linux/drivers/staging/media/cxd2099/cxd2099.c
<<
>>
Prefs
   1/*
   2 * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
   3 *
   4 * Copyright (C) 2010-2011 Digital Devices GmbH
   5 *
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * version 2 only, as published by the Free Software Foundation.
  10 *
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21 * 02110-1301, USA
  22 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/init.h>
  30#include <linux/i2c.h>
  31#include <linux/wait.h>
  32#include <linux/delay.h>
  33#include <linux/mutex.h>
  34#include <linux/io.h>
  35
  36#include "cxd2099.h"
  37
  38#define MAX_BUFFER_SIZE 248
  39
  40struct cxd {
  41        struct dvb_ca_en50221 en;
  42
  43        struct i2c_adapter *i2c;
  44        struct cxd2099_cfg cfg;
  45
  46        u8     regs[0x23];
  47        u8     lastaddress;
  48        u8     clk_reg_f;
  49        u8     clk_reg_b;
  50        int    mode;
  51        int    ready;
  52        int    dr;
  53        int    slot_stat;
  54
  55        u8     amem[1024];
  56        int    amem_read;
  57
  58        int    cammode;
  59        struct mutex lock;
  60};
  61
  62static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
  63                         u8 reg, u8 data)
  64{
  65        u8 m[2] = {reg, data};
  66        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
  67
  68        if (i2c_transfer(adapter, &msg, 1) != 1) {
  69                dev_err(&adapter->dev,
  70                        "Failed to write to I2C register %02x@%02x!\n",
  71                        reg, adr);
  72                return -1;
  73        }
  74        return 0;
  75}
  76
  77static int i2c_write(struct i2c_adapter *adapter, u8 adr,
  78                     u8 *data, u8 len)
  79{
  80        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
  81
  82        if (i2c_transfer(adapter, &msg, 1) != 1) {
  83                dev_err(&adapter->dev, "Failed to write to I2C!\n");
  84                return -1;
  85        }
  86        return 0;
  87}
  88
  89static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
  90                        u8 reg, u8 *val)
  91{
  92        struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  93                                   .buf = &reg, .len = 1},
  94                                  {.addr = adr, .flags = I2C_M_RD,
  95                                   .buf = val, .len = 1} };
  96
  97        if (i2c_transfer(adapter, msgs, 2) != 2) {
  98                dev_err(&adapter->dev, "error in i2c_read_reg\n");
  99                return -1;
 100        }
 101        return 0;
 102}
 103
 104static int i2c_read(struct i2c_adapter *adapter, u8 adr,
 105                    u8 reg, u8 *data, u8 n)
 106{
 107        struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
 108                                 .buf = &reg, .len = 1},
 109                                {.addr = adr, .flags = I2C_M_RD,
 110                                 .buf = data, .len = n} };
 111
 112        if (i2c_transfer(adapter, msgs, 2) != 2) {
 113                dev_err(&adapter->dev, "error in i2c_read\n");
 114                return -1;
 115        }
 116        return 0;
 117}
 118
 119static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n)
 120{
 121        int status;
 122
 123        status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
 124        if (!status) {
 125                ci->lastaddress = adr;
 126                status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
 127        }
 128        return status;
 129}
 130
 131static int read_reg(struct cxd *ci, u8 reg, u8 *val)
 132{
 133        return read_block(ci, reg, val, 1);
 134}
 135
 136
 137static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
 138{
 139        int status;
 140        u8 addr[3] = {2, address & 0xff, address >> 8};
 141
 142        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 143        if (!status)
 144                status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
 145        return status;
 146}
 147
 148static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
 149{
 150        int status;
 151        u8 addr[3] = {2, address & 0xff, address >> 8};
 152
 153        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 154        if (!status) {
 155                u8 buf[256] = {3};
 156                memcpy(buf+1, data, n);
 157                status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
 158        }
 159        return status;
 160}
 161
 162static int read_io(struct cxd *ci, u16 address, u8 *val)
 163{
 164        int status;
 165        u8 addr[3] = {2, address & 0xff, address >> 8};
 166
 167        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 168        if (!status)
 169                status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
 170        return status;
 171}
 172
 173static int write_io(struct cxd *ci, u16 address, u8 val)
 174{
 175        int status;
 176        u8 addr[3] = {2, address & 0xff, address >> 8};
 177        u8 buf[2] = {3, val};
 178
 179        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 180        if (!status)
 181                status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
 182        return status;
 183}
 184
 185#if 0
 186static int read_io_data(struct cxd *ci, u8 *data, u8 n)
 187{
 188        int status;
 189        u8 addr[3] = { 2, 0, 0 };
 190
 191        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 192        if (!status)
 193                status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
 194        return 0;
 195}
 196
 197static int write_io_data(struct cxd *ci, u8 *data, u8 n)
 198{
 199        int status;
 200        u8 addr[3] = {2, 0, 0};
 201
 202        status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
 203        if (!status) {
 204                u8 buf[256] = {3};
 205                memcpy(buf+1, data, n);
 206                status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
 207        }
 208        return 0;
 209}
 210#endif
 211
 212static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
 213{
 214        int status;
 215
 216        status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
 217        if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
 218                status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
 219        ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
 220        if (!status) {
 221                ci->lastaddress = reg;
 222                status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
 223        }
 224        if (reg == 0x20)
 225                ci->regs[reg] &= 0x7f;
 226        return status;
 227}
 228
 229static int write_reg(struct cxd *ci, u8 reg, u8 val)
 230{
 231        return write_regm(ci, reg, val, 0xff);
 232}
 233
 234#ifdef BUFFER_MODE
 235static int write_block(struct cxd *ci, u8 adr, u8 *data, int n)
 236{
 237        int status;
 238        u8 buf[256] = {1};
 239
 240        status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
 241        if (!status) {
 242                ci->lastaddress = adr;
 243                memcpy(buf + 1, data, n);
 244                status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
 245        }
 246        return status;
 247}
 248#endif
 249
 250static void set_mode(struct cxd *ci, int mode)
 251{
 252        if (mode == ci->mode)
 253                return;
 254
 255        switch (mode) {
 256        case 0x00: /* IO mem */
 257                write_regm(ci, 0x06, 0x00, 0x07);
 258                break;
 259        case 0x01: /* ATT mem */
 260                write_regm(ci, 0x06, 0x02, 0x07);
 261                break;
 262        default:
 263                break;
 264        }
 265        ci->mode = mode;
 266}
 267
 268static void cam_mode(struct cxd *ci, int mode)
 269{
 270        if (mode == ci->cammode)
 271                return;
 272
 273        switch (mode) {
 274        case 0x00:
 275                write_regm(ci, 0x20, 0x80, 0x80);
 276                break;
 277        case 0x01:
 278#ifdef BUFFER_MODE
 279                if (!ci->en.read_data)
 280                        return;
 281                dev_info(&ci->i2c->dev, "enable cam buffer mode\n");
 282                /* write_reg(ci, 0x0d, 0x00); */
 283                /* write_reg(ci, 0x0e, 0x01); */
 284                write_regm(ci, 0x08, 0x40, 0x40);
 285                /* read_reg(ci, 0x12, &dummy); */
 286                write_regm(ci, 0x08, 0x80, 0x80);
 287#endif
 288                break;
 289        default:
 290                break;
 291        }
 292        ci->cammode = mode;
 293}
 294
 295
 296
 297static int init(struct cxd *ci)
 298{
 299        int status;
 300
 301        mutex_lock(&ci->lock);
 302        ci->mode = -1;
 303        do {
 304                status = write_reg(ci, 0x00, 0x00);
 305                if (status < 0)
 306                        break;
 307                status = write_reg(ci, 0x01, 0x00);
 308                if (status < 0)
 309                        break;
 310                status = write_reg(ci, 0x02, 0x10);
 311                if (status < 0)
 312                        break;
 313                status = write_reg(ci, 0x03, 0x00);
 314                if (status < 0)
 315                        break;
 316                status = write_reg(ci, 0x05, 0xFF);
 317                if (status < 0)
 318                        break;
 319                status = write_reg(ci, 0x06, 0x1F);
 320                if (status < 0)
 321                        break;
 322                status = write_reg(ci, 0x07, 0x1F);
 323                if (status < 0)
 324                        break;
 325                status = write_reg(ci, 0x08, 0x28);
 326                if (status < 0)
 327                        break;
 328                status = write_reg(ci, 0x14, 0x20);
 329                if (status < 0)
 330                        break;
 331
 332#if 0
 333                status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
 334                if (status < 0)
 335                        break;
 336#endif
 337                status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
 338                if (status < 0)
 339                        break;
 340
 341                status = write_reg(ci, 0x0B, 0x33);
 342                if (status < 0)
 343                        break;
 344                status = write_reg(ci, 0x0C, 0x33);
 345                if (status < 0)
 346                        break;
 347
 348                status = write_regm(ci, 0x14, 0x00, 0x0F);
 349                if (status < 0)
 350                        break;
 351                status = write_reg(ci, 0x15, ci->clk_reg_b);
 352                if (status < 0)
 353                        break;
 354                status = write_regm(ci, 0x16, 0x00, 0x0F);
 355                if (status < 0)
 356                        break;
 357                status = write_reg(ci, 0x17, ci->clk_reg_f);
 358                if (status < 0)
 359                        break;
 360
 361                if (ci->cfg.clock_mode) {
 362                        if (ci->cfg.polarity) {
 363                                status = write_reg(ci, 0x09, 0x6f);
 364                                if (status < 0)
 365                                        break;
 366                        } else {
 367                                status = write_reg(ci, 0x09, 0x6d);
 368                                if (status < 0)
 369                                        break;
 370                        }
 371                        status = write_reg(ci, 0x20, 0x68);
 372                        if (status < 0)
 373                                break;
 374                        status = write_reg(ci, 0x21, 0x00);
 375                        if (status < 0)
 376                                break;
 377                        status = write_reg(ci, 0x22, 0x02);
 378                        if (status < 0)
 379                                break;
 380                } else {
 381                        if (ci->cfg.polarity) {
 382                                status = write_reg(ci, 0x09, 0x4f);
 383                                if (status < 0)
 384                                        break;
 385                        } else {
 386                                status = write_reg(ci, 0x09, 0x4d);
 387                                if (status < 0)
 388                                        break;
 389                        }
 390
 391                        status = write_reg(ci, 0x20, 0x28);
 392                        if (status < 0)
 393                                break;
 394                        status = write_reg(ci, 0x21, 0x00);
 395                        if (status < 0)
 396                                break;
 397                        status = write_reg(ci, 0x22, 0x07);
 398                        if (status < 0)
 399                                break;
 400                }
 401
 402                status = write_regm(ci, 0x20, 0x80, 0x80);
 403                if (status < 0)
 404                        break;
 405                status = write_regm(ci, 0x03, 0x02, 0x02);
 406                if (status < 0)
 407                        break;
 408                status = write_reg(ci, 0x01, 0x04);
 409                if (status < 0)
 410                        break;
 411                status = write_reg(ci, 0x00, 0x31);
 412                if (status < 0)
 413                        break;
 414
 415                /* Put TS in bypass */
 416                status = write_regm(ci, 0x09, 0x08, 0x08);
 417                if (status < 0)
 418                        break;
 419                ci->cammode = -1;
 420                cam_mode(ci, 0);
 421        } while (0);
 422        mutex_unlock(&ci->lock);
 423
 424        return 0;
 425}
 426
 427static int read_attribute_mem(struct dvb_ca_en50221 *ca,
 428                              int slot, int address)
 429{
 430        struct cxd *ci = ca->data;
 431#if 0
 432        if (ci->amem_read) {
 433                if (address <= 0 || address > 1024)
 434                        return -EIO;
 435                return ci->amem[address];
 436        }
 437
 438        mutex_lock(&ci->lock);
 439        write_regm(ci, 0x06, 0x00, 0x05);
 440        read_pccard(ci, 0, &ci->amem[0], 128);
 441        read_pccard(ci, 128, &ci->amem[0], 128);
 442        read_pccard(ci, 256, &ci->amem[0], 128);
 443        read_pccard(ci, 384, &ci->amem[0], 128);
 444        write_regm(ci, 0x06, 0x05, 0x05);
 445        mutex_unlock(&ci->lock);
 446        return ci->amem[address];
 447#else
 448        u8 val;
 449        mutex_lock(&ci->lock);
 450        set_mode(ci, 1);
 451        read_pccard(ci, address, &val, 1);
 452        mutex_unlock(&ci->lock);
 453        /* printk(KERN_INFO "%02x:%02x\n", address,val); */
 454        return val;
 455#endif
 456}
 457
 458static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
 459                               int address, u8 value)
 460{
 461        struct cxd *ci = ca->data;
 462
 463        mutex_lock(&ci->lock);
 464        set_mode(ci, 1);
 465        write_pccard(ci, address, &value, 1);
 466        mutex_unlock(&ci->lock);
 467        return 0;
 468}
 469
 470static int read_cam_control(struct dvb_ca_en50221 *ca,
 471                            int slot, u8 address)
 472{
 473        struct cxd *ci = ca->data;
 474        u8 val;
 475
 476        mutex_lock(&ci->lock);
 477        set_mode(ci, 0);
 478        read_io(ci, address, &val);
 479        mutex_unlock(&ci->lock);
 480        return val;
 481}
 482
 483static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
 484                             u8 address, u8 value)
 485{
 486        struct cxd *ci = ca->data;
 487
 488        mutex_lock(&ci->lock);
 489        set_mode(ci, 0);
 490        write_io(ci, address, value);
 491        mutex_unlock(&ci->lock);
 492        return 0;
 493}
 494
 495static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
 496{
 497        struct cxd *ci = ca->data;
 498
 499        mutex_lock(&ci->lock);
 500#if 0
 501        write_reg(ci, 0x00, 0x21);
 502        write_reg(ci, 0x06, 0x1F);
 503        write_reg(ci, 0x00, 0x31);
 504#else
 505#if 0
 506        write_reg(ci, 0x06, 0x1F);
 507        write_reg(ci, 0x06, 0x2F);
 508#else
 509        cam_mode(ci, 0);
 510        write_reg(ci, 0x00, 0x21);
 511        write_reg(ci, 0x06, 0x1F);
 512        write_reg(ci, 0x00, 0x31);
 513        write_regm(ci, 0x20, 0x80, 0x80);
 514        write_reg(ci, 0x03, 0x02);
 515        ci->ready = 0;
 516#endif
 517#endif
 518        ci->mode = -1;
 519        {
 520                int i;
 521#if 0
 522                u8 val;
 523#endif
 524                for (i = 0; i < 100; i++) {
 525                        msleep(10);
 526#if 0
 527                        read_reg(ci, 0x06, &val);
 528                        dev_info(&ci->i2c->dev, "%d:%02x\n", i, val);
 529                        if (!(val&0x10))
 530                                break;
 531#else
 532                        if (ci->ready)
 533                                break;
 534#endif
 535                }
 536        }
 537        mutex_unlock(&ci->lock);
 538        /* msleep(500); */
 539        return 0;
 540}
 541
 542static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
 543{
 544        struct cxd *ci = ca->data;
 545
 546        dev_info(&ci->i2c->dev, "slot_shutdown\n");
 547        mutex_lock(&ci->lock);
 548        write_regm(ci, 0x09, 0x08, 0x08);
 549        write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
 550        write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
 551        ci->mode = -1;
 552        mutex_unlock(&ci->lock);
 553        return 0;
 554}
 555
 556static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
 557{
 558        struct cxd *ci = ca->data;
 559
 560        mutex_lock(&ci->lock);
 561        write_regm(ci, 0x09, 0x00, 0x08);
 562        set_mode(ci, 0);
 563#ifdef BUFFER_MODE
 564        cam_mode(ci, 1);
 565#endif
 566        mutex_unlock(&ci->lock);
 567        return 0;
 568}
 569
 570
 571static int campoll(struct cxd *ci)
 572{
 573        u8 istat;
 574
 575        read_reg(ci, 0x04, &istat);
 576        if (!istat)
 577                return 0;
 578        write_reg(ci, 0x05, istat);
 579
 580        if (istat&0x40) {
 581                ci->dr = 1;
 582                dev_info(&ci->i2c->dev, "DR\n");
 583        }
 584        if (istat&0x20)
 585                dev_info(&ci->i2c->dev, "WC\n");
 586
 587        if (istat&2) {
 588                u8 slotstat;
 589
 590                read_reg(ci, 0x01, &slotstat);
 591                if (!(2&slotstat)) {
 592                        if (!ci->slot_stat) {
 593                                ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT;
 594                                write_regm(ci, 0x03, 0x08, 0x08);
 595                        }
 596
 597                } else {
 598                        if (ci->slot_stat) {
 599                                ci->slot_stat = 0;
 600                                write_regm(ci, 0x03, 0x00, 0x08);
 601                                dev_info(&ci->i2c->dev, "NO CAM\n");
 602                                ci->ready = 0;
 603                        }
 604                }
 605                if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
 606                        ci->ready = 1;
 607                        ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
 608                }
 609        }
 610        return 0;
 611}
 612
 613
 614static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
 615{
 616        struct cxd *ci = ca->data;
 617        u8 slotstat;
 618
 619        mutex_lock(&ci->lock);
 620        campoll(ci);
 621        read_reg(ci, 0x01, &slotstat);
 622        mutex_unlock(&ci->lock);
 623
 624        return ci->slot_stat;
 625}
 626
 627#ifdef BUFFER_MODE
 628static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
 629{
 630        struct cxd *ci = ca->data;
 631        u8 msb, lsb;
 632        u16 len;
 633
 634        mutex_lock(&ci->lock);
 635        campoll(ci);
 636        mutex_unlock(&ci->lock);
 637
 638        dev_info(&ci->i2c->dev, "read_data\n");
 639        if (!ci->dr)
 640                return 0;
 641
 642        mutex_lock(&ci->lock);
 643        read_reg(ci, 0x0f, &msb);
 644        read_reg(ci, 0x10, &lsb);
 645        len = (msb<<8)|lsb;
 646        read_block(ci, 0x12, ebuf, len);
 647        ci->dr = 0;
 648        mutex_unlock(&ci->lock);
 649
 650        return len;
 651}
 652
 653static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
 654{
 655        struct cxd *ci = ca->data;
 656
 657        mutex_lock(&ci->lock);
 658        printk(kern_INFO "write_data %d\n", ecount);
 659        write_reg(ci, 0x0d, ecount>>8);
 660        write_reg(ci, 0x0e, ecount&0xff);
 661        write_block(ci, 0x11, ebuf, ecount);
 662        mutex_unlock(&ci->lock);
 663        return ecount;
 664}
 665#endif
 666
 667static struct dvb_ca_en50221 en_templ = {
 668        .read_attribute_mem  = read_attribute_mem,
 669        .write_attribute_mem = write_attribute_mem,
 670        .read_cam_control    = read_cam_control,
 671        .write_cam_control   = write_cam_control,
 672        .slot_reset          = slot_reset,
 673        .slot_shutdown       = slot_shutdown,
 674        .slot_ts_enable      = slot_ts_enable,
 675        .poll_slot_status    = poll_slot_status,
 676#ifdef BUFFER_MODE
 677        .read_data           = read_data,
 678        .write_data          = write_data,
 679#endif
 680
 681};
 682
 683struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
 684                                      void *priv,
 685                                      struct i2c_adapter *i2c)
 686{
 687        struct cxd *ci;
 688        u8 val;
 689
 690        if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
 691                dev_info(&i2c->dev, "No CXD2099 detected at %02x\n", cfg->adr);
 692                return NULL;
 693        }
 694
 695        ci = kzalloc(sizeof(struct cxd), GFP_KERNEL);
 696        if (!ci)
 697                return NULL;
 698
 699        mutex_init(&ci->lock);
 700        ci->cfg = *cfg;
 701        ci->i2c = i2c;
 702        ci->lastaddress = 0xff;
 703        ci->clk_reg_b = 0x4a;
 704        ci->clk_reg_f = 0x1b;
 705
 706        ci->en = en_templ;
 707        ci->en.data = ci;
 708        init(ci);
 709        dev_info(&i2c->dev, "Attached CXD2099AR at %02x\n", ci->cfg.adr);
 710        return &ci->en;
 711}
 712EXPORT_SYMBOL(cxd2099_attach);
 713
 714MODULE_DESCRIPTION("cxd2099");
 715MODULE_AUTHOR("Ralph Metzler");
 716MODULE_LICENSE("GPL");
 717