linux/drivers/staging/lustre/lustre/ldlm/ldlm_pool.c
<<
>>
Prefs
   1/*
   2 * GPL HEADER START
   3 *
   4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 only,
   8 * as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 for more details (a copy is included
  14 * in the LICENSE file that accompanied this code).
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * version 2 along with this program; If not, see
  18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
  19 *
  20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  21 * CA 95054 USA or visit www.sun.com if you need additional information or
  22 * have any questions.
  23 *
  24 * GPL HEADER END
  25 */
  26/*
  27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
  28 * Use is subject to license terms.
  29 *
  30 * Copyright (c) 2010, 2012, Intel Corporation.
  31 */
  32/*
  33 * This file is part of Lustre, http://www.lustre.org/
  34 * Lustre is a trademark of Sun Microsystems, Inc.
  35 *
  36 * lustre/ldlm/ldlm_pool.c
  37 *
  38 * Author: Yury Umanets <umka@clusterfs.com>
  39 */
  40
  41/*
  42 * Idea of this code is rather simple. Each second, for each server namespace
  43 * we have SLV - server lock volume which is calculated on current number of
  44 * granted locks, grant speed for past period, etc - that is, locking load.
  45 * This SLV number may be thought as a flow definition for simplicity. It is
  46 * sent to clients with each occasion to let them know what is current load
  47 * situation on the server. By default, at the beginning, SLV on server is
  48 * set max value which is calculated as the following: allow to one client
  49 * have all locks of limit ->pl_limit for 10h.
  50 *
  51 * Next, on clients, number of cached locks is not limited artificially in any
  52 * way as it was before. Instead, client calculates CLV, that is, client lock
  53 * volume for each lock and compares it with last SLV from the server. CLV is
  54 * calculated as the number of locks in LRU * lock live time in seconds. If
  55 * CLV > SLV - lock is canceled.
  56 *
  57 * Client has LVF, that is, lock volume factor which regulates how much sensitive
  58 * client should be about last SLV from server. The higher LVF is the more locks
  59 * will be canceled on client. Default value for it is 1. Setting LVF to 2 means
  60 * that client will cancel locks 2 times faster.
  61 *
  62 * Locks on a client will be canceled more intensively in these cases:
  63 * (1) if SLV is smaller, that is, load is higher on the server;
  64 * (2) client has a lot of locks (the more locks are held by client, the bigger
  65 *     chances that some of them should be canceled);
  66 * (3) client has old locks (taken some time ago);
  67 *
  68 * Thus, according to flow paradigm that we use for better understanding SLV,
  69 * CLV is the volume of particle in flow described by SLV. According to this,
  70 * if flow is getting thinner, more and more particles become outside of it and
  71 * as particles are locks, they should be canceled.
  72 *
  73 * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com). Andreas
  74 * Dilger (adilger@clusterfs.com) proposed few nice ideas like using LVF and many
  75 * cleanups. Flow definition to allow more easy understanding of the logic belongs
  76 * to Nikita Danilov (nikita@clusterfs.com) as well as many cleanups and fixes.
  77 * And design and implementation are done by Yury Umanets (umka@clusterfs.com).
  78 *
  79 * Glossary for terms used:
  80 *
  81 * pl_limit - Number of allowed locks in pool. Applies to server and client
  82 * side (tunable);
  83 *
  84 * pl_granted - Number of granted locks (calculated);
  85 * pl_grant_rate - Number of granted locks for last T (calculated);
  86 * pl_cancel_rate - Number of canceled locks for last T (calculated);
  87 * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
  88 * pl_grant_plan - Planned number of granted locks for next T (calculated);
  89 * pl_server_lock_volume - Current server lock volume (calculated);
  90 *
  91 * As it may be seen from list above, we have few possible tunables which may
  92 * affect behavior much. They all may be modified via proc. However, they also
  93 * give a possibility for constructing few pre-defined behavior policies. If
  94 * none of predefines is suitable for a working pattern being used, new one may
  95 * be "constructed" via proc tunables.
  96 */
  97
  98#define DEBUG_SUBSYSTEM S_LDLM
  99
 100# include <lustre_dlm.h>
 101
 102#include <cl_object.h>
 103
 104#include <obd_class.h>
 105#include <obd_support.h>
 106#include "ldlm_internal.h"
 107
 108
 109/*
 110 * 50 ldlm locks for 1MB of RAM.
 111 */
 112#define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_CACHE_SHIFT)) * 50)
 113
 114/*
 115 * Maximal possible grant step plan in %.
 116 */
 117#define LDLM_POOL_MAX_GSP (30)
 118
 119/*
 120 * Minimal possible grant step plan in %.
 121 */
 122#define LDLM_POOL_MIN_GSP (1)
 123
 124/*
 125 * This controls the speed of reaching LDLM_POOL_MAX_GSP
 126 * with increasing thread period.
 127 */
 128#define LDLM_POOL_GSP_STEP_SHIFT (2)
 129
 130/*
 131 * LDLM_POOL_GSP% of all locks is default GP.
 132 */
 133#define LDLM_POOL_GP(L)   (((L) * LDLM_POOL_MAX_GSP) / 100)
 134
 135/*
 136 * Max age for locks on clients.
 137 */
 138#define LDLM_POOL_MAX_AGE (36000)
 139
 140/*
 141 * The granularity of SLV calculation.
 142 */
 143#define LDLM_POOL_SLV_SHIFT (10)
 144
 145extern proc_dir_entry_t *ldlm_ns_proc_dir;
 146
 147static inline __u64 dru(__u64 val, __u32 shift, int round_up)
 148{
 149        return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
 150}
 151
 152static inline __u64 ldlm_pool_slv_max(__u32 L)
 153{
 154        /*
 155         * Allow to have all locks for 1 client for 10 hrs.
 156         * Formula is the following: limit * 10h / 1 client.
 157         */
 158        __u64 lim = (__u64)L *  LDLM_POOL_MAX_AGE / 1;
 159        return lim;
 160}
 161
 162static inline __u64 ldlm_pool_slv_min(__u32 L)
 163{
 164        return 1;
 165}
 166
 167enum {
 168        LDLM_POOL_FIRST_STAT = 0,
 169        LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
 170        LDLM_POOL_GRANT_STAT,
 171        LDLM_POOL_CANCEL_STAT,
 172        LDLM_POOL_GRANT_RATE_STAT,
 173        LDLM_POOL_CANCEL_RATE_STAT,
 174        LDLM_POOL_GRANT_PLAN_STAT,
 175        LDLM_POOL_SLV_STAT,
 176        LDLM_POOL_SHRINK_REQTD_STAT,
 177        LDLM_POOL_SHRINK_FREED_STAT,
 178        LDLM_POOL_RECALC_STAT,
 179        LDLM_POOL_TIMING_STAT,
 180        LDLM_POOL_LAST_STAT
 181};
 182
 183static inline struct ldlm_namespace *ldlm_pl2ns(struct ldlm_pool *pl)
 184{
 185        return container_of(pl, struct ldlm_namespace, ns_pool);
 186}
 187
 188/**
 189 * Calculates suggested grant_step in % of available locks for passed
 190 * \a period. This is later used in grant_plan calculations.
 191 */
 192static inline int ldlm_pool_t2gsp(unsigned int t)
 193{
 194        /*
 195         * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
 196         * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
 197         *
 198         * How this will affect execution is the following:
 199         *
 200         * - for thread period 1s we will have grant_step 1% which good from
 201         * pov of taking some load off from server and push it out to clients.
 202         * This is like that because 1% for grant_step means that server will
 203         * not allow clients to get lots of locks in short period of time and
 204         * keep all old locks in their caches. Clients will always have to
 205         * get some locks back if they want to take some new;
 206         *
 207         * - for thread period 10s (which is default) we will have 23% which
 208         * means that clients will have enough of room to take some new locks
 209         * without getting some back. All locks from this 23% which were not
 210         * taken by clients in current period will contribute in SLV growing.
 211         * SLV growing means more locks cached on clients until limit or grant
 212         * plan is reached.
 213         */
 214        return LDLM_POOL_MAX_GSP -
 215                ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
 216                 (t >> LDLM_POOL_GSP_STEP_SHIFT));
 217}
 218
 219/**
 220 * Recalculates next grant limit on passed \a pl.
 221 *
 222 * \pre ->pl_lock is locked.
 223 */
 224static void ldlm_pool_recalc_grant_plan(struct ldlm_pool *pl)
 225{
 226        int granted, grant_step, limit;
 227
 228        limit = ldlm_pool_get_limit(pl);
 229        granted = atomic_read(&pl->pl_granted);
 230
 231        grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
 232        grant_step = ((limit - granted) * grant_step) / 100;
 233        pl->pl_grant_plan = granted + grant_step;
 234        limit = (limit * 5) >> 2;
 235        if (pl->pl_grant_plan > limit)
 236                pl->pl_grant_plan = limit;
 237}
 238
 239/**
 240 * Recalculates next SLV on passed \a pl.
 241 *
 242 * \pre ->pl_lock is locked.
 243 */
 244static void ldlm_pool_recalc_slv(struct ldlm_pool *pl)
 245{
 246        int granted;
 247        int grant_plan;
 248        int round_up;
 249        __u64 slv;
 250        __u64 slv_factor;
 251        __u64 grant_usage;
 252        __u32 limit;
 253
 254        slv = pl->pl_server_lock_volume;
 255        grant_plan = pl->pl_grant_plan;
 256        limit = ldlm_pool_get_limit(pl);
 257        granted = atomic_read(&pl->pl_granted);
 258        round_up = granted < limit;
 259
 260        grant_usage = max_t(int, limit - (granted - grant_plan), 1);
 261
 262        /*
 263         * Find out SLV change factor which is the ratio of grant usage
 264         * from limit. SLV changes as fast as the ratio of grant plan
 265         * consumption. The more locks from grant plan are not consumed
 266         * by clients in last interval (idle time), the faster grows
 267         * SLV. And the opposite, the more grant plan is over-consumed
 268         * (load time) the faster drops SLV.
 269         */
 270        slv_factor = (grant_usage << LDLM_POOL_SLV_SHIFT);
 271        do_div(slv_factor, limit);
 272        slv = slv * slv_factor;
 273        slv = dru(slv, LDLM_POOL_SLV_SHIFT, round_up);
 274
 275        if (slv > ldlm_pool_slv_max(limit)) {
 276                slv = ldlm_pool_slv_max(limit);
 277        } else if (slv < ldlm_pool_slv_min(limit)) {
 278                slv = ldlm_pool_slv_min(limit);
 279        }
 280
 281        pl->pl_server_lock_volume = slv;
 282}
 283
 284/**
 285 * Recalculates next stats on passed \a pl.
 286 *
 287 * \pre ->pl_lock is locked.
 288 */
 289static void ldlm_pool_recalc_stats(struct ldlm_pool *pl)
 290{
 291        int grant_plan = pl->pl_grant_plan;
 292        __u64 slv = pl->pl_server_lock_volume;
 293        int granted = atomic_read(&pl->pl_granted);
 294        int grant_rate = atomic_read(&pl->pl_grant_rate);
 295        int cancel_rate = atomic_read(&pl->pl_cancel_rate);
 296
 297        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
 298                            slv);
 299        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
 300                            granted);
 301        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
 302                            grant_rate);
 303        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
 304                            grant_plan);
 305        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
 306                            cancel_rate);
 307}
 308
 309/**
 310 * Sets current SLV into obd accessible via ldlm_pl2ns(pl)->ns_obd.
 311 */
 312static void ldlm_srv_pool_push_slv(struct ldlm_pool *pl)
 313{
 314        struct obd_device *obd;
 315
 316        /*
 317         * Set new SLV in obd field for using it later without accessing the
 318         * pool. This is required to avoid race between sending reply to client
 319         * with new SLV and cleanup server stack in which we can't guarantee
 320         * that namespace is still alive. We know only that obd is alive as
 321         * long as valid export is alive.
 322         */
 323        obd = ldlm_pl2ns(pl)->ns_obd;
 324        LASSERT(obd != NULL);
 325        write_lock(&obd->obd_pool_lock);
 326        obd->obd_pool_slv = pl->pl_server_lock_volume;
 327        write_unlock(&obd->obd_pool_lock);
 328}
 329
 330/**
 331 * Recalculates all pool fields on passed \a pl.
 332 *
 333 * \pre ->pl_lock is not locked.
 334 */
 335static int ldlm_srv_pool_recalc(struct ldlm_pool *pl)
 336{
 337        time_t recalc_interval_sec;
 338        ENTRY;
 339
 340        recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
 341        if (recalc_interval_sec < pl->pl_recalc_period)
 342                RETURN(0);
 343
 344        spin_lock(&pl->pl_lock);
 345        recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
 346        if (recalc_interval_sec < pl->pl_recalc_period) {
 347                spin_unlock(&pl->pl_lock);
 348                RETURN(0);
 349        }
 350        /*
 351         * Recalc SLV after last period. This should be done
 352         * _before_ recalculating new grant plan.
 353         */
 354        ldlm_pool_recalc_slv(pl);
 355
 356        /*
 357         * Make sure that pool informed obd of last SLV changes.
 358         */
 359        ldlm_srv_pool_push_slv(pl);
 360
 361        /*
 362         * Update grant_plan for new period.
 363         */
 364        ldlm_pool_recalc_grant_plan(pl);
 365
 366        pl->pl_recalc_time = cfs_time_current_sec();
 367        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
 368                            recalc_interval_sec);
 369        spin_unlock(&pl->pl_lock);
 370        RETURN(0);
 371}
 372
 373/**
 374 * This function is used on server side as main entry point for memory
 375 * pressure handling. It decreases SLV on \a pl according to passed
 376 * \a nr and \a gfp_mask.
 377 *
 378 * Our goal here is to decrease SLV such a way that clients hold \a nr
 379 * locks smaller in next 10h.
 380 */
 381static int ldlm_srv_pool_shrink(struct ldlm_pool *pl,
 382                                int nr, unsigned int gfp_mask)
 383{
 384        __u32 limit;
 385
 386        /*
 387         * VM is asking how many entries may be potentially freed.
 388         */
 389        if (nr == 0)
 390                return atomic_read(&pl->pl_granted);
 391
 392        /*
 393         * Client already canceled locks but server is already in shrinker
 394         * and can't cancel anything. Let's catch this race.
 395         */
 396        if (atomic_read(&pl->pl_granted) == 0)
 397                RETURN(0);
 398
 399        spin_lock(&pl->pl_lock);
 400
 401        /*
 402         * We want shrinker to possibly cause cancellation of @nr locks from
 403         * clients or grant approximately @nr locks smaller next intervals.
 404         *
 405         * This is why we decreased SLV by @nr. This effect will only be as
 406         * long as one re-calc interval (1s these days) and this should be
 407         * enough to pass this decreased SLV to all clients. On next recalc
 408         * interval pool will either increase SLV if locks load is not high
 409         * or will keep on same level or even decrease again, thus, shrinker
 410         * decreased SLV will affect next recalc intervals and this way will
 411         * make locking load lower.
 412         */
 413        if (nr < pl->pl_server_lock_volume) {
 414                pl->pl_server_lock_volume = pl->pl_server_lock_volume - nr;
 415        } else {
 416                limit = ldlm_pool_get_limit(pl);
 417                pl->pl_server_lock_volume = ldlm_pool_slv_min(limit);
 418        }
 419
 420        /*
 421         * Make sure that pool informed obd of last SLV changes.
 422         */
 423        ldlm_srv_pool_push_slv(pl);
 424        spin_unlock(&pl->pl_lock);
 425
 426        /*
 427         * We did not really free any memory here so far, it only will be
 428         * freed later may be, so that we return 0 to not confuse VM.
 429         */
 430        return 0;
 431}
 432
 433/**
 434 * Setup server side pool \a pl with passed \a limit.
 435 */
 436static int ldlm_srv_pool_setup(struct ldlm_pool *pl, int limit)
 437{
 438        struct obd_device *obd;
 439
 440        obd = ldlm_pl2ns(pl)->ns_obd;
 441        LASSERT(obd != NULL && obd != LP_POISON);
 442        LASSERT(obd->obd_type != LP_POISON);
 443        write_lock(&obd->obd_pool_lock);
 444        obd->obd_pool_limit = limit;
 445        write_unlock(&obd->obd_pool_lock);
 446
 447        ldlm_pool_set_limit(pl, limit);
 448        return 0;
 449}
 450
 451/**
 452 * Sets SLV and Limit from ldlm_pl2ns(pl)->ns_obd tp passed \a pl.
 453 */
 454static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
 455{
 456        struct obd_device *obd;
 457
 458        /*
 459         * Get new SLV and Limit from obd which is updated with coming
 460         * RPCs.
 461         */
 462        obd = ldlm_pl2ns(pl)->ns_obd;
 463        LASSERT(obd != NULL);
 464        read_lock(&obd->obd_pool_lock);
 465        pl->pl_server_lock_volume = obd->obd_pool_slv;
 466        ldlm_pool_set_limit(pl, obd->obd_pool_limit);
 467        read_unlock(&obd->obd_pool_lock);
 468}
 469
 470/**
 471 * Recalculates client size pool \a pl according to current SLV and Limit.
 472 */
 473static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
 474{
 475        time_t recalc_interval_sec;
 476        ENTRY;
 477
 478        recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
 479        if (recalc_interval_sec < pl->pl_recalc_period)
 480                RETURN(0);
 481
 482        spin_lock(&pl->pl_lock);
 483        /*
 484         * Check if we need to recalc lists now.
 485         */
 486        recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
 487        if (recalc_interval_sec < pl->pl_recalc_period) {
 488                spin_unlock(&pl->pl_lock);
 489                RETURN(0);
 490        }
 491
 492        /*
 493         * Make sure that pool knows last SLV and Limit from obd.
 494         */
 495        ldlm_cli_pool_pop_slv(pl);
 496
 497        pl->pl_recalc_time = cfs_time_current_sec();
 498        lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
 499                            recalc_interval_sec);
 500        spin_unlock(&pl->pl_lock);
 501
 502        /*
 503         * Do not cancel locks in case lru resize is disabled for this ns.
 504         */
 505        if (!ns_connect_lru_resize(ldlm_pl2ns(pl)))
 506                RETURN(0);
 507
 508        /*
 509         * In the time of canceling locks on client we do not need to maintain
 510         * sharp timing, we only want to cancel locks asap according to new SLV.
 511         * It may be called when SLV has changed much, this is why we do not
 512         * take into account pl->pl_recalc_time here.
 513         */
 514        RETURN(ldlm_cancel_lru(ldlm_pl2ns(pl), 0, LCF_ASYNC,
 515                               LDLM_CANCEL_LRUR));
 516}
 517
 518/**
 519 * This function is main entry point for memory pressure handling on client
 520 * side.  Main goal of this function is to cancel some number of locks on
 521 * passed \a pl according to \a nr and \a gfp_mask.
 522 */
 523static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
 524                                int nr, unsigned int gfp_mask)
 525{
 526        struct ldlm_namespace *ns;
 527        int canceled = 0, unused;
 528
 529        ns = ldlm_pl2ns(pl);
 530
 531        /*
 532         * Do not cancel locks in case lru resize is disabled for this ns.
 533         */
 534        if (!ns_connect_lru_resize(ns))
 535                RETURN(0);
 536
 537        /*
 538         * Make sure that pool knows last SLV and Limit from obd.
 539         */
 540        ldlm_cli_pool_pop_slv(pl);
 541
 542        spin_lock(&ns->ns_lock);
 543        unused = ns->ns_nr_unused;
 544        spin_unlock(&ns->ns_lock);
 545
 546        if (nr) {
 547                canceled = ldlm_cancel_lru(ns, nr, LCF_ASYNC,
 548                                           LDLM_CANCEL_SHRINK);
 549        }
 550        /*
 551         * Return the number of potentially reclaimable locks.
 552         */
 553        return ((unused - canceled) / 100) * sysctl_vfs_cache_pressure;
 554}
 555
 556struct ldlm_pool_ops ldlm_srv_pool_ops = {
 557        .po_recalc = ldlm_srv_pool_recalc,
 558        .po_shrink = ldlm_srv_pool_shrink,
 559        .po_setup  = ldlm_srv_pool_setup
 560};
 561
 562struct ldlm_pool_ops ldlm_cli_pool_ops = {
 563        .po_recalc = ldlm_cli_pool_recalc,
 564        .po_shrink = ldlm_cli_pool_shrink
 565};
 566
 567/**
 568 * Pool recalc wrapper. Will call either client or server pool recalc callback
 569 * depending what pool \a pl is used.
 570 */
 571int ldlm_pool_recalc(struct ldlm_pool *pl)
 572{
 573        time_t recalc_interval_sec;
 574        int count;
 575
 576        recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
 577        if (recalc_interval_sec <= 0)
 578                goto recalc;
 579
 580        spin_lock(&pl->pl_lock);
 581        recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
 582        if (recalc_interval_sec > 0) {
 583                /*
 584                 * Update pool statistics every 1s.
 585                 */
 586                ldlm_pool_recalc_stats(pl);
 587
 588                /*
 589                 * Zero out all rates and speed for the last period.
 590                 */
 591                atomic_set(&pl->pl_grant_rate, 0);
 592                atomic_set(&pl->pl_cancel_rate, 0);
 593        }
 594        spin_unlock(&pl->pl_lock);
 595
 596 recalc:
 597        if (pl->pl_ops->po_recalc != NULL) {
 598                count = pl->pl_ops->po_recalc(pl);
 599                lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
 600                                    count);
 601                return count;
 602        }
 603
 604        return 0;
 605}
 606EXPORT_SYMBOL(ldlm_pool_recalc);
 607
 608/**
 609 * Pool shrink wrapper. Will call either client or server pool recalc callback
 610 * depending what pool \a pl is used.
 611 */
 612int ldlm_pool_shrink(struct ldlm_pool *pl, int nr,
 613                     unsigned int gfp_mask)
 614{
 615        int cancel = 0;
 616
 617        if (pl->pl_ops->po_shrink != NULL) {
 618                cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
 619                if (nr > 0) {
 620                        lprocfs_counter_add(pl->pl_stats,
 621                                            LDLM_POOL_SHRINK_REQTD_STAT,
 622                                            nr);
 623                        lprocfs_counter_add(pl->pl_stats,
 624                                            LDLM_POOL_SHRINK_FREED_STAT,
 625                                            cancel);
 626                        CDEBUG(D_DLMTRACE, "%s: request to shrink %d locks, "
 627                               "shrunk %d\n", pl->pl_name, nr, cancel);
 628                }
 629        }
 630        return cancel;
 631}
 632EXPORT_SYMBOL(ldlm_pool_shrink);
 633
 634/**
 635 * Pool setup wrapper. Will call either client or server pool recalc callback
 636 * depending what pool \a pl is used.
 637 *
 638 * Sets passed \a limit into pool \a pl.
 639 */
 640int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
 641{
 642        if (pl->pl_ops->po_setup != NULL)
 643                return(pl->pl_ops->po_setup(pl, limit));
 644        return 0;
 645}
 646EXPORT_SYMBOL(ldlm_pool_setup);
 647
 648static int lprocfs_pool_state_seq_show(struct seq_file *m, void *unused)
 649{
 650        int granted, grant_rate, cancel_rate, grant_step;
 651        int grant_speed, grant_plan, lvf;
 652        struct ldlm_pool *pl = m->private;
 653        __u64 slv, clv;
 654        __u32 limit;
 655
 656        spin_lock(&pl->pl_lock);
 657        slv = pl->pl_server_lock_volume;
 658        clv = pl->pl_client_lock_volume;
 659        limit = ldlm_pool_get_limit(pl);
 660        grant_plan = pl->pl_grant_plan;
 661        granted = atomic_read(&pl->pl_granted);
 662        grant_rate = atomic_read(&pl->pl_grant_rate);
 663        cancel_rate = atomic_read(&pl->pl_cancel_rate);
 664        grant_speed = grant_rate - cancel_rate;
 665        lvf = atomic_read(&pl->pl_lock_volume_factor);
 666        grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
 667        spin_unlock(&pl->pl_lock);
 668
 669        seq_printf(m, "LDLM pool state (%s):\n"
 670                      "  SLV: "LPU64"\n"
 671                      "  CLV: "LPU64"\n"
 672                      "  LVF: %d\n",
 673                      pl->pl_name, slv, clv, lvf);
 674
 675        if (ns_is_server(ldlm_pl2ns(pl))) {
 676                seq_printf(m, "  GSP: %d%%\n"
 677                              "  GP:  %d\n",
 678                              grant_step, grant_plan);
 679        }
 680        seq_printf(m, "  GR:  %d\n" "  CR:  %d\n" "  GS:  %d\n"
 681                      "  G:   %d\n" "  L:   %d\n",
 682                      grant_rate, cancel_rate, grant_speed,
 683                      granted, limit);
 684
 685        return 0;
 686}
 687LPROC_SEQ_FOPS_RO(lprocfs_pool_state);
 688
 689static int lprocfs_grant_speed_seq_show(struct seq_file *m, void *unused)
 690{
 691        struct ldlm_pool *pl = m->private;
 692        int            grant_speed;
 693
 694        spin_lock(&pl->pl_lock);
 695        /* serialize with ldlm_pool_recalc */
 696        grant_speed = atomic_read(&pl->pl_grant_rate) -
 697                        atomic_read(&pl->pl_cancel_rate);
 698        spin_unlock(&pl->pl_lock);
 699        return lprocfs_rd_uint(m, &grant_speed);
 700}
 701
 702LDLM_POOL_PROC_READER_SEQ_SHOW(grant_plan, int);
 703LPROC_SEQ_FOPS_RO(lprocfs_grant_plan);
 704
 705LDLM_POOL_PROC_READER_SEQ_SHOW(recalc_period, int);
 706LDLM_POOL_PROC_WRITER(recalc_period, int);
 707static ssize_t lprocfs_recalc_period_seq_write(struct file *file, const char *buf,
 708                                           size_t len, loff_t *off)
 709{
 710        struct seq_file *seq = file->private_data;
 711
 712        return lprocfs_wr_recalc_period(file, buf, len, seq->private);
 713}
 714LPROC_SEQ_FOPS(lprocfs_recalc_period);
 715
 716LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, u64);
 717LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, atomic);
 718LPROC_SEQ_FOPS_RW_TYPE(ldlm_pool_rw, atomic);
 719
 720LPROC_SEQ_FOPS_RO(lprocfs_grant_speed);
 721
 722#define LDLM_POOL_ADD_VAR(name, var, ops)                       \
 723        do {                                                    \
 724                snprintf(var_name, MAX_STRING_SIZE, #name);     \
 725                pool_vars[0].data = var;                        \
 726                pool_vars[0].fops = ops;                        \
 727                lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);\
 728        } while (0)
 729
 730static int ldlm_pool_proc_init(struct ldlm_pool *pl)
 731{
 732        struct ldlm_namespace *ns = ldlm_pl2ns(pl);
 733        struct proc_dir_entry *parent_ns_proc;
 734        struct lprocfs_vars pool_vars[2];
 735        char *var_name = NULL;
 736        int rc = 0;
 737        ENTRY;
 738
 739        OBD_ALLOC(var_name, MAX_STRING_SIZE + 1);
 740        if (!var_name)
 741                RETURN(-ENOMEM);
 742
 743        parent_ns_proc = ns->ns_proc_dir_entry;
 744        if (parent_ns_proc == NULL) {
 745                CERROR("%s: proc entry is not initialized\n",
 746                       ldlm_ns_name(ns));
 747                GOTO(out_free_name, rc = -EINVAL);
 748        }
 749        pl->pl_proc_dir = lprocfs_register("pool", parent_ns_proc,
 750                                           NULL, NULL);
 751        if (IS_ERR(pl->pl_proc_dir)) {
 752                CERROR("LProcFS failed in ldlm-pool-init\n");
 753                rc = PTR_ERR(pl->pl_proc_dir);
 754                GOTO(out_free_name, rc);
 755        }
 756
 757        var_name[MAX_STRING_SIZE] = '\0';
 758        memset(pool_vars, 0, sizeof(pool_vars));
 759        pool_vars[0].name = var_name;
 760
 761        LDLM_POOL_ADD_VAR("server_lock_volume", &pl->pl_server_lock_volume,
 762                          &ldlm_pool_u64_fops);
 763        LDLM_POOL_ADD_VAR("limit", &pl->pl_limit, &ldlm_pool_rw_atomic_fops);
 764        LDLM_POOL_ADD_VAR("granted", &pl->pl_granted, &ldlm_pool_atomic_fops);
 765        LDLM_POOL_ADD_VAR("grant_speed", pl, &lprocfs_grant_speed_fops);
 766        LDLM_POOL_ADD_VAR("cancel_rate", &pl->pl_cancel_rate,
 767                          &ldlm_pool_atomic_fops);
 768        LDLM_POOL_ADD_VAR("grant_rate", &pl->pl_grant_rate,
 769                          &ldlm_pool_atomic_fops);
 770        LDLM_POOL_ADD_VAR("grant_plan", pl, &lprocfs_grant_plan_fops);
 771        LDLM_POOL_ADD_VAR("recalc_period", pl, &lprocfs_recalc_period_fops);
 772        LDLM_POOL_ADD_VAR("lock_volume_factor", &pl->pl_lock_volume_factor,
 773                          &ldlm_pool_rw_atomic_fops);
 774        LDLM_POOL_ADD_VAR("state", pl, &lprocfs_pool_state_fops);
 775
 776        pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
 777                                           LDLM_POOL_FIRST_STAT, 0);
 778        if (!pl->pl_stats)
 779                GOTO(out_free_name, rc = -ENOMEM);
 780
 781        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
 782                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 783                             "granted", "locks");
 784        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
 785                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 786                             "grant", "locks");
 787        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
 788                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 789                             "cancel", "locks");
 790        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
 791                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 792                             "grant_rate", "locks/s");
 793        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
 794                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 795                             "cancel_rate", "locks/s");
 796        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
 797                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 798                             "grant_plan", "locks/s");
 799        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
 800                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 801                             "slv", "slv");
 802        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
 803                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 804                             "shrink_request", "locks");
 805        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
 806                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 807                             "shrink_freed", "locks");
 808        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
 809                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 810                             "recalc_freed", "locks");
 811        lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
 812                             LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
 813                             "recalc_timing", "sec");
 814        rc = lprocfs_register_stats(pl->pl_proc_dir, "stats", pl->pl_stats);
 815
 816        EXIT;
 817out_free_name:
 818        OBD_FREE(var_name, MAX_STRING_SIZE + 1);
 819        return rc;
 820}
 821
 822static void ldlm_pool_proc_fini(struct ldlm_pool *pl)
 823{
 824        if (pl->pl_stats != NULL) {
 825                lprocfs_free_stats(&pl->pl_stats);
 826                pl->pl_stats = NULL;
 827        }
 828        if (pl->pl_proc_dir != NULL) {
 829                lprocfs_remove(&pl->pl_proc_dir);
 830                pl->pl_proc_dir = NULL;
 831        }
 832}
 833
 834int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
 835                   int idx, ldlm_side_t client)
 836{
 837        int rc;
 838        ENTRY;
 839
 840        spin_lock_init(&pl->pl_lock);
 841        atomic_set(&pl->pl_granted, 0);
 842        pl->pl_recalc_time = cfs_time_current_sec();
 843        atomic_set(&pl->pl_lock_volume_factor, 1);
 844
 845        atomic_set(&pl->pl_grant_rate, 0);
 846        atomic_set(&pl->pl_cancel_rate, 0);
 847        pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
 848
 849        snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
 850                 ldlm_ns_name(ns), idx);
 851
 852        if (client == LDLM_NAMESPACE_SERVER) {
 853                pl->pl_ops = &ldlm_srv_pool_ops;
 854                ldlm_pool_set_limit(pl, LDLM_POOL_HOST_L);
 855                pl->pl_recalc_period = LDLM_POOL_SRV_DEF_RECALC_PERIOD;
 856                pl->pl_server_lock_volume = ldlm_pool_slv_max(LDLM_POOL_HOST_L);
 857        } else {
 858                ldlm_pool_set_limit(pl, 1);
 859                pl->pl_server_lock_volume = 0;
 860                pl->pl_ops = &ldlm_cli_pool_ops;
 861                pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
 862        }
 863        pl->pl_client_lock_volume = 0;
 864        rc = ldlm_pool_proc_init(pl);
 865        if (rc)
 866                RETURN(rc);
 867
 868        CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
 869
 870        RETURN(rc);
 871}
 872EXPORT_SYMBOL(ldlm_pool_init);
 873
 874void ldlm_pool_fini(struct ldlm_pool *pl)
 875{
 876        ENTRY;
 877        ldlm_pool_proc_fini(pl);
 878
 879        /*
 880         * Pool should not be used after this point. We can't free it here as
 881         * it lives in struct ldlm_namespace, but still interested in catching
 882         * any abnormal using cases.
 883         */
 884        POISON(pl, 0x5a, sizeof(*pl));
 885        EXIT;
 886}
 887EXPORT_SYMBOL(ldlm_pool_fini);
 888
 889/**
 890 * Add new taken ldlm lock \a lock into pool \a pl accounting.
 891 */
 892void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
 893{
 894        /*
 895         * FLOCK locks are special in a sense that they are almost never
 896         * cancelled, instead special kind of lock is used to drop them.
 897         * also there is no LRU for flock locks, so no point in tracking
 898         * them anyway.
 899         */
 900        if (lock->l_resource->lr_type == LDLM_FLOCK)
 901                return;
 902
 903        atomic_inc(&pl->pl_granted);
 904        atomic_inc(&pl->pl_grant_rate);
 905        lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
 906        /*
 907         * Do not do pool recalc for client side as all locks which
 908         * potentially may be canceled has already been packed into
 909         * enqueue/cancel rpc. Also we do not want to run out of stack
 910         * with too long call paths.
 911         */
 912        if (ns_is_server(ldlm_pl2ns(pl)))
 913                ldlm_pool_recalc(pl);
 914}
 915EXPORT_SYMBOL(ldlm_pool_add);
 916
 917/**
 918 * Remove ldlm lock \a lock from pool \a pl accounting.
 919 */
 920void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
 921{
 922        /*
 923         * Filter out FLOCK locks. Read above comment in ldlm_pool_add().
 924         */
 925        if (lock->l_resource->lr_type == LDLM_FLOCK)
 926                return;
 927
 928        LASSERT(atomic_read(&pl->pl_granted) > 0);
 929        atomic_dec(&pl->pl_granted);
 930        atomic_inc(&pl->pl_cancel_rate);
 931
 932        lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
 933
 934        if (ns_is_server(ldlm_pl2ns(pl)))
 935                ldlm_pool_recalc(pl);
 936}
 937EXPORT_SYMBOL(ldlm_pool_del);
 938
 939/**
 940 * Returns current \a pl SLV.
 941 *
 942 * \pre ->pl_lock is not locked.
 943 */
 944__u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
 945{
 946        __u64 slv;
 947        spin_lock(&pl->pl_lock);
 948        slv = pl->pl_server_lock_volume;
 949        spin_unlock(&pl->pl_lock);
 950        return slv;
 951}
 952EXPORT_SYMBOL(ldlm_pool_get_slv);
 953
 954/**
 955 * Sets passed \a slv to \a pl.
 956 *
 957 * \pre ->pl_lock is not locked.
 958 */
 959void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
 960{
 961        spin_lock(&pl->pl_lock);
 962        pl->pl_server_lock_volume = slv;
 963        spin_unlock(&pl->pl_lock);
 964}
 965EXPORT_SYMBOL(ldlm_pool_set_slv);
 966
 967/**
 968 * Returns current \a pl CLV.
 969 *
 970 * \pre ->pl_lock is not locked.
 971 */
 972__u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
 973{
 974        __u64 slv;
 975        spin_lock(&pl->pl_lock);
 976        slv = pl->pl_client_lock_volume;
 977        spin_unlock(&pl->pl_lock);
 978        return slv;
 979}
 980EXPORT_SYMBOL(ldlm_pool_get_clv);
 981
 982/**
 983 * Sets passed \a clv to \a pl.
 984 *
 985 * \pre ->pl_lock is not locked.
 986 */
 987void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
 988{
 989        spin_lock(&pl->pl_lock);
 990        pl->pl_client_lock_volume = clv;
 991        spin_unlock(&pl->pl_lock);
 992}
 993EXPORT_SYMBOL(ldlm_pool_set_clv);
 994
 995/**
 996 * Returns current \a pl limit.
 997 */
 998__u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
 999{
1000        return atomic_read(&pl->pl_limit);
1001}
1002EXPORT_SYMBOL(ldlm_pool_get_limit);
1003
1004/**
1005 * Sets passed \a limit to \a pl.
1006 */
1007void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1008{
1009        atomic_set(&pl->pl_limit, limit);
1010}
1011EXPORT_SYMBOL(ldlm_pool_set_limit);
1012
1013/**
1014 * Returns current LVF from \a pl.
1015 */
1016__u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1017{
1018        return atomic_read(&pl->pl_lock_volume_factor);
1019}
1020EXPORT_SYMBOL(ldlm_pool_get_lvf);
1021
1022static int ldlm_pool_granted(struct ldlm_pool *pl)
1023{
1024        return atomic_read(&pl->pl_granted);
1025}
1026
1027static struct ptlrpc_thread *ldlm_pools_thread;
1028static struct shrinker *ldlm_pools_srv_shrinker;
1029static struct shrinker *ldlm_pools_cli_shrinker;
1030static struct completion ldlm_pools_comp;
1031
1032/*
1033 * Cancel \a nr locks from all namespaces (if possible). Returns number of
1034 * cached locks after shrink is finished. All namespaces are asked to
1035 * cancel approximately equal amount of locks to keep balancing.
1036 */
1037static int ldlm_pools_shrink(ldlm_side_t client, int nr,
1038                             unsigned int gfp_mask)
1039{
1040        int total = 0, cached = 0, nr_ns;
1041        struct ldlm_namespace *ns;
1042        void *cookie;
1043
1044        if (client == LDLM_NAMESPACE_CLIENT && nr != 0 &&
1045            !(gfp_mask & __GFP_FS))
1046                return -1;
1047
1048        CDEBUG(D_DLMTRACE, "Request to shrink %d %s locks from all pools\n",
1049               nr, client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
1050
1051        cookie = cl_env_reenter();
1052
1053        /*
1054         * Find out how many resources we may release.
1055         */
1056        for (nr_ns = atomic_read(ldlm_namespace_nr(client));
1057             nr_ns > 0; nr_ns--)
1058        {
1059                mutex_lock(ldlm_namespace_lock(client));
1060                if (list_empty(ldlm_namespace_list(client))) {
1061                        mutex_unlock(ldlm_namespace_lock(client));
1062                        cl_env_reexit(cookie);
1063                        return 0;
1064                }
1065                ns = ldlm_namespace_first_locked(client);
1066                ldlm_namespace_get(ns);
1067                ldlm_namespace_move_locked(ns, client);
1068                mutex_unlock(ldlm_namespace_lock(client));
1069                total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
1070                ldlm_namespace_put(ns);
1071        }
1072
1073        if (nr == 0 || total == 0) {
1074                cl_env_reexit(cookie);
1075                return total;
1076        }
1077
1078        /*
1079         * Shrink at least ldlm_namespace_nr(client) namespaces.
1080         */
1081        for (nr_ns = atomic_read(ldlm_namespace_nr(client));
1082             nr_ns > 0; nr_ns--)
1083        {
1084                int cancel, nr_locks;
1085
1086                /*
1087                 * Do not call shrink under ldlm_namespace_lock(client)
1088                 */
1089                mutex_lock(ldlm_namespace_lock(client));
1090                if (list_empty(ldlm_namespace_list(client))) {
1091                        mutex_unlock(ldlm_namespace_lock(client));
1092                        /*
1093                         * If list is empty, we can't return any @cached > 0,
1094                         * that probably would cause needless shrinker
1095                         * call.
1096                         */
1097                        cached = 0;
1098                        break;
1099                }
1100                ns = ldlm_namespace_first_locked(client);
1101                ldlm_namespace_get(ns);
1102                ldlm_namespace_move_locked(ns, client);
1103                mutex_unlock(ldlm_namespace_lock(client));
1104
1105                nr_locks = ldlm_pool_granted(&ns->ns_pool);
1106                cancel = 1 + nr_locks * nr / total;
1107                ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
1108                cached += ldlm_pool_granted(&ns->ns_pool);
1109                ldlm_namespace_put(ns);
1110        }
1111        cl_env_reexit(cookie);
1112        /* we only decrease the SLV in server pools shrinker, return -1 to
1113         * kernel to avoid needless loop. LU-1128 */
1114        return (client == LDLM_NAMESPACE_SERVER) ? -1 : cached;
1115}
1116
1117static int ldlm_pools_srv_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1118{
1119        return ldlm_pools_shrink(LDLM_NAMESPACE_SERVER,
1120                                 shrink_param(sc, nr_to_scan),
1121                                 shrink_param(sc, gfp_mask));
1122}
1123
1124static int ldlm_pools_cli_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1125{
1126        return ldlm_pools_shrink(LDLM_NAMESPACE_CLIENT,
1127                                 shrink_param(sc, nr_to_scan),
1128                                 shrink_param(sc, gfp_mask));
1129}
1130
1131void ldlm_pools_recalc(ldlm_side_t client)
1132{
1133        __u32 nr_l = 0, nr_p = 0, l;
1134        struct ldlm_namespace *ns;
1135        int nr, equal = 0;
1136
1137        /*
1138         * No need to setup pool limit for client pools.
1139         */
1140        if (client == LDLM_NAMESPACE_SERVER) {
1141                /*
1142                 * Check all modest namespaces first.
1143                 */
1144                mutex_lock(ldlm_namespace_lock(client));
1145                list_for_each_entry(ns, ldlm_namespace_list(client),
1146                                        ns_list_chain)
1147                {
1148                        if (ns->ns_appetite != LDLM_NAMESPACE_MODEST)
1149                                continue;
1150
1151                        l = ldlm_pool_granted(&ns->ns_pool);
1152                        if (l == 0)
1153                                l = 1;
1154
1155                        /*
1156                         * Set the modest pools limit equal to their avg granted
1157                         * locks + ~6%.
1158                         */
1159                        l += dru(l, LDLM_POOLS_MODEST_MARGIN_SHIFT, 0);
1160                        ldlm_pool_setup(&ns->ns_pool, l);
1161                        nr_l += l;
1162                        nr_p++;
1163                }
1164
1165                /*
1166                 * Make sure that modest namespaces did not eat more that 2/3
1167                 * of limit.
1168                 */
1169                if (nr_l >= 2 * (LDLM_POOL_HOST_L / 3)) {
1170                        CWARN("\"Modest\" pools eat out 2/3 of server locks "
1171                              "limit (%d of %lu). This means that you have too "
1172                              "many clients for this amount of server RAM. "
1173                              "Upgrade server!\n", nr_l, LDLM_POOL_HOST_L);
1174                        equal = 1;
1175                }
1176
1177                /*
1178                 * The rest is given to greedy namespaces.
1179                 */
1180                list_for_each_entry(ns, ldlm_namespace_list(client),
1181                                        ns_list_chain)
1182                {
1183                        if (!equal && ns->ns_appetite != LDLM_NAMESPACE_GREEDY)
1184                                continue;
1185
1186                        if (equal) {
1187                                /*
1188                                 * In the case 2/3 locks are eaten out by
1189                                 * modest pools, we re-setup equal limit
1190                                 * for _all_ pools.
1191                                 */
1192                                l = LDLM_POOL_HOST_L /
1193                                        atomic_read(
1194                                                ldlm_namespace_nr(client));
1195                        } else {
1196                                /*
1197                                 * All the rest of greedy pools will have
1198                                 * all locks in equal parts.
1199                                 */
1200                                l = (LDLM_POOL_HOST_L - nr_l) /
1201                                        (atomic_read(
1202                                                ldlm_namespace_nr(client)) -
1203                                         nr_p);
1204                        }
1205                        ldlm_pool_setup(&ns->ns_pool, l);
1206                }
1207                mutex_unlock(ldlm_namespace_lock(client));
1208        }
1209
1210        /*
1211         * Recalc at least ldlm_namespace_nr(client) namespaces.
1212         */
1213        for (nr = atomic_read(ldlm_namespace_nr(client)); nr > 0; nr--) {
1214                int     skip;
1215                /*
1216                 * Lock the list, get first @ns in the list, getref, move it
1217                 * to the tail, unlock and call pool recalc. This way we avoid
1218                 * calling recalc under @ns lock what is really good as we get
1219                 * rid of potential deadlock on client nodes when canceling
1220                 * locks synchronously.
1221                 */
1222                mutex_lock(ldlm_namespace_lock(client));
1223                if (list_empty(ldlm_namespace_list(client))) {
1224                        mutex_unlock(ldlm_namespace_lock(client));
1225                        break;
1226                }
1227                ns = ldlm_namespace_first_locked(client);
1228
1229                spin_lock(&ns->ns_lock);
1230                /*
1231                 * skip ns which is being freed, and we don't want to increase
1232                 * its refcount again, not even temporarily. bz21519 & LU-499.
1233                 */
1234                if (ns->ns_stopping) {
1235                        skip = 1;
1236                } else {
1237                        skip = 0;
1238                        ldlm_namespace_get(ns);
1239                }
1240                spin_unlock(&ns->ns_lock);
1241
1242                ldlm_namespace_move_locked(ns, client);
1243                mutex_unlock(ldlm_namespace_lock(client));
1244
1245                /*
1246                 * After setup is done - recalc the pool.
1247                 */
1248                if (!skip) {
1249                        ldlm_pool_recalc(&ns->ns_pool);
1250                        ldlm_namespace_put(ns);
1251                }
1252        }
1253}
1254EXPORT_SYMBOL(ldlm_pools_recalc);
1255
1256static int ldlm_pools_thread_main(void *arg)
1257{
1258        struct ptlrpc_thread *thread = (struct ptlrpc_thread *)arg;
1259        ENTRY;
1260
1261        thread_set_flags(thread, SVC_RUNNING);
1262        wake_up(&thread->t_ctl_waitq);
1263
1264        CDEBUG(D_DLMTRACE, "%s: pool thread starting, process %d\n",
1265                "ldlm_poold", current_pid());
1266
1267        while (1) {
1268                struct l_wait_info lwi;
1269
1270                /*
1271                 * Recal all pools on this tick.
1272                 */
1273                ldlm_pools_recalc(LDLM_NAMESPACE_SERVER);
1274                ldlm_pools_recalc(LDLM_NAMESPACE_CLIENT);
1275
1276                /*
1277                 * Wait until the next check time, or until we're
1278                 * stopped.
1279                 */
1280                lwi = LWI_TIMEOUT(cfs_time_seconds(LDLM_POOLS_THREAD_PERIOD),
1281                                  NULL, NULL);
1282                l_wait_event(thread->t_ctl_waitq,
1283                             thread_is_stopping(thread) ||
1284                             thread_is_event(thread),
1285                             &lwi);
1286
1287                if (thread_test_and_clear_flags(thread, SVC_STOPPING))
1288                        break;
1289                else
1290                        thread_test_and_clear_flags(thread, SVC_EVENT);
1291        }
1292
1293        thread_set_flags(thread, SVC_STOPPED);
1294        wake_up(&thread->t_ctl_waitq);
1295
1296        CDEBUG(D_DLMTRACE, "%s: pool thread exiting, process %d\n",
1297                "ldlm_poold", current_pid());
1298
1299        complete_and_exit(&ldlm_pools_comp, 0);
1300}
1301
1302static int ldlm_pools_thread_start(void)
1303{
1304        struct l_wait_info lwi = { 0 };
1305        task_t *task;
1306        ENTRY;
1307
1308        if (ldlm_pools_thread != NULL)
1309                RETURN(-EALREADY);
1310
1311        OBD_ALLOC_PTR(ldlm_pools_thread);
1312        if (ldlm_pools_thread == NULL)
1313                RETURN(-ENOMEM);
1314
1315        init_completion(&ldlm_pools_comp);
1316        init_waitqueue_head(&ldlm_pools_thread->t_ctl_waitq);
1317
1318        task = kthread_run(ldlm_pools_thread_main, ldlm_pools_thread,
1319                           "ldlm_poold");
1320        if (IS_ERR(task)) {
1321                CERROR("Can't start pool thread, error %ld\n", PTR_ERR(task));
1322                OBD_FREE(ldlm_pools_thread, sizeof(*ldlm_pools_thread));
1323                ldlm_pools_thread = NULL;
1324                RETURN(PTR_ERR(task));
1325        }
1326        l_wait_event(ldlm_pools_thread->t_ctl_waitq,
1327                     thread_is_running(ldlm_pools_thread), &lwi);
1328        RETURN(0);
1329}
1330
1331static void ldlm_pools_thread_stop(void)
1332{
1333        ENTRY;
1334
1335        if (ldlm_pools_thread == NULL) {
1336                EXIT;
1337                return;
1338        }
1339
1340        thread_set_flags(ldlm_pools_thread, SVC_STOPPING);
1341        wake_up(&ldlm_pools_thread->t_ctl_waitq);
1342
1343        /*
1344         * Make sure that pools thread is finished before freeing @thread.
1345         * This fixes possible race and oops due to accessing freed memory
1346         * in pools thread.
1347         */
1348        wait_for_completion(&ldlm_pools_comp);
1349        OBD_FREE_PTR(ldlm_pools_thread);
1350        ldlm_pools_thread = NULL;
1351        EXIT;
1352}
1353
1354int ldlm_pools_init(void)
1355{
1356        int rc;
1357        ENTRY;
1358
1359        rc = ldlm_pools_thread_start();
1360        if (rc == 0) {
1361                ldlm_pools_srv_shrinker =
1362                        set_shrinker(DEFAULT_SEEKS,
1363                                         ldlm_pools_srv_shrink);
1364                ldlm_pools_cli_shrinker =
1365                        set_shrinker(DEFAULT_SEEKS,
1366                                         ldlm_pools_cli_shrink);
1367        }
1368        RETURN(rc);
1369}
1370EXPORT_SYMBOL(ldlm_pools_init);
1371
1372void ldlm_pools_fini(void)
1373{
1374        if (ldlm_pools_srv_shrinker != NULL) {
1375                remove_shrinker(ldlm_pools_srv_shrinker);
1376                ldlm_pools_srv_shrinker = NULL;
1377        }
1378        if (ldlm_pools_cli_shrinker != NULL) {
1379                remove_shrinker(ldlm_pools_cli_shrinker);
1380                ldlm_pools_cli_shrinker = NULL;
1381        }
1382        ldlm_pools_thread_stop();
1383}
1384EXPORT_SYMBOL(ldlm_pools_fini);
1385