        spinlock_t                      scp_at_lock __cfs_cacheline_aligned;
2629        /** estimated rpc service time */
2630        struct adaptive_timeout         scp_at_estimate;
2631        /** reqs waiting for replies */
2632        struct ptlrpc_at_array          scp_at_array;
2633        /** early reply timer */
2634        timer_list_t                    scp_at_timer;
2635        /** debug */
2636        cfs_time_t                      scp_at_checktime;
2637        /** check early replies */
2638        unsigned                        scp_at_check;
2639        /** @} */
2640
2641        /**
2642         * serialize the following fields, used for processing
2643         * replies for this portal
2644         */
2645        spinlock_t                      scp_rep_lock __cfs_cacheline_aligned;
2646        /** all the active replies */
2647        struct list_head                        scp_rep_active;
2648        /** List of free reply_states */
2649        struct list_head                        scp_rep_idle;
2650        /** waitq to run, when adding stuff to srv_free_rs_list */
2651        wait_queue_head_t                       scp_rep_waitq;
2652        /** # 'difficult' replies */
2653        atomic_t                        scp_nreps_difficult;
2654};
2655
2656#define ptlrpc_service_for_each_part(part, i, svc)                      \
2657        for (i = 0;                                                     \
2658             i < (svc)->srv_ncpts &&                                    \
2659             (svc)->srv_parts != NULL &&                                \
2660             ((part) = (svc)->srv_parts[i]) != NULL; i++)
2661
2662/**
2663 * Declaration of ptlrpcd control structure
2664 */
2665struct ptlrpcd_ctl {
2666        /**
2667         * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
2668         */
2669        unsigned long                   pc_flags;
2670        /**
2671         * Thread lock protecting structure fields.
2672         */
2673        spinlock_t                      pc_lock;
2674        /**
2675         * Start completion.
2676         */
2677        struct completion               pc_starting;
2678        /**
2679         * Stop completion.
2680         */
2681        struct completion               pc_finishing;
2682        /**
2683         * Thread requests set.
2684         */
2685        struct ptlrpc_request_set  *pc_set;
2686        /**
2687         * Thread name used in cfs_daemonize()
2688         */
2689        char                    pc_name[16];
2690        /**
2691         * Environment for request interpreters to run in.
2692         */
2693        struct lu_env          pc_env;
2694        /**
2695         * Index of ptlrpcd thread in the array.
2696         */
2697        int                      pc_index;
2698        /**
2699         * Number of the ptlrpcd's partners.
2700         */
2701        int                      pc_npartners;
2702        /**
2703         * Pointer to the array of partners' ptlrpcd_ctl structure.
2704         */
2705        struct ptlrpcd_ctl      **pc_partners;
2706        /**
2707         * Record the partner index to be processed next.
2708         */
2709        int                      pc_cursor;
2710};
2711
2712/* Bits for pc_flags */
2713enum ptlrpcd_ctl_flags {
2714        /**
2715         * Ptlrpc thread start flag.
2716         */
2717        LIOD_START       = 1 << 0,
2718        /**
2719         * Ptlrpc thread stop flag.
2720         */
2721        LIOD_STOP       = 1 << 1,
2722        /**
2723         * Ptlrpc thread force flag (only stop force so far).
2724         * This will cause aborting any inflight rpcs handled
2725         * by thread if LIOD_STOP is specified.
2726         */
2727        LIOD_FORCE       = 1 << 2,
2728        /**
2729         * This is a recovery ptlrpc thread.
2730         */
2731        LIOD_RECOVERY    = 1 << 3,
2732        /**
2733         * The ptlrpcd is bound to some CPU core.
2734         */
2735        LIOD_BIND       = 1 << 4,
2736};
2737
2738/**
2739 * \addtogroup nrs
2740 * @{
2741 *
2742 * Service compatibility function; the policy is compatible with all services.
2743 *
2744 * \param[in] svc  The service the policy is attempting to register with.
2745 * \param[in] desc The policy descriptor
2746 *
2747 * \retval true The policy is compatible with the service
2748 *
2749 * \see ptlrpc_nrs_pol_desc::pd_compat()
2750 */
2751static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
2752                                         const struct ptlrpc_nrs_pol_desc *desc)
2753{
2754        return true;
2755}
2756
2757/**
2758 * Service compatibility function; the policy is compatible with only a specific
2759 * service which is identified by its human-readable name at
2760 * ptlrpc_service::srv_name.
2761 *
2762 * \param[in] svc  The service the policy is attempting to register with.
2763 * \param[in] desc The policy descriptor
2764 *
2765 * \retval false The policy is not compatible with the service
2766 * \retval true  The policy is compatible with the service
2767 *
2768 * \see ptlrpc_nrs_pol_desc::pd_compat()
2769 */
2770static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
2771                                         const struct ptlrpc_nrs_pol_desc *desc)
2772{
2773        LASSERT(desc->pd_compat_svc_name != NULL);
2774        return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
2775}
2776
2777/** @} nrs */
2778
2779/* ptlrpc/events.c */
2780extern lnet_handle_eq_t ptlrpc_eq_h;
2781extern int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
2782                               lnet_process_id_t *peer, lnet_nid_t *self);
2783/**
2784 * These callbacks are invoked by LNet when something happened to
2785 * underlying buffer
2786 * @{
2787 */
2788extern void request_out_callback(lnet_event_t *ev);
2789extern void reply_in_callback(lnet_event_t *ev);
2790extern void client_bulk_callback(lnet_event_t *ev);
2791extern void request_in_callback(lnet_event_t *ev);
2792extern void reply_out_callback(lnet_event_t *ev);
2793/** @} */
2794
2795/* ptlrpc/connection.c */
2796struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer,
2797                                                lnet_nid_t self,
2798                                                struct obd_uuid *uuid);
2799int ptlrpc_connection_put(struct ptlrpc_connection *c);
2800struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
2801int ptlrpc_connection_init(void);
2802void ptlrpc_connection_fini(void);
2803extern lnet_pid_t ptl_get_pid(void);
2804
2805/* ptlrpc/niobuf.c */
2806/**
2807 * Actual interfacing with LNet to put/get/register/unregister stuff
2808 * @{
2809 */
2810
2811int ptlrpc_register_bulk(struct ptlrpc_request *req);
2812int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
2813
2814static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
2815{
2816        struct ptlrpc_bulk_desc *desc;
2817        int                   rc;
2818
2819        LASSERT(req != NULL);
2820        desc = req->rq_bulk;
2821
2822        if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) &&
2823            req->rq_bulk_deadline > cfs_time_current_sec())
2824                return 1;
2825
2826        if (!desc)
2827                return 0;
2828
2829        spin_lock(&desc->bd_lock);
2830        rc = desc->bd_md_count;
2831        spin_unlock(&desc->bd_lock);
2832        return rc;
2833}
2834
2835#define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
2836#define PTLRPC_REPLY_EARLY         0x02
2837int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
2838int ptlrpc_reply(struct ptlrpc_request *req);
2839int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
2840int ptlrpc_error(struct ptlrpc_request *req);
2841void ptlrpc_resend_req(struct ptlrpc_request *request);
2842int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
2843int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
2844int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
2845/** @} */
2846
2847/* ptlrpc/client.c */
2848/**
2849 * Client-side portals API. Everything to send requests, receive replies,
2850 * request queues, request management, etc.
2851 * @{
2852 */
2853void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
2854                        struct ptlrpc_client *);
2855void ptlrpc_cleanup_client(struct obd_import *imp);
2856struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
2857
2858int ptlrpc_queue_wait(struct ptlrpc_request *req);
2859int ptlrpc_replay_req(struct ptlrpc_request *req);
2860int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async);
2861void ptlrpc_restart_req(struct ptlrpc_request *req);
2862void ptlrpc_abort_inflight(struct obd_import *imp);
2863void ptlrpc_cleanup_imp(struct obd_import *imp);
2864void ptlrpc_abort_set(struct ptlrpc_request_set *set);
2865
2866struct ptlrpc_request_set *ptlrpc_prep_set(void);
2867struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
2868                                             void *arg);
2869int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
2870                      set_interpreter_func fn, void *data);
2871int ptlrpc_set_next_timeout(struct ptlrpc_request_set *);
2872int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
2873int ptlrpc_set_wait(struct ptlrpc_request_set *);
2874int ptlrpc_expired_set(void *data);
2875void ptlrpc_interrupted_set(void *data);
2876void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
2877void ptlrpc_set_destroy(struct ptlrpc_request_set *);
2878void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
2879void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
2880                            struct ptlrpc_request *req);
2881
2882void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
2883void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
2884
2885struct ptlrpc_request_pool *
2886ptlrpc_init_rq_pool(int, int,
2887                    void (*populate_pool)(struct ptlrpc_request_pool *, int));
2888
2889void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
2890struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
2891                                            const struct req_format *format);
2892struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
2893                                            struct ptlrpc_request_pool *,
2894                                            const struct req_format *format);
2895void ptlrpc_request_free(struct ptlrpc_request *request);
2896int ptlrpc_request_pack(struct ptlrpc_request *request,
2897                        __u32 version, int opcode);
2898struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
2899                                                const struct req_format *format,
2900                                                __u32 version, int opcode);
2901int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
2902                             __u32 version, int opcode, char **bufs,
2903                             struct ptlrpc_cli_ctx *ctx);
2904struct ptlrpc_request *ptlrpc_prep_req(struct obd_import *imp, __u32 version,
2905                                       int opcode, int count, __u32 *lengths,
2906                                       char **bufs);
2907struct ptlrpc_request *ptlrpc_prep_req_pool(struct obd_import *imp,
2908                                             __u32 version, int opcode,
2909                                            int count, __u32 *lengths, char **bufs,
2910                                            struct ptlrpc_request_pool *pool);
2911void ptlrpc_req_finished(struct ptlrpc_request *request);
2912void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request);
2913struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
2914struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
2915                                              unsigned npages, unsigned max_brw,
2916                                              unsigned type, unsigned portal);
2917void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin);
2918static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk)
2919{
2920        __ptlrpc_free_bulk(bulk, 1);
2921}
2922static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk)
2923{
2924        __ptlrpc_free_bulk(bulk, 0);
2925}
2926void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
2927                             struct page *page, int pageoffset, int len, int);
2928static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
2929                                             struct page *page, int pageoffset,
2930                                             int len)
2931{
2932        __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
2933}
2934
2935static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
2936                                               struct page *page, int pageoffset,
2937                                               int len)
2938{
2939        __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
2940}
2941
2942void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2943                                      struct obd_import *imp);
2944__u64 ptlrpc_next_xid(void);
2945__u64 ptlrpc_sample_next_xid(void);
2946__u64 ptlrpc_req_xid(struct ptlrpc_request *request);
2947
2948/* Set of routines to run a function in ptlrpcd context */
2949void *ptlrpcd_alloc_work(struct obd_import *imp,
2950                         int (*cb)(const struct lu_env *, void *), void *data);
2951void ptlrpcd_destroy_work(void *handler);
2952int ptlrpcd_queue_work(void *handler);
2953
2954/** @} */
2955struct ptlrpc_service_buf_conf {
2956        /* nbufs is buffers # to allocate when growing the pool */
2957        unsigned int                    bc_nbufs;
2958        /* buffer size to post */
2959        unsigned int                    bc_buf_size;
2960        /* portal to listed for requests on */
2961        unsigned int                    bc_req_portal;
2962        /* portal of where to send replies to */
2963        unsigned int                    bc_rep_portal;
2964        /* maximum request size to be accepted for this service */
2965        unsigned int                    bc_req_max_size;
2966        /* maximum reply size this service can ever send */
2967        unsigned int                    bc_rep_max_size;
2968};
2969
2970struct ptlrpc_service_thr_conf {
2971        /* threadname should be 8 characters or less - 6 will be added on */
2972        char                            *tc_thr_name;
2973        /* threads increasing factor for each CPU */
2974        unsigned int                    tc_thr_factor;
2975        /* service threads # to start on each partition while initializing */
2976        unsigned int                    tc_nthrs_init;
2977        /*
2978         * low water of threads # upper-limit on each partition while running,
2979         * service availability may be impacted if threads number is lower
2980         * than this value. It can be ZERO if the service doesn't require
2981         * CPU affinity or there is only one partition.
2982         */
2983        unsigned int                    tc_nthrs_base;
2984        /* "soft" limit for total threads number */
2985        unsigned int                    tc_nthrs_max;
2986        /* user specified threads number, it will be validated due to
2987         * other members of this structure. */
2988        unsigned int                    tc_nthrs_user;
2989        /* set NUMA node affinity for service threads */
2990        unsigned int                    tc_cpu_affinity;
2991        /* Tags for lu_context associated with service thread */
2992        __u32                           tc_ctx_tags;
2993};
2994
2995struct ptlrpc_service_cpt_conf {
2996        struct cfs_cpt_table            *cc_cptable;
2997        /* string pattern to describe CPTs for a service */
2998        char                            *cc_pattern;
2999};
3000
3001struct ptlrpc_service_conf {
3002        /* service name */
3003        char                            *psc_name;
3004        /* soft watchdog timeout multiplifier to print stuck service traces */
3005        unsigned int                    psc_watchdog_factor;
3006        /* buffer information */
3007        struct ptlrpc_service_buf_conf  psc_buf;
3008        /* thread information */
3009        struct ptlrpc_service_thr_conf  psc_thr;
3010        /* CPU partition information */
3011        struct ptlrpc_service_cpt_conf  psc_cpt;
3012        /* function table */
3013        struct ptlrpc_service_ops       psc_ops;
3014};
3015
3016/* ptlrpc/service.c */
3017/**
3018 * Server-side services API. Register/unregister service, request state
3019 * management, service thread management
3020 *
3021 * @{
3022 */
3023void ptlrpc_save_lock(struct ptlrpc_request *req,
3024                      struct lustre_handle *lock, int mode, int no_ack);
3025void ptlrpc_commit_replies(struct obd_export *exp);
3026void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
3027void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
3028int ptlrpc_hpreq_handler(struct ptlrpc_request *req);
3029struct ptlrpc_service *ptlrpc_register_service(
3030                                struct ptlrpc_service_conf *conf,
3031                                struct proc_dir_entry *proc_entry);
3032void ptlrpc_stop_all_threads(struct ptlrpc_service *svc);
3033
3034int ptlrpc_start_threads(struct ptlrpc_service *svc);
3035int ptlrpc_unregister_service(struct ptlrpc_service *service);
3036int liblustre_check_services(void *arg);
3037void ptlrpc_daemonize(char *name);
3038int ptlrpc_service_health_check(struct ptlrpc_service *);
3039void ptlrpc_server_drop_request(struct ptlrpc_request *req);
3040void ptlrpc_request_change_export(struct ptlrpc_request *req,
3041                                  struct obd_export *export);
3042
3043int ptlrpc_hr_init(void);
3044void ptlrpc_hr_fini(void);
3045
3046/** @} */
3047
3048/* ptlrpc/import.c */
3049/**
3050 * Import API
3051 * @{
3052 */
3053int ptlrpc_connect_import(struct obd_import *imp);
3054int ptlrpc_init_import(struct obd_import *imp);
3055int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
3056int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
3057void deuuidify(char *uuid, const char *prefix, char **uuid_start,
3058               int *uuid_len);
3059
3060/* ptlrpc/pack_generic.c */
3061int ptlrpc_reconnect_import(struct obd_import *imp);
3062/** @} */
3063
3064/**
3065 * ptlrpc msg buffer and swab interface
3066 *
3067 * @{
3068 */
3069int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
3070                         int index);
3071void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
3072                                int index);
3073int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
3074int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
3075
3076int lustre_msg_check_version(struct lustre_msg *msg, __u32 version);
3077void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
3078                        char **bufs);
3079int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
3080                        __u32 *lens, char **bufs);
3081int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
3082                      char **bufs);
3083int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
3084                         __u32 *lens, char **bufs, int flags);
3085#define LPRFL_EARLY_REPLY 1
3086int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
3087                            char **bufs, int flags);
3088int lustre_shrink_msg(struct lustre_msg *msg, int segment,
3089                      unsigned int newlen, int move_data);
3090void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
3091int __lustre_unpack_msg(struct lustre_msg *m, int len);
3092int lustre_msg_hdr_size(__u32 magic, int count);
3093int lustre_msg_size(__u32 magic, int count, __u32 *lengths);
3094int lustre_msg_size_v2(int count, __u32 *lengths);
3095int lustre_packed_msg_size(struct lustre_msg *msg);
3096int lustre_msg_early_size(void);
3097void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size);
3098void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen);
3099int lustre_msg_buflen(struct lustre_msg *m, int n);
3100void lustre_msg_set_buflen(struct lustre_msg *m, int n, int len);
3101int lustre_msg_bufcount(struct lustre_msg *m);
3102char *lustre_msg_string(struct lustre_msg *m, int n, int max_len);
3103__u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
3104void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
3105__u32 lustre_msg_get_flags(struct lustre_msg *msg);
3106void lustre_msg_add_flags(struct lustre_msg *msg, int flags);
3107void lustre_msg_set_flags(struct lustre_msg *msg, int flags);
3108void lustre_msg_clear_flags(struct lustre_msg *msg, int flags);
3109__u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
3110void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags);
3111void lustre_msg_set_op_flags(struct lustre_msg *msg, int flags);
3112struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
3113__u32 lustre_msg_get_type(struct lustre_msg *msg);
3114__u32 lustre_msg_get_version(struct lustre_msg *msg);
3115void lustre_msg_add_version(struct lustre_msg *msg, int version);
3116__u32 lustre_msg_get_opc(struct lustre_msg *msg);
3117__u64 lustre_msg_get_last_xid(struct lustre_msg *msg);
3118__u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
3119__u64 *lustre_msg_get_versions(struct lustre_msg *msg);
3120__u64 lustre_msg_get_transno(struct lustre_msg *msg);
3121__u64 lustre_msg_get_slv(struct lustre_msg *msg);
3122__u32 lustre_msg_get_limit(struct lustre_msg *msg);
3123void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
3124void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
3125int lustre_msg_get_status(struct lustre_msg *msg);
3126__u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
3127int lustre_msg_is_v1(struct lustre_msg *msg);
3128__u32 lustre_msg_get_magic(struct lustre_msg *msg);
3129__u32 lustre_msg_get_timeout(struct lustre_msg *msg);
3130__u32 lustre_msg_get_service_time(struct lustre_msg *msg);
3131char *lustre_msg_get_jobid(struct lustre_msg *msg);
3132__u32 lustre_msg_get_cksum(struct lustre_msg *msg);
3133#if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 50, 0)
3134__u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18);
3135#else
3136# warning "remove checksum compatibility support for b1_8"
3137__u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
3138#endif
3139void lustre_msg_set_handle(struct lustre_msg *msg,struct lustre_handle *handle);
3140void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
3141void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
3142void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid);
3143void lustre_msg_set_last_committed(struct lustre_msg *msg,__u64 last_committed);
3144void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
3145void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
3146void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
3147void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
3148void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *sizes);
3149void ptlrpc_request_set_replen(struct ptlrpc_request *req);
3150void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
3151void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
3152void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
3153void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
3154
3155static inline void
3156lustre_shrink_reply(struct ptlrpc_request *req, int segment,
3157                    unsigned int newlen, int move_data)
3158{
3159        LASSERT(req->rq_reply_state);
3160        LASSERT(req->rq_repmsg);
3161        req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
3162                                           newlen, move_data);
3163}
3164/** @} */
3165
3166/** Change request phase of \a req to \a new_phase */
3167static inline void
3168ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
3169{
3170        if (req->rq_phase == new_phase)
3171                return;
3172
3173        if (new_phase == RQ_PHASE_UNREGISTERING) {
3174                req->rq_next_phase = req->rq_phase;
3175                if (req->rq_import)
3176                        atomic_inc(&req->rq_import->imp_unregistering);
3177        }
3178
3179        if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
3180                if (req->rq_import)
3181                        atomic_dec(&req->rq_import->imp_unregistering);
3182        }
3183
3184        DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
3185                  ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
3186
3187        req->rq_phase = new_phase;
3188}
3189
3190/**
3191 * Returns true if request \a req got early reply and hard deadline is not met
3192 */
3193static inline int
3194ptlrpc_client_early(struct ptlrpc_request *req)
3195{
3196        if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3197            req->rq_reply_deadline > cfs_time_current_sec())
3198                return 0;
3199        return req->rq_early;
3200}
3201
3202/**
3203 * Returns true if we got real reply from server for this request
3204 */
3205static inline int
3206ptlrpc_client_replied(struct ptlrpc_request *req)
3207{
3208        if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3209            req->rq_reply_deadline > cfs_time_current_sec())
3210                return 0;
3211        return req->rq_replied;
3212}
3213
3214/** Returns true if request \a req is in process of receiving server reply */
3215static inline int
3216ptlrpc_client_recv(struct ptlrpc_request *req)
3217{
3218        if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3219            req->rq_reply_deadline > cfs_time_current_sec())
3220                return 1;
3221        return req->rq_receiving_reply;
3222}
3223
3224static inline int
3225ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
3226{
3227        int rc;
3228
3229        spin_lock(&req->rq_lock);
3230        if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
3231            req->rq_reply_deadline > cfs_time_current_sec()) {
3232                spin_unlock(&req->rq_lock);
3233                return 1;
3234        }
3235        rc = req->rq_receiving_reply || req->rq_must_unlink;
3236        spin_unlock(&req->rq_lock);
3237        return rc;
3238}
3239
3240static inline void
3241ptlrpc_client_wake_req(struct ptlrpc_request *req)
3242{
3243        if (req->rq_set == NULL)
3244                wake_up(&req->rq_reply_waitq);
3245        else
3246                wake_up(&req->rq_set->set_waitq);
3247}
3248
3249static inline void
3250ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
3251{
3252        LASSERT(atomic_read(&rs->rs_refcount) > 0);
3253        atomic_inc(&rs->rs_refcount);
3254}
3255
3256static inline void
3257ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
3258{
3259        LASSERT(atomic_read(&rs->rs_refcount) > 0);
3260        if (atomic_dec_and_test(&rs->rs_refcount))
3261                lustre_free_reply_state(rs);
3262}
3263
3264/* Should only be called once per req */
3265static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
3266{
3267        if (req->rq_reply_state == NULL)
3268                return; /* shouldn't occur */
3269        ptlrpc_rs_decref(req->rq_reply_state);
3270        req->rq_reply_state = NULL;
3271        req->rq_repmsg = NULL;
3272}
3273
3274static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
3275{
3276        return lustre_msg_get_magic(req->rq_reqmsg);
3277}
3278
3279static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
3280{
3281        switch (req->rq_reqmsg->lm_magic) {
3282        case LUSTRE_MSG_MAGIC_V2:
3283                return req->rq_reqmsg->lm_repsize;
3284        default:
3285                LASSERTF(0, "incorrect message magic: %08x\n",
3286                         req->rq_reqmsg->lm_magic);
3287                return -EFAULT;
3288        }
3289}
3290
3291static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
3292{
3293        if (req->rq_delay_limit != 0 &&
3294            cfs_time_before(cfs_time_add(req->rq_queued_time,
3295                                         cfs_time_seconds(req->rq_delay_limit)),
3296                            cfs_time_current())) {
3297                return 1;
3298        }
3299        return 0;
3300}
3301
3302static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
3303{
3304        if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
3305                spin_lock(&req->rq_lock);
3306                req->rq_no_resend = 1;
3307                spin_unlock(&req->rq_lock);
3308        }
3309        return req->rq_no_resend;
3310}
3311
3312static inline int
3313ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
3314{
3315        int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
3316
3317        return svcpt->scp_service->srv_watchdog_factor *
3318               max_t(int, at, obd_timeout);
3319}
3320
3321static inline struct ptlrpc_service *
3322ptlrpc_req2svc(struct ptlrpc_request *req)
3323{
3324        LASSERT(req->rq_rqbd != NULL);
3325        return req->rq_rqbd->rqbd_svcpt->scp_service;
3326}
3327
3328/* ldlm/ldlm_lib.c */
3329/**
3330 * Target client logic
3331 * @{
3332 */
3333int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
3334int client_obd_cleanup(struct obd_device *obddev);
3335int client_connect_import(const struct lu_env *env,
3336                          struct obd_export **exp, struct obd_device *obd,
3337                          struct obd_uuid *cluuid, struct obd_connect_data *,
3338                          void *localdata);
3339int client_disconnect_export(struct obd_export *exp);
3340int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
3341                           int priority);
3342int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
3343int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
3344                            struct obd_uuid *uuid);
3345int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
3346void client_destroy_import(struct obd_import *imp);
3347/** @} */
3348
3349
3350/* ptlrpc/pinger.c */
3351/**
3352 * Pinger API (client side only)
3353 * @{
3354 */
3355enum timeout_event {
3356        TIMEOUT_GRANT = 1
3357};
3358struct timeout_item;
3359typedef int (*timeout_cb_t)(struct timeout_item *, void *);
3360int ptlrpc_pinger_add_import(struct obd_import *imp);
3361int ptlrpc_pinger_del_import(struct obd_import *imp);
3362int ptlrpc_add_timeout_client(int time, enum timeout_event event,
3363                              timeout_cb_t cb, void *data,
3364                              struct list_head *obd_list);
3365int ptlrpc_del_timeout_client(struct list_head *obd_list,
3366                              enum timeout_event event);
3367struct ptlrpc_request * ptlrpc_prep_ping(struct obd_import *imp);
3368int ptlrpc_obd_ping(struct obd_device *obd);
3369cfs_time_t ptlrpc_suspend_wakeup_time(void);
3370void ping_evictor_start(void);
3371void ping_evictor_stop(void);
3372int ptlrpc_check_and_wait_suspend(struct ptlrpc_request *req);
3373void ptlrpc_pinger_ir_up(void);
3374void ptlrpc_pinger_ir_down(void);
3375/** @} */
3376int ptlrpc_pinger_suppress_pings(void);
3377
3378/* ptlrpc daemon bind policy */
3379typedef enum {
3380        /* all ptlrpcd threads are free mode */
3381        PDB_POLICY_NONE   = 1,
3382        /* all ptlrpcd threads are bound mode */
3383        PDB_POLICY_FULL   = 2,
3384        /* <free1 bound1> <free2 bound2> ... <freeN boundN> */
3385        PDB_POLICY_PAIR   = 3,
3386        /* <free1 bound1> <bound1 free2> ... <freeN boundN> <boundN free1>,
3387         * means each ptlrpcd[X] has two partners: thread[X-1] and thread[X+1].
3388         * If kernel supports NUMA, pthrpcd threads are binded and
3389         * grouped by NUMA node */
3390        PDB_POLICY_NEIGHBOR      = 4,
3391} pdb_policy_t;
3392
3393/* ptlrpc daemon load policy
3394 * It is caller's duty to specify how to push the async RPC into some ptlrpcd
3395 * queue, but it is not enforced, affected by "ptlrpcd_bind_policy". If it is
3396 * "PDB_POLICY_FULL", then the RPC will be processed by the selected ptlrpcd,
3397 * Otherwise, the RPC may be processed by the selected ptlrpcd or its partner,
3398 * depends on which is scheduled firstly, to accelerate the RPC processing. */
3399typedef enum {
3400        /* on the same CPU core as the caller */
3401        PDL_POLICY_SAME  = 1,
3402        /* within the same CPU partition, but not the same core as the caller */
3403        PDL_POLICY_LOCAL        = 2,
3404        /* round-robin on all CPU cores, but not the same core as the caller */
3405        PDL_POLICY_ROUND        = 3,
3406        /* the specified CPU core is preferred, but not enforced */
3407        PDL_POLICY_PREFERRED    = 4,
3408} pdl_policy_t;
3409
3410/* ptlrpc/ptlrpcd.c */
3411void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
3412void ptlrpcd_free(struct ptlrpcd_ctl *pc);
3413void ptlrpcd_wake(struct ptlrpc_request *req);
3414void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx);
3415void ptlrpcd_add_rqset(struct ptlrpc_request_set *set);
3416int ptlrpcd_addref(void);
3417void ptlrpcd_decref(void);
3418
3419/* ptlrpc/lproc_ptlrpc.c */
3420/**
3421 * procfs output related functions
3422 * @{
3423 */
3424const char* ll_opcode2str(__u32 opcode);
3425#ifdef LPROCFS
3426void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
3427void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
3428void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
3429#else
3430static inline void ptlrpc_lprocfs_register_obd(struct obd_device *obd) {}
3431static inline void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd) {}
3432static inline void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes) {}
3433#endif
3434/** @} */
3435
3436/* ptlrpc/llog_server.c */
3437int llog_origin_handle_open(struct ptlrpc_request *req);
3438int llog_origin_handle_destroy(struct ptlrpc_request *req);
3439int llog_origin_handle_prev_block(struct ptlrpc_request *req);
3440int llog_origin_handle_next_block(struct ptlrpc_request *req);
3441int llog_origin_handle_read_header(struct ptlrpc_request *req);
3442int llog_origin_handle_close(struct ptlrpc_request *req);
3443int llog_origin_handle_cancel(struct ptlrpc_request *req);
3444
3445/* ptlrpc/llog_client.c */
3446extern struct llog_operations llog_client_ops;
3447
3448/** @} net */
3449
3450#endif
3451/** @} PtlRPC */
3452